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Abstract
Attention mechanisms are critical to the success
of large language models (LLMs), driving sig-
nificant advancements in multiple fields. How-
ever, for graph-structured data, which requires
emphasis on topological connections, they fall
short compared to message-passing mechanisms
on fixed links, such as those employed by Graph
Neural Networks (GNNs). This raises a ques-
tion: “Does attention fail for graphs in natural
language settings?” Motivated by these observa-
tions, we embarked on an empirical study from
the perspective of attention mechanisms to ex-
plore how LLMs process graph-structured data.
The goal is to gain deeper insights into the at-
tention behavior of LLMs over graph structures.
We uncovered unique phenomena regarding how
LLMs apply attention to graph-structured data
and analyzed these findings to improve the model-
ing of such data by LLMs. The primary findings
of our research are: 1) While LLMs can recognize
graph data and capture text-node interactions, they
struggle to model inter-node relationships within
graph structures due to inherent architectural con-
straints. 2) The attention distribution of LLMs
across graph nodes does not align with ideal struc-
tural patterns, indicating a failure to adapt to graph
topology nuances. 3) Neither fully connected at-
tention nor fixed connectivity is optimal; each has
specific limitations in its application scenarios.
Instead, intermediate-state attention windows im-
prove LLM training performance and seamlessly
transition to fully connected windows during in-
ference. Source code: LLM4Exploration
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1. Introduction
LLMs have garnered significant attention, achieving remark-
able success in language processing and demonstrating ef-
fective transferability to various other domains (Goyal et al.,
2024; Ouyang et al., 2022; Pi et al., 2024; Singh et al., 2023;
Wu et al., 2024; Zhao et al., 2024; Wu et al., 2023). This
trend has inspired the graph machine learning community
to delve into the application of LLMs within their field (He
et al., 2024; Chen et al., 2024b; Huang et al., 2024; Kong
et al., 2024; He & Hooi, 2024; Liu et al., 2025; Guan et al.,
2024). However, recent studies reveal that existing LLMs
for graphs fail to deliver satisfactory performance on graph-
structured data, pointing to undiscovered challenges that
hinder the deployment of LLMs in this context (Luo et al.,
2024).

Attention mechanisms are a critical component of LLMs
success, effectively linking tokens to enable models to
comprehend complex contexts and domain-specific knowl-
edge (Xiao et al., 2024; Hsieh et al., 2024; Yu et al., 2024).
Despite the vast potential of attention mechanisms, research
into their application on graph-structured data remains
largely unexplored, lacking systematic analysis. Therefore,
we embarked on an investigation from the perspective of
attention analysis, aiming to uncover unique phenomena of
LLMs attention on graph data structures and to validate our
hypotheses regarding LLMs’ behavior on such data. Our
work seeks to fill this research gap and establish a clear
direction for future studies in the field.

In this paper, we conducted our study based on the following
hypotheses, and uncovered new issues and phenomena.

Q1: Do the attention distribution of LLMs change before
and after training with finetuning ? Can LLMs correctly
utilize graph structures?

We first compared the distribution curves of attention scores
for node tokens and text tokens before and after LLMs
training. We then conducted hypothesis testing to clarify
the following points: whether the attention on node tokens
has shifted; whether the attention on text tokens has shifted;
and whether the attention distributions between node tokens
and text tokens are consistent.
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The results showed that after training, the LLMs’ attention
towards node tokens indeed underwent a significant shift.
This suggests that the LLMs have developed an initial capa-
bility to recognize graph-structured data. Simultaneously,
our hypothesis testing revealed that the attention distribution
of LLMs within nodes exhibits extreme tendency. However,
in subsequent experiments where we disrupted the connec-
tivity information, we found that even when the topological
connection information was randomly shuffled, it had al-
most no effect on the LLMs’ performance. This indicates
that the LLMs did not effectively utilize the correct connec-
tivity information.

Q2: Can LLMs allocate attention to different types of
graph nodes in a manner consistent with the structural
properties of the graph?

When processing graph data inputs, LLMs calculate atten-
tion scores between node tokens to weigh the importance of
different nodes relative to each other. Through our visualiza-
tion experiments, we found that the attention scores between
different node tokens in LLMs do not adequately match the
graph structure. Specifically, under sequential conditions,
the attention distribution of node tokens exhibits a U-shaped
or long tail, which deviated from our idealized assumptions.
Ideally, the model should focus more on central nodes and
allocate attention in a hierarchical, diminishing manner.

Meanwhile, our analysis revealed that the attention paid by
text tokens to node tokens more closely matches our ideal
expectations. This indicates that the current limitation in
LLMs lies not in the interaction between text and nodes but
in the modeling of connections between nodes.

Q3: Which is more suitable for LLM’s graph-structured
tasks: the fully connected perspective of LLMs or the
fixed-link perspective of GNNs?

We introduce a specific metric, the Global Linkage Horizon
(GLH), to measure the visibility range between nodes in
LLMs. Through extensive experiments adjusting the GLH,
we found that neither the fully connected view of LLMs
nor the fixed-linkage view of GNNs represented the optimal
attention perspective for LLMs.

Intermediate perspectives that incorporate certain topolog-
ical link information achieve superior performance during
training and yield unexpected improvements when used
solely for inference. Specifically, models trained with a
smaller linkage horizon can be effectively deployed with
a larger linkage horizon. This transferability from small
to large perspectives addresses practical deployment chal-
lenges while enhancing model performance.

In this work, our primary objective is to identify unique
phenomena and explore the causes and potential impacts of
these phenomena, aiming to provide new perspectives on

how LLMs process graph-structured data, thereby guiding
the direction of future discoveries for the community.

Our contributions in this work are summarized as follows:

• We conducted a visualization and analysis of LLM atten-
tion on graph-structured data. To our knowledge, this is
the first empirical study to investigate LLMs for graph
machine learning from the perspective of attention.

