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Abstract

Tensor network (TN) methods have been a key ingredient of advances in condensed
matter physics and have recently sparked interest in the machine learning commu-
nity for their ability to compactly represent very high-dimensional objects. TN
methods can for example be used to efficiently learn linear models in exponen-
tially large feature spaces [56]. In this work, we derive upper and lower bounds
on the VC-dimension and pseudo-dimension of a large class of TN models for
classification, regression and completion. Our upper bounds hold for linear models
parameterized by arbitrary TN structures, and we derive lower bounds for common
tensor decomposition models (CP, Tensor Train, Tensor Ring and Tucker) showing
the tightness of our general upper bound. These results are used to derive a gener-
alization bound which can be applied to classification with low-rank matrices as
well as linear classifiers based on any of the commonly used tensor decomposition
models. As a corollary of our results, we obtain a bound on the VC-dimension of
the matrix product state classifier introduced in [56] as a function of the so-called
bond dimension (i.e. tensor train rank), which answers an open problem listed by
Cirac, Garre-Rubio and Pérez-García in [13].

1 Introduction

Tensor networks (TNs) have emerged in the quantum physics community as a mean to compactly
represent wave functions of large quantum systems [45, 5, 52]. Their introduction in physics can be
traced back to the work of Penrose [47] and Feynman [15]. Akin to matrix factorization, TN methods
rely on factorizing a high-order tensor into small factors and have recently gained interest from the
machine learning community for their ability to efficiently represent and perform operations on very
high-dimensional data and high-order tensors. They have been for example successfully used for
compressing models [43, 69, 42, 29, 70], developing new insights on the expressiveness of deep neural
networks [14, 31] and designing novel approaches to supervised [56, 18] and unsupervised [55, 25, 39]
learning. Most of these approaches leverage the fact that TN can be used to efficiently parameterize
high-dimensional linear maps, which is appealing from two perspectives: it makes it possible to learn
models in exponentially large feature spaces and it acts as a regularizer, controlling the capacity of
the class of hypotheses considered for learning.

While the expressive power of TN models has been studied recently [17, 2], the focus has mainly been
on the representation capacity of TN models, but not on their ability to generalize in the context of
supervised learning tasks. In this work, we study the generalization ability of TN models by deriving
lower and upper bounds on the VC-dimension and pseudo-dimension of TN models commonly used
for classification, completion and regression, from which bounds on the generalization gap of TN
models can be derived. Using the general framework of tensor networks, we derive a general upper
bound for models parameterized by arbitrary TN structures, which applies to all commonly used
tensor decomposition models [20] such as CP [27], Tucker [59] and tensor train (TT)) [46], as well
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as more sophisticated structures including hierarchical Tucker [19, 23], tensor ring (TR) [73] and
projected entangled state pairs (PEPS) [60].

Our analysis proceeds mainly in two steps. First, we formally define the notion of TN learning model
by disentangling the underlying graph structure of a TN from its parameters (the core tensors, or
factors, involved in the decomposition). This allows us to define, in a conceptually simple way, the
hypothesis class HG corresponding to the family of linear models whose weights are represented
using an arbitrary TN structure G. We then proceed to deriving upper bounds on the VC/pseudo-
dimension and generalization error of the class HG. These bounds follow from a classical result
from Warren [66] which was previously used to obtain generalization bounds for neural networks [3],
matrix completion [54] and tensor completion [41]. The bounds we derive naturally relate the capacity
of HG to the underlying graph structure G through the number of nodes and effective number of
parameters of the TN. To assess the tightness of our general upper bound, we derive lower bounds
for particular TN structures (rank-one, CP, Tucker, TT and TR). These lower bounds show that, for
completion, regression and classification, our general upper bound is tight up to a log factor for
rank-one, TT and TR tensors, and is tight up to a constant for matrices. Lastly, as a corollary of
our results, we obtain a bound on the VC-dimension of the tensor train classifier introduced in [56],
which answers one of the open problems listed by Cirac, Garre-Rubio and Pérez-García in [13].

