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ABSTRACT

Expressive performance rendering (EPR) and automatic piano transcription (APT)
are fundamental yet inverse tasks in music information retrieval: EPR generates
expressive performances from symbolic scores, while APT recovers scores from
performances. Despite their dual nature, prior work has addressed them indepen-
dently. In this paper, we propose a unified framework that jointly models EPR
and APT by disentangling note-level score content and global performance style
representations from both paired and unpaired data. Our framework is built on a
transformer-based sequence-to-sequence (Seq2Seq) architecture and is trained us-
ing only sequence-aligned data, without requiring fine-grained note-level alignment.
To automate the rendering process while ensuring stylistic compatibility with the
score, we introduce an independent diffusion-based performance style recommen-
dation (PSR) module that generates style embeddings directly from score content.
This modular component supports both style transfer and flexible rendering across a
range of expressive styles. Experimental results from both objective and subjective
evaluations demonstrate that our framework achieves competitive performance
on EPR and APT tasks, while enabling effective content–style disentanglement,
reliable style transfer, and stylistically appropriate rendering. Demos are available
at https://jointpianist.github.io/epr-apt/.

1 INTRODUCTION

Music exists across multiple modalities, notably symbolic music scores and expressive audio record-
ings. Converting between these musical modalities is essential for enabling machine learning models
to reason across symbolic and audio domains, supporting a wide range of applications from artistic
creation to music education (Cancino-Chacón et al., 2023; Chacón et al., 2023). In a live concert, for
example, a pianist renders a written score into an expressive performance, adding personalized nu-
ances in timing, dynamics, and articulation. Conversely, for purposes such as analysis, re-performance,
or archiving, transcription is needed to convert an audio recording of a performance back into a
symbolic representation. These two processes correspond to two core tasks in music information
retrieval (MIR): expressive performance rendering (EPR), which generates performance MIDI (MIDI
that captures expressive timing, dynamics, and articulation) from symbolic scores (Chacón et al.,
2018), and automatic piano transcription (APT), which predicts symbolic scores from performance
MIDI (Desain & Honing, 1989).

Prior work has studied EPR and APT as two separate tasks (Maezawa et al., 2019; Jeong et al., 2019;
Rhyu et al., 2022; Borovik & Viro, 2023; Liu et al., 2022; Cogliati et al., 2016; Nakamura et al.,
2018; Shibata et al., 2021). However, as illustrated in the top-left corner of Figure 1, the two tasks are
inherently connected, representing inverse transformations between symbolic and expressive forms.
In rendering, the performance reflects both the composer’s intent and the pianist’s interpretive style;
in transcription, the system should filter out these expressive elements to recover the underlying score.

Joint modeling in speech tasks such as automatic speech recognition (ASR) and text-to-speech (TTS)
has shown mutual benefits and enabled weakly supervised training (Ren et al., 2019; Peyser et al.,
2022a). A concurrent line of work in music demonstrates a similar direction, showing that unified
translation across multiple modalities can be achieved using only sequence-aligned data (Jung et al.,
2025). This underscores the growing trend toward scalable, alignment-free supervision. Motivated by
this, we propose a unified transformer-based framework that jointly learns EPR and APT by modeling
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two factors: (a) a note-level score content representation, which captures symbolic structures like
pitch and rhythm; and (b) a global performance style representation, which encapsulates the high-
level artistic character of a performance (e.g., “heavy” or “relaxing”) and serves as a conditioning
signal to guide the generation of fine-grained expressive details by the decoder. This disentangled
representation allows for information sharing across tasks while preserving the interpretability and
controllability of the rendering process. Besides, the use of a unified Seq2Seq architecture enables
our model to be trained using only sequence-aligned data, removing the need for note-level alignment
required by most EPR systems (Rhyu et al., 2022; Borovik & Viro, 2023; Tang et al., 2023; Jeong
et al., 2019; Zhang et al., 2024).

To enable flexible and realistic performance rendering, it is crucial to distinguish between the types of
information encoded in our disentangled representations. We define style as the expressive realization
of a score (e.g., the “Horowitz factor” by Widmer et al. (2003)), and genre as the underlying structural
and harmonic characteristics of the composition. While both are global attributes, they capture
distinct musical aspects. Inspired by recent advances in sheet music classification (Ji et al., 2021;
Pasquale et al., 2020), we hypothesize that for a performance rendition to sound natural, the chosen
style should ideally align with the underlying genre. This suggests that stylistically appropriate
performances can be inferred directly from score content, similar to how skilled pianists interpret
compositions. Besides, existing EPR models often rely on composer labels (Jeong et al., 2019; Tang
et al., 2023) or require manual control over expressive parameters (Borovik & Viro, 2023; Rhyu
et al., 2022), which limits accessibility for non-expert users. Motivated by these observations, we
propose a Performance Style Recommendation (PSR) module that generates diverse style embeddings
conditioned solely on the score.