• Our analysis reveals that LLMs fail to effectively leverage
the connectivity information in graphs. We delve into this
issue by examining two major aspects: the distribution of
attention scores and the scope of attention windows.

• We identify “Attention Sink” issues similar to those ob-
served in natural language tasks, as well as a unique phe-
nomenon we term “Skewed Line Sink” specific to graph
data. Drawing on the experience of the NLP commu-
nity, we can explore methods to correct these biases to
improve model performance.

• Through a series of experiments, we identified multi-
ple phenomena and current challenges faced by LLMs
in graph machine learning applications. Our work pro-
vides valuable insights and guides future research ef-
forts in this field.

2. Related Work
2.1. Analysis of Attention in LLMs

With the remarkable attention that LLMs have garnered
across various communities, pioneering studies have be-
gun to focus on the attention mechanisms within LLMs
and their distribution (Ruan & Zhang, 2024; Acharya et al.,
2024; Makkuva et al., 2024; Liang et al., 2024). Stream-
LLM (Xiao et al., 2024) was among the first to identify
the phenomenon of “Attention sinks”, where semantically
limited initial tokens can receive disproportionately higher
attention scores. The study suggested maintaining these
special tokens during long-text inference for better perfor-
mance. Building on StreamLLM, Yu et al. (2024) found that
correcting partial attention sinks can yield performance im-
provements without additional training. Duan et al. (2024)
explored the relationship between attention and sentence
uncertainty, while Hsieh et al. (2024) investigated the “lost-
in-the-middle” phenomenon in RAG, focusing on the inter-
action between retrieved document ranking and attention.

2.2. Attention Window

We define the attention window as the visibility range be-
tween tokens within a single layer of a neural network. In
models like BERT (Kenton & Toutanova, 2019), the atten-
tion view is bidirectionally fully connected, allowing each
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Figure 1. Attention distribution of different types of tokens before and after training. With Amazon-Ratings on the left, Roman-Empire in
the middle, and Wikics on the right. The attention values have undergone log scaling and are plotted as a density distribution Figure.

token to attend to all other tokens. Conversely, in GPT series
models (Brown et al., 2020), a unidirectional causal mask
is used, restricting each token to only see preceding tokens,
resulting in a lower triangular attention matrix. Similarly, in
GNNs, the visibility is defined by fixed connections, where
each node can only see its directly linked neighbors (Kipf &
Welling, 2022). In the context of applying LLMs to graph
data mining, some works have simply adapted LLMs to use
either fixed-link or bidirectionally fully connected attention
window (Yang et al., 2024; Zhu et al., 2024b). However,
these adaptations lack thorough experimental analysis and
deeper exploration of the attention window’s impact on
model performance.

3. Empirical Study
Our experiment and analysis summary are based on multiple
datasets. In addition to the presentation part, some detailed
settings and results can be specifically seen in Appendix.

A1. Changes in Attention Distribution

Fine-tuned LLMs(LLaGA (Chen et al., 2024b)) show
relative improvements on graph tasks. To investigate
whether LLMs can recognize the differences between graph-
structured data and natural language data, as well as effec-
tively utilize graph structural information (Q1), we compare
the changes in token attention focus before and after train-
ing.

Setting. H0: The attention focused on node tokens does
not change before and after fine-tuning. H1: The attention
focused on text tokens changes before and after fine-tuning.
H2: The attention distributions for node tokens and text
tokens are not consistent. It is worth noting that we fol-
low the recognized LLaGa guidelines. For more detailed
information, see Appendix J.

We compared the attention score distributions for node to-
kens and text tokens before and after training in Figure 1.

Table 1. Statistical Analysis of Attention Score
Distributions(Roman-Empire Dataset). Note: ** indicates
p-value <0.01, otherwise p >0.05 for t-test and KS test. JS
Divergence values are provided as this.

Comparison T-Test KS Test JS

Before vs After (Text) 44.061** 0.092** 0.0064
Before vs After (Node) 0.461 0.049** 0.0099
Node vs Text (Before) -60.455** 0.279** 0.0753
Node vs Text (After) -78.651** 0.316** 0.0791

Our analysis reveals a marked shift in the attention distri-
bution for node tokens, demonstrating that LLMs begin to
recognize node tokens. In a nutshell, it is observed that
LLMs tend to align the attention distribution of node tokens
and text tokens.

To statistically validate these observations, we performed
T-tests, Kolmogorov-Smirnov (KS), and Jensen-Shannon
Divergence (JS) on the attention score distributions, with
the results summarized in Table 1.

Our statistical analysis reveals a distinctive outcome when
comparing the attention score distributions before and after
training, specifically for node tokens. The KS test indicates a
significant change in the distribution of attention scores post-
training, while the t-test suggests that the mean attention
scores remain unchanged. Given that the KS test focuses on
the overall distribution and the t-test emphasizes the mean
value, this discrepancy highlights the nuanced changes in
attention patterns.

Additionally, the JS distance further supports these find-
ings by showing that the overall distribution of attention
scores for nodes changes more significantly compared to
text tokens. This implies that while the average attention
levels remain consistent, the distribution of attention scores
exhibits a bimodal trend, indicating that LLMs develop
distinct attention patterns for certain nodes, leading to a
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polarization in attention allocation.

A2. Structure Information Disruption Experiment

After discovering that LLMs can perceive graph-structured
data, we further investigated whether they can effectively
utilize this type of data. To explore this, we designed dis-
ruption experiments with varying levels of connectivity in-
formation alteration and observed changes in model per-
formance. Ideally, as the level of disruption increases, the
model’s performance should deteriorate. Additionally, we
collected attention scores from the model to provide new
insights into its behavior in graph data.

Setting. We divided the disruption experiments into four
levels: (I) Swapping entire sets of child nodes between pairs
of first-order nodes. (II) Exchanging random numbers of
child nodes between first-order nodes, and further disrupt-
ing the information structure. (III) Randomly shuffling the
positions of first-order and second-order nodes, even allow-
ing original second-order nodes to become first-order nodes.
(IV) Incorporating unrelated nodes and performing random
substitutions. And (Raw) keeping information structure.

