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Abstract. We introduce SEA-RAFT, a more simple, efficient, and ac-
curate RAFT for optical flow. Compared with RAFT, SEA-RAFT is
trained with a new loss (mixture of Laplace). It directly regresses an
initial flow for faster convergence in iterative refinements and intro-
duces rigid-motion pre-training to improve generalization. SEA-RAFT
achieves state-of-the-art accuracy on the Spring benchmark with a 3.69
endpoint-error (EPE) and a 0.36 1-pixel outlier rate (1px), representing
22.9% and 17.8% error reduction from best published results. In addi-
tion, SEA-RAFT obtains the best cross-dataset generalization on KITTI
and Spring. With its high efficiency, SEA-RAFT operates at least 2.3×
faster than existing methods while maintaining competitive performance.
The code is publicly available at https://github.com/princeton-vl/SEA-
RAFT.

1 Introduction

Optical flow is a fundamental task in low-level vision and aims to estimate per-
pixel 2D motion between video frames. It is useful for various downstream tasks
including action recognition [39, 49, 67], video in-painting [10, 22, 60], frame in-
terpolation [15,27,61], 3D reconstruction and synthesis [33,69].

Although traditionally formulated as an optimization problem [5, 13, 62], al-
most all recent methods are based on deep learning [6,8,11,14,24,29,42–45,48,50,
54–57,63,66,68]. In particular, many state-of-the-art methods [14,29,43,44,50,66]
have adopted architectures based on RAFT [50], which uses a recurrent network
to iteratively refine a flow field.

In this paper, we introduce SEA-RAFT, a new variant of RAFT that is
more efficient and accurate. When compared against all existing approaches,
SEA-RAFT has the best accuracy-efficiency Pareto frontier (Fig. 1):

– Accuracy : On Spring [35], SEA-RAFT achieves a new state of the art, outper-
forming the next best by a large margin: 18% error reduction on 1px-outlier
rate (3.686 vs. 4.482) and 24% error reduction on endpoint-error (0.363 vs.
0.471). On Sintel [3] and KITTI [36], it outperforms all other methods that
have similar computational costs.

– Efficiency : On each benchmark tested, SEA-RAFT runs at least 2.3× faster
than existing methods that have comparable accuracy. Our smallest model,
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Fig. 1: Zero-shot performance of SEA-RAFT and existing methods on the Spring [35]
training split. Latency is measured on an RTX3090 with a batch size of 1 and input
resolution 540 × 960. SEA-RAFT has an accuracy close to the best one achieved by
MS-RAFT+ [19] but is 11× smaller and 24× faster.

which still outperforms all other methods on Spring, can run at 21fps when
processing 1080p images on an RTX3090, 3× faster than the original RAFT.

We achieve this by introducing a combination of improvements over the orig-
inal RAFT:

– Mixture of Laplace Loss: Instead of the standard L1 loss, we train the net-
work to predict parameters of a mixture of Laplace distributions to maximize
the log-likelihood of the ground truth flow. As we will demonstrate, this new
loss reduces overfitting to ambiguous cases and improves generalization.

– Directly Regressed Initial Flow: Instead of initializing the flow field to zero
before iterative refinement, we directly predict the initial flow by reusing the
existing context encoder and feeding it the stacked input frames. This simple
change introduces minimal overhead but is surprisingly effective in reducing
the number of iterations and improving efficiency.

– Rigid-Flow Pre-Training: We find that pre-training on TartanAir [52], which
can significantly improve generalization, despite the limited diversity of flow,
which is induced purely by camera motion in a static scene.

These improvements are novel in the context of RAFT-style methods for
optical flow. Moreover, they are orthogonal to the improvements proposed in
existing RAFT-style methods, which focus on replacing certain blocks with newer
designs, such as replacing convolutional blocks with transformers.

Besides the main improvements above, SEA-RAFT also incorporates archi-
tectural changes that greatly simplify the original RAFT. In particular, we find
that certain custom designs of the original RAFT are unnecessary and can be
replaced with standard off-the-shelf modules. For example, the original feature
encoder and context encoder were custom-designed and must use different nor-
malization layers for stable training; we replaced each with a standard ResNet.
In addition, we replace the original convolutional GRU with a simple RNN con-
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sisting entirely of ConvNext blocks. Such simplifications make it easy for SEA-
RAFT to incorporate new neural building blocks and scale to larger datasets.

We perform extensive experiments to evaluate SEA-RAFT on standard bench-
marks including Spring, Sintel, and KITTI. We also validate the effectiveness of
our improvements through ablation studies.

