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Abstract

Variance reduction techniques such as SPIDER/SARAH/STORM have been ex-
tensively studied to improve the convergence rates of stochastic non-convex op-
timization, which usually maintain and update a sequence of estimators for a
single function across iterations. What if we need to track multiple functional
mappings across iterations but only with access to stochastic samples of O(1)
functional mappings at each iteration? There is an important application in solving
an emerging family of coupled compositional optimization problems in the form
of
∑m

i=1 fi(gi(w)), where gi is accessible through a stochastic oracle. The key
issue is to track and estimate a sequence of g(w) = (g1(w), . . . , gm(w)) across
iterations, where g(w) has m blocks and it is only allowed to probe O(1) blocks to
attain their stochastic values and Jacobians. To improve the complexity for solving
these problems, we propose a novel stochastic method named Multi-block-Single-
probe Variance Reduced (MSVR) estimator to track the sequence of g(w). It is
inspired by STORM but introduces a customized error correction term to alleviate
the noise not only in stochastic samples for the selected blocks but also in those
blocks that are not sampled. With the help of the MSVR estimator, we develop
several algorithms for solving the aforementioned compositional problems with im-
proved complexities across a spectrum of settings with non-convex/convex/strongly
convex/Polyak-Łojasiewicz (PL) objectives. Our results improve upon prior ones
in several aspects, including the order of sample complexities and dependence
on the strong convexity parameter. Empirical studies on multi-task deep AUC
maximization demonstrate the better performance of using the new estimator.

1 Introduction

This paper is motivated by solving the following Finite-sum Coupled Compositional Optimization
(FCCO) problem that has broad applications in machine learning [Wang and Yang, 2022]:

min
w∈Rd

F (w) :=
1

m

m∑
i=1

fi(gi(w)), (1)

where fi : Rp 7→ R is a simple deterministic function. We assume that only noisy estimations
of gi(·) and its Jacobian ∇gi(·) can be accessed, denoted as gi(·; ξi) and ∇gi(·; ξi), where ξi
represents the random sample(s) drawn from a stochastic oracle such that E [gi(·; ξi)] = gi(·) and
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E [∇gi(·; ξi)] = ∇gi(·). A special case to be considered separately is when each ξi has a finite
support and is uniformly distributed. In this case, the problem can be represented as:

min
w∈Rd

F (w) :=
1

m

m∑
i=1

fi

 1

n

n∑
j=1

gi(w; ξij)

 . (2)

These problems are different from classical stochastic compositional optimization (SCO) problems
Eζ [fζ(Eξg(w; ξ))] and its finite-sum variant 1/m

∑m
i=1 fi(1/n

∑n
j=1 g(w; ξj)) [Wang et al., 2017],

because the inner function is coupled with the outer index in FCCO.

A striking difference in solving FCCO problems is that we need to deal with multiple functional
mappings of gi(w) for i = 1, . . . ,m. A challenge emerges when it is not possible to draw data sam-
ples for all blocks i = 1, . . . ,m at each iteration due to some restrictions (e.g., limited memory and
computational budget per-iteration). Wang and Yang [2022] studied this problem comprehensively
and proposed an algorithm named as SOX. A key to their algorithmic design is to maintain and selec-
tively update a sequence of estimators u = (u1, . . . ,um) for tracking g(w) = (g1(w), . . . , gm(w))
by exponential moving average, i.e.,

ui
t =

{
(1− β)ui

t−1 + βgi
(
wt; ξ

i
t

)
i ∈ Bt

1

ui
t−1 i /∈ Bt

1
, (3)

where ξit and B1
t ⊆ {1, . . . ,m} denote a set of sampled blocks. With u, the gradient estimator is

computed by exponential moving average as well. As a result, they establish a sample complexity
of O(mϵ−4) for non-convex objectives, O(mϵ−3) for convex objectives and O(mµ−2ϵ−1) for µ-
strongly convex objectives. However, there are several caveats of these results: (i) the sample
complexities (e.g., O(mϵ−4) for a non-convex objective) are no better than probing all blocks at
each iteration, for which Ghadimi et al. [2020] have established an O(ϵ−4) iteration complexity and
an O(mϵ−4) sample complexity; (ii) when m = |B1

t | = 1, the problem reduces to a special case of
classic SCO problems; however, the complexities are worse than the state-of-the-art (SOTA) sample
complexities for non-convex, convex and strongly convex objectives, which are O(ϵ−3), O(ϵ−2) and
O(µ−1ϵ−1), respectively [Zhang and Xiao, 2019, Jiang et al., 2022]. A useful technique for achieving
these complexities in prior works is by using variance reduction techniques, so a straightforward
approach is to change the update of ui

t by using a variance reduced estimator and do similarly for the
gradient estimator. In particular, one can change the update for ui

t according to STORM [Cutkosky
and Orabona, 2019]:

ui
t =


(1− β)ui

t−1 + βgi
(
wt; ξ

i
t

)
+ (1− β)(gi

(
wt; ξ

i
t

)
− gi

(
wt−1; ξ

i
t

)
)︸ ︷︷ ︸

error correction

i ∈ Bt
1

ui
t−1 i /∈ Bt

1

. (4)

