

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053

BRIDGING PIANO TRANSCRIPTION AND RENDERING VIA DISENTANGLED SCORE CONTENT AND STYLE

Anonymous authors

Paper under double-blind review

ABSTRACT

Expressive performance rendering (EPR) and automatic piano transcription (APT) are fundamental yet inverse tasks in music information retrieval: EPR generates expressive performances from symbolic scores, while APT recovers scores from performances. Despite their dual nature, prior work has addressed them independently. In this paper, we propose a unified framework that jointly models EPR and APT by disentangling note-level score content and global performance style representations from both paired and unpaired data. Our framework is built on a transformer-based sequence-to-sequence (Seq2Seq) architecture and is trained using only sequence-aligned data, without requiring fine-grained note-level alignment. To automate the rendering process while ensuring stylistic compatibility with the score, we introduce an independent diffusion-based performance style recommendation (PSR) module that generates style embeddings directly from score content. This modular component supports both style transfer and flexible rendering across a range of expressive styles. Experimental results from both objective and subjective evaluations demonstrate that our framework achieves competitive performance on EPR and APT tasks, while enabling effective content–style disentanglement, reliable style transfer, and stylistically appropriate rendering. Demos are available at <https://jointpianist.github.io/epr-apt/>.

1 INTRODUCTION

Music exists across multiple modalities, notably symbolic music scores and expressive audio recordings. Converting between these musical modalities is essential for enabling machine learning models to reason across symbolic and audio domains, supporting a wide range of applications from artistic creation to music education (Cancino-Chacón et al., 2023; Chacón et al., 2023). In a live concert, for example, a pianist *renders* a written score into an expressive performance, adding personalized nuances in timing, dynamics, and articulation. Conversely, for purposes such as analysis, re-performance, or archiving, *transcription* is needed to convert an audio recording of a performance back into a symbolic representation. These two processes correspond to two core tasks in music information retrieval (MIR): expressive performance rendering (EPR), which generates performance MIDI (MIDI that captures expressive timing, dynamics, and articulation) from symbolic scores (Chacón et al., 2018), and automatic piano transcription (APT), which predicts symbolic scores from performance MIDI (Desain & Honing, 1989).

Prior work has studied EPR and APT as two separate tasks (Maezawa et al., 2019; Jeong et al., 2019; Rhyu et al., 2022; Borovik & Viro, 2023; Liu et al., 2022; Cogliati et al., 2016; Nakamura et al., 2018; Shibata et al., 2021). However, as illustrated in the top-left corner of Figure 1, the two tasks are inherently connected, representing inverse transformations between symbolic and expressive forms. In rendering, the performance reflects both the composer’s intent and the pianist’s interpretive style; in transcription, the system should filter out these expressive elements to recover the underlying score.

Joint modeling in speech tasks such as automatic speech recognition (ASR) and text-to-speech (TTS) has shown mutual benefits and enabled weakly supervised training (Ren et al., 2019; Peyser et al., 2022a). **A concurrent line of work in music demonstrates a similar direction, showing that unified translation across multiple modalities can be achieved using only sequence-aligned data (Jung et al., 2025).** This underscores the growing trend toward scalable, alignment-free supervision. Motivated by this, we propose a unified transformer-based framework that jointly learns EPR and APT by modeling

054 two factors: (a) a note-level score content representation, which captures symbolic structures like
 055 pitch and rhythm; and (b) a global performance style representation, which encapsulates the high-
 056 level artistic character of a performance (e.g., “heavy” or “relaxing”) and serves as a conditioning
 057 signal to guide the generation of fine-grained expressive details by the decoder. This disentangled
 058 representation allows for information sharing across tasks while preserving the interpretability and
 059 controllability of the rendering process. Besides, the use of a unified Seq2Seq architecture enables
 060 our model to be trained using only sequence-aligned data, removing the need for note-level alignment
 061 required by most EPR systems (Rhyu et al., 2022; Borovik & Viro, 2023; Tang et al., 2023; Jeong
 062 et al., 2019; Zhang et al., 2024).

063 To enable flexible and realistic performance rendering, it is crucial to distinguish between the types of
 064 information encoded in our disentangled representations. We define *style* as the expressive realization
 065 of a score (e.g., the “Horowitz factor” by Widmer et al. (2003)), and *genre* as the underlying structural
 066 and harmonic characteristics of the composition. While both are global attributes, they capture
 067 distinct musical aspects. Inspired by recent advances in sheet music classification (Ji et al., 2021;
 068 Pasquale et al., 2020), we hypothesize that for a performance rendition to sound natural, the chosen
 069 style should ideally align with the underlying genre. This suggests that stylistically appropriate
 070 performances can be inferred directly from score content, similar to how skilled pianists interpret
 071 compositions. Besides, existing EPR models often rely on composer labels (Jeong et al., 2019; Tang
 072 et al., 2023) or require manual control over expressive parameters (Borovik & Viro, 2023; Rhyu
 073 et al., 2022), which limits accessibility for non-expert users. Motivated by these observations, we
 074 propose a Performance Style Recommendation (PSR) module that generates diverse style embeddings
 075 conditioned solely on the score.

076 We evaluate our framework using both objective and subjective metrics. On standard benchmarks,
 077 our joint model achieves competitive performance for both EPR and APT. Subjective evaluations
 078 confirm the naturalness of EPR-generated performances. Disentanglement is verified through style
 079 transfer and latent space visualizations. In addition, we show that the learned style embeddings
 080 encode information about both performer and composer, with composer traits being more dominant.
 081 Finally, evaluations of the PSR module demonstrate its ability to generate stylistically appropriate
 082 embeddings from content alone.

083 In summary, this paper makes the following three contributions:

- 084 • **A unified transformer-based model for joint EPR and APT**, which disentangles score
 085 content and performance style representations, and leverages the duality between the two
 086 tasks for mutual supervision. This joint formulation enables bidirectional modeling between
 087 symbolic and expressive forms of music.
- 088 • **A diffusion-based performance style recommendation (PSR) module**, which generates
 089 diverse and appropriate style embeddings directly from score content. This module mimics
 090 a pianist’s ability to infer suitable expressive styles from the written score and enables
 091 controllable and non-expert-driven performance rendering.
- 092 • **A Seq2Seq formulation of EPR without note-level alignment**, which eliminates the need
 093 for finely aligned training data and enables scalable learning using only sequence-level
 094 supervision. Despite this relaxed supervision, our model achieves competitive performance
 095 compared to alignment-dependent baselines.

097 2 RELATED WORK

100 2.1 EXPRESSIVE PIANO PERFORMANCE RENDERING

101 Early work on EPR relied on rule-based systems (Widmer & Goebel, 2004; Chacón et al., 2018;
 102 Kirke & Miranda, 2013). Recent methods leverage deep learning, including RNN- and LSTM-based
 103 models (Maezawa et al., 2019; Jeong et al., 2019), as well as transformer-based architectures (Rhyu
 104 et al., 2022; Borovik & Viro, 2023; Renault et al., 2023; Tang et al., 2023). A central challenge in
 105 EPR is generating performance styles that appropriately reflect the content of music scores. Existing
 106 approaches often require explicit composer or performer labels (Jeong et al., 2019; Tang et al., 2023),
 107 or depend on manual control of expressive parameters (Borovik & Viro, 2023; Rhyu et al., 2022),
 108 limiting usability for non-expert users. A diffusion-based model has been introduced to generate

108 expressive control directly from the score, relying on hand-crafted note-level style features (Zhang
 109 et al., 2024). However, such a note-level approach demands intricate, fine-grained adjustments and
 110 offers limited flexibility for style transfer between compositions with disparate musical structures.
 111

112 Another key limitation of current models (Rhyu et al., 2022; Borovik & Viro, 2023; Tang et al., 2023;
 113 Jeong et al., 2019; Zhang et al., 2024) is their dependence on note-aligned datasets, which typically
 114 require preprocessing with alignment tools (Nakamura et al., 2017). This reliance impedes flexibility,
 115 particularly for expressive techniques like trills and mordents that introduce temporal ambiguity. An
 116 unsupervised GAN-based approach has been proposed to bypass alignment (Renault et al., 2023),
 117 but it is less performant than supervised counterparts. [Recent work also explores sequence-aligned
 118 supervision as a scalable alternative; for instance, Jung et al. \(2025\) demonstrate that unified cross-
 119 modal music translation can be effectively learned without strict note-level alignment.](#) Motivated
 120 by these developments, we address these limitations by formulating EPR as a Seq2Seq task and
 121 introducing a PSR module for automatic style generation.
 122

2.2 AUTOMATIC PIANO TRANSCRIPTION

123 Automatic piano transcription (APT) methods can be categorized by their input and output modalities.
 124 Input formats include raw audio signals (e.g., waveforms or spectrograms) and symbolic representa-
 125 tions such as MIDI. Output targets are typically note-level sequences (Hawthorne et al., 2018; Kim &
 126 Bello, 2019; Kong et al., 2021; Toyama et al., 2023; Hawthorne et al., 2021) or notation-level formats
 127 resembling human-readable sheet music (Román et al., 2019; Alfaro-Contreras et al., 2024; Román
 128 et al., 2018; Zeng et al., 2024; Hiramatsu et al., 2021; Liu et al., 2021; 2022; Shibata et al., 2021;
 129 Beyer & Dai, 2024). This work focuses on symbolic-to-symbolic transcription, where the model
 130 maps expressive performance MIDI to corresponding score sheet representations.
 131

132 Early APT approaches relied on signal processing heuristics (Raphael, 2001) and probabilistic
 133 models such as Hidden Markov Models (HMMs) (Cogliati et al., 2016; Shibata et al., 2021). Recent
 134 advances leverage deep neural networks (Liu et al., 2022; Beyer & Dai, 2024; Suzuki, 2021), which
 135 have demonstrated substantial improvements in accuracy and generalization. Particularly, (Beyer
 136 & Dai, 2024) proposed a Seq2Seq framework that eliminates the need for note-aligned supervision
 137 while achieving state-of-the-art performance. Building on this insight, we adopt a similar Seq2Seq
 138 framework to model score content features within our unified system.
 139

2.3 DISENTANGLED REPRESENTATION LEARNING

140 Disentangled representation learning (DRL) aims to learn representations that separate the underlying
 141 factors of variation in observed data (Wang et al., 2024). It has been widely studied in computer
 142 vision (Dupont, 2018; Yang et al., 2021; Chen et al., 2016; Karras et al., 2020) and natural language
 143 processing (He et al., 2017; Bao et al., 2019; Cheng et al., 2020; Wu et al., 2020), where separating
 144 content from style or semantics has led to improved generalization and controllability.
 145

146 In music information retrieval (MIR), DRL has recently been explored for disentangling musical
 147 content and style to support generation and manipulation (Tan & Herremans, 2020; Wang et al., 2020;
 148 Yang et al., 2019; Zhao et al., 2024). One closely related study (Zhang & Dixon, 2023) learns content
 149 and style representations from expressive performances in an unsupervised manner, enabling music
 150 analysis and style transfer. In contrast, our work focuses on generating expressive performances from
 151 symbolic scores, a less-explored but important direction for DRL-based music modeling.
 152

3 METHODOLOGY

3.1 DATA REPRESENTATION FOR INPUT AND OUTPUT

153 **Input features** Following Peyser et al. (2022b), we represent both score and performance inputs as
 154 note-level sequences of approximately equal length, enabling the joint encoder to learn a domain-
 155 agnostic representation of score content. Each sequence contains N notes by the order of onset
 156 time and pitch, with each note represented as a tuple of K discrete symbolic attributes, detailed in
 157 Appendix A.2. We denote the score and performance sequences as \mathbf{x} and \mathbf{y} , respectively. For score
 158 inputs, each note comprises $K = 7$ attributes, while performance inputs contain $K = 4$. The final
 159

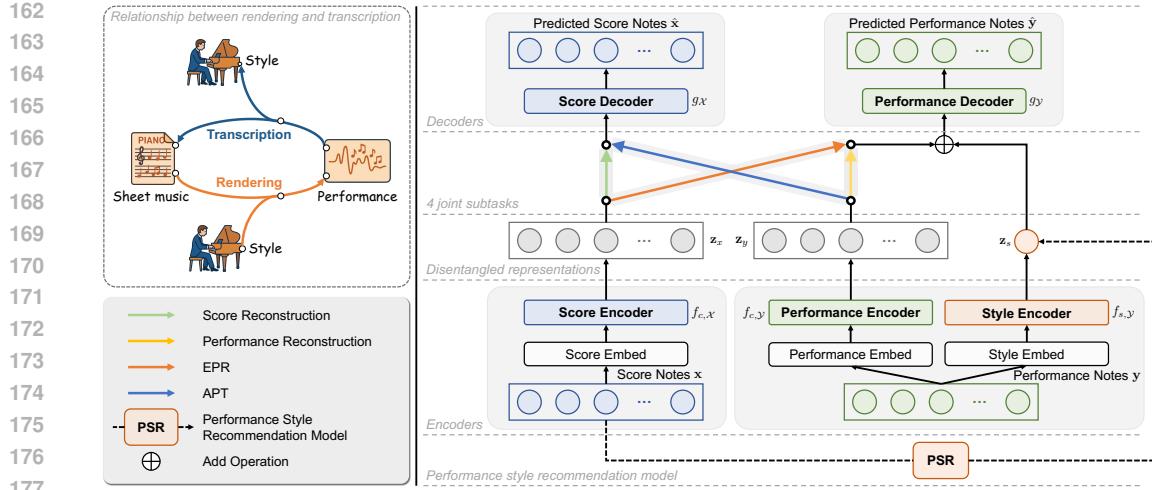


Figure 1: Relationship between EPR and APT (top left) and an overview of the proposed framework. The model comprises a joint transformer-based architecture for EPR and APT, along with a diffusion-based performance style recommendation (PSR) module. Four tasks are trained jointly: masked score reconstruction, masked performance reconstruction, expressive performance rendering (EPR), and automatic performance transcription (APT). Score content features \mathbf{z}_x and \mathbf{z}_y , extracted from score and performance inputs respectively, are encouraged to align. A global style feature \mathbf{z}_s is learned as a disentangled factor to support style transfer. The PSR module is *independently* trained to generate \mathbf{z}_s from score content alone, emulating a pianist’s ability to select appropriate performance styles.

note embedding is obtained by summing the embeddings of its constituent attributes, resulting in $\mathbf{E}_x, \mathbf{E}_y \in \mathbb{R}^{N \times D}$, where D denotes the embedding dimension.