2 Related Works

Estimating Optical Flow Classical approaches treated optical flow as an opti-
mization problem that maximizes visual similarity between corresponding pixels,
with strong regularization. [5, 13,62]. Current methods [6, 9, 14,16–19,24,30,31,
42–45,48,50,54–57,65,66,68] are mostly based on deep learning. FlowNets [9,17]
regarded optical flow as a dense regression problem and used stacked convolu-
tion blocks for prediction. DCNet [58] and PWC-Net [45] introduced 4D cost-
volume to explicitly model pixel correspondence. RAFT [50] further combined
multi-scale 4D cost-volume with recurrent iterative refinements, achieving large
improvements and spawning many follow-ups [14,19,30,31,43,44,48,66,68].

Our method is a new variant of RAFT [50] with several improvements includ-
ing a new loss function, direct regression of initial flow, rigid-flow pre-training,
and architectural simplifications. All of these improvements are new compared
to existing RAFT variants. In particular, our direct regression of initial flow is
new compared to existing efficient RAFT variants [6,11,37], which mainly focus
on efficient implementations of RAFT modules. This direct regression is a simple
change with minimal overhead, but substantially reduces the number of RAFT
iterations needed.
Data for Optical Flow FlyingChairs and FlyingThings3D [9,34] are commonly
used datasets for optical flow. They provide a large amount of synthetic data but
have limited realism. Sintel [3], VIPER [41], Infinigen [40], and Spring [35] are
more realistic, using open-source 3D animations, games or procedurally gener-
ated scenes. Besides synthetic data, Middlebury, KITTI, and HD1K [1,12,23,36]
provide annotations for real-world image pairs. These datasets are limited in both
quantity and diversity due to the difficulty of accurately annotating optical flow
in the real world. To leverage more data, several methods [8,42,54,55] pre-train
their models on different tasks. MatchFlow [8] pre-trains on geometric image
matching (GIM) using MegaDepth [26]. Croco-Flow [54, 55], DDVM [42], and
Flowformer++ [43] pre-train on unlabeled data. We pre-train SEA-RAFT on
rigid flow using TartanAir [52]. Though TartanAir [52] has been used in other
methods such as DDVM [42] and CroCo-Flow [54,55], our adoption of rigid-flow
pre-training is new in the context of RAFT-style methods.
Predicting Probability Distributions Predicting probability distributions is
a common practice in computer vision [2,4,25,32,47,51,53,64]. In tasks closely
related to optical flow such as keypoint matching [4,47,51,64], the variance of the
probability distribution reflects uncertainty of predictions and therefore is useful
for many applications. For example, LoFTR [47] filters out uncertain matching
pairs. Aspanformer [4] adjusts the look-up radius based on uncertainty.
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Fig. 2: Compared with RAFT [50], SEA-RAFT introduces (1) rigid-flow pre-training,
(2) mixture of Laplace loss, and (3) direct regression of initial flow.

To handle the ambiguity caused by heavy occlusion, SEA-RAFT predicts a
mixture of Laplace (MoL) distribution. Although MoL has been used in keypoint
matching methods such as PDC-Net+ [51], our use of MoL is new in the context
of RAFT-style methods. In addition, our formulation is different in that we
require one mixture component to have a constant variance, making it equivalent
to the L1 loss that aligns better with the optical flow evaluation metrics. This
difference is crucial for achieving competitive performance in optical flow, where
every pixel needs accurate correspondence, unlike keypoint matching, where a
subset of reliable matches suffices.

3 Method

In this section, we first describe the iterative refinement in RAFT and then
introduce the improvements that lead to SEA-RAFT.

3.1 Iterative refinement

Given two adjacent RGB frames, RAFT predicts a field of pixel-wise 2D vectors
through iterative refinement that consists of two parts: (1) feature and context
encoders, which transform images into lower-resolution dense features, and (2)
an RNN unit, which iteratively refines the predictions.

Given two images I1, I2 ∈ RH×W×3, the feature encoder F takes I1, I2 as
inputs separately and outputs a lower-resolution feature F (I1), F (I2) ∈ Rh×w×D.
The context encoder C takes source image I1 as input and outputs a context
feature C(I1) ∈ Rh×w×D. A multi-scale 4D correlation volume {Vk} is then built
with the features from feature encoder F :

Vk = F (I1) ◦ AvgPool(F (I2), 2
k)⊤ ∈ Rh×w× h

2k
× w

2k ,

where ◦ represents the correlation operator, which computes similarities (as dot
products of feature vectors) between all pairs of pixels across two feature maps.
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Several works [18, 19] have explored the optimal choices of the number of
levels in the cost volume(k) and the feature resolution (h,w). In SEA-RAFT,
we simply follow the original setting in RAFT [50]: (h,w) = 1

8 (H,W ), k = 4.
RAFT iteratively refines a flow prediction µ. Initially, µ is set to be all zeros.

