
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SPECEXTEND: A DROP-IN ENHANCEMENT FOR
SPECULATIVE DECODING OF LONG SEQUENCES

Anonymous authors
Paper under double-blind review

ABSTRACT

Speculative decoding is a widely used technique for accelerating inference in large
language models (LLMs), but its performance degrades as input length grows,
with significant drops even at moderate lengths. Yet, this early degradation has re-
mained largely underexplored. We introduce SpecExtend, a drop-in enhancement
that improves speculative decoding on long sequences without additional train-
ing. SpecExtend integrates efficient attention mechanisms such as FlashAtten-
tion and Hybrid Tree Attention to accelerate prefill and verification steps. To im-
prove both draft accuracy and speed on long inputs without retraining, we propose
Cross-model Retrieval, a novel KV cache eviction strategy that leverages the tar-
get model’s attention scores to dynamically select relevant context for the smaller
draft model. Extensive evaluations show that SpecExtend accelerates speculative
decoding by up to 2.84× on 16K-token long summarization and up to 3.86× on
long reasoning, while preserving the short-input performance of state-of-the-art
frameworks.

1 INTRODUCTION

Large Language Models (LLMs) have achieved remarkable success across a wide range of natural
language processing (NLP) tasks. However, their practical deployment is often hindered by high
inference latency, which is primarily caused by the autoregressive nature of decoding. To address
this issue, various optimization techniques have been proposed, with speculative decoding emerging
as an effective, lossless solution. Speculative decoding consists of two phases: First, a smaller draft
model is used to efficiently generate multiple candidate tokens. Then, the original target model
verifies these tokens in parallel. This allows generating multiple tokens within a single target model
decoding step, accelerating inference without altering the output distribution.

Despite these advantages, the performance of speculative decoding frameworks drops significantly
as input length increases. When the input becomes extremely long, the memory bottleneck shifts
from model weights to the KV cache. Prior work (Sun et al., 2024; Sadhukhan et al., 2024) has
attempted to address this by using sparse KV caches of the target model for drafting. As shown in
Figure 2, however, performance degradation arises much earlier than this bottleneck shift, and exist-
ing methods yield little speedup due to drafting with the slow base model that has large weights.
Yet, this degradation in the moderate-length regime is largely underexplored. We identify two
main causes: (1) increased latency in the forward passes of both target and draft models due to
the quadratic complexity of standard attention, and (2) reduced draft accuracy, as the draft model is
typically smaller and trained only on short sequences. To address this, a drop-in solution is desirable,
since retraining draft models on long contexts is costly, while tasks like long-form generation begin
with short inputs and gradually expand, requiring the solution to preserve short-input performance
and the original benefits of existing state-of-the-art frameworks.

The theoretical speedup of speculative decoding (Equation 1) shows that in the moderate-
length regime, it is critical to maintain high draft accuracy, as it reduces the total number
of verification steps required. A simple way to improve draft accuracy without retraining is
to shrink the draft model’s KV cache with an eviction policy such as StreamingLLM (Xiao
et al., 2023), known to improve both generation quality and speed on long inputs. How-
ever, with such a static eviction policy, draft accuracy still degrades when tasks require finer-
grained use of past context (e.g., Needle Retrieval), due to the loss of important context.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: Overview of SpecExtend. FlashAttention accelerates the prefill phases of both target and
draft models, and Hybrid Tree Attention accelerates the verification phase. We use the target model’s
attention scores obtained from verification to select the most relevant input chunks to retain in the
draft model’s KV cache, enhancing both draft speed and accuracy on long inputs.

8

16

24

32

M
em

or
y 

(G
iB

)

1K 2K 4K 8K 16K 32K 64K 128K
Input Length

40

80

120

160
To

ke
ns

/s
EAGLE-3 Performance Model Weights KV Cache

Figure 2: Performance and memory usage
of speculative decoding with Llama-3.1-8B-
Instruct and EAGLE-3 across varying input
lengths. Performance significantly declines well
before the shift of memory bottleneck.

To this end, we propose SpecExtend, a drop-in
enhancement for speculative decoding on long
inputs (Figure 1). We first incorporate effi-
cient attention mechanisms (Section 3.1) such as
FlashAttention and Hybrid Tree Attention to ac-
celerate the prefill and verification steps. To im-
prove draft accuracy and speed without retrain-
ing, we introduce Cross-model Retrieval (Section
3.2), a novel cache update strategy for speculative
decoding. We dynamically update the smaller
draft model’s KV cache with globally relevant
context, guided by the larger target model’s atten-
tion scores. By enabling fine-grained alignment
between draft and target models in long contexts,
this improves the average accepted length by up
to 2.55× on inputs of up to 16K tokens, outper-
forming static eviction strategies.

We evaluate SpecExtend on practical long-sequence generation tasks where speculative decoding
typically struggles, using both off-the-shelf LLMs and EAGLE draft models. On long summariza-
tion with inputs of up to 16K tokens (GovReport, PG-19, BookSum), SpecExtend achieves up to
2.22× speedup with Vicuna-7B and 2.84× with Llama-3.1-8B-Instruct. On long reasoning (AIME-
24), it yields up to 3.86× speedup with DeepSeek-R1-Distill-Llama-8B. SpecExtend is compatible
with various speculative decoding setups and robust across input lengths. Importantly, it is training-
free and preserves short-input performance, enabling the use of powerful state-of-the-art frameworks
such as EAGLE-3 for long-sequence generation.

Our main contributions are as follows:

• To the best of our knowledge, we are the first to tackle the largely underexplored problem
of speculative decoding performance degradation in the moderate-length regime with a
training-free solution.