Related work Machine learning models using low-rank parametrization of the weights have been
investigated (mainly from a practical perspective) for various decomposition models, including
low-rank matrices [36, 49, 67], CP [1, 37, 7], Tucker [35, 16, 26, 50], tensor train [48, 10, 44, 56, 18,
53, 11, 65, 68] and PEPS [12]. From a more theoretical perspective, generalization bounds for matrix
and tensor completion have been derived in [54, 41] (based on the Tucker format for the tensor case).
A bound on the VC-dimension of low-rank matrix classifiers was derived in [67] and a bound on the
pseudo-dimension of regression functions whose weights have low Tucker rank was given in [50] (for
both these cases, we show that our results improve over these previous bounds, see Section 4.2).
To the best of our knowledge the VC-dimension of tensor train classifiers has not been studied in
the past, but the statistical consistency of the convex relaxation of the tensor completion problem
was studied in [58, 57] for the Tucker decomposition and in [28] for the tensor train decomposition.
Lastly, in [38] the authors study the complexity of learning with tree tensor networks using the notion
of metric entropy and covering numbers. They provide generalization bounds which are qualitatively
similar to ours, but their results only hold for TN structures whose underlying graph is a tree (thus
excluding models such as CP, tensor ring and PEPS) and they do not provide lower bounds.

Summary of contributions We introduce a unifying framework for TN-based learning models,
which generalizes a wide range of models based on tensor factorization for completion, classification
and regression. This framework allows us to consider the class HG of low-rank TN models for a given
arbitrary TN structure G (Section 3). We provide general upper bounds on the pseudo-dimension and
VC-dimension of the hypothesis class HG for arbitrary TN structure G for regression, classification
and completion. Our results naturally relate the capacity of HG to the number of parameters of the
underlying TN structure G (Section 4.1). From these results, we derive a generalization bound for
TN-based classifiers parameterized by arbitrary TN structures (Theorem 4). We compare our results
to previous bounds for specific decomposition models and show that our general upper bound is
always of the same order and sometimes even improves on previous bounds (Section 4.2). We derive
several lower bounds showing that our general upper bound is tight up to a log factor for particular
TN structures (Section 5). A summary of the lower bounds derived in this work, as well as upper
bounds implied by our general result for particular TN structures, can be found in Table 1 at the end
of the paper.

2 Preliminaries

In this section, we present basic notions of tensor algebra and tensor networks as well as generalization
bounds based on combinatorial complexity measures. We start by introducing some notations. For
any integer k we use [k] to denote the set of integers from 1 to k. We use lower case bold letters for
vectors (e.g. v 2 Rd1 ), upper case bold letters for matrices (e.g. M 2 Rd1⇥d2 ) and bold calligraphic
letters for higher order tensors (e.g. T 2 Rd1⇥d2⇥d3). The inner product of two k-th order tensors
S,T 2 Rd1⇥···⇥dk is defined by hT ,Si =

Pd1

i1=1 · · ·
Pdk

ik=1 T i1...ikSi1...ik . The outer product of
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A B = AB A = Tr(A) x M y = x>My

Figure 1: Tensor network representation of common operations on matrices and vectors.

two vectors u 2 Rd1 and v 2 Rd2 is denoted by u⌦ v 2 Rd1⇥d2 with elements (u⌦ v)i,j = uivj .
The outer product generalizes to an arbitrary number of vectors. We use the notation (Rd)⌦p to
denote the space of p-th order hypercubic tensors of size d⇥ d⇥ · · ·⇥ d. We denote by YX the space
of functions f : X 7! Y . sign(·) stands for the sign function. Finally, given a graph G = (V,E) and
a vertex v 2 V , we denote by Ev = {e 2 E | v 2 e} the set of edges incident to the vertex v.

2.1 Tensors and Tensor Networks

Tensor networks A tensor T 2 Rd1⇥···⇥dp can simply be seen as a multidimensional array
(T i1,··· ,ip : in 2 [dn], n 2 [p]). Complex operations on tensors can be intuitively represented using
the graphical notation of tensor network (TN) diagrams [5, 45]. In tensor networks, a p-th order

tensor is illustrated as a node with p edges (or legs) in a graph Td1

d2

dp . An edge between two nodes

of a TN represents a contraction over the corresponding modes of the two tensors. Consider the

following simple TN with two nodes: A x
m n . The first node represents a matrix A 2 Rm⇥n

and the second one a vector x 2 Rn. Since this TN has one dangling leg (i.e. an edge which is not
connected to any other node), it represents a first order tensor, i.e. a vector. The edge between the
second leg of A and the leg of x corresponds to a contraction between the second mode of A and the
first mode of x. Hence, the resulting TN represents the classical matrix-product, which can be seen by
calculating the i-th component of this TN: A xi =