Each refinement step uses the current flow prediction µ to fetch a DM -dim
motion feature M from the multi-scale correlation volume {Vk} with a look-up
radius r:

M = MotionEncoder(LookUp({Vk}, µ, r)) ∈ Rh×w×DM ,

where the Lookup operator returns a motion feature vector for each pixel in I1,
consisting of similarities between the pixel in I1 and its current correspondence’s
neighboring pixels in I2 within the radius r. The motion feature vector is further
transformed by a motion encoder.

Existing works [4, 11, 21] have explored dynamic radius and look-up when
obtaining the motion features from {Vk}. For simplicity of design, SEA-RAFT
follows the original RAFT and sets the look-up radius r = 4 to a fixed constant.
The motion feature M is fed into the RNN cell along with hidden state h and
context feature C(I1). From the new hidden state h′, the residual flow ∆µ is
regressed by a 2-layer FlowHead:

h′ = RNN(h,M,C(I1))

∆µ = FlowHead(h′)

Methods using RAFT-Style iterative refinement [14, 50] usually need many
iterations: 12 in training and as many as 32 in inference. As a result, RNN-based
iterative refinement is a significant bottleneck in latency. Though there have been
attempts [6, 11] to reduce the number of iterations, the performance drastically
drops with fewer iterations. In contrast, SEA-RAFT only needs 4 iterations in
training and up to 12 iterations in inference to achieve competitive performance.

3.2 Mixture-of-Laplace Loss

Most prior works are supervised using an endpoint-error loss on all pixels. How-
ever, optical flow training data often contains ambiguous, unpredictable samples,
which can dominate this loss empirically.
Ambiguous Cases Ambiguous cases of optical flow can arise with heavy occlu-
sion Fig. 3. While in many cases the motion of occluded pixels can be predicted,
sometimes the ambiguity can be too large to predict a single outcome. We exam-
ined 10 samples with the highest endpoint-error in the training and validation
sets of FlyingChairs [9] and found that ambiguous cases dominate the error.
Review of Probabilistic Regression Prior works for image-matching have
proposed probabilistic losses to enable their model to express aleatoric or epis-
temic uncertainty [4,47,51,51,53,55,64]. These approaches regress the parameters
of the probabilistic model and maximize the log-likelihood of the ground truth
during training.
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Fig. 3: Ambiguous cases can occur frequently in training data where flow is unpre-
dictable due to occlusion. Such cases can dominate the L1 loss (shown as an error
map) used by current methods [50, 56]. Our new training loss allows the model to ac-
count for such uncertainty.

Given an image pair {I1, I2} and the flow ground truth µgt, the training loss is

Lprob = − log pθ(µ = µgt|I1, I2)

where the probability density function pθ is parameterized by the network. Prior
work has formulated pθ as a Gaussian or a Laplace distribution with a predicted
mean and variance. For example, we can formulate a naive version of proba-
bilistic regression by assuming: (1) pθ is Laplace with mean µ ∈ RH×W×2 and
scale b ∈ RH×W×1 predicted by the network, (2) the flow distribution is pixel-
wisely independent, and (3) the x-direction flow and the y-direction flow are
independent but share the same scale parameter b:

LLap =
1

HW

∑
u

∑
v

(log 2b(u, v) +
∥µgt(u, v)− µ(u, v)∥1

2b(u, v)
) (1)

where u, v are indices to the pixels. The Laplace loss can be regarded as an
extended version of L1 loss with an extra penalty term b. During inference, µ
represents the flow prediction, and the scale factor b provides an estimation of
uncertainty. However, we find this naive probabilistic regression does not work
well on optical flow, which has also been pointed out by prior work [64].
Mixture of Laplace One reason that naive probabilistic regression performs
poorly is numerical instability as the loss contains a log term. To address this
issue, we regress b(u, v) directly in log-space. This approach makes training more
stable compared to previous approaches which clamp b to [ϵ,∞), where ϵ is a
small positive number.