The results of these experiments are shown in Table 2. Dis-
appointingly, the LLMs showed no significant reaction to
the perturbation of graph-structured connectivity informa-
tion across half of the datasets. Specifically, in the majority
of cases(Wikics, Pubmed), there was no significant change
in model performance under disruption levels (I) and (II).
Only at higher levels of disruption (III) or (IV) did we ob-
serve a decline in performance. However, GNNs that passed
the WL-test have been continuously decreasing.

In contrast, only the Roman dataset presented an ideal sce-
nario where the model’s performance degraded progres-
sively with increasing levels of disruption. This behavior
aligns with our hypothesis that the model effectively lever-
ages graph-structured information. The consistent degra-
dation of performance on the Roman dataset suggests that
LLMs can indeed exploit structural information when it is
sufficiently represented and not overly disrupted. In other
datasets, the model failed to demonstrate such a clear pattern,
indicating limitations in its ability to utilize graph structure.

To gain deeper insights, we meticulously examined changes
in the distribution of attention scores assigned by neighbor-
ing nodes to central nodes before and after training, under
varying perturbations. The results are illustrated in Fig-
ure 2. Figure 2 delineates the distribution of attention pre-
and post-training, revealing a diminished focus on graph
structure through reduced attention from neighbor to central
nodes in datasets where graph structure information was
not effectively utilized. Conversely, on the Roman-Empire
dataset, there is an observed increase in such attention, sig-
nifying the model’s learned utilization of graph structure
information.

Overall(Q1), while LLMs exhibit an awareness of graph-
structured data, their current mechanisms limit their ability
to effectively utilize this information.

In the subsequent subsection, we will delve deeper into the
distribution of attention scores to further explore how LLMs
process graph-structured data.

B. Adaptability of Attention Distribution to Graph Data

When the graph structure is input to the LLMs in natural
language form, the model assigns different attention scores
to each graph node. By analyzing the attention scores of
different types of nodes, we aim to examine whether the
LLM can effectively adapt to the graph data structure (Q2)
and assess whether its attention distribution aligns with
the ideal state—that is, whether it can reasonably allocate
attention according to the topological structure of the graph.

Setting. We emulate the most common instruction con-
struction methods (such as InstrutGLM (Ye et al., 2023)
and LLaGA (Chen et al., 2024b)) to describe graph link
structures in natural language form shown in Figure 4. Dur-
ing this process, the number of neighbors for each central
node varies, meaning that fixed positions in the input se-
quence may be occupied by different types of nodes or text
tokens. To eliminate interference from factors such as se-
quence length and position, which could affect the attention
scores assigned to node tokens, we introduce two operations:
padding and random shuffling. These operations ensure that
the input instructions and nodes have a fixed length and
position, as illustrated in Figure 4.

B1. Position Bias Interferes with Attention Adaptation

Through our experiments, we recorded attention scores for
different nodes at fixed positions. As shown in Figure 3
Upper, node tokens exhibit a slash trend or U-shaped dis-
tribution of attention towards node tokens, with attention
scores sharply increasing for the final nodes. This distri-
bution aligns with the common attention distribution curve
observed in language models. Additionally, we attribute the
lower attention scores for the initial nodes to their not being
positioned at the forefront of the entire text.

However, it reveals an issue: under the graph data structure,
the LLM’s attention to important nodes does not adequately
adapt to the graph structure. Specifically, in the ideal state of
graph machine learning, the model should prioritize central
nodes and gradually decrease attention to neighboring nodes
in hierarchical order. Alternatively, if there are super-nodes,
a random arrangement should yield an average trend. In-
stead, the curve we obtained is entirely different from the
ideal state, with the importance of central nodes significantly
lagging behind other nodes.

In our exploration of this issue, we conducted a more de-
tailed analysis of the attention patterns between text tokens

4



Attention Mechanisms Perspective: Exploring LLM Processing of Graph-Structured Data

Table 2. Connectivity Information Disruption Performance. Node classification results (accuracy(%) ±std) for 4 runs on four real-world
datasets and five levels of disruption. The model used is LLama2-7B, with node sampling configured as 8x8.

Dataset Raw (I) (II) (III) (IV)

Wikics 0.7862± 0.007 0.7847± 0.004 0.7907± 0.0035 0.7670± 0.003 0.7080± 0.005
Pubmed 0.8367±0.003 0.8363±0.001 0.8364±0.002 0.7698±0.003 0.7835±0.001
Amazon-Ratings 0.4486±0.002 0.3980±0.003 0.3977±0.002 0.3975±0.003 0.3913±0.001
Roman-Empire 0.8089±0.001 0.7918±0.001 0.7910±0.002 0.6290±0.002 0.5784±0.002
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Figure 2. The attention scores from neighboring nodes to the central node, both before and after training, were presented as mean values
with standard deviations, using a 1:8 sampling ratio.

and node tokens in Figure 3(Lower). The attention paid
by text tokens to node tokens aligns more closely with the
ideal scenario: first-order nodes receive higher attention
scores compared to their surrounding second-order nodes.
The attention scores exhibit a fluctuating upward trend as a
function of node position, with peaks occurring at positions
corresponding to structurally significant nodes.

This indicates that the ability of LLMs to capture relation-
ships between text and nodes is already quite robust; the
aspect that requires further development is the connectivity
among nodes within LLMs.

When exploring whether there are inconsistencies in the
attention paid by node tokens and text tokens to text tokens,
the results showed no significant differences between the
two. The locations of attention sinks or minor fluctuations
were largely consistent, indicating a high degree of simi-
larity. This suggests that both node tokens and text tokens
exhibit consistent attention patterns towards text tokens.