However, this simple change does not improve the complexities over that obtained by Wang and Yang
[2022]. The reason is that the standard error correction term marked above in STORM only accounts
for the randomness in gi(wt; ξ

i
t) but not in the randomness caused by sampling i ∈ Bt

1. So, a major
question remains:

How can we further improve the complexities for solving FCCO to match the SOTA results of
SCO by using variance reduction techniques via probing only O(1) blocks at each iteration?

To address this issue, we propose a novel variance reduction technique by selectively updating ui
t for

tracking g(wt), to which we refer as Multi-block-Single-probe variance-reduced (MSVR) estimator.
It employs a similar update as STORM for selected ui

t but with a different customized error
correction term to deal with the randomness in both gi(wt; ξ

i
t) and that in Bt

1. Based on MSVR,
we develop several algorithms for FCCO problems with different ways to compute the gradients,
and analyze the sample complexities across a spectrum of settings with non-convex/convex/strongly
convex/PL objectives and finite/infinite support of ξi. We summarize our contributions and our results
below:

• We develop a novel MSVR estimator for tracking a sequence of multiple blocks of functional
mappings by only probing O(1) blocks via random samples at each iteration.
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Table 1: Sample complexities needed to find an ϵ-stationary point or ϵ-optimal point. Here NC means
non-convex, C means convex, SC indicates µ-strongly convex, PL means the µ-PL condition. B1

denotes the outer batch size, i.e., B1 = |B1
t | and B2 denotes the inner batch size. † assumes that f is

convex and monotone, and g is convex but possibly not smooth. ∗ applies when inner function is in
the form of the finite-sum. Õ(·) hides logarithmic factors. In all results, we assume m ≤ O(ϵ−1).

Method NC C SC/PL B1, B2

BSGD
[Hu et al., 2020] O

(
ϵ−6
)

O
(
ϵ−3
) O

(
µ−1ϵ−3

)
(SC)

O(1), O
(
ϵ−2
)
(NC)

O(1), O
(
ϵ−1
)
(C/SC)

BSpiderBoost
[Hu et al., 2020] O

(
ϵ−5
)

- - O
(
ϵ−1
)
, O
(
ϵ−2
)

SOX O
(
mϵ−4

)
O
(
mϵ−3

)
O
(
mµ−2ϵ−1

)
O(1), O(1)

SOX (β = 1)
[Wang and Yang, 2022] - O

(
mB2ϵ

−2
)†

- O(1), O(1)

MSVR-v1 O
(
max(B1, B2)ϵ

−4
)

O
(
max(B1, B2)ϵ

−3
)

O
(
max(B1, B2)µ

−2ϵ−1
)

O(1), O(1)
MSVR-v2 O

(
m
√
B2ϵ

−3
)

O
(
m
√
B2ϵ

−2
)

O
(
m
√
B2µ

−1ϵ−1
)

O(1), O(1)

MSVR-v3∗ O
(
m
√
nB2ϵ

−2
)

Õ
(
m
√
nB2ϵ

−1
)

Õ
(
m
√
nB2µ

−1
)

O(1), O(1)

• By applying the MSVR estimator, we develop three algorithms for FCCO by using different
methods for computing the gradients, and establish improved complexities for non-convex,
convex, strongly convex, and PL objectives. A comparison between our algorithms and
existing methods is shown in Table 1, where we also exhibit the dependence on B2, which
is the size of the inner batch for estimating each gi(w).

• The complexity of our first method (i.e., MSVR-v1) enjoys the same order on ϵ as SOX, but
does not depend on m; MSVR-v2 improves the dependence on ϵ, and its complexities match
the SOTA results for SCO when m = 1; our MSVR-v3 further reduces the dependence on ϵ
for the finite support of ξ, and also attains the SOTA complexities when m = 1.

• We conduct experiments on multi-task deep AUC maximization to verify the theory and
demonstrate the advantage of the proposed algorithms.

2 Related work

This section briefly reviews related work on variance-reduced methods and stochastic compositional
optimization (SCO) problems.