Output features For score prediction ($\hat{\mathbf{x}}$), we adopt the representation scheme introduced in Beyer & Dai (2024). For performance prediction ($\hat{\mathbf{y}}$), we initially applied the same tokenization as used in the input representation, but observed that it degraded generation quality. Since our Seq2Seq model does not require note-level alignment, we instead adopt the structured performance representation proposed in Huang & Yang (2020), implemented via the MidiTok library (Fradet et al., 2021).

3.2 UNIFIED MODELING OF EPR AND APT

We consider two domains of symbolic musical sequences: score sequences $\mathbf{x} \in \mathcal{X}$ and performance sequences $\mathbf{y} \in \mathcal{Y}$. These two domains are connected by two inverse processes: expressive performance rendering (EPR), mapping scores to performances ($\mathcal{X} \rightarrow \mathcal{Y}$), and automatic performance transcription (APT), mapping performances to scores ($\mathcal{Y} \rightarrow \mathcal{X}$). Both domains share a latent content space \mathcal{Z}_c , capturing note-level attributes such as pitch and rhythm. In contrast, \mathcal{Y} additionally depends on a style space \mathcal{Z}_s , serving as a conditioning signal for the high-level summary of its overall expressive interpretation. Our framework supports training on both paired and unpaired data.

Paired setting Given paired data (\mathbf{x}, \mathbf{y}) , we define content encoders $f_{c,\mathcal{X}} : \mathcal{X} \rightarrow \mathcal{Z}_c$ and $f_{c,\mathcal{Y}} : \mathcal{Y} \rightarrow \mathcal{Z}_c$, along with a style encoder $f_{s,\mathcal{Y}} : \mathcal{Y} \rightarrow \mathcal{Z}_s$, producing:

$$\mathbf{z}_x = f_{c,\mathcal{X}}(\mathbf{x}) \in \mathbb{R}^{N \times D}, \quad \mathbf{z}_y = f_{c,\mathcal{Y}}(\mathbf{y}) \in \mathbb{R}^{N \times D}, \quad \mathbf{z}_s = f_{s,\mathcal{Y}}(\mathbf{y}) \in \mathbb{R}^D. \quad (1)$$

We perform the EPR and APT tasks by decoding from these latent representations:

$$\text{EPR: } \hat{\mathbf{y}} = g_{\mathcal{Y}}(\mathbf{z}_x \oplus \mathbf{z}_s), \quad \text{APT: } \hat{\mathbf{x}} = g_{\mathcal{X}}(\mathbf{z}_y), \quad (2)$$

where \oplus denotes broadcasted addition of the global style vector to each time step in \mathbf{z}_x . Both decoders are optimized via cross-entropy losses:

$$\mathcal{L}_{\text{EPR}} = \text{CE}(\hat{\mathbf{y}}, \mathbf{y}), \quad \mathcal{L}_{\text{APT}} = \text{CE}(\hat{\mathbf{x}}, \mathbf{x}). \quad (3)$$

Unpaired setting To incorporate unpaired data, we adopt a masked reconstruction objective inspired by masked autoencoders (He et al., 2022). Specifically, we define $\hat{\mathbf{x}} = \text{MASK}(\mathbf{x})$ and $\hat{\mathbf{y}} = \text{MASK}(\mathbf{y})$,

216 where $\text{MASK}(\cdot)$ randomly replaces a subset of input tokens with a special $\langle \text{MASK} \rangle$ token during
 217 encoding. The model is then trained to reconstruct the full original sequence:

$$219 \quad \mathcal{L}_{\text{rec},\mathcal{X}} = \text{CE}(g_{\mathcal{X}}(f_{c,\mathcal{X}}(\tilde{\mathbf{x}})), \mathbf{x}), \quad \mathcal{L}_{\text{rec},\mathcal{Y}} = \text{CE}(g_{\mathcal{Y}}(f_{c,\mathcal{Y}}(\tilde{\mathbf{y}}) \oplus f_{s,\mathcal{Y}}(\mathbf{y})), \mathbf{y}). \quad (4)$$

220 3.3 LATENT DISENTANGLEMENT AND REGULARIZATION

222 We encourage disentanglement between the content space \mathcal{Z}_c and the style space \mathcal{Z}_s through both
 223 training objectives and architectural design. From a training perspective, The content encoders $f_{c,\mathcal{X}}(\cdot)$
 224 and $f_{c,\mathcal{Y}}(\cdot)$ are supervised to capture score-relevant information via losses from APT, EPR, and
 225 masked reconstruction tasks. Architecturally, We represent content and style at distinct levels: \mathbf{z}_c
 226 encodes fine-grained, note-level attributes such as pitch and rhythm as a sequence of latent vectors,
 227 while \mathbf{z}_s summarizes the overall expressive style as a single latent vector.

228 To regularize the style space and promote smoothness, we impose a Kullback-Leibler divergence
 229 penalty between the posterior over \mathbf{z}_s and a standard Gaussian prior:

$$230 \quad \mathcal{L}_{\text{KL}} = D_{\text{KL}}(q(\mathbf{z}_s \mid \mathbf{y}) \parallel \mathcal{N}(\mathbf{0}, \mathbf{I})). \quad (5)$$

232 The total training objective integrates three components: supervised losses from EPR and APT on
 233 paired data, reconstruction losses from masked inputs on unpaired data, and KL regularization on the
 234 style representation:

$$235 \quad \mathcal{L}_{\text{total}} = \underbrace{\mathcal{L}_{\text{EPR}} + \mathcal{L}_{\text{APT}}}_{\text{paired loss}} + \underbrace{\mathcal{L}_{\text{rec},\mathcal{X}} + \mathcal{L}_{\text{rec},\mathcal{Y}}}_{\text{unpaired loss}} + \underbrace{\mathcal{L}_{\text{KL}}}_{\text{regularization}}. \quad (6)$$

237 3.4 MODELING OF PERFORMANCE STYLE RECOMMENDATION

239 After training the joint model with disentangled representations, we introduce an independent
 240 performance style recommendation (PSR) module that generates style embeddings conditioned solely
 241 on score content. This setup mimics the behavior of a pianist who selects an expressive style based
 242 on the music score alone. The goal is to model the distribution of plausible performance styles for a
 243 given score \mathbf{x} , enabling flexible and automated expressive rendering.

244 **Training** Given a paired sample (\mathbf{x}, \mathbf{y}) , the ground-truth style embedding $\mathbf{z}_s = f_{s,\mathcal{Y}}(\mathbf{y})$ is extracted
 245 from our frozen, pre-trained joint model. A separate score encoder $f_{g,\mathcal{X}}(\cdot)$ concurrently extracts a
 246 global content representation $\mathbf{e}_g = f_{g,\mathcal{X}}(\mathbf{x})$. We then adopt a denoising diffusion probabilistic model
 247 (DDPM) (Ho et al., 2020) to learn the conditional distribution $p(\mathbf{z}_s \mid \mathbf{e}_g)$, jointly training the diffusion
 248 denoiser and $f_{g,\mathcal{X}}(\cdot)$. The forward process perturbs the style vector by adding Gaussian noise:

$$249 \quad \mathbf{z}_s^t = \sqrt{\bar{\alpha}_t} \mathbf{z}_s + \sqrt{1 - \bar{\alpha}_t} \boldsymbol{\epsilon}, \quad \boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}), \quad (7)$$

251 and the reverse process learns to denoise \mathbf{z}_s^t conditioned on \mathbf{e}_g and the diffusion step t . The style
 252 generator $g_s(\cdot)$ is trained to predict the added noise and is optimized using the following objective:

$$253 \quad \mathcal{L}_{\text{PSR}} = \mathbb{E}_{\mathbf{z}_s, \mathbf{e}_g, t, \boldsymbol{\epsilon}} \left[\left\| \boldsymbol{\epsilon} - g_s(\mathbf{e}_g, \mathbf{z}_s^t, t) \right\|_2^2 \right]. \quad (8)$$

256 **Inference** At inference time, given \mathbf{x} , a style embedding $\hat{\mathbf{z}}_s$ is generated by sampling from a standard
 257 Gaussian prior and iteratively denoising it using the trained model, conditioned on $\mathbf{e}_g = f_{g,\mathcal{X}}(\mathbf{x})$.
 258 The resulting pair $(\mathbf{x}, \hat{\mathbf{z}}_s)$ is passed to the decoder $g_{\mathcal{Y}}(\cdot)$ to synthesize the expressive performance $\hat{\mathbf{y}}$.

259 3.5 MODEL ARCHITECTURE

261 **Joint model of EPR and APT** As illustrated in Figure 1, the joint model consists of five transformer-
 262 based components: Score Encoder, Performance Encoder, Style Encoder, Score Decoder, and Perfor-
 263 mance Decoder. Each component adopts a standard transformer architecture (Vaswani et al., 2017)
 264 with six layers and eight attention heads, selected for their ability to model long-range dependencies
 265 and scale effectively to large symbolic music datasets. We employ rotary positional encodings (Su
 266 et al., 2024), pre-layer normalization (Brown et al., 2020), and SwiGLU activations (Shazeer, 2020),
 267 with a feed-forward hidden dimension of 3072. Decoder outputs are projected to token distributions
 268 via parallel linear layers where applicable. To obtain a global style embedding, we follow the BERT
 269 architecture (Devlin et al., 2019) in the Style Encoder by prepending a special $\langle \text{CLS} \rangle$ token to the
 input sequence and taking the final hidden state corresponding to this token as the style vector.

270 **Performance style recommendation** A separate transformer encoder, architecturally aligned with
 271 the Style Encoder, is used to extract a global score representation. A $\langle \text{CLS} \rangle$ token is prepended to the
 272 input score sequence, and its final hidden state is used as the global content embedding \mathbf{e}_g , which
 273 conditions the style generation process.

274 During training, a ground-truth style vector \mathbf{z}_s , obtained from the joint model, is perturbed using a
 275 forward diffusion process. The diffusion timestep t is encoded using sinusoidal positional embeddings
 276 and concatenated with \mathbf{e}_g and the noisy style vector \mathbf{z}_s^t . This combined representation is passed
 277 through a feed-forward network (FCN) to predict the injected noise ϵ . The model is trained using a
 278 mean squared error (MSE) loss between the predicted and true noise.

280 4 EXPERIMENTS

283 4.1 DATASETS

285 We use the **ASAP dataset** (Foscarin et al., 2020) for both paired training and evaluation, as it provides
 286 aligned annotations between musical scores and expressive performances. We select 967 high-quality
 287 performances and split them into training, validation, and test sets with an 8:1:1 ratio, same as Beyer
 288 & Dai (2024). To enable unpaired training, we curate an **unpaired score dataset** consisting of
 289 75,913 public-domain MusicXML files collected from MuseScore¹. We also compile an **unpaired**
 290 **performance dataset** by sourcing piano cover videos from YouTube and transcribing the audio
 291 into performance MIDI using a state-of-the-art audio-to-MIDI transcription model². The model is
 292 selected based on a pilot study demonstrating strong accuracy in both note and pedal transcription. To
 293 evaluate the generalization of disentangled representations in out-of-distribution (*OOD*) settings, we
 294 additionally use the **ATEPP dataset** (Zhang et al., 2022), which contains 11,674 performances by 49
 295 pianists spanning 25 composers, with explicit annotations of both composer and performer identities.

296 4.2 TRAINING SETUP

298 The joint model is trained on 3 NVIDIA A5000 GPUs with a total batch size of 144 sequences, each
 299 containing 256 notes. Each training step comprises 36 sequences for EPR, APT, score reconstruction,
 300 and performance reconstruction, respectively. Optimization is performed using AdamW (Loshchilov
 301 & Hutter, 2019) for 40,000 steps, with a cosine decay learning rate schedule and linear warmup over
 302 the first 4,000 steps, peaking at 5×10^{-5} . The PSR model is trained separately on a single GPU with
 303 a batch size of 48, using the same schedule but with a peak learning rate of 1×10^{-4} .

305 4.3 METRICS

307 **APT** We evaluate APT using two widely adopted metrics: **MUSTER** (Nakamura et al., 2018;
 308 Hiramatsu et al., 2021) and **ScoreSimilarity** (Suzuki, 2021; Cogliati & Duan, 2017). MUSTER
 309 assesses high-level transcription accuracy with a focus on rhythmic structure, including sub-metrics
 310 such as pitch edit distance (E_p), missing notes (E_{miss}), extra notes (E_{extra}), onset deviation (E_{onset}),
 311 and offset deviation (E_{offset}). ScoreSimilarity also captures pitch-level edit distances ($E_{\text{miss}}, E_{\text{extra}}$),
 312 with additional metrics for stem direction (E_{stem}), pitch spelling (E_{spell}), and staff assignment (E_{staff}).