Remark(Q2). We found that the attention mechanism does
not adapt well to sequentially input graph-structured data, as
its distribution does not meet the ideal scenario. Unlike NLP
tasks, where the mismatch distribution is acceptable due to
uncertain positions of important text, graph-structured data
contains prior importance information. As a result, LLMs
with this issue cannot match the performance of GNNs
that focus on graph structure. Furthermore, some studies

on RAG indicate that the placement of tokens in different
positions significantly affects attention (Hsieh et al., 2024).

B2. Nodes Interaction Attention Score

To delve deeper into the nuances of attention distribution
among node tokens, we conducted a heatmap visualization
analysis of the attention score matrix, uncovering several
novel phenomena.

More precisely, Figure 5 shows the attention interaction
matrix across all nodes. Based on this, we observed the
so-called “Attention sink” phenomenon (Xiao et al., 2024),
which manifests in two distinct patterns across most graph
datasets. The first pattern is a simple “Attention sink” as
shown in Figure 5(Left), where certain positions consistently
attract higher attention scores without significant topological
or sequential information.

The second pattern exhibits a unique “diagonal” characteris-
tic specific to graph data. Typically, diagonals near the main
diagonal exhibit higher attention values due to nodes paying
more attention to their neighbors; however, as depicted in
Figures 5(Right), there exists a diagonal with notably higher
attention scores compared to surrounding diagonals. This
pattern was not found in textual inspections and suggests
that the model may be learning to capture unexpected spatial
patterns or path dependencies, possibly arising from the in-
herent properties of the graph structure. Given its distinction
from simple adjacency relationships, we term this pattern
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Figure 3. Illustration of all tokens to nodes attention. The x-coordinate refers to the relative position of the node token in the entire node
list. We collected the attention scores of all tokens towards node tokens and plotted them in a line graph according to the relative position
of nodes within the instructions. Upper: the mean values of attention scores from nodes(Querys) to nodes(Keys). Lower: the mean values
of attention scores from texts(Querys) to nodes(Keys). The plot annotates nodes at different hierarchical levels. Our node sampling is 8*8.
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“Skewed Line Sink.”

The emergence of “Attention sink” and “Skewed Line Sink”
phenomena interferes with the proper allocation of attention
between nodes in LLMs, preventing them from effectively
utilizing graph structural information. However, based on
these findings, we can engage more effectively with the NLP
community to correct these biases.

C. Attention Window for Graph-Structured Data

In recent works (Kim et al., 2022; Joshi, 2020), it has been
shown that transformers can be viewed as fully connected
graph-attention models, while contemporary decoder-only
LLMs function as unidirectional fully connected Graph
Transformer (GT) models. For given graph-structured data,
the attention window of LLMs manifests as a lower tri-
angular matrix representing full connectivity, whereas the
attention window of GNNs is a fixed-linkage adjacency ma-
trix. These two extremes represent the spectrum of attention
windows in graph-structured data. The attention window
determines how the model captures relationships between
nodes and is a critical factor influencing the effectiveness
of graph structure learning. In this section, we explore how
LLMs learn and utilize graph structures from different vis-
ible perspectives, seeking the optimal linkage perspective
between fully connected and fixed-linkage views(Q3).

Setting. We introduce a global linkage horizon k to indi-
cate the visibility range of node tokens under the attention
window. k ranges from 0 to 2L, where L represents the num-
ber of hops or neighborhood radius from the central node.
As shown in Figure 6, when sampling subgraphs with L = 2
hops: k = 0 means all nodes can only see themselves, k = 1
indicates all nodes can see their first-order neighbors, and
k = 4 means nodes can see all other nodes. Among these,
k = 0 and k = 4 represent Attention Windows without
effective link information, while k = 1, 2, 3 include par-
tial graph link information. Additionally, considering that
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Table 3. Model performance(accuracy(%) ±std) for 4 runs on four
real-world datasets and under different values of k

k Wikics Roman Amazon Pubmed

k4unidi 77.49±0.21 80.73±0.0 45.19± 0.2 82.92±0.1
k4bidi 67.81±0.06 81.38±0.0 43.79± 0.4 82.47±0.4
k3unidi 77.96±0.13 81.68±0.02 45.46± 0.0 83.36±0.1
k3bidi 74.93±0.26 81.61±0.0 45.63± 0.1 81.98±0.1
k2unidi 78.90±0.17 82.87±0.02 44.67± 0.0 82.89±0.3
k2bidi 77.42±0.19 82.05±0.02 45.18± 0.2 82.67±0.1
k1unidi 78.15± 0.02 83.12±0.0 45.95± 0.1 80.49±0.2
k1bidi 78.43± 0.09 83.05±0.01 46.17± 0.0 79.81±0.2

LLMs are mostly unidirectional decoders, while GNN links
are bidirectional, we incorporate both unidirectional (kunidi)
and bidirectional (kbidi) links into our empirical study.

C1. Optimal Visible Perspective

We conducted multiple experiments with different k values,
and the results are summarized in Table 3. From the table, it
is evident that when the training and inference k values re-
main unchanged, the fully connected view (k = 4) of LLMs
cannot achieve the best performance. In contrast, intermedi-
ate views (k = 2, 3), which contain certain topological link
information, achieve better results. The fixed-linkage view

(k = 1) is also considered to perform well.

However, settings with k ̸= 4 require pre-labeling node
tokens and modifying the attention window, posing deploy-
ment challenges in real-world scenarios. Therefore, we
continue our exploration.

C2. Unidirectional vs. Bidirectional Attention

To further investigate the impact of unidirectional and
bidirectional attention, we conducted comparative exper-
iments in Table 4. The mutual transfer between unidi-
rectional and bidirectional attention is difficult to achieve
better results, and the loss caused by transfer increases
as the value of k grows.

C3. Transferability across Different Visible Perspectives

We also tested the transfer ability of models trained at one k
value and inferred at others in Table 4.