Variance-reduction (VR) techniques for improving the convergence of stochastic optimization orig-
inate from Roux et al. [2012] for solving convex finite-sum empirical risk minimization (ERM)
problems. Since then, different VR techniques have been proposed for convex finite-sum ERM, e.g.,
SVRG [Johnson and Zhang, 2013, Zhang et al., 2013] and SAGA [Defazio et al., 2014]. These works
have improved the complexity for solving smooth and strongly convex problems to a logarithmic
complexity. For non-convex ERM problems, Fang et al. [2018] invents the SPIDER estimator similar
to its predecessor SARAH [Nguyen et al., 2017], and improve the complexity of standard SGD from
O(ϵ−4) to O(ϵ−3) and O(

√
nϵ−2) in stochastic and finite-sum settings, respectively, where n is the

number of components in the finite-sum. Algorithmic improvements have been made to SPIDER
by using a constant step size in SpiderBoost [Wang et al., 2018] and using a constant batch size in
STORM [Cutkosky and Orabona, 2019].

Several classes of SCO have been studied. The first class is the two-level SCO whose objective is
given by Eξ[fξ(Eω[gω(w)])], where ξ and ω are random variables. While the study of two-level
compositional functions dates back to the 70s, the most recent comprehensive study was initiated by
Wang et al. [2017]. They proposed a two time-scale classic algorithm named SCGD and establish
its asymptotic guarantee and non-asymptotic convergence rates. Following this work, many studies
have been devoted to improving the convergence rates or algorithmic design of two-level SCO [Wang
et al., 2016, Ghadimi et al., 2020, Zhang and Lan, 2021]. In particular, recent works have used
variance-reduction techniques based on SPIDER/SARAH/STORM to estimate the inner values and
the gradients [Liu et al., 2018, Yuan et al., 2019a, Zhang and Xiao, 2019, Chen et al., 2021, Qi et al.,
2021a]. Similar efforts have been extended to the second class of SCO, i.e., multi-level SCO with an
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objective Eξ1 [f
1
ξ1
(Eξ2 [f

2
ξ2
(. . . (EξK [fK

ξK
(w))] . . .)])] [Yang et al., 2019]. Recent studies have been

focused on further improving the sample complexity and reducing the dependence on the number of
levels K [Balasubramanian et al., 2021, Chen et al., 2021, Zhang and Lan, 2021, Zhang and Xiao,
2021, Jiang et al., 2022]. These works also employed variance reduction techniques to design their
own methods. However, directly applying these algorithms of two-level and multi-level SCO to
FCCO requires probing all m blocks in g(w), which is prohibitive in many applications.

The third class of SCO is the Conditional Stochastic Optimization (CSO) whose objective is in the
form of Eξ[fξ(Eω|ξgω(w; ξ)])] [Hu et al., 2020], where ω|ξ means that the distribution of ω might
depend on ξ. The FCCO problem can be considered as a special case of CSO. The key difference from
the first class of SCO discussed above is that the inner function g depends on the random variable
ξ of the outer level. For CSO, Hu et al. [2020] proposed two algorithms with and without using
the variance-reduction technique (SpiderBoost) named BSGD and BSpiderboost, and established
complexities for non-convex, convex and strongly convex functions, which are shown in Table 1.
However, their algorithms require a large batch size for estimating the inner functions.

Recently, a novel class (the fourth class) of SCO was studied, which is referred to as the finite-sum
coupled compositional optimization (FCCO) [Wang and Yang, 2022]. The finite-sum structure makes
it possible to develop more practical algorithms without relying on huge batch size per-iteration.
It was first studied by Qi et al. [2021b] for maximizing the point-estimator of the area under the
precision-recall curve. Recently, it was comprehensively investigated by Wang and Yang [2022]
and more applications of FCCO have been demonstrated in machine learning. Nevertheless, their
algorithm—SOX does not use variance reduction techniques and hence suffers from the limitations
discussed in the previous section.

3 Proposed Algorithms and Convergence

First, we introduce the notations and assumptions used in this paper. Then we describe the MSVR
estimator in detail and develop algorithms based on the proposed estimator.

3.1 Notations and Assumptions

Let [m] = {1, . . . ,m}. The definition of sample complexity is given below, which is widely used to
measure the efficiency of stochastic algorithms.
Definition 1 The sample complexity is the number of samples needed to find a point satisfying
E [∥∇F (w)∥] ≤ ϵ (ϵ-stationary) or E [F (w)− infw F (w)] ≤ ϵ (ϵ-optimal).