• We propose Cross-model Retrieval, a novel KV cache eviction strategy that improves both
draft accuracy (by up to 2.3×) and speed on long inputs, without additional training. It
consistently outperforms static cache eviction policies, and we provide in-depth analysis of
its effectiveness.

• We introduce SpecExtend, a drop-in solution that accelerates speculative decoding by up
to 2.22× on 16K-token long summarization and up to 3.86× on long reasoning, while pre-
serving the short-input performance of state-of-the-art frameworks.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 RELATED WORK

Speculative Decoding Speculative decoding accelerates LLM inference by using a smaller draft
model to generate multiple candidate tokens, which the target model then verifies in parallel (Xia
et al., 2022; 2024). With proper verification and correction, it guarantees the same output distribu-
tion as standard decoding (Leviathan et al., 2023; Chen et al., 2023). SpecInfer (Miao et al., 2024)
extends this approach by drafting and verifying multiple sequences simultaneously using tree atten-
tion, achieving further speedups. Several works introduce effective draft models built from subsets
of the target model (Cai et al., 2024; Li et al., 2024b), while EAGLE-2 (Li et al., 2024c) and OPT-
Tree (Wang et al., 2025) achieve further speedup by dynamically adjusting the draft tree structure
during decoding. EAGLE-3 (Li et al., 2025) scales up draft model training by leveraging multi-level
features from the target model.

Long Sequence Generation As input length increases, standard attention suffers from quadratic
computational and memory complexity, causing high inference latency (Zhou et al., 2024). FlashAt-
tention (Dao et al., 2022; Dao, 2023) reduces this overhead by using tiling and online softmax,
bringing memory complexity down to linear and accelerating inference. FlashDecoding (Dao, 2024)
builds on this by further parallelizing workers across the Key-Value dimension, speeding up LLM
decoding for long sequences.

Several works apply speculative decoding to long sequence generation. Sadhukhan et al. (2024)
identify that the memory bottleneck shifts from model weights to the KV cache for extremely long
inputs, and use sparse KV cache of the base model to draft tokens. Sun et al. (2024) mitigate this
with hierarchical speculation using both a smaller draft model and sparse KV cache of the base
model. However, the performance of speculative decoding frameworks drop well before the KV
cache becomes the main bottleneck, and existing solutions yield marginal speedup in this regime of
early degradation. Closest to our approach is LongSpec (Yang et al., 2025), which trains draft models
specifically designed for long inputs. In contrast, our method provides a drop-in enhancement for
existing frameworks, improving long-sequence performance without retraining while preserving
their original benefits, such as short-input performance.

3 SPECEXTEND

We first give an overview of SpecExtend’s components: efficient attention mechanisms that accel-
erate forward passes (Section 3.1) and Cross-model Retrieval that enhances both draft speed and
accuracy without additional training (Section 3.2). We then provide the theoretical speedup anal-
ysis (Section 3.2.2) and an in-depth analysis on the effectiveness of Cross-model Retrieval (Sec-
tion 3.2.3).

3.1 EFFICIENT ATTENTION

Standard attention becomes impractical with longer inputs due to its quadratic complexity, making it
essential to incorporate efficient attention mechanisms. The initial forward pass of LLM inference,
known as the prefill stage, computes full self-attention over the entire input sequence, incurring
quadratic memory usage and latency. FlashAttention (Dao et al., 2022; Dao, 2023) mitigates this
by avoiding materialization of large intermediate matrices in the GPU high-bandwidth memory. We
apply FlashAttention to the prefill stages of both the target and draft models, reducing latency and
memory usage during this phase (Figure 1).

Unlike prefill, the decoding stage uses cached KV states and computes attention only with the newly
generated tokens as query. FlashDecoding (Dao, 2024) accelerates this step by additionally paral-
lelizing across the KV sequence length. Meanwhile, Hybrid Tree Attention allows FlashDecoding
to be compatible with the tree-structured attention required in modern speculative decoding frame-
works (Yang et al., 2025). We apply Hybrid Tree Attention to the target model to accelerate the
verification step of speculative decoding.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3.2 CROSS-MODEL RETRIEVAL

3.2.1 METHOD OVERVIEW

As input length increases, draft speed in standard speculative decoding degrades because the draft
model’s KV cache grows, leading to slower decoding. Meanwhile, draft accuracy also drops due to
the draft model’s limited capacity as it is much smaller than the base model and typically trained on
short contexts. To address this without retraining, we aim to truncate the draft model’s KV cache
for more efficient attention, while preserving context that is most relevant to the target model at
the current decoding timestep. We achieve this via Cross-model Retrieval (CMR), which uses the
target model’s attention scores to select the most relevant input chunks to retain in the smaller draft
model’s cache. The procedure is detailed in Algorithm 1.

Algorithm 1 Speculative Decoding with
Cross-model Retrieval
Require: Target LM Mq , draft LM Mp, in-

put x1, . . . , xt, block size K, target length
T , DRAFT, VERIFY, CORRECT, retrieval
flag doRetrieval, attention scores s, top-k
chunks c1, . . . , ck

1: n← t
2: while n < T do

▷ Retrieve and update draft model cache
3: if doRetrieval then
4: c1, . . . , ck ← SELECTCHUNKS(s)
5: UPDATEDRAFTCACHE(c1, . . . , ck)

6: p1, . . . , pK ← DRAFT(x≤n,Mp)
7: Sample x̃i ∼ pi for i = 1, . . . ,K

▷ Obtain target model attention scores
for i = 1, . . . ,K + 1

8: (qi, s)
←Mq

(
x | x≤n, x̃<i ; doRetrieval

)
9: if VERIFY(x̃i, pi, qi) then

10: xn+1 ← x̃i; n← n+ 1
11: else
12: xn+1 ← CORRECT(pi, qi)
13: break
14: if all K drafted tokens accepted then
15: Sample xn+1 ∼ qK+1; n← n+ 1

Concretely, we divide the input prefix into fixed-
size chunks and rank them by their average at-
tention scores, using the last accepted token as
the query. These scores reflect each chunk’s rele-
vance at the current timestep. We select the top-
k chunks, and the draft model uses this reduced,
fine-grained cache to generate candidate tokens,
enhancing both draft speed and accuracy on long
inputs.