We evaluate our framework using both objective and subjective metrics. On standard benchmarks,
our joint model achieves competitive performance for both EPR and APT. Subjective evaluations
confirm the naturalness of EPR-generated performances. Disentanglement is verified through style
transfer and latent space visualizations. In addition, we show that the learned style embeddings
encode information about both performer and composer, with composer traits being more dominant.
Finally, evaluations of the PSR module demonstrate its ability to generate stylistically appropriate
embeddings from content alone.

In summary, this paper makes the following three contributions:

• A unified transformer-based model for joint EPR and APT, which disentangles score
content and performance style representations, and leverages the duality between the two
tasks for mutual supervision. This joint formulation enables bidirectional modeling between
symbolic and expressive forms of music.

• A diffusion-based performance style recommendation (PSR) module, which generates
diverse and appropriate style embeddings directly from score content. This module mimics
a pianist’s ability to infer suitable expressive styles from the written score and enables
controllable and non-expert-driven performance rendering.

• A Seq2Seq formulation of EPR without note-level alignment, which eliminates the need
for finely aligned training data and enables scalable learning using only sequence-level
supervision. Despite this relaxed supervision, our model achieves competitive performance
compared to alignment-dependent baselines.

2 RELATED WORK

2.1 EXPRESSIVE PIANO PERFORMANCE RENDERING

Early work on EPR relied on rule-based systems (Widmer & Goebl, 2004; Chacón et al., 2018;
Kirke & Miranda, 2013). Recent methods leverage deep learning, including RNN- and LSTM-based
models (Maezawa et al., 2019; Jeong et al., 2019), as well as transformer-based architectures (Rhyu
et al., 2022; Borovik & Viro, 2023; Renault et al., 2023; Tang et al., 2023). A central challenge in
EPR is generating performance styles that appropriately reflect the content of music scores. Existing
approaches often require explicit composer or performer labels (Jeong et al., 2019; Tang et al., 2023),
or depend on manual control of expressive parameters (Borovik & Viro, 2023; Rhyu et al., 2022),
limiting usability for non-expert users. A diffusion-based model has been introduced to generate
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expressive control directly from the score, relying on hand-crafted note-level style features (Zhang
et al., 2024). However, such a note-level approach demands intricate, fine-grained adjustments and
offers limited flexibility for style transfer between compositions with disparate musical structures.

Another key limitation of current models (Rhyu et al., 2022; Borovik & Viro, 2023; Tang et al., 2023;
Jeong et al., 2019; Zhang et al., 2024) is their dependence on note-aligned datasets, which typically
require preprocessing with alignment tools (Nakamura et al., 2017). This reliance impedes flexibility,
particularly for expressive techniques like trills and mordents that introduce temporal ambiguity. An
unsupervised GAN-based approach has been proposed to bypass alignment (Renault et al., 2023),
but it is less performant than supervised counterparts. Recent work also explores sequence-aligned
supervision as a scalable alternative; for instance, Jung et al. (2025) demonstrate that unified cross-
modal music translation can be effectively learned without strict note-level alignment. Motivated
by these developments, we address these limitations by formulating EPR as a Seq2Seq task and
introducing a PSR module for automatic style generation.

2.2 AUTOMATIC PIANO TRANSCRIPTION

Automatic piano transcription (APT) methods can be categorized by their input and output modalities.
Input formats include raw audio signals (e.g., waveforms or spectrograms) and symbolic representa-
tions such as MIDI. Output targets are typically note-level sequences (Hawthorne et al., 2018; Kim &
Bello, 2019; Kong et al., 2021; Toyama et al., 2023; Hawthorne et al., 2021) or notation-level formats
resembling human-readable sheet music (Román et al., 2019; Alfaro-Contreras et al., 2024; Román
et al., 2018; Zeng et al., 2024; Hiramatsu et al., 2021; Liu et al., 2021; 2022; Shibata et al., 2021;
Beyer & Dai, 2024). This work focuses on symbolic-to-symbolic transcription, where the model
maps expressive performance MIDI to corresponding score sheet representations.

Early APT approaches relied on signal processing heuristics (Raphael, 2001) and probabilistic
models such as Hidden Markov Models (HMMs) (Cogliati et al., 2016; Shibata et al., 2021). Recent
advances leverage deep neural networks (Liu et al., 2022; Beyer & Dai, 2024; Suzuki, 2021), which
have demonstrated substantial improvements in accuracy and generalization. Particularly, (Beyer
& Dai, 2024) proposed a Seq2Seq framework that eliminates the need for note-aligned supervision
while achieving state-of-the-art performance. Building on this insight, we adopt a similar Seq2Seq
framework to model score content features within our unified system.