Small-to-large: Surprisingly, switching from smaller to
larger k values does not weaken model performance but
rather enhances it. Specifically, we can achieve better per-
formance at inference time with k=4 by training the model
at k = 2 or k = 3, compared to training directly at k = 4.
Since k = 4 is the fully connected view of LLMs, no modi-
fication is required during real-world inference, addressing
the deployment difficulties mentioned in subsection C1.
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Figure 6. Illustration of different global linkage horizon k. From left to right, the images represent k=1 to 4. To demonstrate the field of
view of GNNs, the image for k=1 is depicted bidirectionally, while the rest are shown unidirectionally.·

Table 4. Transfer Performance of Models across Different k Values. Rows indicate the k value used during training, Columns represent
the k value utilized during testing. The best performance for each k value transfer is highlighted in gray, with the overall best performance
bolded. The best result of LLM testing under normal window (k4

unidi) conditions is indicated with an underline.

Train
Test

k4bidi k4unidi k3bidi k3unidi k2bidi k2unidi k1bidi k1unidi

k4bidi 67.81±0.06 66.87±0.19 68.09±0.34 65.95±0.04 67.45±0.13 66.72±0.13 65.10±0.21 64.82±0.23
k4unidi 61.02±0.23 77.49±0.21 72.43±0.02 78.41±0.06 74.75±0.38 78.19±0.23 77.00±0.36 77.87±0.34
k3bidi 74.63±1.15 72.17±0.66 74.93±0.26 72.75±0.26 75.87±0.04 72.83±0.17 72.66±0.17 71.23±0.11
k3unidi 57.73±0.49 77.82±0.30 72.55±0.19 77.96±0.13 76.48±0.11 79.22±0.15 77.38±0.66 77.74±0.04
k2bidi 64.03±0.34 73.71±0.49 75.14±0.21 74.88±0.34 77.42±0.19 75.22±0.47 76.59±0.51 74.48±0.41
k2unidi 52.58±0.04 74.97±0.68 68.80±0.53 77.51±0.02 73.30±0.56 78.90±0.17 76.08±0.38 76.33±0.09
k1bidi 49.17±0.30 74.33±0.04 69.20±0.09 75.22±0.34 75.25±0.02 76.78±0.45 78.32±0.49 78.43±0.09
k1unidi 34.05±0.01 72.08±0.79 55.75±0.21 74.63±0.26 66.19±0.02 76.91±0.28 75.50±0.53 78.15±0.02

Large-to-small: Transitioning from a broader to a narrower
window results in improved model performance (e.g., from
4 to 3, or from 3 to 2). We attribute this phenomenon to
the fact that training LLMs is more challenging from wider
perspectives, where the model must contend with a greater
amount of context and potential noise. When shifting to
a narrower perspective, the model benefits from a reduced
level of complexity and fewer distractions, leading to better.

Overall(Q3), our empirical studies reveal that the Attention
Window with connection information significantly impacts
LLM’s understanding of graph structure. Training with non-
fully connected views containing certain topological link
information aids LLMs in understanding graph structures
and facilitates transfer from small to large perspectives.

Other work in Appendix

A detailed description of the setup is provided in Ap-

pendix A, with information about the dataset in Appendix B.
Additional related work is discussed in Appendix C. Atten-
tion plots and experimental results for other datasets (base
LLMs) are presented in Appendices H, G, I, and F.

4. Findings and Conclusion
Findings. We found that although LLMs gradually become
aware of graph data during training, they fail to effectively
leverage the connectivity information within these graphs.
It was also discovered that fine-tuned LLMs possess the
ability to capture relationships between nodes and text, but
they lack the capability to model relationships among nodes.
This limitation manifests as “Attention Sink” and “Skewed
Line Sink” phenomena in attention interactions.

Additionally, we found that fully connected attention win-
dows of LLMs are not suitable for training on graph data. A
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better approach is to train under a smaller perspective that
incorporates graph topology information and then perform
transfer learning.

Conclusion and Limitation. We explored the attention
mechanisms of LLMs on graph data and discovered numer-
ous phenomena, providing directional guidance for further
research by the graph learning community. At the same
time, due to limitations in length and resources, we only
analyzed a portion of the discovered phenomena. There
remains a wealth of unexplored phenomena awaiting further
investigation by the research community.
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A. Implementation Details
Throughout the experiments, we maintained LLama2-7B (Touvron et al., 2023) as our base model and used an 8x8 scheme
for neighbor sampling. For each dataset, during the experimental process, we processed the raw text from the datasets using
the base model to serve as the embedding features for the nodes, treating each node akin to a token in the manner of LLama.
Regarding the data collected as described in A.1, we gathered the attention scores for each node across different layers and
heads, scaling them using a logarithmic function. For the perturbed data in A.2: (II) We performed random swaps between
two nodes, repeating this procedure ten times consecutively. (IV) We conducted random exchanges of nodes within the
same batch to introduce disorder. More details are shown in Table 5.

Table 5. Hyperparameters for the Roman-Empire, Amazon-Ratings, and Pubmed, Wikics.

Hyperparameters Amazon-Ratings Pubmed Wikcis Roman

learning rate 1e-4 1e-4 1e-4 1e-4
warmup 0.05 0.05 0.05 0.05
gradient accumulation steps 8 8 8 8
batch size 4 4 4 4
epoch 1 1 1 1
num beams 2 2 2 2
use embedding Ture True False False

B. Datasets
When selecting datasets, we considered a broad spectrum and chose heterogeneous graph datasets Amazon-Rating (Platonov
et al., 2023) and Roman-Empire (Platonov et al., 2023), as well as homogeneous graph datasets Pubmed and Wi-
kiCS (Mernyei & Cangea, 2020). The statistical metrics of each dataset are shown in the following Table 6.