Importantly, the target model’s attention scores
are obtained directly from the most recent ver-
ification step, requiring no additional forward
passes. One challenge is that the target model’s
Hybrid Tree Attention relies on FlashDecoding,
which avoids generating the full attention scores
matrix for efficiency. To address this, we compute
standard attention and extract attention scores of
only the final layer, which we find sufficient for
our purposes. As shown in Table 8, this adds min-
imal latency overhead to the target model’s for-
ward pass, and the cache update step is also faster
than a single draft model forward pass. Moreover,
due to the locality of context in long sequences,
retrieval cache updates can be applied adaptively
or less frequently, further minimizing overhead.

3.2.2 THEORETICAL SPEEDUP ANALYSIS

Equation 1 formalizes the speedup of standard speculative decoding (Sadhukhan et al., 2024), where
Tt denotes the target model’s per-token latency, Td the draft model’s per-token latency, Tv the verifi-
cation cost, and τ the average accepted length. Speedup is achieved only when drafting is sufficiently
fast, that is, when Td is small compared to Tt. Figure 2 shows that in the moderate-length regime,
model weights remain the dominant memory bottleneck even as the KV cache grows. Thus, im-
proving draft speed in this regime requires reducing both model weights and KV cache size, which
existing methods fail to achieve. At the same time, it is critical to maintain high draft accuracy,
which leads to higher τ .

T sd
avg

Tt
=

1

τ(n, d)

(
d · Td

Tt
+

Tv(n)

Tt

)
(1)

SpecExtend addresses both requirements in a training-free manner: it substantially reduces Td by
employing a smaller draft model and a reduced KV cache, while preserving draft accuracy by re-
taining the most important information via CMR. Moreover, SpecExtend’s efficient attention mecha-
nisms further improve end-to-end speedup on long inputs: FlashAttention reduces prefill time which
otherwise dilutes the overall speedup, while Hybrid Tree Attention accelerates verification and re-
duces Tv .

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3.2.3 IN-DEPTH ANALYSIS OF EFFECTIVENESS

Needle Retrieval Evaluation Cross-model Retrieval reduces the draft model’s KV cache by se-
lecting chunks ranked with the attention scores of a much larger base model. This raises a key
question: Even if the retrieved chunks are optimal according to the base model, can the smaller
draft model actually leverage them to draft tokens more accurately? To answer this, we use the
Needle Retrieval task and measure how well the draft model uses the retrieved context to identify
and generate tokens corresponding to a planted “needle” in long inputs (Li et al., 2024a; Contribu-
tors, 2023). We compare its accuracy against three draft model cache strategies: (1) Full KV Cache
which retains all context; (2) StreamingLLM (Xiao et al., 2023) which keeps only the earliest and
most recent tokens via a static cache policy; and (3) TriForce (Sun et al., 2024) which also retrieves
top chunks using the base model’s attention scores but performs both drafting and verification with
the large base model itself. While accurate, drafting with the base model is slow in the moderate-
length regime due to its large weights. Therefore, TriForce serves as a reference for the ideal case
on how well retrieved context can be utilized by a much smaller draft model.

Cache Type Full KV Cache StreamingLLM Cross-model Retrieval (SpecExtend) Retrieval (TriForce)

Draft Model Size 160M 160M 160M 7B

Perplexity (↓) 8.311 2.435 2.237 2.191
Accuracy (↑) 0.081 0.166 0.823 0.976

Table 1: Perplexity and draft accuracy of needle tokens in the Needle Retrieval task with Vicuna-
7B/160M. TriForce uses Vicuna 7B for both drafting and verification.

As shown in Table 1, while StreamingLLM improves general coherence, it struggles to draft the
needle tokens accurately due to loss of global context. In contrast, CMR approaches TriForce’s per-
formance despite using a smaller draft model, simultaneously enhancing draft speed and accuracy
for long inputs. This demonstrates the draft model’s potential to utilize fine-grained context retrieved
by a much larger model.

Accuracy and Divergence Analysis We further examine token types that benefit from CMR dur-
ing drafting. We measure the distribution entropy of generated tokens, where higher entropy indi-
cates harder or more informative tokens. Tokens in the top 10% of entropy are classified as hard,
and we compare their acceptance rates under StreamingLLM and CMR. While the Needle Retrieval
evaluation suggests that CMR helps primarily with hard tokens, Figure 3 shows that it improves
draft accuracy for both hard and easy tokens. We also measure the natural divergence (Leviathan
et al., 2023) between the draft and target models across accepted and resampled token positions.
Figure 3 demonstrates that CMR consistently yields lower divergence at all positions.

Hard Easy
Token Type

50
55
60
65
70
75
80

Ac
ce

pt
an

ce
 R

at
e 

(%
)

1st 2nd 3rd Resampled
Token Position

0.0

0.2

0.4

0.6

0.8

1.0

Na
tu

ra
l D

iv
er

ge
nc

e 
D

LK

StreamingLLM Cross-model Retrieval

Figure 3: Left figure shows acceptance rates for hard and easy tokens, where CMR enables more ac-
curate drafting in both cases compared to StreamingLLM. Right figure shows the natural divergence
between the target and draft models at the first three accepted tokens and the resampled token. CMR
consistently yields lower divergence across all positions.