P
j Aijxj = (Ax)i . Other examples

of TN representations of common operations on matrices and vectors can be found in Figure 1. A
special case of TN is the tensor train decomposition [46] which factorizes a n-th order tensor T in
the form G1

d1

r1 G2

d2

r2 Gn-1
rn�2

dn�1

rn�1 Gn

dn

. This corresponds to

T i1,i2,...,in =
r1X

↵1=1

· · ·
rn�1X

↵n�1=1

(G1)i1,↵1(G2)↵1,i2,↵2 . . . (Gn�1)↵n�2,in�1,↵n�1(Gn)↵n�1,in (1)

where the tuple (ri)
n�1
i=1 associated with the TT representation is called TT-rank.

Tensor network structures A tensor network (TN) can be fundamentally decomposed in two
constituent parts: a tensor network structure, which describes its graphical structure, and a set of
core tensors assigned to each node. For example, the tensor in Rd1⇥d2⇥d3⇥d4 represented by the TN

Td1
d2

R S
d3

d4 is obtained by assigning the core tensors T 2 Rd1⇥d2⇥R and S 2 RR⇥d3⇥d4 to the

nodes of the TN structure d1
d2

R

d3

d4 .

Formally, a tensor network structure is given by a graph G = (V,E, dim) where edges are labeled
by integers: V is the set of vertices, E ⇢ V [ (V ⇥ V ) is a set of edges containing both classical
edges (e 2 V ⇥ V ) and singleton edges (e 2 V ) and dim : E ! N assigns a dimension to each
edge in the graph. The set of singleton edges �G = E \ V corresponds to the dangling legs of a
TN. Given a TN structure G, one obtains a tensor by assigning a core tensor T v 2

N
e2Ev

Rdim(e)

to each vertex v in the graph, where Ev = {e 2 E | v 2 e}. The resulting tensor, denoted by
TN(G, {T v}v2V ), is a tensor of order |�G| in the tensor product space

N
e2�G

Rdim(e). Given a
tensor structure G = (V,E, dim), the set of all tensors that can be obtained by assigning core tensors
to the vertices of G is denoted by T (G) ⇢

N
e2�G

Rdim(e):

T (G) = {TN(G, {T v}v2V ) : T v 2
O

e2Ev

Rdim(e), v 2 V }. (2)
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CP Tucker Tensor Train Tensor Ring

Hierarchical Tucker PEPS

Figure 2: TN representation of common decomposition models for 4th order and 9th order tensors.
For CP, the black dot represents a hyperedge corresponding to a joint contraction over 4 indices.

As an illustration, one can check that the set of m ⇥ n matrices of rank at most r is equal to
T ( m r n ). Similarly, the set of 4th order d-dimensional tensors of TT rank at most r is equal
to T (

d

r

d

r

d

r

d
).

Finally, for a given graph structure G, the number of parameters of any member of the family T (G)
in Equation (2) (which is the total number of entries of the core tensors {T v}v2V ) is given by

NG =
X

v2V

Y

e2Ev

dim(e) (3)

This will be a central quantity in the generalization bounds and bounds on the VC-dimension of TN
models we derive in Section 4.

Common tensor network structures In Figure 2, we show the tensor network structures associated
with classical tensor decomposition models such as CP, Tucker [59] and tensor train (TT) [46],
also known as matrix product state (MPS) [45, 52]. For the case of the Candecomp/Parafac (CP)
decomposition [27], note that the TN structure is a hyper-graph rather than a graph. We introduced the
notion of TN structure focusing on graphs for clarity of exposition in the previous paragraph, but our
formalism and results can be straightforwardly extended to hyper-graph TN structures. In addition,
we include the tensor ring (TR) [73] (also known as periodic MPS) and PEPS decompositions which
have initially emerged in quantum physics and recently gained interest in the machine learning
community (see e.g., [12, 62, 63, 71]). We also show the hierarchical Tucker decomposition initially
introduced in [19, 23].