Another reason that naive probabilistic regression performs poorly is that it
deviates from the standard endpoint-error metric, which only cares about the
L1 difference, but not the uncertainty estimation. Thus, we propose to use a
mixture of two Laplace distributions: one for ordinary cases, and the other for
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Fig. 4: Visualization on Spring [35] test set.

ambiguous cases, with mixing coefficient α ∈ [0, 1]:

MixLap(x;α, β1, β2, µ) = α · e
− |x−µ|

eβ1

2eβ1
+ (1− α) · e

− |x−µ|
eβ2

2eβ2

Intuitively, at each pixel, we want the first component of the mixture to be
aligned with the endpoint-error metric, and the second component to account
for ambiguous cases. To explicitly enforce this, we fix β1 = 0, such that the
network is encouraged to optimize for the L1 loss when possible. This leads to
the following Mixture-of-Laplace (MoL) loss:

LMoL = − 1

2HW

∑
u

∑
v

∑
d∈{x,y}

log [MixLap(µgt(u, v)d;α(u, v), 0, β2(u, v), µ(u, v)d)] (2)

where d indexes the axe of the flow vector (the x direction or y direction).
The free parameters α, β2, µ of LMoL are predicted by the network. Intu-

itively, a higher α means the flow prediction of this pixel is more “ordinary”
instead of “ambiguous”. Mathematically, a higher α makes LmoL behave like an
L1 loss. In Sec. 4.3, we then show that this property leads to better accuracy.

Note that though the mixture model has been used in keypoint matching [4,
47, 51], its application to optical flow requires a different formulation because
the goal is substantially different. In keypoint matching, the goal is to identify
a subset of reliable matches for downstream applications such as camera pose
estimation. Predicting uncertainty serves to filter out unreliable matches, and
there is no explicit penalty for predicting few correspondences. As a result, it is
not essential for them to align a mixing component to L1 loss. In optical flow,
we are evaluated on the flow prediction for every pixel.

Implementation Details We set an upper bound for β to 10 in the loss to make
the training more stable. We also re-predict α and β every update iteration. We
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Fig. 5: Visualization on Sintel [3], KITTI [36], and Middlebury [1].

can similarly define the probabilistic sequence loss as:

Lall =

N∑
i=1

γN−iLi
MoL (3)

where Li
mix denotes the probabilistic loss in iteration i, N denotes the number

of iterations, and γ < 1 exponentially downweights the early iterations. We
empirically observe that our method significantly reduces the number of update
iterations needed in inference. In fact, N = 4 is sufficient for SEA-RAFT to take
first place on the Spring [35] benchmark. We provide detailed ablations in Tab. 4.

3.3 Direct Regression of Initial Flow

RAFT-style iterative refinements [8,14,31,37,48,66] typically zero-initialize the
flow field. However, zero-initialization may deviate substantially from the ground
truth, thus needing many iterations. In SEA-RAFT, we borrow an idea from
the FlowNet family of methods [9, 17] to predict an initial estimate of optical
flow from the context encoder, given both frames as input. We also predict an
associated MoL (see Sec. 3.2).

This simple modification also significantly improves the convergence speed of
the iterative refinement framework, allowing one to use fewer iterations during
inference. Detailed ablations are shown in Tab. 4.

3.4 Large-Scale Rigid-Flow Pre-Training

Most prior works train on a small number of datasets with limited size, diversity
and realism [9,34]. To improve generationalization, we pre-train SEA-RAFT on
TartanAir [52], which provides optical flow annotations between a pair of (non-
rectified) stereo cameras. This type of motion field is a special case of optical
flow due to viewpoint change in a rigid static scene. Despite its limited motion
diversity, it enables SEA-RAFT to train on data with higher realism and scene
diversity, leading to better generalization.
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3.5 Simplifications

We also provide a few architecture changes that greatly simplify the original
RAFT [50]. First, we adopt truncated, ImageNet [7] pre-trained ResNets for the
backbones. We also substitute the ConvGRU in RAFT with two ConvNeXt [28]
blocks, which we show provides better efficiency and training stability. The de-
tailed ablations of these changes are shown in Tab. 4.

4 Experiments

We evaluate SEA-RAFT on Spring [35], KITTI [12], and Sintel [3]. Follow-
ing previous works, we also incorporate FlyingChairs [9], FlyingThings [34], and
HD1K [23] into our training pipeline. To verify the effectiveness of TartanAir [52]
rigid-flow pre-training, we provide the performance gain from it in different set-
tings.