This indicates that by supplying the draft model with target-guided, fine-grained context, CMR
shifts its distribution closer to the target not only for hard tokens but also for frequent, easier ones,
compared to StreamingLLM. Thus, CMR extends its benefit beyond recovering needles, broadly
enhancing draft–target alignment in long contexts and general tasks. We further provide an ablation
study of CMR’s performance against StreamingLLM on long summarization (Section 4.3.1).

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

1K 2K 4K 8K 16K
Input Length

2.0

2.5

3.0

3.5
Av

g 
Ac

ce
pt

ed
 L

en
gt

h

Standard StreamingLLM SpecExtend

(a)

0 5 10 15
Latency (s)

Standard

With
SpecExtend

Target Prefill Draft Prefill Verification Drafting

(b)

Figure 4: (a) Average accepted length of Vicuna-7B/68M across different draft model cache settings.
(b) End-to-end latency breakdown of speculative decoding on 16K-token inputs.

4 EXPERIMENTS

Experiment Setup We evaluate SpecExtend on two practical long-sequence generation tasks with
distinct characteristics, both of which pose challenges for standard speculative decoding: (1) long
summarization, where the model processes a very long input from the start, and (2) long reasoning,
where the input is short but the generated output grows very long.

For long summarization, we use Vicuna-7B-16K (Chiang et al., 2023) and LongChat-7B-16K (Li
et al., 2023) as base models, with both EAGLE (Li et al., 2024b) and off-the-shelf LLMs, Vicuna-
68M/LLaMA-68M (Yang et al., 2024b; Miao et al., 2024) as draft models. We adopt tree-based
drafting with dynamic tree expansion (Miao et al., 2024; Wang et al., 2025) and evaluate on Gov-
Report (Huang et al., 2021), PG-19 (Rae et al., 2019), and BookSum (Kryściński et al., 2021),
generating 256 tokens with temperature 0. For long reasoning, we use DeepSeek-R1-Distill-Llama-
8B (DeepSeek-AI, 2025) as the base model and EAGLE-3 (Li et al., 2024b) as the draft model. We
evaluate on the AIME-24 benchmark (AI-MO, 2024) with a maximum generation length of 32K and
temperature 0.5 to prevent repetitive loops. All experiments are run on a single A100 80GB GPU,
with further details in Appendix A.2.

4.1 MAIN RESULTS

4.1.1 LONG SUMMARIZATION

Figure 4a shows that the Cross-model Retrieval cache substantially improves draft accuracy on long
inputs, outperforming the static cache policy of StreamingLLM. This reduces the total number of
draft-verify iterations, and combined with efficient attention mechanisms, leads to a significant re-
duction in inference time across all stages of speculative decoding (Figure 4b). As a result, SpecEx-
tend achieves consistent speedup gains across all three datasets with both off-the-shelf LLMs and
EAGLE draft models (Table 2).

For 8K and 16K-token inputs from PG-19, SpecExtend accelerates standard speculative decoding
with LLM draft models by 2.37× and 2.22×, respectively, yielding overall speedups of 2.39× and
2.87× over naive autoregressive generation (Figure 5). For EAGLE-based frameworks, SpecEx-
tend achieves 2.02× and 2.09× speedups over the standard EAGLE frameworks, yielding overall
speedups of 2.67× and 3.09×. Importantly, SpecExtend preserves baseline performance on shorter
inputs across all settings, demonstrating robustness to input length.

4.1.2 LONG REASONING

Long reasoning has become a popular benchmark for testing LLMs on complex problem solving
(DeepSeek-AI, 2025; Yang et al., 2024a). The task forces the model to handle both short and long
sequences throughout generation. In this setting, while existing solutions like MagicDec fail to yield
meaningful speedup on short inputs, a drop-in solution like SpecExtend is especially desirable, as it
allows us to harness the strong short-input performance of SOTA frameworks.

As shown in Figure 6, SpecExtend improves draft accuracy by 3.15× over standard EAGLE-3, lead-
ing to a 3.86× speedup relative to the standard setup and a 3.73× speedup over naive autoregressive

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Setting SpecExtend 1K 2K 4K 8K 16K

τ Tok/s Speedup τ Tok/s Speedup τ Tok/s Speedup τ Tok/s Speedup τ Tok/s Speedup

G
ov

R
ep

or
t

V
-7

B V-68M No 2.73 100.31 1.78× 1.64 55.64 1.16× 1.60 41.91 1.14× 1.62 25.71 1.08× 1.59 16.56 1.38×
Yes 3.80 128.59 2.28× 3.52 109.58 2.29× 3.04 76.48 2.08× 3.06 55.16 2.33× 3.07 33.84 2.82×

EAGLE No 4.61 144.77 2.57× 4.04 107.52 2.24× 3.27 66.62 1.81× 2.35 31.74 1.34× 2.00 19.35 1.61×
Yes 4.58 145.53 2.58× 4.08 113.47 2.37× 3.80 85.99 2.34× 3.82 62.90 2.66× 3.51 37.05 3.08×

L
C

-7
B LC-68M No 2.73 100.31 1.78× 1.64 55.64 1.16× 1.60 41.91 1.15× 1.62 25.71 1.12× 1.59 16.56 1.51×

Yes 3.01 109.26 1.94× 2.82 90.27 1.89× 2.66 68.84 1.89× 2.81 52.17 2.30× 2.68 31.11 2.84×