Next, we make following assumptions throughout the paper, which are commonly used in the studies
of SCO [Wang et al., 2016, 2017, Yuan et al., 2019a, Zhang and Xiao, 2019, 2021].
Assumption 1 (Smoothness and Lipschitz continuity) We assume that each fi is Lf -smooth and
Cf -Lipchitz continuous, each gi is Lg-smooth and Cg-Lipschitz continuous.

Remark: This implies F (w) is CF -Lipchitz continuous and LF -smooth, where CF = CfCg,
LF = C2

fLg + C2
gLf [Zhang and Xiao, 2021].

Assumption 2 (Bounded variance)
E
[
gi(x; ξ

i
t)
]
= gi(x); E

[
∇gi(x; ξ

i
t)
]
= ∇gi(x);

E
[∥∥gi (x; ξit)− gi(x)

∥∥2] ≤ σ2/B2; E
[∥∥∇gi

(
x; ξit

)
−∇gi(x)

∥∥2] ≤ σ2/B2;

where the random variable ξit denotes a batch of samples with batch size B2 ≥ 1.
Assumption 3 (Average Lipchitz continuity of gi and its Jacobian)

E
[∥∥gi (x; ξit)− gi

(
y; ξit

)∥∥2] ≤ C2
g∥x− y∥2;

E
[∥∥∇gi

(
x; ξit

)
−∇gi

(
y; ξit

)∥∥2] ≤ L2
g∥x− y∥2.

Remark: Although this assumption seems strong at the first sight, it is quite standard and widely
used in the recent compositional optimization literature [Yuan et al., 2019a, Zhang and Xiao, 2019,
2021, Jiang et al., 2022].
Assumption 4 F∗ = infw F (w) ≥ −∞ and F (w1)− F∗ ≤ ∆F for the initial solution w1.
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3.2 Multi-block-Single-probe Variance Reduced (MSVR) Estimator

Assume that we have a budget to probe only B1 out of m mappings in g(w). To this end, at the
t-th iteration we sample a set of blocks Bt

1 ⊆ [m], where |Bt
1| = B1, and probe the corresponding

gi(w) by accessing the noisy estimates gi(wt; ξ
i
t) for i ∈ Bt

1. Then, we just update the corresponding
block in our estimator ut. Specifically, we update ui

t for i ∈ Bt
1 in a new way and keep other blocks

unchanged. The whole estimator is shown below:

ui
t =


(1− βt)u

i
t−1 + βtgi

(
wt; ξ

i
t

)
+ γt

(
gi
(
wt; ξ

i
t

)
− gi

(
wt−1; ξ

i
t

))︸ ︷︷ ︸
ūt

i

i ∈ Bt
1

ui
t−1 i /∈ Bt

1

. (5)

The first line of our estimator is inspired by STORM [Cutkosky and Orabona, 2019]. The difference
is that the STORM estimator sets γt = (1− βt), while for MSVR, γt is set as m−B1

B1(1−βt)
+ (1− βt)

according to our analysis. We name equation (5) as Multi-block-Single-probe Variance Reduced
(MSVR) estimator. By multi-block, we mean the estimator can track multiple functional mappings
(g1, g2, · · · , gm), simultaneously; by single-probe, we indicate the number of sampled blocks B1

for probing can be as small as one. It is notable that when B1 = m, i.e., all blocks are probed at
each iteration, γt = 1− βt and MSVR reduces to STORM applied to g(w). The additional factor in
γt, i.e., γ0

t = m−B1

B1(1−βt)
is to account for the randomness in the sampled blocks and noise in those

blocks that are not updated. To briefly understand the additional factor γ0
t , we consider bounding

∥ut − g(wt)∥2 =
∑m

i=1 ∥ui
t − gi(wt)∥2. Let us focus on a fixed i ∈ [m]. Then we have

E
[
∥ui

t − gi(wt)∥2
]
=

B1

m
E
[
∥ūi

t − gi(wt)∥2
]︸ ︷︷ ︸

A1

+(1− B1

m
)E
[
∥ui

t−1 − gi(wt)∥2
]︸ ︷︷ ︸

A2

.

Note that the first term A1 in the R.H.S. can be bounded similarly as STORM by building recurrence
with ∥ui

t−1−gi(wt−1)∥2. However, there exists the second term due to the randomness of Bt
1, which

can be decomposed as
∥ui

t−1 − gi(wt−1) + gi(wt−1)− gi(wt)∥2 = ∥ui
t−1 − gi(wt−1)∥2︸ ︷︷ ︸

A21

+ ∥gi(wt−1)− gi(wt)∥2︸ ︷︷ ︸
A22

+2(ui
t−1 − gi(wt−1))

⊤(gi(wt−1)− gi(wt))︸ ︷︷ ︸
A23

.