2.2 Generalization Bound and Complexity Measures

The goal of supervised learning is to learn a function f mapping inputs x 2 X to outputs y 2 Y
from a sample of input-output examples S = {(x1, y1), · · · , (xn, yn)} drawn independently and
identically (i.i.d.) from an unknown distribution D, where each yi ' f(xi). Given a set of
hypotheses H ⇢ YX , one natural objective is to find the hypothesis h 2 H minimizing the risk
R(h) = E(x,y)⇠D `(h(x), y) where ` : Y ⇥ Y ! R+ is a loss function measuring the quality of the
predictions made by h. However, since the distribution D is unknown, machine learning algorithms
often rely on the empirical risk minimization principle which consists in finding the hypothesis
h 2 H that minimizes the empirical risk R̂S(h) =

1
n

Pn
i=1 `(h(xi), yi). It is easy to see that the

empirical risk is an unbiased estimator of the risk and one of the concerns of learning theory is to
provide guarantees on the quality of this estimator. Such guarantees include generalization bounds,
which are probabilistic bounds on the generalization gap R(h) � R̂S(h). The generalization gap
naturally depends on the size of the sample S, but also on the richness (or capacity, complexity) of
the hypothesis class H.

In this work, our focus is on uniform generalization bounds, which bound the generalization gap
uniformly for any hypothesis h 2 H as a function of the size of the training sample and of the
complexity of the hypothesis class H. While there are many ways of measuring the complexity of
H, including VC-dimension, Rademacher complexity, metric entropy and covering numbers, we
focus on the VC-dimension for classification tasks and its counterpart for real-valued functions, the
pseudo-dimension, for completion and regression tasks.
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Definition 1. Let H ⇢ {�1,+1}X be a hypothesis class. The growth function ⇧H : N ! N of H is
defined by

⇧H(n) = sup
S={x1,...,xn}⇢X

|{(h(x1), . . . , h(xn)) | h 2 H}|.

The VC-dimension of H, dVC(H), is the largest number of points x1, · · · , xn shattered by H, i.e., for
which |{(h(x1), . . . , h(xn)) | h 2 H}| = 2n. In other words: dVC(H) = sup{n | ⇧H(n) = 2n}.
For a real-valued hypothesis class H ⇢ RX , we say that H pseudo-shatters the points x1, ..., xn 2 X
with thresholds t1, ..., tn 2 R , if for every binary labeling of the points (s1, ..., sn) 2 {�1,+1}n,
there exists h 2 H s.t. h(xi) < ti if and only if si = �1.

The pseudo-dimension of a real-valued hypothesis class H ⇢ RX , Pdim(H), is the supremum over
n for which there exist n points that are pseudo-shattered by H (with some thresholds).

Pseudo-dimension and VC-dimension are combinatorial measures of complexity (or capacity) which
can be used to derive classical uniform generalization bounds over a hypothesis class (see, e.g., [6,
40, 3]). By definition, the pseudo-dimension is related to the notion of VC-dimension by the relation

Pdim(H) = dVC({(x, t) 7! sign(h(x)� t) | h 2 H})
which holds for any H ⇢ RX .

3 Tensor Networks for Supervised Learning

In this section, we formalize the general notion of tensor network models. We then show how it
encompasses classical models such as low-rank matrix completion [8, 9, 22, 51], classification [36,
49, 67], and tensor train based models [56, 18, 53, 11, 65, 68].

3.1 Tensor Network Learning Models

Consider a classification problem where the input space X is the space of p-th order tensors
Rd1⇥d2⇥···⇥dp . One motivation for TN models is that the tensor product space X can be expo-
nentially large, thus learning a linear model in this space is often not feasible. Indeed, the number
of parameters of a linear classifier h : X 7! sign(hX ,Wi), where W 2 Rd1⇥···⇥dp is the tensor
weight parameters, grows exponentially with p. TN models parameterize W as a low-rank TN,
thus reducing the number of parameters needed to represent a model h. Our objective is to derive
generalization bounds for the class of such hypotheses parameterized by low-rank tensor networks
for classification, regression and completion tasks.