EAGLE No 4.10 131.06 2.33× 3.47 97.53 2.04× 2.75 60.17 1.65× 2.52 32.90 1.44× 2.18 19.84 1.81×
Yes 4.04 133.14 2.37× 3.56 103.39 2.17× 3.43 80.50 2.21× 3.53 60.14 2.63× 3.25 35.13 3.21×

PG
-1

9 V
-7

B V-68M No 2.16 76.50 1.37× 1.52 51.00 1.09× 1.55 39.16 1.15× 1.55 21.80 1.01× 1.54 14.73 1.29×
Yes 2.75 96.74 1.74× 2.69 84.74 1.81× 2.61 63.94 1.88× 2.65 47.64 2.39× 2.70 32.88 2.87×

EAGLE No 3.29 107.31 1.92× 3.18 88.92 1.89× 2.88 54.71 1.60× 2.18 26.43 1.32× 1.92 16.98 1.48×
Yes 3.29 107.53 1.93× 3.19 94.41 2.02× 3.04 69.92 2.06× 3.19 53.06 2.67× 3.05 35.43 3.09×

L
C

-7
B LC-68M No 2.16 76.50 1.36× 1.52 51.00 1.07× 1.55 39.16 1.09× 1.55 21.80 1.00× 1.54 14.73 1.18×

Yes 2.22 80.25 1.43× 2.33 73.69 1.55× 2.42 62.27 1.74× 2.42 44.96 2.06× 2.45 30.67 2.46×

EAGLE No 3.19 111.10 1.97× 3.00 86.80 1.82× 2.48 54.21 1.51× 2.28 26.85 1.23× 2.06 17.54 1.40×
Yes 3.11 110.31 1.96× 3.02 93.50 1.97× 2.97 71.84 2.01× 2.99 51.55 2.36× 2.82 33.07 2.66×

B
oo

kS
um V

-7
B V-68M No 2.36 88.12 1.57× 1.56 53.33 1.13× 1.51 39.30 1.08× 1.52 24.21 1.05× 1.58 15.63 1.30×

Yes 2.75 97.45 1.73× 2.66 81.37 1.73× 2.56 62.97 1.73× 2.70 50.21 2.18× 2.78 35.61 2.98×

EAGLE No 3.33 111.70 1.99× 2.95 82.44 1.75× 2.87 58.01 1.59× 2.14 29.30 1.27× 1.94 18.76 1.57×
Yes 3.31 111.82 1.99× 2.99 88.64 1.89× 3.08 70.90 1.95× 3.15 54.53 2.37× 3.11 38.03 3.18×

L
C

-7
B LC-68M No 2.36 88.12 1.57× 1.56 53.33 1.14× 1.51 39.30 1.11× 1.52 24.21 1.20× 1.58 15.63 1.28×

Yes 2.45 91.05 1.63× 2.55 83.60 1.80× 2.54 66.79 1.90× 2.61 49.47 2.45× 2.50 32.21 2.64×

EAGLE No 3.10 107.67 1.92× 2.94 86.35 1.85× 2.37 53.42 1.51× 2.22 30.14 1.49× 2.06 18.39 1.50×
Yes 3.07 106.86 1.91× 2.97 90.48 1.94× 2.88 71.50 2.03× 2.92 52.35 2.59× 2.83 34.65 2.84×

Table 2: Average accepted length (τ ), decoding speed (tokens/s) and speedup of speculative decod-
ing with and without SpecExtend. Speedup is measured relative to naive autoregressive generation.

1K 2K 4K 8K 16K
0.0

0.5

1.0

1.5

2.0

2.5

3.0

1.78

1.16 1.14 1.08

1.38

2.28 2.29
2.08

2.33

2.82

V-7B / V-68M

1K 2K 4K 8K 16K

2.57

2.24

1.81

1.34

1.61

2.58
2.37 2.34

2.66

3.08

V-7B / EAGLE

1K 2K 4K 8K 16K

1.78 1.69

1.15 1.12

1.51

1.94
2.17

1.89

2.30

2.84

LC-7B / LC-68M

1K 2K 4K 8K 16K

2.33

2.04

1.65
1.44

1.81

2.37 2.37
2.21

2.63

3.21
LC-7B / EAGLE

Input Length

Sp
ee

du
p

Standard With SpecExtend

Figure 5: Speedup comparison of standard speculative decoding and SpecExtend across varying
input lengths on GovReport.

decoding. We note that while EAGLE-3 achieves exceptional performance on short inputs, its draft
accuracy drops sharply beyond 2K tokens, even falling below EAGLE-1 (Table 6). With SpecEx-
tend, EAGLE-3 maintains high draft accuracy on long inputs while fully preserving its short-input
strength, resulting in the substantial overall speedup.

4.2 COMPARISON WITH OTHER METHODS

We apply SpecExtend to standard speculative decoding and compare its performance on long inputs
against other off-the-shelf acceleration methods, including FlashDecoding (Dao, 2024), TriForce
(Sun et al., 2024), and MagicDec (Sadhukhan et al., 2024). For all frameworks, we use Vicuna-
7B/68M as the target and draft models, respectively. For MagicDec, we implement StreamingLLM-
based drafting with self-speculation. We exclude training-based methods (e.g., LongSpec) since
SpecExtend is fully training-free, and its end-to-end performance depends heavily on the capacity
and architecture of the draft model in the underlying framework.