The first two terms in R.H.S. (A21 and A22) can be easily handled. The difficulty comes from
the third term, which cannot be simply bounded by using Young’s inequality. If doing so, it will
end up with a non-diminishing error of ui

t. To combat this difficulty, we use the additional factor
brought by γ0

t (gi
(
wt; ξ

i
t

)
− gi

(
wt−1; ξ

i
t

)
) in A1 to cancel A23. This is more clear by the following

decomposition of A1.
A1 =E[∥(1− βt)(u

i
t−1 − gi(wt−1))︸ ︷︷ ︸
A11

+ γ0
t (gi(wt)− gi(wt−1))︸ ︷︷ ︸

A12

+ βt(gi(wt; ξ
i
t)− gi(wt))︸ ︷︷ ︸

A13

+ γt(gi(wt; ξ
i
t)− gi(wt−1; ξ

i
t)− gi(wt) + gi(wt−1))︸ ︷︷ ︸

A14

∥2]

≤E[∥A11 +A12∥2] + E
[
∥A13 +A14∥2

]
.

In light of the above decomposition, we can bound E[∥A11 + A12∥2] ≤ E[∥A11∥2 + ∥A12∥2 +
2A⊤

11A12] and E[∥A13 +A14∥2] ≤ 2E[∥A13∥2] + 2E[∥A14∥2]. The resulting term E[2A⊤
11A12] has

a negative sign as A23. Hence, by carefully choosing γ0
t , we can cancel both terms. The remaining

terms can be organized similarly as in the analysis for STORM. We give a technical lemma for
building the recurrence of MSVR’s error below. All the proofs are deferred to the supplementary
material due to space limitations.
Lemma 1 By setting γt =

m−B1

B1(1−βt)
+ (1− βt), for βt ≤ 1

2 , we have:

E
[
∥ut − g (wt)∥2

]
≤
(
1− B1βt

m

)
E
[
∥ut−1 − g (wt−1)∥2

]
+

2B1β
2
t σ

2

B2

+
8m2C2

g

B1
E
[
∥wt −wt−1∥2

]
.
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Algorithm 1 MSVR-v1 and MSVR-v2 method
1: Input: time step T , parameters αt, βt, γt, learning rate ηt and initial points (w1,u1, z1).
2: for time step t = 1 to T do
3: Sample a subset Bt

1 from {1, 2, · · · ,m}
4: Compute estimator ut according to equation (5) or (6) ⋄ Use MSVR or MSVR-SP update
5: (v1) Compute estimator zt according to equation (7) ⋄ Use moving average update
6: (v2) Compute estimator zt according to equation (8) ⋄ Use STORM update
7: wt+1 = wt − ηtzt
8: end for
9: Choose τ uniformly at random from {1, . . . , T}

10: Return wτ

Remark: The above recursion is similar to that of STORM for tracking a sequence of a single-block
functional mapping. Since the last term ∥wt −wt−1∥2 can be offset in the future analysis, intuitively
the estimation error ∥ut − g (wt)∥2 would reduce after each iteration.

Single Point Version. A limitation of the MSVR estimator is that it needs to probe selected blocks
at two different points, i.e., gi(wt; ξ

i
t) and gi(wt−1; ξ

i
t). With a more careful analysis, we can probe

a selected block at a single point similar to that used by Balasubramanian et al. [2021] and Chen et al.
[2021]. Specifically, we replace gi

(
wt; ξ

i
t

)
− gi

(
wt−1; ξ

i
t

)
with ∇gi

(
wt; ξ

i
t

)⊤
(wt −wt−1). As a

result, we propose a single-point version of MSVR (named as MSVR-SP) estimator below:

ui
t =

{
(1− βt)u

i
t−1 + βtgi

(
wt; ξ

i
t

)
+ γt∇̂gi

(
wt; ξ

i
t

)⊤
(wt −wt−1) i ∈ Bt

1

ui
t−1 i /∈ Bt

1

. (6)

The MSVR-SP estimator enjoys the similar recurrence for the estimation error.

Lemma 2 Set γt = m−B1

B1(1−βt)
+ (1− βt). If ∥wt+1 −wt∥2 ≤ η2tC

2
F and ηt ≤

√
βt, we have:

E
[
∥ut − g(wt)∥2

]
≤
(
1− B1βt

m

)
E
[
∥ut−1 − g(wt−1)∥2

]
+

2B1β
2
t σ

2

B2

+

(
4L2

gC
2
F + 9C2

g +
8σ2

B2

)
m2

B1
E
[
∥wt −wt−1∥2

]
.