Model Details SEA-RAFT is implemented in PyTorch [38]. There are three
different types of SEA-RAFT and we denote them as SEA-RAFT(S/M/L). The
only differences among them are the backbone choices and the number of itera-
tions in inference. Specifically, SEA-RAFT(S) uses the first 6 layers of ResNet-18
as the feature/context encoder, and SEA-RAFT(M) uses the first 13 layers of
ResNet-34. The pre-trained weights we use are downloaded from torchvision.
SEA-RAFT(S) and SEA-RAFT(M) use the same architecture for the recurrent
units and keep the number of iterations N = 4 in both training and inference.
SEA-RAFT(L) can be regarded as an extension based on SEA-RAFT(M): they
share the same weights, but SEA-RAFT(L) uses N = 12 iterations in inference.
Following RAFT [50], we stop the gradient for µ when computing µ′ = µ+∆µ
and only propagate the gradient for residual flow ∆µ.

Training Details As mentioned in Sec. 3.4, We pre-train SEA-RAFT on Tar-
tanAir [52] for 300k steps with a batch size of 32, input resolution 480 × 640
and learning rate 4× 10−4. Similar to RAFT [50], MaskFlowNet [65] and PWC-
Net+ [45], we then train our models on FlyingChairs [9] for 100k steps with a
batch size of 16, input resolution 368×496, learning rate 2.5×10−4 and FlyingTh-
ings3D [34] for 120k steps with a batch size of 32, input resolution 432 × 960,
learning rate 4 × 10−4 (denoted as "C+T" following previous works). For the
submissions on Sintel [3] benchmark, we fine-tune the model from "C+T" on a
mixture of Sintel [3], FlyingThings3D clean pass [34], KITTI [12] and HD1K [23]
for 300k steps with a batch size of 32, input resolution 432×960 and learning rate
4×10−4 (denoted as "C+T+S+K+H" following previous works). Different from
previous methods, we reduce the percentage of Sintel [3] in the mixture dataset,
which is usually more than 70% in previous papers. Details will be mentioned
in the supplementary material. For KITTI [12] submissions, we fine-tune our
models from "C+T+S+K+H" on the KITTI training set for extra 10k steps
with a batch size of 16, input resolution 432 × 960 and learning rate 10−4. For
Spring [35] submissions, we fine-tune our models from "C+T+S+K+H" on the
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Extra Data Method
Spring (train) Spring (test)

Fine-tune 1px↓ EPE↓ 1px↓ EPE↓ Fl↓ WAUC↑

PWC-Net [45] ✗ - - 82.27∗ 2.288∗ 4.889∗ 45.670∗

FlowNet2 [17] ✗ - - 6.710∗ 1.040∗ 2.823∗ 90.907∗

RAFT [50] ✗ 4.788 0.448 6.790∗ 1.476∗ 3.198∗ 90.920∗

GMA [20] ✗ 4.763 0.443 7.074∗ 0.914∗ 3.079∗ 90.722∗

RPKNet [37] ✗ 4.472 0.416 4.809 0.657 1.756 92.638
DIP [68] ✗ 4.273 0.463 - - - -
SKFlow [48] ✗ 4.521 0.408 - - - -
GMFlow [56] ✗ 29.49 0.930 10.355∗ 0.945∗ 2.952∗ 82.337∗

GMFlow+ [57] ✗ 4.292 0.433 - - - -
Flowformer [14] ✗ 4.508 0.470 6.510∗ 0.723∗ 2.384∗ 91.679∗

CRAFT [44] ✗ 4.803 0.448 - - - -
SEA-RAFT(S) ✗ 4.077 0.415 - - - -
SEA-RAFT(M) ✗ 4.060 0.406 - - - -

MegaDepth [26] MatchFlow(G) [8] ✗ 4.504 0.407 - - - -
YouTube-VOS [59] Flowformer++ [43] ✗ 4.482 0.447 - - - -
VIPER [41] MS-RAFT+ [19] ✗ 3.577 0.397 5.724∗ 0.643∗ 2.189∗ 92.888∗

TartanAir [52] SEA-RAFT(S) ✗ 4.161 0.410 - - - -
TartanAir [52] SEA-RAFT(M) ✗ 3.888 0.406 - - - -

CroCo-Pretrain CroCoFlow [55] ✓ - - 4.565 0.498 1.508 93.660
CroCo-Pretrain Win-Win [24] ✓ - - 5.371 0.475 1.621 92.270
TartanAir [52] SEA-RAFT(S) ✓ - - 3.904 0.377 1.389 94.182
TartanAir [52] SEA-RAFT(M) ✓ - - 3.686 0.363 1.347 94.534

Table 1: SEA-RAFT outperforms existing methods on Spring [35] in different settings.
∗ denotes the results submitted by Spring [35] team. By default, all methods have
undergone "C+T+S+K+H" training. We list the data used by each method beyond
default in the "Extra Data" column. On Spring(test), even our smallest model SEA-
RAFT(S) surpasses existing methods by a significant margin. Without fine-tuning on
Spring(train), SEA-RAFT outperforms all other methods that do not use extra data.