Table 6. Statistics of datasets
Roman-Empire Amazon-Ratings Wikics Pubmed

nodes 22,662 24,492 11,701 19,717
edges 32,927 93,050 216,123 44,338
avg degree 2.91 7.60 36.89 4.49
node features 4096 4096 4096 4096
classes 18 5 10 3
edge homophily 0.05 0.38 - -
adjusted homophily -0.05 0.14 - -

C. Additional Related Work
Recent advancements have delved into leveraging Large Language Models (LLMs) within graph structure domains. Studies
such as GLEM (Zhao et al., 2022), along with other works (Yang et al., 2021), have probed into the integration of LLMs
and Graph Neural Networks (GNNs) through joint training frameworks. The approach taken by (He et al., 2023) employs
LLMs to forecast node ranking classifications and offers comprehensive insights to enrich the quality of GNN embeddings.
Meanwhile, Sun et al. (2023) has exploited LLMs for generating pseudo-labels aimed at enhancing the representation of
graph topologies. Moreover, there has been an emphasis on advancing the direct processing capabilities of LLMs for textual
graphs. For instance, InstructGLM (Ye et al., 2023) pioneers the use of instruction tuning based on LLMs to articulate
graph structures and node characteristics, effectively addressing graph-related tasks. An interactive fusion of LLMs and
GNNs is also presented by (Qiao et al., 2024). Despite these strides, LLMs face challenges when dealing with structured
data that has been converted into natural language, frequently leading to less than optimal outcomes. To address this issue,
LLaGA (Chen et al., 2024a) reformulates node-link information into sequential data, thereby applying instruction tuning
that enhances LLM comprehension while preserving structural node information. UniGraph (He & Hooi, 2024) implements
a masked strategy for co-training LLMs and GNNs together, achieving robust generalization across diverse graphs and
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datasets. Additionally, Kong et al. (2024) investigates the creation of graph-based foundational models that merge LLMs
with GNNs. GraphAdapter (Huang et al., 2024) utilizes a GNN model as an adapter working alongside LLMs for TAG
tasks, which aids in task-specific fine-tuning via external access.

Moreover, recent efforts have increasingly focused on designing modules from a more comprehensive perspective to achieve
better performance. In the context of Zhu et al. (2024a), mimicking the aggregation process of GNNs through instructions
forces LLMs to learn how to aggregate node information effectively. The work by Zhang et al. (2024) employs LLMs to
compress lengthy raw texts hierarchically, ultimately condensing them into a small number of tokens suitable for graph
tasks. This hierarchical compression allows for efficient representation of complex textual data in a form that can be readily
processed by graph-based models.

Zhang et al. (2024) approach incorporates the information from neighboring nodes when performing attention calculations on
tokens within its own text, while also reducing the number of tokens. During the final inference phase, it refines predictions
by re-evaluating the surrounding neighbor nodes, thereby enhancing the accuracy and relevance of the outcomes.

D. Other Base Models for Disruption Performance

Table 7. Disruption Performance. Node classification results (accuracy(%) ±std) for 4 runs on four real-world datasets and five levels of
disruption. The model used is Vicuna-7B, with node sampling configured as 8x8.

Dataset Raw (I) (II) (III) (IV)

Wikics 0.7899± 0.004 0.7898± 0.002 0.7919± 0.001 0.7773± 0.002 0.7101± 0.005
Pubmed 0.8322±0.002 0.8345±0.001 0.8300±0.001 0.7434±0.003 0.7453±0.001
Amazon-Ratings 0.4541±0.001 0.4544±0.001 0.4498±0.002 0.4135±0.001 0.3943±0.001
Roman-Empire 0.8094±0.001 0.8001±0.001 0.7883±0.003 0.6543±0.001 0.6016±0.001

Table 8. Disruption Performance. Node classification results (accuracy(%) ±std) for 4 runs on four real-world datasets and five levels of
disruption. The model used is LLama3-7B, with node sampling configured as 8x8.

Dataset Raw (I) (II) (III) (IV)

Wikics 0.7988± 0.001 0.7981± 0.006 0.7988± 0.005 0.7487± 0.002 0.7209± 0.001
Pubmed 0.8448±0.001 0.8449±0.003 0.8442±0.003 0.8067±0.003 0.7753±0.002
Amazon-Ratings 0.4515±0.001 0.4523±0.002 0.3985±0.003 0.3889±0.002 0.3744±0.005
Roman-Empire 0.8108±0.002 0.8007±0.002 0.7922±0.002 0.6324±0.001 0.5618±0.002

E. Statistical Analysis of Attention Score Distributions
It can be seen that most of them are consistent with our presentation and our conclusions.

Table 9. Statistical Analysis of Attention Score Distributions. Note: ** indicates p-value ¡ 0.01, otherwise p ¿ 0.05 for t-test and KS test.
JS Divergence values are provided as is.

Comparison Amazon WikiCS
T-Test KS Test JS T-Test KS Test JS

Before vs After (Text) 95.066∗∗ 0.118∗∗ 0.0066 61.764∗∗ 0.107∗∗ 0.0038
Before vs After (Node) 69.334∗∗ 0.116∗∗ 0.0113 118.293∗∗ 0.216∗∗ 0.0307
Node vs Text (Before) −337.116∗∗ 0.428∗∗ 0.1423 −268.998∗∗ 0.362∗∗ 0.0766
Node vs Text (After) −318.054∗∗ 0.438∗∗ 0.1123 −184.605∗∗ 0.285∗∗ 0.0264
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F. Disruption Attention Score
In Figure 2, we illustrate the attention scores from neighboring nodes to the central node before and after training, without
altering the structural information. Here, we show the attention scores from neighboring nodes to the central node under
various perturbation conditions.

Table 10. Disruption Attention Score (Amazon-Ratings). The attention scores from neighboring nodes to the central node, were presented
as mean values with standard deviations, using a 1:8 sampling ratio.