Formally, let G = (V,E, dim) be a TN structure for tensors of shape d1 ⇥ · · ·⇥ dp, i.e. where the
set of singleton edges �G = E \ V = {v1, · · · , vp} and dim(vi) = di for each i 2 [p]. We are
interested in the class of models whose weight tensors are represented in the TN structure G:

Hregression
G = {h : X 7! hW ,X i | W 2 T (G)} (4)

Hclassif
G = {h : X 7! sign(hW ,X i) | W 2 T (G)} (5)

Hcompletion
G = {h : (i1, · · · , ip) 7! W i1,··· ,ip | W 2 T (G)} (6)

In Equation (6) for the completion hypothesis class, p-th order tensors are interpreted as real-valued
functions f : [d1]⇥· · ·⇥[dp] 7! R over the indices of the tensor. Hcompletion

G is thus a class of functions
over the indices domain, for which the notion of pseudo-dimension is well-defined. This treatment of
completion as a supervised learning task was considered previously to derive generalization bounds
for matrix and tensor completion [54, 41].

The benefit of TN models comes from the drastic reduction in parameters when the TN structure
G is low-rank, in the sense that the number of parameters NG is small compared to d1d2 · · · dp. In
addition to allowing one to represent linear models in exponentially large spaces, this compression
controls the capacity of the corresponding hypothesis class HG.

3.2 Examples

To illustrate some TN models, we now present several examples of models based on common TN
structures: low-rank matrices and tensor trains.
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Low-rank matrices As discussed in Section 2.1, if we define the TN structure

Gmat(r) = d1 r d2 ,

then T (Gmat(r)) is the set of matrices in Rd1⇥d2 of rank at most r. The hypothesis class Hcompletion
Gmat(r)

then corresponds to the classical problem of low-rank matrix completion [8, 9, 22, 51]. Similarly
Hclassif

Gmat(r)
corresponds to the hypothesis class of low-rank matrix classifiers. This hypothesis class

was previously considered, notably to compactly represent the parameters of support vector machines
for matrix inputs [36, 49, 67]. Lastly, for the regression case, Hregression

Gmat(r)
is the set of functions

{h : X 7! Tr(WX>) | rank(W)  r}. Learning hypotheses from this class is relevant in, e.g.,
quantum tomography, where it is known as the low-rank trace regression problem [24, 64, 30, 33].

Tensor train tensors The tensor train (TT) decomposition model [46] also known as matrix product
state (MPS) in the quantum physics community [45, 52], has a number of parameters that grows only
linearly with the order of the tensor. This makes the TT format an appealing model for compressing
the parameters of ML models [56, 44, 17, 43]. We now present the tensor train classifier model which
was introduced in [56] and subsequently explored in [18]. Given a vector input x 2 Rp, Stoudenmire
and Schwab [56] propose to map x into a high-dimensional space of p-th order tensors X = Rd⇥···⇥d

by applying a local feature map � : R ! Rd to each component of the vector x and taking their outer
product: �(x) = �(x1)⌦ �(x2)⌦ · · ·⌦ �(xp) 2 (Rd)⌦p.

Instead of relying on the so-called kernel trick, Stoudenmire and Schwab propose to directly learn
the parameters W of a linear model h : x 7! sign(hW ,�(x)i) in the exponentially large feature
space X . The learning problem is made tractable by paremeterizing W as a low-rank TT tensor (see
Equation (1)). Letting

GTT(r1, · · · , rp�1) =
d1

r1

d2

r2 · · ·
rp�2

dp�1

rp�1

dp

the hypothesis class considered in [56] is Hclassif
GTT(r1,··· ,rp�1)

. In addition to the approach of [56],
which was extended in [18] and [53], tensor train classifiers were also previously considered in [11,
65, 68]. Similarly, the hypothesis class Hcompletion

GTT(r1,··· ,rp�1)
corresponds to the low-rank TT completion

problem [21, 48, 61].

Other TN models Lastly, we mention that our formalism can be applied to any tensor models
having a low-rank structure, including CP, Tucker, tensor ring and PEPS. As mentioned previously,
for the case of the CP decomposition, the graph G of the TN structure is in fact a hyper-graph with
|V | = p nodes and NG = pdr parameters for a weight tensor in (Rd)⌦p with CP rank at most
r. Several TN learning models using these decomposition models have been proposed previously,
including [26, 50] for regression in the Tucker format, [12] for classification using the PEPS model,
[37, 7] for classification with the CP decomposition and [62, 72] for tensor completion with TR.

4 Pseudo-dimension and Generalization Bounds for Tensor Network Models

In this section, we give a general upper bound on the VC-dimension and pseudo-dimension of hypoth-
esis classes parameterized by arbitrary TN structures for regression, classification and completion.
We then discuss corollaries of this general upper bound for common TN models including low-rank
matrices and TT tensors, and compare them with existing results. Examples of particular upper
bounds that can be derived from our general result can be found in Table 1.