Remark: If there is a constraint on the range of gi, we can add a projection to the update of ui
t such

that it always resides in the range, which will not affect the analysis of Lemma 1 and Lemma 2.

3.3 Leveraging the MSVR Estimator for solving the FCCO Problem

Now, we are ready to present our proposed algorithms for solving problem (1). The first two
algorithms (named MSVR-v1 and MSVR-v2) are presented in Algorithm 1. These two methods
differ in how to estimate the gradient.

Let us first consider MSVR-v1. At each time step t, we first use the proposed MSVR or MSVR-SP
estimator ut to estimate the inner function value. Then, following the previous literature [Wang et al.,
2021, Wang and Yang, 2022], we use the moving average estimator zt to estimate the gradient as:

zt = ΠCF

(1− αt)zt−1 +
αt

B1

∑
i∈Bt

1

∇fi(u
i
t−1)∇gi(wt; ξ

i
t)

 , (7)

where ΠCF
denotes the projection onto the ball with radius CF . This projection is optional for using

MSVR, but is required for using MSVR-SP to ensure ∥wt+1 −wt∥2 ≤ η2tC
2
F as used in Lemma 2.

Since the true gradient ∇F is also in this ball, i.e., ∥∇F∥ ≤ CF , the projection will not affect
the future analysis. Also note that when computing the estimator zt, we use ∇fi(u

i
t−1) instead of

∇fi(u
i
t) to avoid the dependence on the random variable ξit , which may lead to dependent issues

otherwise. Finally, we use the estimated gradient zt to update the parameter wt+1. Now, we provide
the theoretical guarantee for the MSVR-v1 method.
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Theorem 1 Our MSVR-v1 algorithm with αt+1 = O (ηt), βt+1 = O(
m2η2

t

B2
1
), a = O(mB2

B1
) and

ηt = min

{(
B1

√
B2

m

)2/3
(a+ t)−1/3,

√
min{B1, B2}(a+ t)−1/2

}
, can find an ϵ-stationary point

in O
(
max

{
mϵ−3

B1

√
B2

, ϵ−4

min{B1,B2}

})
iterations.

Remark: This complexity is strictly better than previous SOTA method SOX, which enjoys an
iteration complexity of O

(
max

{
mϵ−4

B1B2
, ϵ−4

min{B1,B2} ,
mϵ−2

B1

})
. The sample complexity can be ob-

tained by multiplying the iteration complexity with B1B2. We can see that larger B1 or B2 yields a
smaller iteration complexity, which means that from the computational perspective, if samples can be
processed in parallel (e.g., in GPU), there is a benefit of using large B1 and/or B2. However, from
the sample complexity perspective, using B1 = B2 = 1 is the best. The same discussion holds for
other theorems below.

However, the complexity of MSVR-v1 is still on the order of O(ϵ−4). Due to the biased nature
of the estimated gradient, using the moving average update is not enough for achieving the SOTA
complexity of O(ϵ−3). So, we use the technique of STORM [Cutkosky and Orabona, 2019] to update
zt as follows:

zt = ΠCF

(1− αt)zt−1 + α
1

B1

∑
i∈Bt

1

∇fi(u
i
t−1)∇gi(wt; ξ

i
t)

+ (1− αt)
1

B1

∑
i∈Bt

1

(
∇fi(u

i
t−1)∇gi(wt; ξ

i
t)−∇fi(u

i
t−2)∇gi(wt−1; ξ

i
t)
) ,

(8)

where the projection operation is needed if using the MSVR estimator. Now, we prove this new
method (i.e., MSVR-v2) can obtain the optimal complexity of O(ϵ−3).

Theorem 2 Our MSVR-v2 algorithm with αt+1 = O(
mη2

t

B1
), βt+1 = O

(
m2η2

t

B2
1

)
, a = O(mB2

B1
) and

ηt = O
(
(B1

√
B2

m )2/3(a+ t)−1/3
)

, can find an ϵ-stationary point in O
(

mϵ−3

B1

√
B2

)
iterations.

Remark: When m = 1 and f is the identity function, problem (1) reduces to the standard stochastic
non-convex optimization, whose lower bound is Ω

(
ϵ−3
)

[Arjevani et al., 2019], indicating our
MSVR-v2 is optimal.

Next, we show that the complexity can be further improved when the objective function is convex or
strongly convex. We note that Polyak-Łojasiewicz (PL) [Karimi et al., 2016] objectives are more
general than strongly convex functions, since µ-strong convexity implies the µ-PL condition. So, we
will consider the PL condition and introduce its definition below.