2.3 DISENTANGLED REPRESENTATION LEARNING

Disentangled representation learning (DRL) aims to learn representations that separate the underlying
factors of variation in observed data (Wang et al., 2024). It has been widely studied in computer
vision (Dupont, 2018; Yang et al., 2021; Chen et al., 2016; Karras et al., 2020) and natural language
processing (He et al., 2017; Bao et al., 2019; Cheng et al., 2020; Wu et al., 2020), where separating
content from style or semantics has led to improved generalization and controllability.

In music information retrieval (MIR), DRL has recently been explored for disentangling musical
content and style to support generation and manipulation (Tan & Herremans, 2020; Wang et al., 2020;
Yang et al., 2019; Zhao et al., 2024). One closely related study (Zhang & Dixon, 2023) learns content
and style representations from expressive performances in an unsupervised manner, enabling music
analysis and style transfer. In contrast, our work focuses on generating expressive performances from
symbolic scores, a less-explored but important direction for DRL-based music modeling.

3 METHODOLOGY

3.1 DATA REPRESENTATION FOR INPUT AND OUTPUT

Input features Following Peyser et al. (2022b), we represent both score and performance inputs as
note-level sequences of approximately equal length, enabling the joint encoder to learn a domain-
agnostic representation of score content. Each sequence contains N notes by the order of onset
time and pitch, with each note represented as a tuple of K discrete symbolic attributes, detailed in
Appendix A.2. We denote the score and performance sequences as x and y, respectively. For score
inputs, each note comprises K = 7 attributes, while performance inputs contain K = 4. The final
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Figure 1: Relationship between EPR and APT (top left) and an overview of the proposed framework.
The model comprises a joint transformer-based architecture for EPR and APT, along with a diffusion-
based performance style recommendation (PSR) module. Four tasks are trained jointly: masked score
reconstruction, masked performance reconstruction, expressive performance rendering (EPR), and
automatic performance transcription (APT). Score content features zx and zy, extracted from score
and performance inputs respectively, are encouraged to align. A global style feature zs is learned as a
disentangled factor to support style transfer. The PSR module is independently trained to generate zs
from score content alone, emulating a pianist’s ability to select appropriate performance styles.

note embedding is obtained by summing the embeddings of its constituent attributes, resulting in
Ex,Ey ∈ RN×D, where D denotes the embedding dimension.

Output features For score prediction (x̂), we adopt the representation scheme introduced in Beyer
& Dai (2024). For performance prediction (ŷ), we initially applied the same tokenization as used in
the input representation, but observed that it degraded generation quality. Since our Seq2Seq model
does not require note-level alignment, we instead adopt the structured performance representation
proposed in Huang & Yang (2020), implemented via the MidiTok library (Fradet et al., 2021).

3.2 UNIFIED MODELING OF EPR AND APT

We consider two domains of symbolic musical sequences: score sequences x ∈ X and performance
sequences y ∈ Y . These two domains are connected by two inverse processes: expressive perfor-
mance rendering (EPR), mapping scores to performances (X → Y), and automatic performance
transcription (APT), mapping performances to scores (Y → X ). Both domains share a latent content
space Zc, capturing note-level attributes such as pitch and rhythm. In contrast, Y additionally de-
pends on a style space Zs, serving as a conditioning signal for the high-level summary of its overall
expressive interpretation. Our framework supports training on both paired and unpaired data.

Paired setting Given paired data (x,y), we define content encoders fc,X : X → Zc and fc,Y :
Y → Zc, along with a style encoder fs,Y : Y → Zs, producing:

zx = fc,X (x) ∈ RN×D, zy = fc,Y(y) ∈ RN×D, zs = fs,Y(y) ∈ RD. (1)

We perform the EPR and APT tasks by decoding from these latent representations:
EPR: ŷ = gY(zx ⊕ zs), APT: x̂ = gX (zy), (2)

where ⊕ denotes broadcasted addition of the global style vector to each time step in zx. Both decoders
are optimized via cross-entropy losses:

LEPR = CE(ŷ,y), LAPT = CE(x̂,x). (3)

Unpaired setting To incorporate unpaired data, we adopt a masked reconstruction objective inspired
by masked autoencoders (He et al., 2022). Specifically, we define x̃ = MASK(x) and ỹ = MASK(y),
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where MASK(·) randomly replaces a subset of input tokens with a special ⟨MASK⟩ token during
encoding. The model is then trained to reconstruct the full original sequence:

Lrec,X = CE(gX (fc,X (x̃)),x), Lrec,Y = CE(gY(fc,Y(ỹ)⊕ fs,Y(y)),y). (4)

3.3 LATENT DISENTANGLEMENT AND REGULARIZATION

We encourage disentanglement between the content space Zc and the style space Zs through both
training objectives and architectural design. From a training perspective, The content encoders fc,X (·)
and fc,Y(·) are supervised to capture score-relevant information via losses from APT, EPR, and
masked reconstruction tasks. Architecturally, We represent content and style at distinct levels: zc
encodes fine-grained, note-level attributes such as pitch and rhythm as a sequence of latent vectors,
while zs summarizes the overall expressive style as a single latent vector.