Node 1 2 3 4 5 6 7 8

(raw) 0.017±0.025 0.018±0.025 0.012±0.019 0.008±0.011 0.007±0.011 0.006±0.009 0.004±0.005 0.004±0.005

(I) 0.018±0.025 0.018±0.025 0.012±0.020 0.008±0.012 0.007±0.010 0.006±0.008 0.004±0.005 0.004±0.005

(II) 0.017±0.024 0.017±0.025 0.012±0.019 0.008±0.010 0.007±0.010 0.006±0.009 0.004±0.005 0.004±0.005

(III) 0.019±0.026 0.018±0.026 0.013±0.020 0.008±0.011 0.007±0.010 0.006±0.008 0.004±0.005 0.004±0.005

(IV) 0.017±0.025 0.018±0.025 0.012±0.019 0.008±0.011 0.007±0.011 0.006±0.009 0.004±0.005 0.004±0.005

Table 11. Disruption Attention Score (Wikics). The attention scores from neighboring nodes to the central node, were presented as mean
values with standard deviations, using a 1:8 sampling ratio.

Node 1 2 3 4 5 6 7 8

(raw) 0.017±0.021 0.012±0.017 0.009±0.014 0.006±0.011 0.006±0.011 0.005±0.010 0.004±0.009 0.004±0.009

(I) 0.018±0.022 0.013±0.018 0.009±0.015 0.007±0.013 0.006±0.012 0.005±0.012 0.004±0.011 0.004±0.010

(II) 0.017±0.020 0.012±0.016 0.008±0.013 0.006±0.010 0.006±0.010 0.005±0.009 0.004±0.008 0.004±0.007

(III) 0.016±0.019 0.011±0.013 0.007±0.009 0.005±0.006 0.005±0.006 0.004±0.005 0.003±0.004 0.003±0.003

(IV) 0.018±0.022 0.013±0.018 0.009±0.015 0.007±0.012 0.006±0.012 0.005±0.011 0.004±0.010 0.004±0.010

Table 12. Disruption Attention Score (Roman). The attention scores from neighboring nodes to the central node, were presented as mean
values with standard deviations, using a 1:8 sampling ratio.

Node 1 2 3 4 5 6 7 8

(raw) 0.023±0.021 0.016±0.016 0.014±0.014 0.012±0.012 0.010±0.010 0.009±0.010 0.011±0.011 0.004±0.002

(I) 0.024±0.021 0.016±0.016 0.013±0.013 0.011±0.011 0.009±0.010 0.009±0.009 0.011±0.011 0.004±0.003

(II) 0.024±0.021 0.016±0.016 0.014±0.014 0.012±0.013 0.010±0.011 0.010±0.010 0.011±0.011 0.004±0.003

(III) 0.022±0.020 0.015±0.014 0.011±0.011 0.010±0.011 0.009±0.009 0.008±0.008 0.006±0.010 0.004±0.001

(IV) 0.023±0.021 0.016±0.016 0.014±0.014 0.012±0.012 0.010±0.010 0.009±0.010 0.011±0.012 0.004±0.003
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G. Attention Score Matrix(Tokens)
G.1. Token to Token
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Figure 7. Attention score interaction matrix(Nodes) in Wikics.
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Figure 8. Attention score interaction matrix(Nodes) in Roman-Empire.
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Figure 9. Attention score interaction matrix(Nodes) in Amazon-Ratings.

17



Attention Mechanisms Perspective: Exploring LLM Processing of Graph-Structured Data
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Figure 10. Attention score interaction matrix(Text) in Wikics.
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Figure 11. Attention score interaction matrix(Text) in Roman-Empire.
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Figure 12. Attention score interaction matrix(Text) in Amazon-Ratings.
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H. Attention Score among First Nodes(with child nodes)
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Figure 13. Visualization of the average attention(Attention Score among First Nodes(with child nodes)) in Amazon-Ratings((1+8)*2).
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Figure 14. Visualization of the average attention(Attention Score among First Nodes(with child nodes)) in Roman-Empire((1+8)*2).
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Figure 15. Visualization of the average attention(Attention Score among First Nodes(with child nodes)) in Wikics((1+8)*2).
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I. Different Layer Attention Score between First Nodes and child nodes
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Figure 16. Visualization of the average attention(Center nodes and First-order nodes) in Amazon-Ratings.
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Figure 17. Visualization of the average attention(Center nodes and First-order nodes) in Roman-Empire.
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Figure 18. Visualization of the average attention(Center nodes and First-order nodes) in Wikics.
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J. Prompt
Here, we list all the prompts we used in this paper on different datasets, we use the following prompt:.

• Roman-Empire: “<User >: In an article, words that have dependency relationships (where one word depends on another)
are connected, forming a dependency graph. Based on the connections between words, determine the syntactic role of
each word. Given that a word [] that connect [], what is the word [] syntactic role? <Assistant >: ”

• Amazon-Ratings: “<User >: In a product graph dataset, edges connect products that are frequently purchased together.
Based on the connections between products (books, music CDs, DVDs, VHS tapes), predict the average rating given by
reviewers for the products. Given that a product [] that connect [], what is the product [] rating? <Assistant >: ”

• Pubmed: “<User >: In medical paper dataset, papers that cite each other form a linkage relationship. Based on the
linkage relationships among papers, the research directions of medical papers can be predicted. Given that a paper [] that
connect [], What is the category of the paper []? <Assistant >:: ”

• Wikics: “<User >: In paper dataset, papers that cite each other form a linkage relationship. Based on the linkage
relationships among papers, the research directions of papers can be predicted. Given that a paper [] that connect [], What
is the category of the paper []? <Assistant >:: ”

K. Different Templates
We designed various Templates for analysis and discussion, inspired by the the paper (TALK LIKE A GRAPH).

The results of the disruption experiment are as follows. From the Table K, it can be seen that although different templates
have varying model performances, the overall trend is consistent, showing utilization of link information specifically on the
Roman dataset, while link information did not play a role on most other datasets. Our initial template (1) remains the best
performing and makes the best use of link information.

Table 13. Comparison of different datasets under various templates.