Method GovReport PG-19 BookSum
1K 2K 4K 8K 16K 1K 2K 4K 8K 16K 1K 2K 4K 8K 16K

FlashDecoding 1.06× 1.07× 1.12× 1.23× 1.51× 1.07× 1.08× 1.18× 1.38× 1.52× 1.06× 1.09× 1.10× 1.26× 1.58×
TriForce 1.25× 1.26× 1.22× 1.18× 1.02× 1.12× 1.19× 1.16× 1.15× 1.13× 1.18× 1.20× 1.18× 1.18× 1.11×

MagicDec 1.07× 1.08× 1.05× 1.13× 1.24× 1.03× 1.07× 1.06× 1.10× 1.19× 1.03× 1.04× 1.06× 1.18× 1.23×
Standard 1.78× 1.16× 1.14× 1.08× 1.38× 1.37× 1.09× 1.15× 1.09× 1.29× 1.57× 1.14× 1.08× 1.05× 1.30×

Standard + SpecExtend 2.28× 2.29× 2.08× 2.29× 2.65× 1.74× 1.81× 1.88× 2.34× 2.70× 1.74× 1.74× 1.73× 2.14× 2.81×

Table 3: Speedup comparison of off-the-shelf methods for long sequence generation with Vicuna-
7B. Standard refers to standard tree-based speculative decoding.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Naive AR EAGLE-3 EAGLE-3
+ SpecExtend

0
20
40
60
80

100
120
140

To
k/

s
31.42 30.34

117.21

Naive AR EAGLE-3 EAGLE-3
+ SpecExtend

0
1
2
3
4
5
6
7

Av
g 

Ac
ce

pt
ed

Le
ng

th

1.00
1.89

5.95

Naive AR EAGLE-3 EAGLE-3 + SpecExtend

Figure 6: Decoding speed (left) and average accepted length (right) of the DeepSeek-R1-Distill-
Llama-8B/EAGLE-3 setup on the long reasoning task with the AIME-24 benchmark.

As shown in Table 3, SpecExtend-enhanced speculative decoding outperforms all baselines across
input lengths, achieving up to 2.81× speedup on 16K-token inputs from BookSum. In contrast,
TriForce and MagicDec yield marginal speedups, as model weights remain the dominant memory
bottleneck in moderately long regimes, yet both methods rely on drafting with the large base model.

4.3 ABLATION STUDIES

4.3.1 SPECEXTEND COMPONENTS

We evaluate the contribution of each component of SpecExtend with a standard Vicuan-7B/68M
setup on GovReport. Speedups are reported relative to the standard setting. Table 4 shows that
Cross-model Retrieval provides the largest gain, achieving a 1.46× speedup alone on 16K inputs,
a 1.15× improvement over the static cache policy of StreamingLLM. FlashAttention applied to the
prefill stages yields a 1.25× speedup. We note that Hybrid Tree Attention introduces minor overhead
at shorter lengths but achieves up to 1.19× speedup beyond 8K tokens, thus we enable it only for
inputs beyond 4K tokens.

Setting 1K 2K 4K 8K 16K

τ Tok/s Speedup τ Tok/s Speedup τ Tok/s Speedup τ Tok/s Speedup τ Tok/s Speedup

Standard 3.75 127.34 - 2.83 87.34 - 1.92 47.41 - 1.78 27.54 - 1.72 17.60 -
Standard + FA 3.71 131.02 1.03× 2.84 91.79 1.05× 1.97 52.74 1.11× 1.81 34.33 1.25× 1.75 22.07 1.25×

Standard + HTA 3.61 122.73 0.96× 2.74 85.57 0.98× 1.92 47.62 1.01× 1.76 31.08 1.14× 1.74 20.95 1.19×
Standard + StreamingLLM 3.75 128.62 1.01× 2.81 85.60 0.98× 2.53 59.11 1.25× 2.59 35.89 1.30× 2.60 22.39 1.27×

Standard + CMR 3.86 130.35 1.02× 3.57 104.12 1.19× 2.90 64.85 1.36× 2.78 37.11 1.47× 2.93 25.82 1.46×

Table 4: Ablation study of SpecExtend components. The standard setting refers to tree-based spec-
ulative decoding with Vicuna-7B/68M. FA denotes FlashAttention for prefill, HTA denotes Hybrid
Tree Attention, and CMR denotes Cross-model Retrieval.

4.3.2 RETRIEVAL PARAMETERS

We ablate the parameters of Cross-model Retrieval using Vicuna-7B as the target model and Vicuna-
68M/EAGLE as draft models on 8K-token GovReport inputs (Table 5). The optimal working KV
cache size is around 1K for Vicuna-68M and 2K for EAGLE, which we adopt for the ablation. Under
these settings, the best results are obtained with a chunk size of 32, top-k values of 32 and 64, and
retrieval frequencies of 4 and 8 steps for Vicuna-68M/EAGLE, respectively.

Working
Cache Size Vicuna-68M EAGLE Chunk

Size Vicuna-68M EAGLE Top-k Vicuna-68M EAGLE Retrieval
Frequency Vicuna-68M EAGLE

64 32.52 39.10 1 31.05 48.05 2 30.72 38.22 1 33.05 47.78
128 32.91 39.95 2 32.27 49.49 4 32.65 40.36 2 33.54 46.78
256 33.65 41.53 4 32.97 49.55 8 32.76 41.49 4 33.59 48.17
512 33.53 42.77 8 33.39 49.18 16 33.19 43.90 8 33.11 48.52
1024 33.69 44.19 16 33.41 48.92 32 33.28 47.21 16 33.16 48.36
2048 32.36 45.33 32 33.52 49.68 64 32.50 48.09 32 33.28 48.11
4096 25.84 43.68 64 33.23 48.25 128 25.20 45.14 64 33.29 48.13
8192 24.32 33.10 128 33.20 47.48 256 23.95 32.48 128 33.21 48.20

Table 5: Ablation study of Cross-model Retrieval parameters. The table reports decoding speed
(tokens/s) using Vicuna-7B as the target model on 8K-token GovReport inputs.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

4.4 ADDITIONAL RESULTS

4.4.1 NEWER MODEL CONFIGURATION

We further demonstrate SpecExtend’s compatibility by applying it to newer model configura-
tions, using Llama-3.1-8B-Instruct as the base model with EAGLE and EAGLE-3 as draft models.
EAGLE-3 introduces a modified draft architecture that enables larger-scale training. Although it
achieves exceptional performance on short inputs, its accuracy degrades more sharply than EAGLE,
with substantial performance drops even at 4K tokens (Table 6). With SpecExtend, EAGLE-3’s draft
accuracy improves by up to 2.55× on inputs of up to 16K tokens, yielding a 2.84× speedup over the
standard setting and a 2.36× overall speedup. These results show that SpecExtend integrates seam-
lessly with newer speculative decoding frameworks.