4.1 Upper Bounds on the VC-dimension, Pseudo-dimension and Generalization Gap

The following theorem states one of our main results which upper bounds the VC and pseudo-
dimension of models parameterized by arbitrary TN structures.
Theorem 2. Let G = (V,E, dim) be a tensor network structure and let Hregression

G , Hclassif
G , Hcompletion

G
be the corresponding hypothesis classes defined in Equations (4-6), where each model has NG

parameters (see Equation (3)).

Then, Pdim(Hregression
G ), dVC(Hclassif

G ) and Pdim(Hcompletion
G ) are all upper bounded by

2NG log(12|V |).
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These bounds naturally relate the capacity of the TN classes Hregression
G , Hclassif

G , Hcompletion
G to the

number of parameters NG of the underlying TN structure G. Following the analysis of [54] for
matrix completion and its extension to the Tucker decomposition model presented in [41], the proof
of this theorem leverages Warren’s theorem which bounds the number of sign patterns a system of
polynomial equations can take.
Theorem 3 ([66]). The number of sign patterns of n real polynomials, each of degree at most v, over
N variables is at most

�
4evn
N

�N for all n > N > 2 (where e is Euler’s number).

The proof of Theorem 2 fundamentally relies on Warren’s theorem to bound the number of sign
patterns that can be achieved by hypotheses in Hregression

G on a set of n input examples X 1, · · · ,Xn.
Indeed, the set of predictions yi = h(X i) for i 2 [n] realizable by hypotheses h 2 Hregression

G can be
seen as a set of n polynomials of degree |V | over NG variables. The variables of the polynomials
are the entries of the core tensors {T v}v2V . The upper bound on the number of sign patterns
obtained from Warren’s theorem can then be leveraged to obtain a bound on the pseudo-dimension
of the hypothesis class Hregression

G , which in turn implies the upper bounds on dVC(Hclassif
G ) and

Pdim(Hcompletion
G ). The complete proof of Theorem 2 can be found in Appendix A.1.1.

Note that Theorem 2 implies that for a fixed number of parameters NG, the VC-dimension grows
with the number of vertices in the TN, thus a higher-order tensorization increases the capacity as
measured by the VC dimension. This supports a common observation that higher-order tensorizations
of high-dimensional data generally result in a model with better learning capacity.

The bounds on the VC-dimension and pseudo-dimension presented in Theorem 2 can be leveraged to
derive bounds on the generalization error of the corresponding learning models; see for example [40].
In the following theorem, we derive such a generalization bound for classifiers parameterized by
arbitrary TN structures.
Theorem 4. Let S be a sample of size n drawn from a distribution D and let ` be a loss bounded by
1. Then, for any � > 0, with probability at least 1� � over the choice of S, for any h 2 Hclassif

G ,

R(h) < R̂S(h) + 2

s
2

n

✓
NG log

8en|V |
NG

+ log
4

�

◆
. (7)

The proof of this theorem, which can be found in Appendix A.1.2, relies on a symmetrization lemma
and a corollary of Hoeffding’s inequality. It follows from this theorem that, with high probability, the

generalization gap R(h)� R̂S(h) of any hypothesis h 2 Hclassif
G is in O

✓q
NG log (n)

n

◆
. This bound

naturally relates the sample complexity of the hypothesis class with its expressiveness. The notion
of richness of the hypothesis class appearing in this bound reflects the structure of the underlying
TN through the number of parameters NG. Using classical results (see, e.g., Theorem 10.6 in [40]),
similar generalization bounds for regression and classification with arbitrary TN structures can be
obtained from the bounds on the pseudo-dimension of Hregression

G and Hcompletion
G derived in Theorem 2.

To examine this upper bound in practice, we perform an experiment with low-rank TT classifiers on
synthetic data which can be found in Appendix B.

In the next subsection, we present corollaries of our results for particular TN structures, including
low-rank matrix completion and the TT classifiers introduced in [56].

4.2 Special cases

We now discuss special cases of Theorems 2 and 4 and compare them with existing results.

Low-rank matrices Let Gmat(r) = d1 r d2 and T (Gmat(r)) be the set of d1 ⇥ d2 matrices
of rank at most r. In this case, we have |V | = 2 and NGmat(r)

= r(d1 + d2), and Theorems 2 and 4
give the following result.