313 **EPR** We use both objective and subjective evaluations. **Objectively**, we compare the generated
 314 performance to its human reference and compute three metrics: *alignment rate*, *insertion rate*,
 315 and *missing rate*. Besides, we conduct objective statistics using three metrics (Tang et al., 2023;
 316 Zhang et al., 2024): per-note variance of onset, duration, and velocity; KL divergence from human
 317 distributions; and note-aligned mean absolute error (MAE) relative to human references. **Subjectively**,
 318 we conduct a listening test with eleven participants trained in music performance. We randomly
 319 sample five pieces from Bach, Rachmaninoff, Schubert, Scriabin, and Ravel to cover a range of
 320 genres and styles. Each participant rates the outputs in randomized order on a 5-point Likert scale
 321 (1–5) across four dimensions: *dynamics*, *tempo*, *style*, and *overall human-likeness*.

322 ¹<https://musescore.com/>

323 ²<https://github.com/EleutherAI/aria-amt>

324 Table 1: APT results on the ASAP dataset. Lower values indicate better performance across all metrics.
 325 The best results are shown in **bold**, and the second-best are underlined. **Statistical significance with**
 326 **respect to the end-to-end baseline is denoted by \dagger for $p < 0.05$ and \ddagger for $p < 0.01$.**

Method	MUSTER						ScoreSimilarity					
	E_p	E_{miss}	E_{extra}	E_{onset}	E_{offset}	E_{avg}	E_{miss}	E_{extra}	$E_{\text{dur.}}$	E_{staff}	E_{stem}	E_{spell}
Neural Liu et al. (2022)	2.02	6.81	9.01	68.28	54.11	28.04	17.10	17.67	66.98	6.86	–	9.71
MuseScore MuseScore (2002)	2.41	7.35	9.64	<u>47.90</u>	49.44	23.35	16.17	16.74	<u>55.23</u>	21.87	29.87	<u>9.69</u>
Finale MakeMusic, Inc. (1988)	2.47	10.10	13.46	31.85	45.34	20.64	14.72	16.43	<u>53.35</u>	21.79	26.74	15.34
Shibata et al. (2021) (J-Pop)	<u>2.09</u>	6.38	<u>8.67</u>	25.02	<u>29.21</u>	14.27	<u>10.80</u>	11.39	71.38	–	–	–
Shibata et al. (2021) (Classical)	2.11	<u>6.47</u>	8.75	22.58	29.84	<u>13.95</u>	10.74	<u>11.28</u>	64.73	–	–	–
End-to-end Beyer & Dai (2024)	2.73	8.40	8.95	<u>17.48</u>	32.92	14.10	12.89	11.29	55.04	11.32	30.51	14.31
Ours	3.08 \ddagger	8.43	7.33\ddagger	16.26\dagger	27.30\ddagger	12.48\dagger	13.43	9.48\ddagger	51.75	<u>9.43\ddagger</u>	<u>28.60\dagger</u>	6.24\ddagger

335 Table 2: Objective evaluation of EPR results. We compare variance (σ^2), KL divergence, and MAE
 336 for onsets (O), durations (D), and velocities (V). For σ^2 , values closer to the *Human* reference are
 337 better. For all other metrics, lower is better. Best results are in **bold**; second-best are underlined.
 338 **Different letters within a column indicate statistically significant differences ($p < 0.01$).**

Method	$\sigma^2 (O)$	$\sigma^2 (D)$	$\sigma^2 (V)$	KL (D)	MAE (D)	KL (V)	MAE (V)
Human	0.12 ^a	1.72 ^a	241.04 ^a	–	–	–	–
Score	0.07 ^a	0.07 ^b	1.36 ^b	13.01 ^a	0.46 ^{ab}	13.00 ^a	29.14 ^a
DExter Zhang et al. (2024)	0.20 ^b	4.15 ^c	238.86 ^a	1.48^b	0.88 ^c	2.32 ^b	24.27 ^b
VirtuosoNet Jeong et al. (2019)	0.02 ^c	0.03 ^d	52.54 ^c	5.72 ^{cd}	0.48 ^a	4.91 ^c	14.40 ^c
EPR-Only	0.03^c	0.67^e	126.04^d	6.43^c	0.42^d	2.05^b	10.65^d
Ours (Target)	0.02 ^c	0.58 ^f	151.03 ^e	<u>5.51^d</u>	0.37^e	1.76^d	10.33^d
Ours (PSR)	0.02 ^c	0.33 ^e	161.51 ^f	6.19 ^c	0.44 ^b	2.67 ^e	15.24 ^e

348 Table 3: Objective evaluation of EPR accuracy
 349 on test samples using alignment (Align), insertion
 350 (Insert), and missing (Miss) rates ($p < 0.01$).

Method	Align \uparrow	Insert \downarrow	Miss \downarrow
Score	93.52 ^a	3.57 ^a	2.91 ^a
DExter Zhang et al. (2024)	91.27 ^b	5.11 ^b	3.62^b
VirtuosoNet Jeong et al. (2019)	91.88 ^c	4.23 ^a	3.90 ^c
Ours (Target)	91.55 ^d	4.13 ^b	4.32 ^d
Ours (PSR)	92.27^a	3.77^c	3.96 ^a

Table 4: Performer (Perf) and composer (Comp) identification accuracy based on performance style (Style) and score content (Cont).

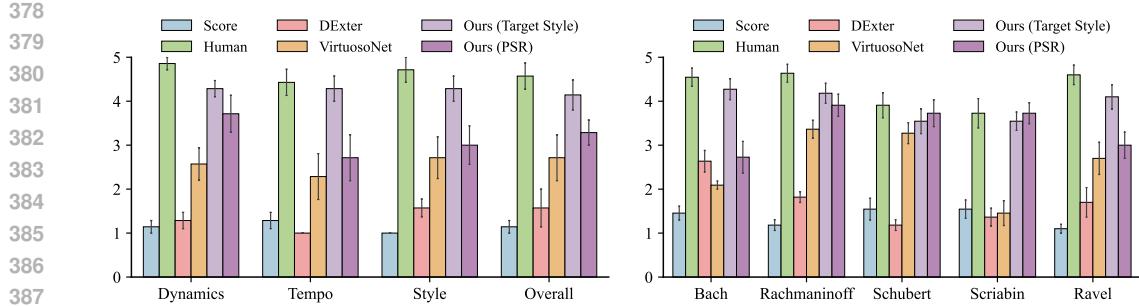
Setting	F1	Recall	Precision	Acc.
Style \rightarrow Perf	25.82	25.67	27.80	42.07
Cont \rightarrow Perf	0.74	2.02	0.46	9.94
Style \rightarrow Comp	52.45	50.29	55.99	77.46
Cont \rightarrow Comp	3.03	4.66	3.75	29.99

5 RESULTS

5.1 EPR AND APT PERFORMANCE

APT In Table 1, we present the APT performance of our model and baseline systems, **with statistical significance evaluated using the Wilcoxon signed-rank test (Wilcoxon, 1945)**. Our model achieves performance comparable to the state-of-the-art APT system, indicating that the learned score representations capture key musical attributes such as pitch, rhythm, and structure. Our alignment-free Seq2Seq formulation achieves competitive results without requiring explicit note-level alignment. In contrast, methods such as Liu et al. (2022) and Shibata et al. (2021) attain lower pitch errors by relying on note-aligned data, which simplifies pitch and onset prediction, but limits flexibility in musically complex, one-to-many contexts (e.g. ornaments, trills, or expressive deviations).

EPR We compare against two strong alignment-based baselines: VirtuosoNet Jeong et al. (2019) and DExter Zhang et al. (2024). Our method is evaluated under two conditions: with extracted target styles (Ours–Target) and with PSR-generated styles (Ours–PSR). **To specifically examine how our joint framework influences EPR performance, we introduce an EPR-Only variant that retains only the Score Encoder, Style Encoder, and Performance Decoder (Section 3.5), and is trained solely on the ASAP dataset.** We also take score MIDI (Score) as a baseline model; it is shaded in gray in Table 2 and Table 3 to indicate that it is not an EPR model and serves only as a comparison anchor. **Statistical significance is computed by Wilcoxon signed rank test (Wilcoxon, 1945) between our methods and all baselines, with $p < 0.05$.**



(a) Subjective ratings of PSR outputs across *musical attributes* (dynamics, tempo, and style). (b) Breakdown of the overall subjective ratings by *composers*.

Figure 2: Subjective evaluation of expressive piano rendering performance across different systems, including human renditions, direct-from-score, baselines, and our proposed models.

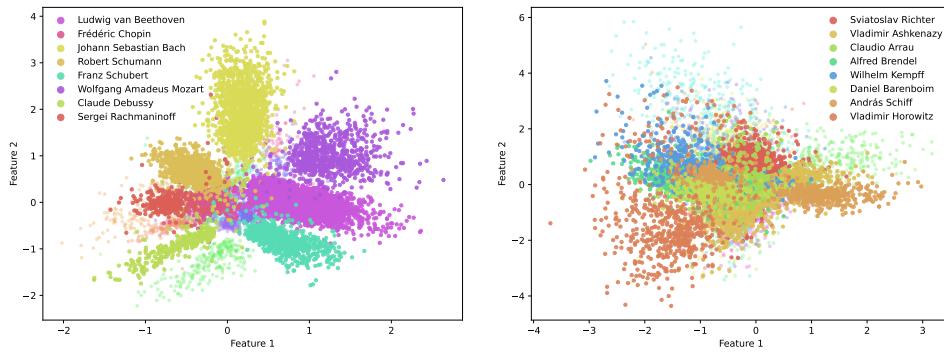


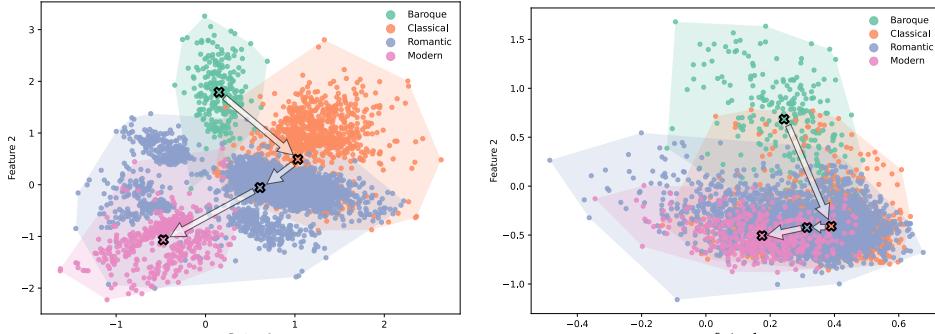
Figure 3: Two-dimensional visualization of performance style representations from real performances, with colors indicating clusters by composer or performer.

The objective statistics in Table 2 show that our models exhibit duration and velocity variances that more closely match those of human performances compared with other baselines, reflecting more natural expressive variability. While DExter shows even larger duration and velocity variance, this does not translate to better quality, as listening tests suggest it results from unstable dynamics rather than meaningful expressiveness. In contrast, our models achieve lower KL and MAE scores than most baselines (especially Ours–Target), confirming that they faithfully replicate the fine-grained expressive details found in human renditions. Moreover, the consistent improvement of Ours–Target over the EPR-Only variant indicates that joint modeling, together with training on additional unpaired data, leads to better EPR performance, validating the effectiveness of our joint framework.

The accuracy evalution in Table 3 shows that Ours (PSR) achieves the highest alignment rate (92.27%) and the lowest insertion rate (3.77%), demonstrating the effectiveness of our alignment-free sequence-to-sequence formulation. Subjective results in Figure 2 show that Ours (Target) achieves the highest ratings across all attributes and styles, with Ours (PSR) closely following and outperforming baseline systems. Both variants perform strongly across composers, particularly on Bach and Scriabin.

5.2 REPRESENTATION DISENTANGLEMENT

Performer/composer identification To further analyze the structure of the learned representations, we perform *performer* and *composer identification* using score content and performance style representations on the ATEPP dataset Zhang et al. (2022), which is split into training, validation, and test sets with an 8:1:1 ratio. We evaluate four model configurations: using either the score content or performance style representation as input, and predicting either the composer or performer as the target. Each performance MIDI is segmented into 256-note chunks and processed by the trained joint model to extract latent representations, which are then averaged across chunks to obtain a single representation per piece. For visualization, we insert a 2D bottleneck layer before the classification



(a) Two-dimensional projection of style embeddings extracted from *actual performances* using the joint model.
 (b) Two-dimensional projection of style embeddings generated by the *PSR model* from corresponding scores.

Figure 4: Two-dimensional visualization of style representations across historical eras. Colored regions denote era-specific clusters with centroids marked by black crosses; white arrows indicate temporal progression of musical styles.

head and project the resulting embeddings onto a 2D plane. The classification results and visualization are presented in Table 4 and Figure 3, respectively.