Draft
Model SpecExtend 1K 2K 4K 8K 16K

τ Tok/s Speedup τ Tok/s Speedup τ Tok/s Speedup τ Tok/s Speedup τ Tok/s Speedup

EAGLE No 3.41 107.06 2.01× 3.03 90.23 1.83× 2.30 55.59 1.35× 2.13 37.82 1.18× 1.89 23.08 1.02×
Yes 3.42 108.01 2.04× 3.10 91.68 1.87× 3.02 69.02 1.68× 2.92 51.33 1.60× 2.78 41.66 1.85×

EAGLE-3 No 5.10 146.59 2.76× 4.65 119.91 2.44× 1.82 47.30 1.15× 1.61 30.76 0.96× 1.49 18.71 0.83×
Yes 5.03 145.65 2.75× 4.68 120.35 2.45× 3.99 89.93 2.18× 3.96 66.52 2.08× 3.80 53.18 2.36×

Table 6: Evaluation of SpecExtend on LLaMA-3.1-8B-Instruct with EAGLE and EAGLE-3 on the
GovReport dataset.

4.4.2 EXTREMELY LONG INPUTS

We also evaluate SpecExtend on sequences of up to 128K tokens using the Llama-3.1-8B-Instruct
and EAGLE setup on PG-19. At this scale, the memory bottleneck shifts from model weights to
the KV cache, making standard speculative decoding slower than naive autoregressive generation,
since drafting becomes extremely slow even with a small draft model (Figure 2). By adopting the
reduced Cross-model Retrieval cache, SpecExtend alleviates this bottleneck and also improves draft
accuracy by 1.58×, yielding a 2.67× speedup over the standard setting (Table 7).

SpecExtend 32K 64K 128K

τ Tok/s Speedup τ Tok/s Speedup τ Tok/s Speedup

No 1.73 8.45 0.76× 1.72 8.46 - 1.73 8.45 -
Yes 2.73 23.05 2.08× 2.71 22.76 - 2.72 22.59 -

Table 7: Evaluation of SpecExtend on LLaMA-3.1-8B-Instruct with EAGLE for inputs up to 128K
tokens on the PG-19 dataset. Naive autoregressive generation runs out of memory beyond 64K
tokens, thus speedup values are omitted.

5 CONCLUSION

We presented SpecExtend, a drop-in enhancement that improves speculative decoding on long in-
puts. By combining efficient attention mechanisms with a novel KV cache eviction strategy, Cross-
model Retrieval, SpecExtend accelerates all stages of speculative decoding while enhancing draft
accuracy without retraining. Experiments show up to 2.84× speedup on long summarization and
3.86× on long reasoning, while preserving baseline performance on short inputs. SpecExtend is
compatible with various speculative decoding setups and provides a practical, training-free solution
to performance degradation on long inputs.

REFERENCES

AI-MO. Aimo validation aime, 2024. https://huggingface.co/datasets/AI-MO/
aimo-validation-aime.

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng, Jason D Lee, Deming Chen, and Tri
Dao. Medusa: Simple llm inference acceleration framework with multiple decoding heads. arXiv
preprint arXiv:2401.10774, 2024.

9

https://huggingface.co/datasets/AI-MO/aimo-validation-aime
https://huggingface.co/datasets/AI-MO/aimo-validation-aime


486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, Laurent Sifre, and John
Jumper. Accelerating large language model decoding with speculative sampling. arXiv preprint
arXiv:2302.01318, 2023.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
Siyuan Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica, and Eric P. Xing. Vicuna: An
open-source chatbot impressing gpt-4 with 90%* chatgpt quality, March 2023. URL https:
//lmsys.org/blog/2023-03-30-vicuna/.

OpenCompass Contributors. Opencompass: A universal evaluation platform for foundation models.
https://github.com/open-compass/opencompass, 2023.

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. arXiv
preprint arXiv:2307.08691, 2023.

Tri Dao. Flash decoding. https://princeton-nlp.github.io/flash-decoding/,
2024. Accessed: 2024-05-16.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-
efficient exact attention with io-awareness. Advances in neural information processing systems,
35:16344–16359, 2022.

DeepSeek-AI. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning,
2025. URL https://arxiv.org/abs/2501.12948.

Luyang Huang, Shuyang Cao, Nikolaus Parulian, Heng Ji, and Lu Wang. Efficient attentions for
long document summarization, 2021.

Wojciech Kryściński, Nazneen Rajani, Divyansh Agarwal, Caiming Xiong, and Dragomir Radev.
Booksum: A collection of datasets for long-form narrative summarization. arXiv preprint
arXiv:2105.08209, 2021.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
decoding. In International Conference on Machine Learning, pp. 19274–19286. PMLR, 2023.