Corollary 5. Pdim(Hregression
Gmat(r)

), dVC(Hclassif
Gmat(r)

) and Pdim(Hcompletion
Gmat(r)

) are all upper bounded by
10r(d1 + d2). Moreover, with high probability over the choice of a sample S of size n drawn i.i.d.

7



from a distribution D, the generalization gap R(h) � R̂S(h) of any hypothesis h 2 Hclassif
Gmat(r)

is

in O
✓q

r(d1+d2) log(n)
n

◆
.

This bound improves on the one given in [67] where the VC-dimension of Hclassif
Gmat(r)

is bounded by
r(d1+d2) log(r(d1+d2)) (see Theorem 2 in [67]). For the matrix completion case, our upper bound
improves on the bound Pdim(Hcompletion

Gmat(r)
)  r(d1 + d2) log

16ed1
r derived in [54]. In Section 5, we

will derive lower bounds showing that the upper bounds on the VC/pseudo-dimension of Corollary 5
are tight up to the constant factor 10 for matrix completion, regression and classification.

Tensor train Let GTT(r) =
d1

r

d2

r · · · r

dp�1

r

dp
and T (GTT(r)) be the set of tensors

of TT rank at most r. In this case, we have |V | = p and NG = O
�
dpr2

�
where d = maxi di. For

this class of hypotheses, Theorems 2 and 4 give the following result.
Corollary 6. Pdim(Hregression

GTT(r) ), dVC(Hclassif
GTT(r)) and Pdim(Hcompletion

GTT(r) ) are all in O
�
dpr2 log(p)

�
,

where d = maxi di. Moreover, with high probability over the choice of a sample S of size n drawn
i.i.d. from a distribution D, the generalization gap R(h)� R̂S(h) of any hypothesis h 2 Hclassif

GTT(r) is

in O
✓q

dpr2 log(n)
n

◆
.

This result applies for the MPS model introduced in [56] and thus answers the open problem listed
as Question 13 in [13]. To the best of our knowledge, the VC-dimension of tensor train classifier
models has not been studied previously and our work is the first to address this open question. The
lower bounds we derive in Section 5 show that the upper bounds on the VC/pseudo-dimension of
Corollary 6 are tight up to a O (log(p)) factor.

Tucker We briefly compare our result with the ones proved in [41] for tensor completion and
in [50] for tensor regression using the Tucker decomposition. For a Tucker decomposition with
maximum rank r for tensors of size d1 ⇥ · · ·⇥ dp with maximal dimension d = maxi di, the number
of parameters is in O (rp + dpr) and the number of vertices in the TN structure is p + 1. In this
case, Theorems 2 and 4 show that the VC/pseudo-dimensions are in O ((rp + dpr) log(p)) and the

generalization gap is in O
✓q

(rp+dpr) log(n)
n

◆
with high probability for any classifer parameterized

by a low-rank Tucker tensor. It is worth observing that in contrast with the tensor train decomposition,
all bounds have an exponential dependency on the tensor order p. In [41], the authors give an upper
bound on the analogue of the growth function for tensor completion problems which is equivalent
to ours. In [50], the pseudo-dimension of regression functions whose weight parameters have low
Tucker rank is upper-bounded by O

�
(rp + drp) log(pdp�1)

�
, which is looser than our bound due to

the term dp�1 (though a similar argument to the one we use in the proof of Theorem 4 can be used to
tighten the bound given in [50]).

Tree tensor networks Lastly, we compare our result with the ones presented in [38] where the
authors study the complexity of learning with tree tensor networks using metric entropy and covering
numbers. The results presented in [38] only hold for TN structures whose underlying graph G is
a tree. Let G be a tree and ` be a loss function which is both bounded and Lipschitz. Under these
assumptions, it is shown in [38] that, for any h 2 Hregression

G , with high probability over the choice
of a sample S of size n drawn i.i.d. from a distribution D, the generalization gap R(h) � R̂(h) is
in Õ(

p
NG/n). Theorem 4 gives a similar upper bound in Õ(

p
NG/n) on the generalization gap

of low-rank tensor classifiers. However, our results hold for any TN structure G. Thus, in contrast
with our general upper bound (Theorem 2), the bounds from [38] cannot be applied to TN structures
containing cycles such as tensor ring and PEPS.