The results in Table 4 demonstrate the effectiveness of the disentangled representations. Classifiers using the style representation \mathbf{z}_s achieve substantially higher composer and performer accuracy than those using the content representation \mathbf{z}_c , confirming successful disentanglement of performance style from score content. While \mathbf{z}_c primarily encodes pitch and rhythmic structure, it is expected to preserve performance-independent musical characters (e.g. composer-specific information). This explains why the composer classifier using \mathbf{z}_c (Cont→Comp) still achieves a non-trivial accuracy of 29.99%. Notably, the composer classifier using \mathbf{z}_c (Style→Comp) shows much higher accuracy (77.46%). Beyond the effective disentanglement, we attribute this result to two other factors: first, as a global embedding, \mathbf{z}_s is better suited for capturing high-level stylistic features than the note-level \mathbf{z}_c ; second, professional pianists often align their performance style with the composer’s stylistic conventions, thereby encoding composer information directly into their expression.

The visualization in Figure 3 further supports our findings, with style embeddings forming clear clusters by composer and performer. We also observe that embeddings from human performances contain information about both the artist and the composition. This further supports our assumption that skilled pianists adapt their style to the piece, validating the motivation behind our PSR module.

Style transfer evaluation To further evaluate the disentanglement of content and style, we conducted a subjective listening test on style transfer between pieces from distinct genres. For each test case, listeners rated generated outputs on two criteria: *style similarity* to a reference performance and *overall listening quality*. We compared three conditions for the rendered style: the original (Original), the transferred reference style (Target), and an interpolation of both (Mean) to study the learned style feature space. As shown in Figure 5, the Target condition achieves the highest style similarity ratings in Samples 1 and 3, indicating successful transfer. Notably, this improvement does not compromise overall quality. The Mean condition yields consistently strong quality across all samples, suggesting that the style space is well-structured and supports smooth interpolation.

5.3 EFFECTIVENESS OF PSR

To evaluate the styles generated by the PSR model, we collect 5,003 performances from the ATEPP dataset with aligned scores. For each performance, we obtain two style vectors: one extracted directly from the performance using the joint model, and one generated from the corresponding score using the PSR model. Each piece is assigned to one of four historical eras—Baroque, Classical, Romantic, or Modern—based on title and composer metadata parsed using GPT-4o mini (Achiam et al., 2023).

We project the style vectors into 2D using the classifier from Section 5.2. As shown in Figure 4, the PSR-generated styles (right) closely mirror those extracted from real performances (left), exhibiting similar clustering structure, era-wise separation, and centroid locations. This alignment, together

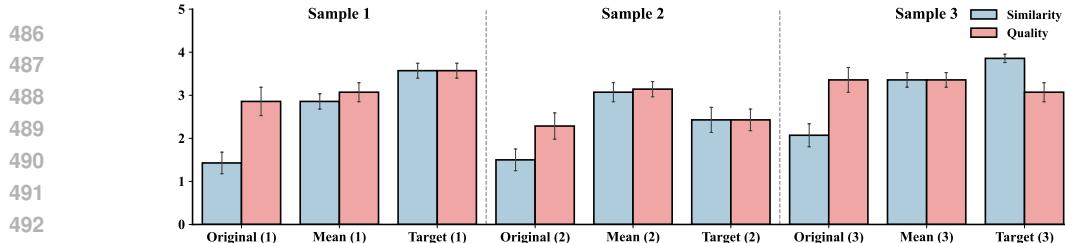


Figure 5: Subjective ratings for three generated samples using different style settings. Listeners rated each output on style similarity and overall listening quality.

with the subjective results in Figure 2, supports the PSR model’s ability to synthesize stylistically meaningful embeddings from score content alone.

6 CONCLUSION

In this paper, we present a unified framework for expressive piano performance rendering (EPR) and automatic performance transcription (APT), built upon disentangled latent representations of score content and performance style. To enable flexible style-aware rendering, we introduce a DDPM-based Performance Style Recommendation (PSR) module that generates expressive styles directly from score content. Evaluated through objective metrics, subjective listening tests, and representation visualizations, our approach achieves performance on par with state-of-the-art methods across both EPR and APT tasks. Our findings demonstrate that: (a) the joint model effectively learns disentangled representations of content and style; (b) EPR can be formulated as a sequence-to-sequence task without requiring note-level alignment; (c) the model supports flexible style transfer; and (d) the PSR module produces stylistically appropriate outputs conditioned solely on the score. As future work, we aim to extend this framework to popular music, which presents greater stylistic diversity and practical relevance than classical music.

ETHICS STATEMENT

The authors have reviewed and conformed in every respect with the ICLR Code of Ethics <https://iclr.cc/public/CodeOfEthics>. The human study in our experiment is based on online crowdsourcing, which bears minimum risk. Participants are informed that participation in our study is entirely voluntary and that they may choose to stop participating at any time without any negative consequences. No personally identifying information is collected in the human study.

REPRODUCIBILITY STATEMENT

We introduce our dataset and experimental settings in Section 4.1 and section 4.2, respectively. We also provide details of model architectures necessary for reproduction in Appendix B. The code will be released upon acceptance with sufficient instructions for reproducing the model architecture and training pipeline using public datasets such as ASAP and ATEPP.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report. *arXiv preprint arXiv:2303.08774*, 2023.

María Alfaro-Contreras, Antonio Ríos-Vila, Jose J. Valero-Mas, and Jorge Calvo-Zaragoza. A transformer approach for polyphonic audio-to-score transcription. In *IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2024, Seoul, Republic of Korea, April 14-19, 2024*, pp. 706–710. IEEE, 2024. doi: 10.1109/ICASSP48485.2024.10447162.

Yu Bao, Hao Zhou, Shujian Huang, Lei Li, Lili Mou, Olga Vechtomova, Xin-Yu Dai, and Jiajun Chen. Generating sentences from disentangled syntactic and semantic spaces. In Anna Korhonen,

540 David R. Traum, and Lluís Màrquez (eds.), *Proceedings of the 57th Conference of the Association*
 541 *for Computational Linguistics, ACL 2019, Florence, Italy, July 28- August 2, 2019, Volume 1: Long Papers*, pp. 6008–6019. Association for Computational Linguistics, 2019. doi: 10.18653/V1/P19-1602.

544 Tim Beyer and Angela Dai. End-to-end piano performance-midi to score conversion with transformers.
 545 In Blair Kaneshiro, Gautham J. Mysore, Oriol Nieto, Chris Donahue, Cheng-Zhi Anna Huang,
 546 Jin Ha Lee, Brian McFee, and Matthew C. McCallum (eds.), *Proceedings of the 25th International*
 547 *Society for Music Information Retrieval Conference, ISMIR 2024, San Francisco, California, USA*
 548 *and Online, November 10-14, 2024*, pp. 319–326, 2024. doi: 10.5281/ZENODO.14877339.

550 Ilya Borovik and Vladimir Viro. Scoreperformer: Expressive piano performance rendering with
 551 fine-grained control. In Augusto Sarti, Fabio Antonacci, Mark Sandler, Paolo Bestagini, Simon
 552 Dixon, Beici Liang, Gaël Richard, and Johan Pauwels (eds.), *Proceedings of the 24th International*
 553 *Society for Music Information Retrieval Conference, ISMIR 2023, Milan, Italy, November 5-9,*
 554 *2023*, pp. 588–596, 2023. doi: 10.5281/ZENODO.10265355.

555 Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
 556 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
 557 Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
 558 Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott
 559 Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
 560 Sutskever, and Dario Amodei. Language models are few-shot learners. In Hugo Larochelle,
 561 Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin (eds.), *Advances*
 562 *in Neural Information Processing Systems 33: Annual Conference on Neural Information Process-*
 563 *ing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual*, 2020.

564 Carlos Cancino-Chacón, Silvan David Peter, Emmanouil Karystinios, Francesco Foscarin, Maarten
 565 Grachten, and Gerhard Widmer. Partitura: A python package for symbolic music processing. *arXiv*
 566 *preprint arXiv:2206.01071*, 2022.

567 Carlos Cancino-Chacón, Silvan Peter, Patricia Hu, Emmanouil Karystinios, Florian Henkel,
 568 Francesco Foscarin, Nimrod Varga, and Gerhard Widmer. The accompanion: Combining re-
 569 activity, robustness, and musical expressivity in an automatic piano accompanist. *arXiv preprint*
 570 *arXiv:2304.12939*, 2023.

571 Carlos Cancino Chacón, Silvan Peter, Patricia Hu, Emmanouil Karystinios, Florian Henkel,
 572 Francesco Foscarin, and Gerhard Widmer. The accompanion: Combining reactivity, robustness,
 573 and musical expressivity in an automatic piano accompanist. In *Proceedings of the Thirty-Second*
 574 *International Joint Conference on Artificial Intelligence, IJCAI 2023, 19th-25th August 2023,*
 575 *Macao, SAR, China*, pp. 5779–5787. ijcai.org, 2023. doi: 10.24963/IJCAI.2023/641.

577 Carlos Eduardo Cancino Chacón, Maarten Grachten, Werner Goebel, and Gerhard Widmer. Com-
 578 putational models of expressive music performance: A comprehensive and critical review.
 579 *Frontiers Digit. Humanit.*, 5:25, 2018. doi: 10.3389/FDIGH.2018.00025. URL <https://doi.org/10.3389/fdigh.2018.00025>.

581 Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and Pieter Abbeel. Infogan:
 582 Interpretable representation learning by information maximizing generative adversarial nets. In
 583 Daniel D. Lee, Masashi Sugiyama, Ulrike von Luxburg, Isabelle Guyon, and Roman Garnett (eds.),
 584 *Advances in Neural Information Processing Systems 29: Annual Conference on Neural Information*
 585 *Processing Systems 2016, December 5-10, 2016, Barcelona, Spain*, pp. 2172–2180, 2016.

586 Pengyu Cheng, Martin Renqiang Min, Dinghan Shen, Christopher Malon, Yizhe Zhang, Yitong
 587 Li, and Lawrence Carin. Improving disentangled text representation learning with information-
 588 theoretic guidance. In Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel R. Tetreault (eds.),
 589 *Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, ACL*
 590 *2020, Online, July 5-10, 2020*, pp. 7530–7541. Association for Computational Linguistics, 2020.
 591 doi: 10.18653/V1/2020.ACL-MAIN.673.

593 Andrea Cogliati and Zhiyao Duan. A metric for music notation transcription accuracy. In Sally Jo
 Cunningham, Zhiyao Duan, Xiao Hu, and Douglas Turnbull (eds.), *Proceedings of the 18th*

594 *International Society for Music Information Retrieval Conference, ISMIR 2017, Suzhou, China,*
 595 *October 23-27, 2017, pp. 407–413, 2017.*

596

597 Andrea Cogliati, David Temperley, and Zhiyao Duan. Transcribing human piano performances into
 598 music notation. In Michael I. Mandel, Johanna Devaney, Douglas Turnbull, and George Tzanetakis
 599 (eds.), *Proceedings of the 17th International Society for Music Information Retrieval Conference,*
 600 *ISMIR 2016, New York City, United States, August 7-11, 2016*, pp. 758–764, 2016.

601 Peter Desain and Henkjan Honing. The quantization of musical time: A connectionist approach.
 602 *Computer Music Journal*, 13(3):56–66, 1989.

603

604 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of
 605 deep bidirectional transformers for language understanding. In Jill Burstein, Christy Doran, and
 606 Thamar Solorio (eds.), *Proceedings of the 2019 Conference of the North American Chapter of*
 607 *the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT*
 608 *2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers)*, pp. 4171–4186.
 609 Association for Computational Linguistics, 2019. doi: 10.18653/V1/N19-1423.

610 Emilien Dupont. Learning disentangled joint continuous and discrete representations. In Samy
 611 Bengio, Hanna M. Wallach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Roman
 612 Garnett (eds.), *Advances in Neural Information Processing Systems 31: Annual Conference on*
 613 *Neural Information Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal,*
 614 *Canada*, pp. 708–718, 2018.

615 Francesco Foscarin, Andrew McLeod, Philippe Rigaux, Florent Jacquemard, and Masahiko Sakai.
 616 ASAP: a dataset of aligned scores and performances for piano transcription. In Julie Cumming,
 617 Jin Ha Lee, Brian McFee, Markus Schedl, Johanna Devaney, Cory McKay, Eva Zangerle, and
 618 Timothy de Reuse (eds.), *Proceedings of the 21th International Society for Music Information*
 619 *Retrieval Conference, ISMIR 2020, Montreal, Canada, October 11-16, 2020*, pp. 534–541, 2020.

620 Nathan Fradet, Jean-Pierre Briot, Fabien Chhel, Amal El Fallah Seghrouchni, and Nicolas Gutowski.
 621 MidiTok: A python package for MIDI file tokenization. In *Extended Abstracts for the Late-Breaking*
 622 *Demo Session of the 22nd International Society for Music Information Retrieval Conference*, 2021.

623

624 Curtis Hawthorne, Erich Elsen, Jialin Song, Adam Roberts, Ian Simon, Colin Raffel, Jesse H. Engel,
 625 Sageev Oore, and Douglas Eck. Onsets and frames: Dual-objective piano transcription. In
 626 Emilia Gómez, Xiao Hu, Eric Humphrey, and Emmanouil Benetos (eds.), *Proceedings of the 19th*
 627 *International Society for Music Information Retrieval Conference, ISMIR 2018, Paris, France,*
 628 *September 23-27, 2018*, pp. 50–57, 2018.

629 Curtis Hawthorne, Ian Simon, Rigel Swavely, Ethan Manilow, and Jesse H. Engel. Sequence-to-
 630 sequence piano transcription with transformers. In Jin Ha Lee, Alexander Lerch, Zhiyao Duan,
 631 Juhan Nam, Preeti Rao, Peter van Kranenburg, and Ajay Srinivasamurthy (eds.), *Proceedings of*
 632 *the 22nd International Society for Music Information Retrieval Conference, ISMIR 2021, Online,*
 633 *November 7-12, 2021*, pp. 246–253, 2021.