Spring training set for extra 120k steps with a batch size of 32, input resolution
540× 960 and learning rate 4× 10−4.
Metrics We adopt the widely used metrics in this study: endpoint-error (EPE),
1-pixel outlier rate (1px), Fl-score and WAUC error. Definitions can be found
in [12,35,41].

4.1 Results on Spring

Zero-Shot Evaluation We compare several representative existing methods
with SEA-RAFT using the checkpoints and configurations for Sintel [3] sub-
mission on the Spring [35] training split. For fair comparisons, we remove the
test-time optimizations such as tiling in this setting, which will significantly slow
down the inference speed. All experiments follow the same downsample-upsample
protocol: We first downsample the 1080p images by 2×, do inference, and then
bi-linearly upsample the flow field back to 1080p, which ensures the input res-
olution in inference is similar to their training resolution in "C+T+S+K+H".
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Extra Data Method
Sintel KITTI

Clean↓ Final↓ Fl-epe↓ Fl-all↓

PWC-Net [45] 2.55 3.93 10.4 33.7
RAFT [50] 1.43 2.71 5.04 17.4
GMA [20] 1.30 2.74 4.69 17.1

SKFlow [48] 1.22 2.46 4.27 15.5
FlowFormer [14] 1.01 2.40 4.09† 14.7†

DIP [68] 1.30 2.82 4.29 13.7
EMD-L [6] 0.88 2.55 4.12 13.5

CRAFT [44] 1.27 2.79 4.88 17.5
RPKNet [37] 1.12 2.45 - 13.0

GMFlowNet [66] 1.14 2.71 4.24 15.4
CCMR+ [18] 0.98 2.36 - 12.9

SEA-RAFT(M) 1.21 4.04 4.29 14.2
SEA-RAFT(L) 1.19 4.11 3.62 12.9

Youtube-VOS [59] Flowformer++ [43] 0.90 2.30 3.93† 14.2†

DDVM-Pretrain DDVM [42] 1.24 2.00 2.19 7.58
DDVM-Pretrain RAFT [50] 1.27 2.28 2.71 9.16

GMFlow [56] 1.08 2.48 11.2∗ 28.7∗

TartanAir [52] GMFlow [56] - - 8.70 (-22%)∗ 24.4 (-15%)∗

SEA-RAFT(S) 1.27 4.32 4.61 15.8
TartanAir SEA-RAFT(S) 1.27 3.74 (-13%) 4.43 15.1
K+H SEA-RAFT(S) 1.32 2.95 (-32%) - -
TartanAir+K+H SEA-RAFT(S) 1.30 2.79 (-35%) - -

Table 2: SEA-RAFT achieves the best zero-shot performance on KITTI(train). By
default, all methods are trained with "C+T". We list the extra data in the first column.
† denotes the method uses tiling in inference. ∗ denotes the GMFlow [56] ablation with
200k training steps. We use K and H to denote KITTI [36] and HD1K [23] respectively.

As shown in Tab. 1, SEA-RAFT achieves the best results among representative
existing methods without using extra data, which demonstrates the superiority
of our mixture loss and architecture design. When allowed to use extra data,
SEA-RAFT falls slightly behind MS-RAFT+ [19] but is 24× faster and 11×
smaller as mentioned in Fig. 1.

Fine-Tuning Test SEA-RAFT ranks 1st on the public test benchmark: SEA-
RAFT(M) outperforms all other methods by at least 22.9% on average EPE(endpoint-
error) and 17.8% on 1px (1-pixel outlier rate), and SEA-RAFT(S) outperforms
other methods by at least 20.0% on EPE and 12.8% on 1px. Besides the strong
performance, our method is notably fast. SEA-RAFT(S) is at least 2.3× faster
than existing methods which can achieve similar performance. As we still follow
the downsample-upsample protocol without using any test-time optimizations in
submissions, the inference latency directly reflects our speed in handling 1080p
images, which means over 20fps on a single RTX3090.
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Extra Data Method
Sintel KITTI Inference Cost