Dacheng Li, Rulin Shao, Anze Xie, Ying Sheng, Lianmin Zheng, Joseph E. Gonzalez, Ion Stoica,
Xuezhe Ma, and Hao Zhang. How long can open-source llms truly promise on context length?,
2023. https://lmsys.org/blog/2023-06-29-longchat.

Mo Li, Songyang Zhang, Yunxin Liu, and Kai Chen. Needlebench: Can llms do retrieval and
reasoning in 1 million context window? arXiv preprint arXiv:2407.11963, 2024a.

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. EAGLE: Speculative sampling requires
rethinking feature uncertainty. In International Conference on Machine Learning, 2024b.

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. EAGLE-2: Faster inference of lan-
guage models with dynamic draft trees. In Empirical Methods in Natural Language Processing,
2024c.

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. Eagle-3: Scaling up inference acceler-
ation of large language models via training-time test. arXiv preprint arXiv:2503.01840, 2025.

Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao Cheng, Zeyu Wang, Zhengxin Zhang, Rae
Ying Yee Wong, Alan Zhu, Lijie Yang, Xiaoxiang Shi, et al. Specinfer: Accelerating large lan-
guage model serving with tree-based speculative inference and verification. In Proceedings of the
29th ACM International Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 3, pp. 932–949, 2024.

Jack W Rae, Anna Potapenko, Siddhant M Jayakumar, Chloe Hillier, and Timothy P Lillicrap.
Compressive transformers for long-range sequence modelling. arXiv preprint, 2019. URL
https://arxiv.org/abs/1911.05507.

10

https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://github.com/open-compass/opencompass
https://princeton-nlp.github.io/flash-decoding/
https://arxiv.org/abs/2501.12948
https://lmsys.org/blog/2023-06-29-longchat
https://arxiv.org/abs/1911.05507


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Ranajoy Sadhukhan, Jian Chen, Zhuoming Chen, Vashisth Tiwari, Ruihang Lai, Jinyuan Shi, Ian En-
Hsu Yen, Avner May, Tianqi Chen, and Beidi Chen. Magicdec: Breaking the latency-throughput
tradeoff for long context generation with speculative decoding. arXiv preprint arXiv:2408.11049,
2024.

Hanshi Sun, Zhuoming Chen, Xinyu Yang, Yuandong Tian, and Beidi Chen. Triforce: Lossless
acceleration of long sequence generation with hierarchical speculative decoding. arXiv preprint
arXiv:2404.11912, 2024.

Jikai Wang, Yi Su, Juntao Li, Qingrong Xia, Zi Ye, Xinyu Duan, Zhefeng Wang, and Min Zhang.
Opt-tree: Speculative decoding with adaptive draft tree structure. Transactions of the Association
for Computational Linguistics, 13:188–199, 2025.

Heming Xia, Tao Ge, Peiyi Wang, Si-Qing Chen, Furu Wei, and Zhifang Sui. Speculative de-
coding: Exploiting speculative execution for accelerating seq2seq generation. arXiv preprint
arXiv:2203.16487, 2022.

Heming Xia, Zhe Yang, Qingxiu Dong, Peiyi Wang, Yongqi Li, Tao Ge, Tianyu Liu, Wenjie Li, and
Zhifang Sui. Unlocking efficiency in large language model inference: A comprehensive survey
of speculative decoding. arXiv preprint arXiv:2401.07851, 2024.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. arXiv preprint arXiv:2309.17453, 2023.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. arXiv preprint
arXiv:2412.15115, 2024a.

Penghui Yang, Cunxiao Du, Fengzhuo Zhang, Haonan Wang, Tianyu Pang, Chao Du, and Bo An.
Longspec: Long-context speculative decoding with efficient drafting and verification. arXiv
preprint arXiv:2502.17421, 2025.

Sen Yang, Shujian Huang, Xinyu Dai, and Jiajun Chen. Multi-candidate speculative decoding. arXiv
preprint arXiv:2401.06706, 2024b.

Zixuan Zhou, Xuefei Ning, Ke Hong, Tianyu Fu, Jiaming Xu, Shiyao Li, Yuming Lou, Luning
Wang, Zhihang Yuan, Xiuhong Li, et al. A survey on efficient inference for large language
models. arXiv preprint arXiv:2404.14294, 2024.

A APPENDIX

A.1 LATENCY OVERHEAD OF CROSS-MODEL RETRIEVAL

Target
Forward

Target Forward
w/ Retrieval

Draft
Forward

Retrieval Cache
Update

Latency (ms) 53.76 54.11 0.84 0.34

Table 8: Latency overhead of a single retrieval cache update step on 16K token inputs.

A.2 EXPERIMENT DETAILS

The EAGLE models1 for vicuna-7b-v1.5-16k and longchat-7b-16k are trained on the ShareGPT
dataset using default training settings with 4 A100 40GB GPUs. For each input length from 1K to
16K tokens, we sample 20 inputs, run each input twice, and report metrics averaged over all runs.
We apply OPT-Tree’s dynamic tree expansion strategy with the default settings of 50 total nodes,
maximum depth 10, and threshold 0.7. We use the optimal working KV cache size and retrieval
parameters described in Section 5.

1EAGLE models are publicly available under the Apache 2.0 license.

11


	Introduction
	Related Work
	SpecExtend
	Efficient Attention
	Cross-model Retrieval
	Method Overview
	Theoretical Speedup Analysis
	In-depth Analysis of Effectiveness


	Experiments
	Main Results
	Long Summarization
	Long Reasoning

	Comparison with Other Methods
	Ablation Studies
	SpecExtend Components
	Retrieval Parameters

	Additional Results
	Newer Model Configuration
	Extremely Long Inputs


	Conclusion
	Appendix
	Latency Overhead of Cross-model Retrieval
	Experiment Details