634 Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross B. Girshick. Masked
 635 autoencoders are scalable vision learners. In *IEEE/CVF Conference on Computer Vision and*
 636 *Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022*, pp. 15979–15988.
 637 IEEE, 2022. doi: 10.1109/CVPR52688.2022.01553.

638

639 Ruidan He, Wee Sun Lee, Hwee Tou Ng, and Daniel Dahlmeier. An unsupervised neural attention
 640 model for aspect extraction. In Regina Barzilay and Min-Yen Kan (eds.), *Proceedings of the*
 641 *55th Annual Meeting of the Association for Computational Linguistics, ACL 2017, Vancouver,*
 642 *Canada, July 30 - August 4, Volume 1: Long Papers*, pp. 388–397. Association for Computational
 643 Linguistics, 2017. doi: 10.18653/V1/P17-1036.

644 Yuki Hiramatsu, Eita Nakamura, and Kazuyoshi Yoshii. Joint estimation of note values and voices
 645 for audio-to-score piano transcription. In Jin Ha Lee, Alexander Lerch, Zhiyao Duan, Juhan Nam,
 646 Preeti Rao, Peter van Kranenburg, and Ajay Srinivasamurthy (eds.), *Proceedings of the 22nd*
 647 *International Society for Music Information Retrieval Conference, ISMIR 2021, Online, November*
 648 *7-12, 2021*, pp. 278–284, 2021.

648 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In Hugo
 649 Larochelle, Marc'Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin (eds.),
 650 *Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information
 651 Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual*, 2020.

652 Yu-Siang Huang and Yi-Hsuan Yang. Pop music transformer: Beat-based modeling and generation
 653 of expressive pop piano compositions. In Chang Wen Chen, Rita Cucchiara, Xian-Sheng Hua,
 654 Guo-Jun Qi, Elisa Ricci, Zhengyou Zhang, and Roger Zimmerman (eds.), *MM '20: The 28th
 655 ACM International Conference on Multimedia, Virtual Event / Seattle, WA, USA, October 12-16,
 656 2020*, pp. 1180–1188. ACM, 2020. doi: 10.1145/3394171.3413671.

657 Dasaem Jeong, Taegyun Kwon, Yoojin Kim, Kyogu Lee, and Juhan Nam. Virtuosonet: A hierarchical
 658 rnn-based system for modeling expressive piano performance. In Arthur Flexer, Geoffroy Peeters,
 659 Julián Urbano, and Anja Volk (eds.), *Proceedings of the 20th International Society for Music
 660 Information Retrieval Conference, ISMIR 2019, Delft, The Netherlands, November 4-8, 2019*, pp.
 661 908–915, 2019.

662 Kevin Ji, Daniel Yang, and Timothy Tsai. Piano sheet music identification using marketplace
 663 fingerprinting. In Jin Ha Lee, Alexander Lerch, Zhiyao Duan, Juhan Nam, Preeti Rao, Peter van
 664 Kranenburg, and Ajay Srinivasamurthy (eds.), *Proceedings of the 22nd International Society for
 665 Music Information Retrieval Conference, ISMIR 2021, Online, November 7-12, 2021*, pp. 326–333,
 666 2021.

667 Jongmin Jung, Dongmin Kim, Sihun Lee, Seola Cho, Hyungjoon Soh, Irmak Bukey, Chris Don-
 668 ahue, and Dasaem Jeong. Unified cross-modal translation of score images, symbolic music, and
 669 performance audio. *arXiv preprint arXiv:2505.12863*, 2025.

670 Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and Timo Aila. Analyzing
 671 and improving the image quality of stylegan. In *2020 IEEE/CVF Conference on Computer Vision
 672 and Pattern Recognition, CVPR 2020, Seattle, WA, USA, June 13-19, 2020*, pp. 8107–8116.
 673 Computer Vision Foundation / IEEE, 2020. doi: 10.1109/CVPR42600.2020.00813.

674 Jong Wook Kim and Juan Pablo Bello. Adversarial learning for improved onsets and frames music
 675 transcription. In Arthur Flexer, Geoffroy Peeters, Julián Urbano, and Anja Volk (eds.), *Proceedings
 676 of the 20th International Society for Music Information Retrieval Conference, ISMIR 2019, Delft,
 677 The Netherlands, November 4-8, 2019*, pp. 670–677, 2019.

678 Alexis Kirke and Eduardo R. Miranda (eds.). *Guide to Computing for Expressive Music Performance*.
 679 Springer, 2013. ISBN 978-1-4471-4122-8. doi: 10.1007/978-1-4471-4123-5.

680 Qiuqiang Kong, Bochen Li, Xuchen Song, Yuan Wan, and Yuxuan Wang. High-resolution piano
 681 transcription with pedals by regressing onset and offset times. *IEEE ACM Trans. Audio Speech
 682 Lang. Process.*, 29:3707–3717, 2021. doi: 10.1109/TASLP.2021.3121991.

683 Lele Liu, Veronica Morfi, and Emmanouil Benetos. Joint multi-pitch detection and score transcription
 684 for polyphonic piano music. In *IEEE International Conference on Acoustics, Speech and Signal
 685 Processing, ICASSP 2021, Toronto, ON, Canada, June 6-11, 2021*, pp. 281–285. IEEE, 2021. doi:
 686 10.1109/ICASSP39728.2021.9413601.

687 Lele Liu, Qiuqiang Kong, Veronica Morfi, and Emmanouil Benetos. Performance midi-to-score
 688 conversion by neural beat tracking. In Preeti Rao, Hema A. Murthy, Ajay Srinivasamurthy,
 689 Rachel M. Bittner, Rafael Caro Repetto, Masataka Goto, Xavier Serra, and Marius Miron (eds.),
 690 *Proceedings of the 23rd International Society for Music Information Retrieval Conference, ISMIR
 691 2022, Bengaluru, India, December 4-8, 2022*, pp. 395–402, 2022.

692 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In *7th International
 693 Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019*.
 694 OpenReview.net, 2019.

695 Akira Maezawa, Kazuhiko Yamamoto, and Takuya Fujishima. Rendering music performance with
 696 interpretation variations using conditional variational RNN. In Arthur Flexer, Geoffroy Peeters,
 697 Julián Urbano, and Anja Volk (eds.), *Proceedings of the 20th International Society for Music
 698 Information Retrieval Conference, ISMIR 2019, Delft, The Netherlands, November 4-8, 2019*, pp.
 699 855–861, 2019.

702 MakeMusic, Inc. Finale version 27. <https://www.finalemusic.com>, 1988. Accessed:
 703 2024-02-28.

704

705 MuseScore. MuseScore: Free music composition and notation software. <https://musescore.org>, 2002. Accessed: 2024-02-28.

706

707 Eita Nakamura, Kazuyoshi Yoshii, and Haruhiro Katayose. Performance error detection and post-
 708 processing for fast and accurate symbolic music alignment. In Sally Jo Cunningham, Zhiyao Duan,
 709 Xiao Hu, and Douglas Turnbull (eds.), *Proceedings of the 18th International Society for Music
 710 Information Retrieval Conference, ISMIR 2017, Suzhou, China, October 23-27, 2017*, pp. 347–353,
 711 2017.

712 Eita Nakamura, Emmanouil Benetos, Kazuyoshi Yoshii, and Simon Dixon. Towards complete
 713 polyphonic music transcription: Integrating multi-pitch detection and rhythm quantization. In *2018
 714 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2018, Calgary,
 715 AB, Canada, April 15-20, 2018*, pp. 101–105. IEEE, 2018. doi: 10.1109/ICASSP.2018.8461914.

716 Giuseppe De Pasquale, Blerina Spahiu, Pietro Ducange, and Andrea Maurino. Towards automatic
 717 classification of sheet music. In Maristella Agosti, Maurizio Atzori, Paolo Ciaccia, and Letizia
 718 Tanca (eds.), *Proceedings of the 28th Italian Symposium on Advanced Database Systems, Villasimius,
 719 Sud Sardegna, Italy (virtual due to Covid-19 pandemic), June 21-24, 2020*, volume 2646 of
 720 *CEUR Workshop Proceedings*, pp. 266–277. CEUR-WS.org, 2020.

721

722 Cal Peyser, W. Ronny Huang, Andrew Rosenberg, Tara N. Sainath, Michael Picheny, and Kyunghyun
 723 Cho. Towards disentangled speech representations. In Hanseok Ko and John H. L. Hansen (eds.),
 724 *23rd Annual Conference of the International Speech Communication Association, Interspeech
 725 2022, Incheon, Korea, September 18-22, 2022*, pp. 3603–3607. ISCA, 2022a. doi: 10.21437/
 726 INTERSPEECH.2022-30.

727

728 Cal Peyser, W. Ronny Huang, Andrew Rosenberg, Tara N. Sainath, Michael Picheny, and Kyunghyun
 729 Cho. Towards disentangled speech representations. In Hanseok Ko and John H. L. Hansen (eds.),
 730 *23rd Annual Conference of the International Speech Communication Association, Interspeech
 731 2022, Incheon, Korea, September 18-22, 2022*, pp. 3603–3607. ISCA, 2022b. doi: 10.21437/
 732 INTERSPEECH.2022-30.

733

734 Christopher Raphael. Automated rhythm transcription. In *ISMIR 2001, 2nd International Symposium
 735 on Music Information Retrieval, Indiana University, Bloomington, Indiana, USA, October 15-17,
 736 2001, Proceedings*, 2001.

737

738 Yi Ren, Xu Tan, Tao Qin, Sheng Zhao, Zhou Zhao, and Tie-Yan Liu. Almost unsupervised text to
 739 speech and automatic speech recognition. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.),
 740 *Proceedings of the 36th International Conference on Machine Learning, ICML 2019, 9-15 June
 741 2019, Long Beach, California, USA*, volume 97 of *Proceedings of Machine Learning Research*, pp.
 742 5410–5419. PMLR, 2019.

743

744 Lenny Renault, Rémi Mignot, and Axel Roebel. Expressive piano performance rendering from
 745 unpaired data. In *International Conference on Digital Audio Effects (DAFx23)*, pp. 355–358, 2023.

746

747 Seungyeon Rhyu, Sarah Kim, and Kyogu Lee. Sketching the expression: Flexible rendering of
 748 expressive piano performance with self-supervised learning. In Preeti Rao, Hema A. Murthy,
 749 Ajay Srinivasamurthy, Rachel M. Bittner, Rafael Caro Repetto, Masataka Goto, Xavier Serra,
 750 and Marius Miron (eds.), *Proceedings of the 23rd International Society for Music Information
 751 Retrieval Conference, ISMIR 2022, Bengaluru, India, December 4-8, 2022*, pp. 178–185, 2022.

752

753 Miguel A. Román, Antonio Pertusa, and Jorge Calvo-Zaragoza. An end-to-end framework for
 754 audio-to-score music transcription on monophonic excerpts. In Emilia Gómez, Xiao Hu, Eric
 755 Humphrey, and Emmanouil Benetos (eds.), *Proceedings of the 19th International Society for Music
 756 Information Retrieval Conference, ISMIR 2018, Paris, France, September 23-27, 2018*, pp. 34–41,
 757 2018.

758

759 Miguel A. Román, Antonio Pertusa, and Jorge Calvo-Zaragoza. A holistic approach to polyphonic
 760 music transcription with neural networks. In Arthur Flexer, Geoffroy Peeters, Julián Urbano, and
 761 Anja Volk (eds.), *Proceedings of the 20th International Society for Music Information Retrieval
 762 Conference, ISMIR 2019, Delft, The Netherlands, November 4-8, 2019*, pp. 731–737, 2019.

756 Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models. In
 757 *The Tenth International Conference on Learning Representations, ICLR 2022, Virtual Event, April*
 758 *25-29, 2022. OpenReview.net, 2022.*

759

760 Noam Shazeer. Glu variants improve transformer. *arXiv preprint arXiv:2002.05202*, 2020.

761

762 Kentaro Shibata, Eita Nakamura, and Kazuyoshi Yoshii. Non-local musical statistics as guides for
 763 audio-to-score piano transcription. *Inf. Sci.*, 566:262–280, 2021. doi: 10.1016/J.INS.2021.03.014.

764

765 Jianlin Su, Murtadha H. M. Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer:
 766 Enhanced transformer with rotary position embedding. *Neurocomputing*, 568:127063, 2024. doi:
 767 10.1016/J.NEUCOM.2023.127063.

768

769 Masahiro Suzuki. Score transformer: Generating musical score from note-level representation. In
 770 Changwen Chen, Helen Huang, Jun Zhou, Tatsuya Harada, Jianfei Cai, Wu Liu, and Dong Xu
 771 (eds.), *MMAAsia '21: ACM Multimedia Asia, Gold Coast, Australia, December 1 - 3, 2021*, pp.
 772 31:1–31:7. ACM, 2021. doi: 10.1145/3469877.3490612.

773

774 Hao Hao Tan and Dorien Herremans. Music fadernets: Controllable music generation based on
 775 high-level features via low-level feature modelling. In Julie Cumming, Jin Ha Lee, Brian McFee,
 776 Markus Schedl, Johanna Devaney, Cory McKay, Eva Zangerle, and Timothy de Reuse (eds.),
 777 *Proceedings of the 21th International Society for Music Information Retrieval Conference, ISMIR*
 778 *2020, Montreal, Canada, October 11-16, 2020*, pp. 109–116, 2020.