Clean↓ Final↓ Fl-all↓ Fl-bg↓ Fl-fg↓ #MACs Latency

PWC-Net+ [46] 3.45 4.60 7.72 7.69 7.88 101.3G 23.82ms
RAFT [50] 1.61⋆ 2.86⋆ 5.10 4.74 6.87 938.2G 140.7ms
GMA [20] 1.39⋆ 2.47⋆ 5.15 - - 1352G 183.3ms
DIP [68] 1.44⋆ 2.83⋆ 4.21 3.86 5.96 3068G 498.9ms
GMFlowNet [66] 1.39 2.65 4.79 4.39 6.84 1094G 244.3ms
GMFlow [56] 1.74 2.90 9.32 9.67 7.57 602.6G 138.5ms
CRAFT [44] 1.45⋆ 2.42⋆ 4.79 4.58 5.85 2274G 483.4ms
FlowFormer [14] 1.20 2.12 4.68† 4.37† 6.18† 1715G 335.6ms
SKFlow [48] 1.28⋆ 2.23⋆ 4.85 4.55 6.39 1453G 331.9ms
GMFlow+ [57] 1.03 2.37 4.49 4.27 5.60 1177G 249.6ms
EMD-L [6] 1.32 2.51 4.49 4.16 6.15 1755G OOM
RPKNet [37] 1.31 2.65 4.64 4.63 4.69 137.0G 183.3ms

VIPER [41] CCMR+ [18] 1.07 2.10 3.86 3.39 6.21 12653G OOM
MegaDepth [26] MatchFlow(G) [8] 1.16⋆ 2.37⋆ 4.63† 4.33† 6.11† 1669G 290.6ms
YouTube-VOS [59] Flowformer++ [43] 1.07 1.94 4.52† - - 1713G 373.4ms
CroCo-Pretrain CroCoFlow [55] 1.09† 2.44† 3.64† 3.18† 5.94† 57343G† 6422ms†

DDVM-Pretrain DDVM [42] 1.75† 2.48† 3.26† 2.90† 5.05† - -
TartanAir [52] SEA-RAFT(M) 1.44 2.86 4.64 4.47 5.49 486.9G 70.96ms
TartanAir [52] SEA-RAFT(L) 1.31 2.60 4.30 4.08 5.37 655.1G 108.0ms

Table 3: Compared with other methods that achieve competitive performance, SEA-
RAFT is at least 1.8× faster on Sintel(test) [3] and 4.6× faster on KITTI(test) [36]. All
methods have undergone "C+T+S+K+H" training by default and we list the extra
data each method uses in the first column. We measure latency on an RTX3090 with
a batch size of 1 and input resolution 540 × 960. ⋆ denotes the method uses warm-
start [50] strategy. † denotes that the corresponding methods use tiling-based test-time
optimizations.

4.2 Results on Sintel and KITTI

Zero-Shot Evaluation Following previous works, we evaluate the zero-shot
performance of SEA-RAFT given training schedule "C+T" on Sintel(train) [3]
and KITTI(train) [36]. The results are provided in Tab. 2. On KITTI(train),
SEA-RAFT outperforms all prior works by a large margin, improving Fl-epe
from 4.09 to 3.62 and Fl-all from 13.7 to 12.9. On Sintel(train), SEA-RAFT
achieves competitive results on the clean pass but, for reasons unclear to us,
underperforms existing methods on the final pass. Note that although this “C+T”
zero-shot setting is standard, it is of limited relevance to real-world applications,
which do not need to restrict the training data to only C+T. Indeed, we show
that by adding a small amount of high-quality real-world data (KITTI + HD1K,
about 1.2k image pairs compared with 80k image pairs in FlyingThings3D [34]),
the performance gap on the Sintel(train) final pass can be remarkably reduced.
Fine-Tuning Test Results are shown in Tab. 3. Compared with RAFT [50],
SEA-RAFT achieves 19.9% improvements on the Sintel clean pass, 4.2% im-
provements on the Sintel final pass, and 15.7% improvements on KITTI Fl-all
score. SEA-RAFT is also competitive among all existing methods in terms of
performance-speed trade-off: It is the only method that can achieve results bet-
ter than RAFT [50] with latency around 70ms. On Sintel(test), methods with
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Experiment Init.
Pre-Training RNN Loss Design

#MACs EPE
Img [7] Tar [52] GRU #blocks Type Params

SEA-RAFT (w/o Tar.) Direct Reg. ✓ - - 2 Mixture-of-Laplace β1 = 0, β2 ∈ [0, 10] 284.7G 0.187

SEA-RAFT (w/ Tar.) Direct Reg. ✓ ✓ - 2 Mixture-of-Laplace β1 = 0, β2 ∈ [0, 10] 284.7G 0.179

w/o Img. Direct Reg. - - - 2 Mixture-of-Laplace β1 = 0, β2 ∈ [0, 10] 284.7G 0.194

w/o Direct Reg. Zero Init.
✓ - - 2 Mixture-of-Laplace β1 = 0, β2 ∈ [0, 10] 277.3G 0.201