Definition 2 F (w) satisfies the µ-PL condition if there exists µ > 0 such that:

2µ (F (w)− F∗) ≤ ∥∇F (w)∥2.

Then, we derive improved rates for convex or PL objectives by using the stage-wise design given in
Algorithm 3 in the supplement.

Theorem 3 If the objective function satisfies the convexity or µ-PL condition, MSVR-v1 derives a
sample complexity of O(max(B1, B2)ϵ

−3) or O(max(B1, B2)µ
−2ϵ−1), separately. For MSVR-v2,

the complexity can be further improved to O
(
m
√
B2ϵ

−2
)

or O
(
m
√
B2µ

−1ϵ−1
)
.

Remark: The complexities for MSVR-v2 are optimal, since they match the Ω
(
ϵ−2
)

and Ω
(
µ−1ϵ−1

)
lower bound for stochastic convex and strongly convex optimization [Agarwal et al., 2012].

Remark: The algorithms proposed in this paper can also use adaptive (Adam-style) learning rates
and obtain the same complexity using the techniques proposed by Guo et al. [2021]. The details are
provided in the supplementary.
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Algorithm 2 MSVR-v3 method
1: Input: time step T , parameters α, β,γ, I , learning rate η and initial points (w1,u1, z1).
2: for time step t = 1 to T do
3: if t mod I == 0 then
4: Set τ = t
5: Compute and save gi(wτ ),∇fi(u

i
τ−1) for every i and 1

m

∑m
i=1 ∇fi(u

i
τ−1)∇gi(wτ )

6: end if
7: Sample a subset Bt

1 from {1, 2, · · · ,m}
8: Compute function value estimator ut according to equation (9)
9: Compute gradient estimator zt according to equation (10)

10: wt+1 = wt − ηzt
11: end for
12: Choose τ uniformly at random from {1, . . . , T}
13: Return wτ

4 An Improved Rate for the Finite-sum Case

In this section, we consider the case that inner function gi is in the form of the finite-sum, i.e.,
gi(w) = 1

n

∑n
j=1 gi(w; ξij), so that we can compute the exact value of gi(w) in some iterations. We

first modify our MSVR estimator to utilize the finite-sum structure. Inspired by SVRG [Johnson and
Zhang, 2013, Zhang et al., 2013], we compute a full version of the inner function value for every I
iterations at wτ , i.e., gi (wτ ) =

1
n

∑n
j=1 gi(wτ ; ξij) for i = 1, · · · ,m, where τ mod I = 0. Then,

in each step, we use

ĝi(wt; ξ
i
t) = gi(wt; ξ

i
t)− gi(wτ ; ξ

i
t) + gi(wτ )

to replace gi(wt; ξ
i
t) in the origin estimator. In this way, our MSVR estimator is changed to:

ui
t =

{
(1− β)ui

t−1 + βĝi
(
wt; ξ

i
t

)
+ γ

(
gi
(
wt; ξ

i
t

)
− gi

(
wt−1; ξ

i
t

))
i ∈ Bt

1

ui
t−1 i /∈ Bt

1
. (9)

For this estimator, we have the following guarantee.

Lemma 3 If β ≤ 1
2 and βI ≤ m

B1
, by setting γ = m−B1

B1(1−β) + (1− β), we have:

E
[
∥ut+1 − g (wt+1)∥2

]
≤
(
1− B1β

m

)
E
[
∥ut − g (wt)∥2

]
+

10m2C2
g

B1
E
[
∥wt+1 −wt∥2

]
.

Remark: Compared with Lemma 1, we remove the 2B1β
2σ2

B2
term, which is the key to reduce the

complexity since we can now use a larger parameter β.

To attain the optimal complexity, we modify the gradient estimator zt in a similar way:

zt = (1− α)zt−1 + αht

+ (1− α)
1

B1

∑
i∈Bt

1

(
∇fi(u

i
t−1)∇gi(wt; ξ

i
t)−∇fi(u

i
t−2)∇gi(wt−1; ξ

i
t)
)
, (10)

where ht involves both the full gradient and the stochastic gradient (we also need to save each
∇fi(uτ−1) and calculate the full version of 1

m

∑m
i=1 ∇fi(u

i
τ−1)∇gi(wτ ) at those steps τ ) :

ht =
1

B1

∑
i∈Bt

1

(∇fi(u
i
t−1)∇gi(wt; ξ

i
t)−∇fi(u

i
τ−1)∇gi(wτ ; ξ

i
t)) +

1

m

m∑
i=1

∇fi(u
i
τ−1)∇gi(wτ ).