779

780 Jingjing Tang, Geraint Wiggins, and Gyorgy Fazekas. Reconstructing human expressiveness in piano
 781 performances with a transformer network. *arXiv preprint arXiv:2306.06040*, 2023.

782

783 David Temperley. What's key for key? the krumhansl-schmuckler key-finding algorithm reconsidered.
 784 *Music Perception*, 17(1):65–100, 1999.

785

786 Keisuke Toyama, Taketo Akama, Yukara Ikemiya, Yuhta Takida, Wei-Hsiang Liao, and Yuki Mitsuji.
 787 Automatic piano transcription with hierarchical frequency-time transformer. In Augusto Sarti,
 788 Fabio Antonacci, Mark Sandler, Paolo Bestagini, Simon Dixon, Beici Liang, Gaël Richard,
 789 and Johan Pauwels (eds.), *Proceedings of the 24th International Society for Music Information*
 790 *Retrieval Conference, ISMIR 2023, Milan, Italy, November 5-9, 2023*, pp. 215–222, 2023. doi:
 791 10.5281/ZENODO.10265261.

792

793 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
 794 Kaiser, and Illia Polosukhin. Attention is all you need. In Isabelle Guyon, Ulrike von Luxburg,
 795 Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett (eds.),
 796 *Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information*
 797 *Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA*, pp. 5998–6008, 2017.

798

799 Xin Wang, Hong Chen, Si'ao Tang, Zihao Wu, and Wenwu Zhu. Disentangled representation learning.
 800 *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 2024.

801

802 Yixin Wang, David Blei, and John P Cunningham. Posterior collapse and latent variable non-
 803 identifiability. *Advances in neural information processing systems*, 34:5443–5455, 2021.

804

805 Ziyu Wang, Dingsu Wang, Yixiao Zhang, and Gus Xia. Learning interpretable representation
 806 for controllable polyphonic music generation. In Julie Cumming, Jin Ha Lee, Brian McFee,
 807 Markus Schedl, Johanna Devaney, Cory McKay, Eva Zangerle, and Timothy de Reuse (eds.),
 808 *Proceedings of the 21th International Society for Music Information Retrieval Conference, ISMIR*
 809 *2020, Montreal, Canada, October 11-16, 2020*, pp. 662–669, 2020.

810

811 Gerhard Widmer and Werner Goebl. Computational models of expressive music performance: The
 812 state of the art. *Journal of new music research*, 33(3):203–216, 2004.

813

814 Gerhard Widmer, Simon Dixon, Werner Goebl, Elias Pampalk, and Asmir Tobudic. In search of the
 815 horowitz factor. *AI Mag.*, 24(3):111–130, 2003. doi: 10.1609/AIMAG.V24I3.1722.

816

817 Frank Wilcoxon. Individual comparisons by ranking methods. *Biometrics bulletin*, 1(6):80–83, 1945.

810 Jiawei Wu, Xiaoya Li, Xiang Ao, Yuxian Meng, Fei Wu, and Jiwei Li. Improving robustness and
 811 generality of nlp models using disentangled representations. *arXiv preprint arXiv:2009.09587*,
 812 2020.

813 Mengyue Yang, Furui Liu, Zhitang Chen, Xinwei Shen, Jianye Hao, and Jun Wang. Causalvae:
 814 Disentangled representation learning via neural structural causal models. In *IEEE Conference on*
 815 *Computer Vision and Pattern Recognition, CVPR 2021, virtual, June 19-25, 2021*, pp. 9593–9602.
 816 Computer Vision Foundation / IEEE, 2021. doi: 10.1109/CVPR46437.2021.00947.

817 Ruihan Yang, Dingsu Wang, Ziyu Wang, Tianyao Chen, Junyan Jiang, and Gus Xia. Deep music
 818 analogy via latent representation disentanglement. In Arthur Flexer, Geoffroy Peeters, Julián
 819 Urbano, and Anja Volk (eds.), *Proceedings of the 20th International Society for Music Information*
 820 *Retrieval Conference, ISMIR 2019, Delft, The Netherlands, November 4-8, 2019*, pp. 596–603,
 821 2019.

822 Wei Zeng, Xian He, and Ye Wang. End-to-end real-world polyphonic piano audio-to-score transcription
 823 with hierarchical decoding. In *Proceedings of the Thirty-Third International Joint Conference*
 824 *on Artificial Intelligence, IJCAI 2024, Jeju, South Korea, August 3-9, 2024*, pp. 7788–7795.
 825 ijcai.org, 2024.

826 Huan Zhang and Simon Dixon. Disentangling the horowitz factor: Learning content and style from
 827 expressive piano performance. In *IEEE International Conference on Acoustics, Speech and Signal*
 828 *Processing ICASSP 2023, Rhodes Island, Greece, June 4-10, 2023*, pp. 1–5. IEEE, 2023. doi:
 829 10.1109/ICASSP49357.2023.10095009.

830 Huan Zhang, Jingjing Tang, Syed Rm Rafee, Simon Dixon, George Fazekas, and Geraint A. Wiggins.
 831 ATEPP: A dataset of automatically transcribed expressive piano performance. In Preeti Rao,
 832 Hema A. Murthy, Ajay Srinivasamurthy, Rachel M. Bittner, Rafael Caro Repetto, Masataka
 833 Goto, Xavier Serra, and Marius Miron (eds.), *Proceedings of the 23rd International Society for*
 834 *Music Information Retrieval Conference, ISMIR 2022, Bengaluru, India, December 4-8, 2022*, pp.
 835 446–453, 2022.

836 Huan Zhang, Shreyan Chowdhury, Carlos Eduardo Cancino-Chacón, Jinhua Liang, Simon Dixon,
 837 and Gerhard Widmer. Dexter: Learning and controlling performance expression with diffusion
 838 models. *Applied Sciences*, 14(15):6543, 2024.

839 Jingwei Zhao, Gus Xia, Ziyu Wang, and Ye Wang. Structured multi-track accompaniment arrangement
 840 via style prior modelling. In Amir Globersons, Lester Mackey, Danielle Belgrave, Angela
 841 Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang (eds.), *Advances in Neural Information*
 842 *Processing Systems 38: Annual Conference on Neural Information Processing Systems 2024,*
 843 *NeurIPS 2024, Vancouver, BC, Canada, December 10 - 15, 2024*, 2024.

844 APPENDICES

845 The appendix is structured into 6 main parts. Appendix A specifies the data processing details involved
 846 in the paper. Appendix B presents implementation details of our proposed methods. Appendix C
 847 provides subjective listening test details. Appendix D presents supplementary experimental results on
 848 GPT-4o results verification, diversity analysis of EPR, and ablation studies. Appendix E discusses
 849 challenges and future work. In Appendix F, we provide several examples of expressive piano
 850 rendering (EPR) and automatic piano transcription (APT). Finally, we disclose the use of LLMs in
 851 Appendix G.

852 A DATA PROCESSING DETAILS

853 A.1 DATA FILTERING

854 To construct a clean and consistent symbolic dataset from MuseScore, we apply a series of rule-based
 855 filters to exclude low-quality or incompatible piano scores. A score is retained only if it satisfies all
 856 of the following criteria:

- **Staff structure:** The score must contain exactly two staves, conforming to standard piano notation.
- **Note count:** The total number of notes must be at least 100.
- **Bar count:** The score must span at least 10 bars.
- **Note density:** No individual bar may contain more than 64 notes, to avoid overly dense notation.
- **Time signature:** The time signature must fall within a musically plausible range: the number of beats per measure must be between 1 and 16, and the beat type must belong to the set $\{2, 4, 8, 16, 32\}$.
- **Key signature:** The notated key signature, expressed as the number of fifths, must lie within $[-7, 7]$. In addition, the mean distance between the notated and estimated keys (Temperley, 1999; Cancino-Chacón et al., 2022) must not exceed 1.

To compute key signature distance, we segment each score into contiguous regions with a constant notated key signature. For each segment, we estimate the key and compare it to the notated key. Let $k_i \in [-7, 7]$ denote the notated key signature and $\hat{k}_i \in [-7, 7]$ the estimated key. The key distance is defined as:

$$d_i = \min \left(|k_i - \hat{k}_i|, |k_i - \hat{k}_i + 12|, |k_i - \hat{k}_i - 12| \right), \quad (9)$$

accounting for circularity in the circle of fifths. The final mean key distance is computed as:

$$D = \frac{1}{N} \sum_{i=1}^N d_i, \quad (10)$$

where N is the number of key-stable segments. Only scores with $D \leq 1$ are retained.

A.2 DATA REPRESENTATION DETAILS

Score The score representation captures structural and timing information relevant for expressive rendering. The input encodes performance-related features, while the output is extended to include additional notation-specific attributes necessary for producing readable sheet music.

Time-based features, including inter-onset interval (IOI), onset-in-bar, note value, and downbeat, are discretized into consistent vocabularies spanning 0 to 6 quarter lengths, each with 145–146 bins. Boolean-valued attributes, such as *grace note* and *hand/staff assignment*, are encoded as binary values. The score output additionally predicts symbolic formatting elements such as voice number, articulation markings (e.g., trill, staccato), and engraving-specific cues including stem direction and accidentals (e.g., double flats and sharps). All features are treated as discrete classification targets using small, well-defined vocabularies summarized in Table 5.

Performance MIDI The performance representation captures expressive aspects of human execution, including timing, articulation, and dynamics. At the input level, we extract four note-level features: **Pitch** (MIDI number), **IOI** (inter-onset interval in seconds), **Duration** (extended by pedal usage), and **Velocity** (loudness). IOI and Duration are quantized into 200 bins, while Velocity is coarsely grouped into 8 bins for robustness.

For output, we adopt a structured token-based representation (Huang & Yang, 2020), implemented using the `miditok` library (Fradet et al., 2021). The model generates discrete token sequences that include **Note-On**, **Duration**, **Velocity**, and **Time-Shift** events, enabling expressive sequence generation without explicit note-level alignment. Special tokens such as **BOS** (beginning of sequence) and **PAD** are also used to facilitate training and formatting. Table 6 provides the vocabulary sizes and ranges for all input and output features.

918 Table 5: Vocabulary size and value ranges of input and output parameters for music score.
919

920 Parameter	N_{vocab}	921 Range/Values	922 Input	923 Output
922 Onset-in-Bar	145	[0, 6] quarter-length	✓	✓
923 Inter-Onset Interval (IOI)	145	[0, 6] quarter-length	✓	
924 Pitch	128	[0, 127]	✓	✓
925 Note Value	145	[0, 6] quarter-length	✓	✓
926 Measure Length	146	[0, 6] \cup {false}	✓	✓
927 Grace	2	boolean	✓	✓
928 Hand/Staff	2	boolean	✓	✓
929 Trill, Grace, Staccato	2 each	boolean		✓
930 Voice	8	[1, 8]		✓
931 Stem	3	{up, down, none}		✓
932 Accidental	6	{bb, b, , #, ##, none}		✓

931 Table 6: Vocabulary size and value ranges of input and output parameters for performance MIDI.
932

933 Parameter	N_{vocab}	934 Range/Values	935 Input	936 Output
935 Pitch (p_i)	128	[0, 127]	✓	
936 IOI (o_i)	200	[0, 8] seconds	✓	
937 Duration (d_i)	200	[0, 8] seconds	✓	
938 Velocity (v_i)	8	[0, 127]	✓	
939 Note-On Token	88	[21, 108]		✓
940 Duration Token	32	32 discrete steps		✓
941 Velocity Token	32	32 velocity bins		✓
942 Time-Shift Token	~200	quantized by beat_res		✓
943 Special Tokens	2	{PAD, BOS}		✓

944

B IMPLEMENTATION DETAILS

945

B.1 JOINT MODEL

946 Our joint model is implemented in PyTorch Lightning and trained via multi-task learning to simultaneously handle EPR, APT, and masked reconstruction from unpaired data. This section outlines the training tasks, loss formulation, optimization strategy, and implementation setup.

947 **Training tasks** Each training step involves four supervised or self-supervised subtasks:

- 948 • **APT** The score decoder reconstructs symbolic score tokens from the performance content encoder.
- 949 • **EPR** The performance decoder generates MIDI tokens conditioned on the score content encoder and a style embedding.
- 950 • **Score Reconstruction** The score encoder is trained using random masking to reconstruct full sequences from partially masked inputs.
- 951 • **MIDI Reconstruction** The performance content encoder and decoder reconstruct MIDI sequences from masked inputs in a similar fashion.

952 Additionally, a Kullback-Leibler (KL) regularization term is applied to the style embedding to encourage compactness and diversity in the latent style space.

953 **Training loss** Let \mathcal{L}_{APT} , \mathcal{L}_{EPR} , $\mathcal{L}_{rec, \mathcal{X}}$, and $\mathcal{L}_{rec, \mathcal{Y}}$ denote the cross-entropy losses for APT, EPR, score reconstruction, and MIDI reconstruction, respectively. The total training objective is given by:

$$954 \mathcal{L}_{total} = \mathcal{L}_{APT} + \mathcal{L}_{EPR} + \lambda_{rec} \cdot (\mathcal{L}_{rec, \mathcal{X}} + \mathcal{L}_{rec, \mathcal{Y}}) + \lambda_{KL} \cdot \mathcal{L}_{KL}, \quad (11)$$

955 where $\lambda_{rec} = 0.2$ and $\lambda_{KL} = 0.1$. We apply a 50% masking rate to encoder inputs during reconstruction, and a lighter masking rate of 10–20% to decoder inputs to improve robustness and mitigate overfitting.