Dataset Raw (I) (II) (III) (IV)

(1)
Wikics 0.7862± 0.007 0.7847± 0.004 0.7907± 0.0035 0.7670± 0.003 0.7087± 0.005
Pubmed 0.8367± 0.003 0.8363± 0.001 0.8364± 0.002 0.7698± 0.003 0.7835± 0.001
Amazon-Ratings 0.4486± 0.002 0.3980± 0.003 0.3977± 0.002 0.3915± 0.003 0.3813± 0.001
Roman-Empire 0.8089± 0.001 0.7918± 0.001 0.7910± 0.002 0.6290± 0.002 0.5784± 0.002

(2)
Wikics 0.7795± 0.006 0.7789± 0.005 0.7778± 0.003 0.7512± 0.004 0.6871± 0.006
Pubmed 0.8112± 0.004 0.8108± 0.002 0.8050± 0.001 0.7745± 0.002 0.7783± 0.002
Amazon-Ratings 0.4231± 0.003 0.4038± 0.002 0.3923± 0.003 0.3869± 0.002 0.3768± 0.002
Roman-Empire 0.7932± 0.002 0.7961± 0.002 0.7935± 0.001 0.7228± 0.003 0.6130± 0.001

(3)
Wikics 0.7806± 0.007 0.7793± 0.004 0.7851± 0.0035 0.7618± 0.003 0.7025± 0.005
Pubmed 0.8315± 0.003 0.8310± 0.001 0.8312± 0.002 0.7643± 0.003 0.7781± 0.001
Amazon-Ratings 0.4438± 0.002 0.3932± 0.003 0.3929± 0.002 0.3867± 0.003 0.3765± 0.001
Roman-Empire 0.8030± 0.001 0.7864± 0.001 0.7856± 0.002 0.6234± 0.002 0.5728± 0.002

(4)
Wikics 0.7811± 0.006 0.7833± 0.005 0.7812± 0.0030 0.7665± 0.004 0.7092± 0.006
Pubmed 0.8325± 0.004 0.8322± 0.002 0.8317± 0.001 0.7897± 0.002 0.7064± 0.002
Amazon-Ratings 0.4379± 0.003 0.4085± 0.002 0.4072± 0.003 0.3978± 0.002 0.3885± 0.002
Roman-Empire 0.8091± 0.002 0.7915± 0.002 0.7913± 0.001 0.6285± 0.003 0.5788± 0.001

27



Attention Mechanisms Perspective: Exploring LLM Processing of Graph-Structured Data

L. Transfer Performance of Models across Different k Values.

Table 14. Transfer Performance of Models across Different k Values(Roman). Rows indicate the k value used during training, Columns
represent the k value utilized during testing. The best performance for each k value transfer is highlighted in gray, with the overall best
performance bolded.

k=4 k=3 k=2 k=1

bidi unidi bidi unidi bidi unidi bidi unidi

k4bidi 81.38±0.00 73.72±0.04 80.96±0.02 73.84±0.04 79.82±0.01 74.28±0.06 79.10±0.00 73.91±0.04
k4unidi 68.51±0.04 80.73±0.00 70.51±0.04 80.37±0.01 73.04±0.04 79.66±0.01 72.48±0.01 79.73±0.01
k3bidi 80.96±0.02 75.96±0.05 81.61±0.00 75.67±0.01 80.80±0.02 75.60±0.01 78.64±0.02 74.93±0.08
k3unidi 67.41±0.06 81.79±0.01 69.50±0.05 81.68±0.02 72.62±0.01 81.60±0.01 72.74±0.03 81.59±0.02
k2bidi 78.65±0.01 76.09±0.03 79.70±0.00 76.10±0.00 82.05±0.02 75.76±0.01 81.26±0.00 75.94±0.01
k2unidi 67.75±0.03 82.66±0.01 69.71±0.04 82.63±0.02 74.37±0.02 82.87±0.01 76.54±0.03 82.11±0.02
k1bidi 77.30±0.04 77.26±0.01 78.25±0.03 77.44±0.02 79.92±0.02 77.37±0.00 83.05±0.01 77.89±0.04
k1unidi 64.81±0.05 82.54±0.01 66.55±0.01 82.56±0.00 71.17±0.01 82.78±0.01 73.53±0.00 83.12±0.01

Table 15. Transfer Performance of Models across Different k Values(Amazon-Ratings). Rows indicate the k value used during training,
Columns represent the k value utilized during testing. The best performance for each k value transfer is highlighted in gray, with the
overall best performance bolded.

k=4 k=3 k=2 k=1

bidi unidi bidi unidi bidi unidi bidi unidi

k4bidi 43.79±0.43 35.99±0.51 42.26±0.11 35.19±0.11 38.81±0.16 32.81±0.21 30.08±0.07 28.98±0.07
k4unidi 41.27±0.16 45.19±0.20 44.36±0.08 44.95±0.08 45.43±0.19 44.59±0.18 44.47±0.07 42.97±0.36
k3bidi 45.28±0.01 39.31±0.33 45.63±0.08 38.46±0.47 43.56±0.02 35.24±0.52 35.55±0.25 29.10±0.20
k3unidi 43.20±0.15 45.66±0.11 44.64±0.09 45.46±0.04 45.30±0.01 45.11±0.16 44.78±0.02 42.83±0.09
k2bidi 44.31±0.10 44.40±0.04 45.09±0.05 44.24±0.03 45.18±0.20 43.66±0.04 42.78±0.11 41.42±0.16
k2unidi 40.45±0.16 44.33±0.12 41.24±0.03 44.40±0.20 42.84±0.28 44.67±0.05 43.46±0.10 43.01±0.06
k1bidi 32.02±0.09 42.30±0.11 37.66±0.11 44.63±0.07 40.68±0.03 45.14±0.00 46.17±0.03 45.30±0.34
k1unidi 41.73±0.15 42.96±0.09 42.63±0.10 44.33±0.17 43.08±0.19 44.76±0.02 46.27±0.08 45.95±0.06
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