Warm Start 0.202

RAFT GRU Direct Reg. ✓ - ✓ - Mixture-of-Laplace β1 = 0, β2 ∈ [0, 10] 297.9G 0.189

More ConvNeXt Blocks Direct Reg. ✓ - - 4 Mixture-of-Laplace β1 = 0, β2 ∈ [0, 10] 314.7G 0.189

Naive Laplace Direct Reg. ✓ - - 2 Naive Single Laplace β ∈ [−10, 10] 284.7G 0.217
Naive Mixture-of-Laplace β1, β2 ∈ [−10, 10] 0.248

L1 Direct Reg. ✓ - - 2 L1 ✗ 284.7G 0.206

Gaussian Direct Reg. ✓ - - 2 Mixture-of-Gaussian σ1 = 1, σ2 = eβ2 , β2 ∈ [0, 10] 284.7G 0.210

Table 4: We ablate pretraining, direct regression, RNN design, and loss designs on
Spring [35] subval. The effect of changes can be identified through comparisons with
the first row. See Sec. 4.3 for details.

Source frame Ground truth

Uncertainty Flow prediction

Iter0 prediction

Iter4 prediction

Fig. 6: More iterations produce lower variance in the Mixture of Laplace, indicating
that the model becomes more confident after each iteration.

similar performance are at least 1.8× slower than us. On KITTI(test), methods
with similar performance are at least 4.6× slower than us.

4.3 Ablations and Analysis

Ablation experiments are conducted on the Spring [35] dataset based on SEA-
RAFT(S). We separate a subval set (sequence 0045 and 0047) from the original
training set, train our model on the remaining training data and evaluate the
performance on subval. The model is trained with a batch size of 32, input resolu-
tion 540×960, and tested following "downsample-upsample" protocol mentioned
in Sec. 4.1. We describe the details of ablation studies in the following and show
the results in Tab. 4:
Pretraining We test the performance of TartanAir [52] rigid-flow pre-training
on different datasets(see Tabs. 1, 2 and 4 for details). Though TartanAir has
been incorporated in several existing methods [42, 55], we clearly demonstrate
its usefulness by ablations on SEA-RAFT and non-RAFT-style GMFlow [56].
Without TartanAir, SEA-RAFT already provides strong performance, and the
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Fig. 7: Iterative refinements are not
hardware-friendly: The latency almost
linearly increases with the number of it-
erations.

Method #Iters
Latency (ms)

Total Iter.

RAFT [50] 24 (K) 111 90.3 (82%)
32 (S) 141 120 (86%)

SEA-RAFT
4 (S) 47.5 18.5 (39%)
4 (M) 70.9 18.5 (26%)
12 (L) 108 55.5 (51%)

Table 5: Compared with RAFT, SEA-
RAFT significantly reduces the cost of it-
erative refinements, which allows larger
backbones while still being faster. We use
K and S to denote RAFT submissions on
KITTI and Sintel respectively.

rigid-flow pre-training makes it better. We also show that ImageNet pre-trained
weights are effective.

RNN Design Our new RNN designs can reduce the computation without per-
formance loss compared with the GRU used in RAFT [50]. We also show that on
Spring subval, 4 ConvNeXt blocks do not work better than 2 ConvNeXt blocks.

Loss Design Naive Laplace regression does worse than the original L1 loss.
Also, it is important to set β1 to 0 in the MoL loss, which aligns the MoL loss
to L1 for ordinary cases. Besides, we find that the mixture of Gaussian loss does
not work well for optical flow, even though it has been found to be useful for
image matching [4].

Direct Regression of Initial Flow The regressed flow initialization signifi-
cantly improves accuracy without introducing much overhead. Also, we notice
that the warm-start strategy, which initializes the flow with previous results,
does not improve the performance in Spring ablations.

Inference Time Breakdown In Fig. 7, we show how the computational cost
increases when we add more refinements. The cost bottleneck for SEA-RAFT is
no longer iterative refinements ( Tab. 5), which allows us to use larger backbones
given the same computational cost constraint as RAFT [50].

5 Conclusion

We have introduced SEA-RAFT, a simpler, more efficient and accurate variant of
RAFT. It achieves high accuracy across a diverse range of datasets, strong cross-
dataset generalization, and state-of-the-art accuracy-speed trade-offs, making it
useful for real-world high-resolution optical flow.
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