972 **Optimization** We use AdamW optimizers (Loshchilov & Hutter, 2019) with a learning rate of
 973 5×10^{-5} , following a cosine learning rate schedule with 4,000 warm-up steps and 40,000 total steps.
 974 Gradient updates are manually scheduled, and training is performed using mixed precision (fp16).
 975

976 **Batching and scheduling** Each training step processes 144 sequences (each of length 256 notes),
 977 evenly divided among the four subtask types: APT, EPR, unpaired score, and unpaired MIDI. Data
 978 loaders for each subset are interleaved and sampled in parallel. KL regularization is computed once
 979 per batch using the mean and variance of the predicted style embeddings.
 980

981 **Implementation notes** All model components use a unified embedding dimension of $d = 512$,
 982 with task-specific embedding layers. Attention masks are dynamically modified during training to
 983 simulate incomplete inputs, following masked language modeling strategies. The system is trained
 984 on 3 NVIDIA A5000 GPUs using batch-level data parallelism.
 985

986 B.2 PERFORMANCE STYLE RECOMMENDATION (PSR)

987 The performance style recommendation (PSR) module is designed to generate expressive style
 988 embeddings directly from symbolic scores, enabling performance rendering without requiring paired
 989 expressive data at inference time. The overall architecture is illustrated in Figure 6.
 990

991 **Overview** The PSR model comprises two components: (1) a transformer-based score encoder that
 992 extracts a global content embedding from a symbolic score sequence, and (2) a denoising diffusion
 993 probabilistic model (DDPM) that generates a style vector conditioned on this content embedding.
 994 This pipeline enables sampling stylistically coherent vectors from Gaussian noise, guided by the
 995 structure of the input score.
 996

997 **Score encoder** We adopt a transformer encoder $f_{g,\mathcal{X}}(\mathbf{x})$ to process the input score sequence.
 998 Following the BERT-style design (Devlin et al., 2019), a special $[\text{CLS}]$ token is prepended to the
 999 sequence, and its final-layer hidden state is used as the *global* score content representation $\mathbf{e}_g \in \mathbb{R}^D$.
 1000

1001 **Diffusion network** We employ a DDPM (Ho et al., 2020) with velocity prediction (Salimans &
 1002 Ho, 2022) to model the conditional distribution over style embeddings given the content vector.
 1003 During training, the model learns to recover a ground-truth style vector \mathbf{z}_s , extracted from human
 1004 performances via the joint model, from a noisy version \mathbf{z}_s^t produced by the forward diffusion process.
 1005 A sinusoidal timestep embedding \mathbf{e}_t is concatenated with the projected content embedding \mathbf{e}'_g and
 1006 the noisy style vector \mathbf{z}_s^t , and passed through a multi-layer perceptron (MLP) to predict the velocity
 1007 target $\mathbf{v}_{\text{target}}$. The model is optimized with the following mean squared error loss:
 1008

$$\mathcal{L}_{\text{PSR}} = \mathbb{E}_{\mathbf{z}_s, \mathbf{e}_g, t} \left[\left\| g_s(\mathbf{z}_s^t, \mathbf{e}_t, \mathbf{e}'_g) - \mathbf{v}_{\text{target}} \right\|_2^2 \right]. \quad (12)$$

1009 **Inference** At inference time, a style vector is initialized from a standard Gaussian distribution and
 1010 iteratively denoised using the exponential moving average (EMA) version of the MLP denoising
 1011 network. The resulting style embedding $\hat{\mathbf{z}}_s$ can be combined with the score content to condition the
 1012 expressive rendering model. This one-to-many mapping enables diverse, plausible, and stylistically
 1013 appropriate generation from symbolic input alone.
 1014

1015 B.3 MODEL COMPLEXITY

1016 Table 7 summarizes the model sizes and inference speeds for both APT and EPR, tested on a single
 1017 NVIDIA A5000 GPU. Several observations can be drawn. First, although our unified model contains
 1018 substantially more parameters (188.21M) than the end-to-end APT baseline (32.60M), its APT
 1019 inference speed (4.86s/sample) remains comparable because only the APT-specific modules are active
 1020 during APT decoding; the additional EPR-related parameters are not involved in this forward pass.
 1021 Second, APT inference is consistently faster than EPR within the unified architecture. This follows
 1022 from the shorter output sequences in APT, whereas EPR must generate longer sequences under the
 1023 structured performance representation (Section 3.1). Third, EPR inference speed varies widely across
 1024 baseline systems. VirtuosoNet is the fastest (0.35s/sample) as it is trained on note-aligned data and
 1025

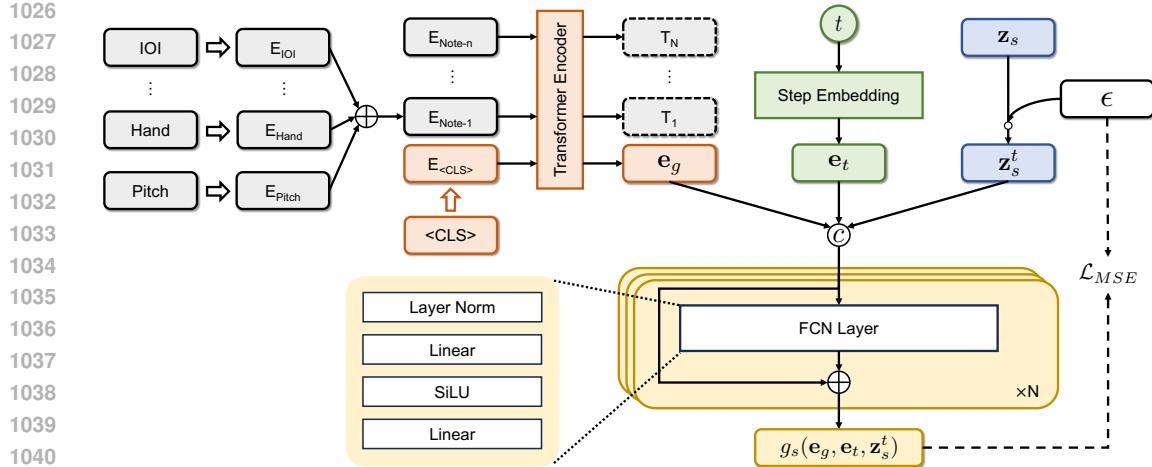


Figure 6: Architecture of the performance style recommendation (PSR) module. Given a symbolic score, we extract a global content embedding using a transformer encoder and train a diffusion model to predict the style embedding from noise.

Table 7: Comparison of model parameters and inference speed for APT and EPR.

Method	Number of Parameters	APT Inference speed	EPR Inference speed
Dexter (Zhang et al., 2024)	62.41M	-	14.14s/sample
Virtuosonet (Jeong et al., 2019)	5.16M	-	0.35s/sample
End-to-End (Beyer & Dai, 2024)	32.60M	4.56s/sample	-
Ours	188.21M	4.8564s/sample	10.1726s/sample

does not require autoregressive decoding, while DExter is the slowest (14.14s/sample) due to its diffusion-based design requiring multiple denoising iterations. Our unified model falls between these two extremes: despite performing autoregressive decoding and modeling fine-grained expressive attributes, it achieves a reasonable EPR inference time (10.17s/sample) while supporting both tasks within a single architecture.

C SUBJECTIVE LISTENING TEST INSTRUCTIONS

C.1 OVERVIEW

We conduct our subjective evaluation using a Google Form ³, structured into two sections: (1) evaluation of performance style recommendation (PSR), and (2) evaluation of style transfer. Each participant completes both sections, with an average completion time of approximately 32 minutes. Figure 7 shows sample survey pages along with participant instructions. Detailed descriptions of the survey structure are provided below.

C.2 SURVEY STRUCTURE

Part I: Overall Evaluation Participants are presented with 4 music clips, each accompanied by 6 audio renditions generated by different EPR models. Each rendition is rated along the following four dimensions:

- **Dynamics:** Naturalness and expressiveness of loudness variation.
- **Tempo:** Naturalness and expressiveness of tempo fluctuations over time.
- **Performance Style:** Appropriateness of the performance’s character, mood, and interpretation.

³<https://docs.google.com/forms>

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103

Part I/II: Overall Evaluation (1/4)

Part I: Overall Evaluation
For a total of **24 renditions**:
- You will be presented with **4 music clips**.
- For the same clip, you will hear **6 different audio renditions** generated by various EPR models.
You will be asked to rate each audio sample on the following four dimensions:
- **Dynamics**: How naturally and expressively the loudness is varied throughout the performance.
- **Tempo**: How naturally and expressively the speed of the performance changes over time.
- **Performance Style**: The overall character, mood, and interpretation of the piece. Please rate based on **how appropriately the performance style matches the musical content and intent of the piece**.
- **Overall Human-Likeness**: How convincingly the performance sounds like it was played by a human.
Ratings will be provided on a **5-point Likert-like scale**, ranging from 1 (**Very Poor**) to 5 (**Very Good**).

Rendition 0

Ratings for Rendition 0 *

	Very Poor	Poor	Neutral	Good	Very Good
Dynamics	<input type="radio"/>				
Tempo	<input type="radio"/>				
Style	<input type="radio"/>				
Overall	<input type="radio"/>				

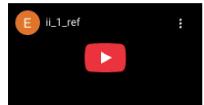
(a) Overall evaluation of EPR.

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103

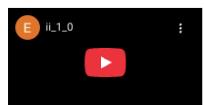
Part III: Style Similarity (1/3)

Part II: Style Similarity
You will be presented with **3 examples**.
For each example:
- You will first hear a **reference audio**.
- Then, you will hear **3 sample audios** generated by different models.
- You will rate each sample in two aspects:
- **Performance Style Similarity**: How similar the style of the sample is compared to the reference (regardless of musical content).
- **Overall Human-Likeness**: How human-like the sample sounds in terms of expressiveness and interpretation.
Note: The samples in this part will differ in musical content from the reference; please focus only on **style similarity**, not on matching the notes.
Ratings will be provided on a **5-point Likert-like scale**, ranging from 1 (**Very Poor**) to 5 (**Very Good**).

Reference Audio



Sample 0



Ratings for Sample 0 *

	Very Poor	Poor	Neutral	Good	Very Good
Similarity	<input type="radio"/>				
Overall	<input type="radio"/>				

(b) Style transfer evaluation.

Figure 7: Screenshots of survey pages and instructions of our online survey.

- **Overall Human-Likeness**: How convincingly the performance resembles that of a human.

Ratings are provided on a 5-point Likert scale ranging from 1 (**Very Poor**) to 5 (**Very Good**).

Part II: Style Similarity Participants are presented with 3 examples. Each example consists of:

- A reference performance.
- Three test renditions generated by different models, with varied content but intended to share the same performance style.

Each test rendition is rated on:

- **Performance Style Similarity**: The extent to which the style (e.g., rhythm, dynamics, pedal usage) matches the reference, independent of pitch content.
- **Overall Human-Likeness**: Perceived expressiveness and realism of the performance.

All ratings are again provided on a 5-point Likert scale.

C.3 ADDITIONAL NOTES

- Participants are instructed to evaluate variation and human-likeness, rather than personal preference or audio fidelity.
- All audio sources are anonymized; both the order of clips and model outputs are randomized to reduce potential bias.
- Participants are encouraged to use headphones in a quiet environment for optimal listening conditions.
- The total duration of the survey is approximately 20–25 minutes. No personal data is collected.

1134 Table 8: Agreement matrices between human annotators and GPT-4o. Cohen’s κ values: Annotator
 1135 1 (A1) v.s. Annotator 2 (A2) = 0.89; Annotator 1 (A1) v.s. GPT-4o = 0.85; Annotator 2 (A2) v.s.
 1136 GPT-4o = 0.89. B = Baroque, C = Classical, R = Romantic, T = Contemporary.

A1 vs. A2				A1 vs. GPT-4o				A2 vs. GPT-4o				
B	C	R	T	B	C	R	T	B	C	R	T	
B	22	0	0	0	22	0	0	0	22	0	0	0
C	0	10	4	0	0	6	8	0	0	6	4	0
R	0	0	53	2	0	0	55	0	0	0	58	0
T	0	0	1	8	0	0	1	8	0	0	2	8

1145 Table 9: Average pairwise MAEs for human renditions and model outputs.
 1146

	Duration MAE	Velocity MAE
Human	0.06	11.62
Model	0.08	8.01

1152 Table 10: Pairwise MAEs among 7 *human* renditions.
 1153

(a) Durations							(b) Velocities								
	H1	H2	H3	H4	H5	H6	H7		H1	H2	H3	H4	H5	H6	H7
H1	0.00	0.06	0.07	0.06	0.06	0.07	0.06	H1	0.00	10.66	14.11	15.82	10.94	12.46	12.90
H2		0.00	0.06	0.06	0.05	0.06	0.05	H2		0.00	13.23	13.82	11.01	12.23	12.26
H3			0.00	0.07	0.07	0.06	0.06	H3			0.00	9.05	11.42	9.02	9.33
H4				0.00	0.06	0.08	0.05	H4				0.00	12.16	10.80	11.26
H5					0.00	0.06	0.05	H5					0.00	11.12	10.78
H6						0.00	0.06	H6						0.00	9.66
H7							0.00	H7							0.00

1163

D SUPPLEMENTARY EXPERIMENTAL RESULTS

1164

D.1 HUMAN VERIFICATION OF GPT-4O OUTPUTS

1165 To assess the reliability of GPT-4o predictions in Section 5.3, we conducted a human verification
 1166 study on 100 randomly sampled movements, independently annotated by two professionally trained
 1167 pianists into four eras (Baroque, Classical, Romantic, Contemporary). Agreement was measured
 1168 using Cohen’s $\kappa = \frac{p_o - p_e}{1 - p_e}$, where p_o is the observed agreement and p_e is the expected agreement by
 1169 chance. As shown in Table 8, inter-annotator agreement was high ($\kappa = 0.89$), and GPT-4o showed
 1170 similarly strong consistency with both annotators ($\kappa = 0.85$ and $\kappa = 0.89$). Most disagreements
 1171 occurred in transitional works between Classical and Romantic eras, where stylistic boundaries are
 1172 ambiguous. For example, *Piano Sonata No. 26 in E-flat, Op. 81a “Les adieux”: II. Abwesenheit*
 1173 (*Andante espressivo*) was annotated as Classical by both human experts but labeled as Romantic by
 1174 GPT-4o. Such cases are reasonable given the transitional nature of the repertoire. Overall, these
 1175 results confirm that GPT-4o aligns closely with expert judgment and can be used as a reliable reference
 1176 for PSR evaluation.