The whole method is summarized in Algorithm 2 (named as MSVR-v3). Next, we show that
MSVR-v3 is equipped with an optimal complexity of O(

√
nϵ−2).

Theorem 4 Our MSVR-v3 with I = mn
B1B2

, α = O
(
B1B2

mn

)
, β = O

(
B2

n

)
and η = O

(
B1

√
B2

m
√
n

)
,

can obtain an ϵ-stationary point in T = O
(

m
√
nϵ−2

B1

√
B2

)
iterations.
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Figure 1: Results for Multi-task AUC Optimization.

Remark: When m = 1 and f is the identity function, problem (2) reduces to the stochastic finite-sum
optimization, whose optimal complexity is O

(√
nϵ−2

)
[Fang et al., 2018, Li et al., 2021], indicating

our complexity is optimal in terms of ϵ and n.

Similarly, a better complexity can be obtained under the convexity or PL condition.
Theorem 5 If the objective function satisfies the convexity or µ-PL condition, the sample complexity
can be improved to O

(
m

√
nϵ−1

B1

√
B2

log 1
ϵ

)
or O

(
m

√
nµ−1

B1

√
B2

log 1
ϵ

)
, respectively.

Remark: It is notable that we achieve a linear convergence rate O
(
log 1

ϵ

)
under the PL condition,

matching the current result in the single-level finite-sum problem [Li et al., 2021]

5 Experiments

In this section, we conduct experiments on the multi-task deep AUC maximization to evaluate the
proposed methods and we will consider more applications in the long version of the paper. For binary
classification (label y = 1 or y = −1), AUC maximization can be formulated as minimizing the
following composite loss [Zhu et al., 2022]:

min
w,a,b

Ex|y=1 [(hw(x) −a)2
]
+ Ex′|y′=−1

[
(hw (x′)− b)

2
]
+ ℓ(a(w)− b(w)),

where a(w) = E [hw(x) | y = 1], b(w) = E [hw(x) | y = −1] and ℓ(·) is a surrogate function. The
above objective recovers the pairwise square loss and the min-max margin loss proposed by Yuan et al.
[2020] for deep AUC maximization by setting ℓ(·) as the square function or squared hinge function,
respectively. When applied to multi-task classification (e.g., multiple classes), we can optimize the
averaged AUC losses over all tasks, i.e., AUC = 1

m

∑m
i=1 AUC(i). The nested structure only comes

from the term ℓ(a(w)− b(w)), and we can rewrite it as the form of FCCO problem, where

gi(w) =
1

|Di
+|

∑
x∈Di

+

hw(x)− 1

|Di
−|

∑
x∈Di

−

hw(x), f (gi(w)) = ℓ(gi(w)).

where Di
+/− denots the positive/negative datasets of the i-th task.

Configurations. In the experiment, we follow the setup in Zhu et al. [2022] and set the surrogate func-
tion ℓ as squared hinge ℓ(x) = 1

2 (max{c+x, 0})2. We use ResNet18 as backbone network, and train
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on six datasets: STL10 [Coates et al., 2011], CIFAR10 [Krizhevsky, 2009], CIFAR100 [Krizhevsky,
2009], MNIST [LeCun et al., 1998], Fashion-MNIST [Xiao et al., 2017], and SVHN [Netzer et al.,
2011]. We compare our methods with previous SOTA algorithm SOX [Wang and Yang, 2022]. For
our methods, parameters α and β are searched from {0.1, 0.5, 0.9, 1.0}. For SOX algorithm, its
parameters β and γ are searched from the same set. B1 is set as 50 for CIFAR100 and 5 for other
datasets. Inner batch size B2 is chosen as 128 for all methods. We tune the learning rate from the set
{1e− 4, 1e− 3, 2e− 3, 5e− 3, 1e− 2} and pick the best one for each method. The experiments are
conducted on single NVIDIA Tesla M40 GPU.

Results. Figure 1 shows the loss against the number of samples drawn by different methods, and all
curves are averaged over 5 runs. We observe that MSVR-V1 is better than SOX on the CIFAR100
dataset, and close to it on other datasets. MSVR-v2 converges faster than SOX and MSVR-v1, and
the loss of MSVR-v3 decreases most rapidly, demonstrating a low sample complexity.

6 Conclusion and Future Work

In this paper, we develop a novel MSVR estimator for tracking multiple functional mappings by
probing only O(1) blocks. Equipped with this estimator, we design three algorithms for FCCO
problems and obtain improved complexities across a spectrum of settings. Experimental results on
multi-task deep AUC maximization also verify the effectiveness of our methods. In future work, we
will investigate other applications that can be solved by using the proposed estimator.
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