5 Lower Bounds

We now present lower bounds on the VC and pseudo-dimensions of standard TN models: rank-one,
CP, Tucker, TT and TR.
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Table 1: Summary of our results for common TN structures. Both lower and upper bounds hold for the
VC/pseudo-dimension of Hclassif

G , Hcompletion
G and Hregression

G for the corresponding TN structure G (see
Equations (4-6)). The upper bounds follow from applying our general upper bound (Theorem 2)
to each TN structure. The lower bounds are proved for each TN structure specifically. Each lower
bound is followed by the condition under which it holds in parenthesis (small font). Note that the two
bounds for TT and TR hold for both TN structures.

rank one CP Tucker TT / TR

Decomposition d d
· · ·

d d d d
· · ·

d d

r
r r

r

d d
· · ·

d d

r
r r

r d

r

d

r
···

r

d

r

d
/

d

r

d

r
···

r r

d

r

d

Lower Bound (d� 1)p rd (r  dp�1) rp (r  d) r2d (r  db
p�1
2 c, p � 3)

(condition)
p(r2d�1)

3 (r = d, p/3 2 N)

Upper bound 2dp log(12p) 2prd log(12p) 2(rp+prd) log(24p) 2pr2d log(12p)

Theorem 7. The VC-dimension and pseudo-dimension of the classification, regression and comple-
tion hypothesis classes defined in Equations (4-6) for the rank-one, CP, Tucker, TT and TR tensor
network structures satisfy the lower bounds presented in Table 1.

These lower bounds show that the general upper bound of Theorem 2 is tight up to a O (log(p))
factor for rank-one, TT and TR tensors and is tight up to a constant for low-rank matrices.

The proof of this theorem can be found in Appendix A.2. These lower bounds show that our general
upper bound is nearly optimal (up to a log factor in p) for rank-one, TT and TR tensors. Indeed, for
rank-one tensors we have (d� 1)p  Crank�one  2dp log(12p) and for TT and TR tensors of rank
r = d whose order p is a multiple of 3 we have p(r2d� 1)/3  CTT/TR

r  pr2d · 2 log(12p), where
Crank�one (resp. CTT/TR

r ) denotes any of the VC/pseudo-dimension of the regression, classification
and completion hypothesis classe associated with rank-one tensors (resp. rank r TT and TR tensors).
In addition, the lower bound for the CP case shows that our general upper bounds are tight up to a
constant for matrices. Indeed, for p = 2 and r  d the bounds for the CP case give rd  Cmatrix

r 
20rd where Cmatrix

r denotes the VC/pseudo-dimension of the hypothesis classes associated with
d⇥ d matrices of rank at most r.

6 Conclusion

We derived a general upper bound on the VC and pseudo-dimension of a large class of tensor models
parameterized by arbitrary tensor network structures for classification, regression and completion.
We showed that this general bound can be applied to obtain bounds on the complexity of relevant
machine learning models such as matrix and tensor completion, trace regression and TT-based linear
classifiers. In particular, our result leads to an improved upper bound on the VC-dimension of low-
rank matrices for completion tasks. As a corollary of our results, we answer the open question listed
in [13] on the VC-dimension of the MPS classification model introduced in [56]. To demonstrate the
tightness of our general upper bound, we derived a series of lower bounds for specific TN structures,
notably showing that our bound is tight up to a constant for low-rank matrix models for completion,
regression and classification.

Future directions include deriving tighter upper bounds and/or lower bounds for the specific TN
structures. This includes investigating whether our general upper bound can be tightened by removing
the log factor in the number of vertices of the TN structure, deriving a stronger lower bound for
CP (we conjecture our lower bound can be improved by a factor p for CP), and loosening the condition
under which our stronger lower bound holds for TT and TR (for TR, we conjecture that a lower bound
of ⌦̃(pr2d) holds for any p � 3 and r  dk for some value of k > 1). Studying other complexity
measures (e.g. Rademacher complexity) and extending recent data-dependant generalization bounds
for overparameterized deep neural networks, such as the ones used in [4, 34], to TN learning models is
worth pursuing. Finally, building upon the connection between the depth of convolutional arithmetic
circuits and tensor network structures introduced in [14], it is interesting to connect our result on the
VC-dimension of tensor networks to the expressiveness and generalization ability of neural networks.
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