1177

D.2 DIVERSITY ANALYSIS OF EPR

1178 To verify that the model captures one-to-many expressive variation rather than collapsing to an
 1179 averaged output, we analyzed diversity on a score from ASAP with 7 human performances and 7
 1180 model outputs generated via top- k sampling ($k = 5$). Pairwise note-aligned MAEs were computed
 1181 for durations and velocities. As summarized in Table 9, the average human MAEs were 0.06
 1182 (duration) and 11.62 (velocity), while the model achieved 0.08 and 8.01, respectively. Detailed
 1183 pairwise matrices (Table 10, Table 11) show that model outputs exhibit meaningful internal variation,
 1184 following the diversity observed in human renditions. This demonstrates that the proposed model
 1185

Table 11: Pairwise MAEs among 7 *model* outputs.

	(a) Durations							(b) Velocities						
	M1	M2	M3	M4	M5	M6	M7	M1	M2	M3	M4	M5	M6	M7
M1	0.00	0.08	0.11	0.13	0.06	0.10	0.12	0.00	6.09	10.06	9.47	7.73	8.26	8.14
M2		0.00	0.08	0.10	0.06	0.09	0.09		0.00	9.82	8.53	8.61	9.94	9.62
M3			0.00	0.08	0.06	0.05	0.04			0.00	6.17	10.12	7.48	8.45
M4				0.00	0.07	0.09	0.08				0.00	8.19	7.16	8.40
M5					0.00	0.07	0.05					0.00	6.50	5.00
M6						0.00	0.06						0.00	4.37
M7							0.00							0.00

Table 12: APT results on different proportions of paired/unpaired data. Lower is better for all metrics. The best results are shown in **bold**, and the second-best are underlined.

Method	MUSTER						ScoreSimilarity					
	E_p	E_{miss}	E_{extra}	E_{onset}	E_{offset}	E_{avg}	E_{miss}	E_{extra}	$E_{\text{dur.}}$	E_{staff}	E_{stem}	E_{spell}
paired + 0% unpaired	3.10	9.33	8.09	16.69	29.29	13.30	13.98	10.13	59.45	10.02	30.60	8.44
paired + 25% unpaired	2.94	<u>8.86</u>	7.80	<u>16.37</u>	28.36	<u>12.87</u>	<u>13.66</u>	10.10	60.06	<u>8.86</u>	<u>30.58</u>	<u>7.46</u>
paired + 50% unpaired	3.24	9.74	<u>7.59</u>	17.07	<u>27.99</u>	13.13	14.91	9.96	<u>56.86</u>	7.91	31.61	10.49
paired + 100% unpaired	<u>3.08</u>	8.43	<u>7.33</u>	16.26	<u>27.30</u>	12.48	<u>13.43</u>	9.48	<u>51.75</u>	9.43	28.60	6.24

Table 13: Performer (Perf) and composer (Comp) identification under two data settings: paired + 0% unpaired and paired + 100% unpaired. **Boldface** is kept *only* for Style→Perf and Style→Comp to highlight the effect of adding unpaired data. The rightmost block reports the per-metric gain Δ (100% unpaired – 0% unpaired).

Setting	paired + 0% unpaired				paired + 100% unpaired				Δ (100% – 0%)			
	F1	Recall	Precision	Acc.	F1	Recall	Precision	Acc.	$\Delta F1$	$\Delta \text{Rec.}$	$\Delta \text{Prec.}$	$\Delta \text{Acc.}$
Style→Perf	19.33	19.17	20.21	33.76	25.82	25.67	27.80	42.07	+6.49	+6.50	+7.59	+8.31
Cont→Perf	0.71	1.94	0.44	9.68	0.74	2.02	0.46	9.94	+0.03	+0.08	+0.02	+0.26
Style→Comp	46.33	43.51	55.24	69.07	52.45	50.29	55.99	77.46	+6.12	+6.78	+0.75	+8.39
Cont→Comp	2.92	4.57	4.37	30.16	3.03	4.66	3.75	29.99	+0.11	+0.09	-0.62	-0.17

Table 14: Ablation of KL weight on KL divergence, active units (AU), and classification accuracy (CA).

KL weight	KL divergence	AU	CA
0	1.11	512	0.94
0.5	0.69	512	0.91
1	0.09	512	0.88
5	0.10	512	0.76

captures distributional expressiveness in performance generation rather than regressing to a mean output.

D.3 ABLATION STUDIES

Ablations on unpaired data To evaluate the impact of unpaired data, we conduct an ablation study by varying the ratio of unpaired data used in training. We train four model variants using 0% (paired data only), 25%, 50%, and 100% of our curated unpaired datasets, while keeping all other hyperparameters constant. The APT results in Table 12 show that incorporating unpaired data generally enhances performance. Adding just 25% of the unpaired data provides a consistent improvement over the baseline model trained only on paired data, while using the full 100% unpaired dataset achieves the best overall performance.

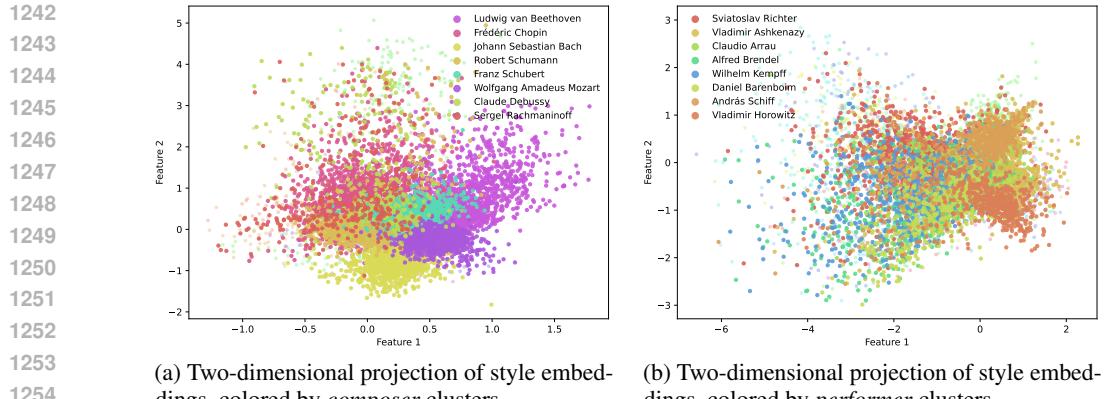


Figure 8: Two-dimensional performance style visualization of *paired + 0% unpaired* variant representations, with colors indicating clusters by composer or performer.

Furthermore, to study the influence of unpaired data on representation disentanglement, we conduct *performer* and *composer identification* in Section 5.2. As shown in Table 13, introducing unpaired data significantly enhances the quality of the style representation. For both performer (Style→Perf) and composer (Style→Comp) identification, all metrics see a substantial improvement, with classification accuracy increasing by +8.31% and +8.39%, respectively. In contrast, the classification performance using the content representation remains almost unchanged. These results indicate that our model effectively leverages unpaired data to enrich the style embedding while successfully preserving the disentanglement between performance style and score content.

To further examine the effect of unpaired data, we visualize the learned style embeddings for the *paired + 0% unpaired* variant and the *paired + 100% unpaired* variant (Figure 8). Compared with Figure 3, the *paired + 0% unpaired* variant exhibits noticeably less structure, with composer and performer clusters partially overlapping. Incorporating unpaired data produces clearer and more compact clusters, indicating that the additional data helps the model learn more discriminative and coherent style representations.

KL divergence analysis We evaluate latent informativeness across different KL weights for the KL divergence loss introduced in Section 3.3 using three metrics (Wang et al., 2021): (i) KL divergence between posterior and prior, (ii) Active Units (AU) measuring the number of latent dimensions with sample variance > 0.01 , and (iii) style classification accuracy (CA) using \mathbf{z}_s and ground-truth era labels from Section 5.3. As shown in Table 14, stronger KL regularization reduces both KL divergence and classification accuracy, while the number of active units remains consistently high (512). This indicates that although some information compression occurs, the latent representation does not undergo full posterior collapse, and still preserves musically meaningful information.

E DISCUSSION ON CHALLENGES AND FUTURE WORK

Beyond classical genres Our joint framework is inherently genre-agnostic: it does not rely on classical-specific score structures and can, in principle, generalize to any musical style given suitable supervision. Our current study focuses on classical piano performance primarily due to data availability, as existing score–performance aligned datasets such as ASAP (Foscarin et al., 2020) contain exclusively classical repertoire. Extending expressive performance rendering to other genres (e.g., jazz or pop) introduces additional challenges. First, these genres lack large curated paired datasets, making supervised learning more difficult. Second, many non-classical traditions involve improvisation, flexible phrase structures, and rhythmically nuanced conventions (e.g., swing timing) that are not well captured by classical-style fully notated scores. For instance, jazz performances are typically aligned to lead sheets rather than detailed five-line staff notation, making precise score–performance alignment inherently ambiguous. As future work, we aim to curate genre-specific datasets and adopt notation formats appropriate to each style (e.g., lead sheets for jazz, chord charts for pop) to extend our unified EPR framework beyond classical music and enable genre-aware expressive rendering.

1296 **Transcription biases** Our use of unpaired YouTube performances offers valuable stylistic diversity
 1297 and follows a data construction strategy similar to ATEPP (Zhang et al., 2022). Nonetheless, this
 1298 pipeline may also introduce transcription-related artifacts, as the audio-to-MIDI system can impose
 1299 quantization biases or systematic timing regularities. As a result, the style encoder may inadvertently
 1300 learn these artifacts rather than capturing purely human expressive behavior. In the long term, we
 1301 aim to pursue end-to-end performance modeling by generating audio directly from score notation,
 1302 thereby mitigating domain shifts introduced by intermediate MIDI representations and allowing the
 1303 model to learn stylistic nuances more faithfully from raw human performances.

1304 F EXAMPLES OF EPR AND APT

1307 **EPR** Demos are available at <https://jointpianist.github.io/epr-apt/>. The page
 1308 includes two sections: (1) rendering results from various models, including ours, on five music
 1309 pieces from different composers; and (2) style transfer results on three music pieces, showcasing the
 1310 flexibility of our method.

1311 **APT** Examples of APT outputs are shown in Figure 9–Figure 11. For each sample, the ground-truth
 1312 score is displayed at the top, and the predicted score from our model at the bottom. Missing notes in
 1313 the target scores are highlighted with red bounding boxes, while inserted notes in the predicted scores
 1314 are highlighted with blue bounding boxes.

1316 G THE USE OF LARGE LANGUAGE MODELS (LLMs)

1319 In accordance with the ICLR policy, we disclose the use of Large Language Models (LLMs) as
 1320 assistive tools in the preparation of this manuscript. The specific applications are detailed below:

- 1322 • Data annotation: We employed an LLM to assist in the annotation of our dataset. The
 1323 detailed methodology and human verification have been introduced in Section 5.3 and
 1324 Appendix D.1.
- 1325 • Literature search: LLMs were used as a tool to aid in the initial search and summarization
 1326 of relevant prior work.
- 1327 • Writing and polishing: We utilized an LLM for proofreading and language refinement.

1328 All authors have carefully reviewed and edited the manuscript. We take full responsibility for all
 1329 content of this paper, including the final research ideas, experimental results, and the accuracy and
 1330 integrity of the text.

1350
1351
1352
1353
1354
1355
1356 Allegro
1357 *p*
1358
1359
1360
1361
1362
1363 *cresc.*
1364 *f*
1365 *p*
1366
1367
1368
1369
1370
1371
1372
1373
1374 **Target**
1375
1376 **Transcription**
1377
1378
1379
1380
1381
1382
1383 *tr*
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398 Figure 9: **Ground truth score (upper)** and **transcribed score (lower)** from *Piano Sonata No.12 in F Major, K 332*, by Wolfgang Amadeus Mozart (APT sample 1).
1399
1400
1401
1402
1403

1458
1459
1460
1461
1462 **Lento**
1463
1464
1465
1466
1467

1468 5 **Moderato**
1469
1470
1471
1472
1473
1474 *Red.* * *Red.* *
1475
1476 10
1477
1478
1479
1480
1481 **Target**
1482
1483 **Transcription**
1484
1485
1486
1487
1488
1489
1490
1491
1492 9
1493
1494
1495
1496
1497
1498
1499 19
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Figure 11: **Ground truth score (upper)** and **transcribed score (lower)** from *Ballade No. 1 in G minor, Op. 23*, by Frédéric Chopin (APT sample 3).