To regularize the style space and promote smoothness, we impose a Kullback-Leibler divergence
penalty between the posterior over zs and a standard Gaussian prior:

LKL = DKL(q(zs | y) ∥N (0, I)). (5)

The total training objective integrates three components: supervised losses from EPR and APT on
paired data, reconstruction losses from masked inputs on unpaired data, and KL regularization on the
style representation:

Ltotal = LEPR + LAPT︸ ︷︷ ︸
paired loss

+Lrec,X + Lrec,Y︸ ︷︷ ︸
unpaired loss

+ LKL︸︷︷︸
regularization

. (6)

3.4 MODELING OF PERFORMANCE STYLE RECOMMENDATION

After training the joint model with disentangled representations, we introduce an independent
performance style recommendation (PSR) module that generates style embeddings conditioned solely
on score content. This setup mimics the behavior of a pianist who selects an expressive style based
on the music score alone. The goal is to model the distribution of plausible performance styles for a
given score x, enabling flexible and automated expressive rendering.

Training Given a paired sample (x,y), the ground-truth style embedding zs = fs,Y(y) is extracted
from our frozen, pre-trained joint model. A separate score encoder fg,X (·) concurrently extracts a
global content representation eg = fg,X (x). We then adopt a denoising diffusion probabilistic model
(DDPM) (Ho et al., 2020) to learn the conditional distribution p(zs | eg), jointly training the diffusion
denoiser and fg,X (·). The forward process perturbs the style vector by adding Gaussian noise:

zts =
√
ᾱt zs +

√
1− ᾱt ϵ, ϵ ∼ N (0, I), (7)

and the reverse process learns to denoise zts conditioned on eg and the diffusion step t. The style
generator gs(·) is trained to predict the added noise and is optimized using the following objective:

LPSR = Ezs,eg,t,ϵ

[∥∥ϵ− gs(eg, z
t
s, t)

∥∥2
2

]
. (8)

Inference At inference time, given x, a style embedding ẑs is generated by sampling from a standard
Gaussian prior and iteratively denoising it using the trained model, conditioned on eg = fg,X (x).
The resulting pair (x, ẑs) is passed to the decoder gY(·) to synthesize the expressive performance ŷ.

3.5 MODEL ARCHITECTURE

Joint model of EPR and APT As illustrated in Figure 1, the joint model consists of five transformer-
based components: Score Encoder, Performance Encoder, Style Encoder, Score Decoder, and Perfor-
mance Decoder. Each component adopts a standard transformer architecture (Vaswani et al., 2017)
with six layers and eight attention heads, selected for their ability to model long-range dependencies
and scale effectively to large symbolic music datasets. We employ rotary positional encodings (Su
et al., 2024), pre-layer normalization (Brown et al., 2020), and SwiGLU activations (Shazeer, 2020),
with a feed-forward hidden dimension of 3072. Decoder outputs are projected to token distributions
via parallel linear layers where applicable. To obtain a global style embedding, we follow the BERT
architecture (Devlin et al., 2019) in the Style Encoder by prepending a special ⟨CLS⟩ token to the
input sequence and taking the final hidden state corresponding to this token as the style vector.

5
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Performance style recommendation A separate transformer encoder, architecturally aligned with
the Style Encoder, is used to extract a global score representation. A ⟨CLS⟩ token is prepended to the
input score sequence, and its final hidden state is used as the global content embedding eg, which
conditions the style generation process.

During training, a ground-truth style vector zs, obtained from the joint model, is perturbed using a
forward diffusion process. The diffusion timestep t is encoded using sinusoidal positional embeddings
and concatenated with eg and the noisy style vector zts. This combined representation is passed
through a feed-forward network (FCN) to predict the injected noise ϵ. The model is trained using a
mean squared error (MSE) loss between the predicted and true noise.

4 EXPERIMENTS

4.1 DATASETS

We use the ASAP dataset (Foscarin et al., 2020) for both paired training and evaluation, as it provides
aligned annotations between musical scores and expressive performances. We select 967 high-quality
performances and split them into training, validation, and test sets with an 8:1:1 ratio, same as Beyer
& Dai (2024). To enable unpaired training, we curate an unpaired score dataset consisting of
75,913 public-domain MusicXML files collected from MuseScore1. We also compile an unpaired
performance dataset by sourcing piano cover videos from YouTube and transcribing the audio
into performance MIDI using a state-of-the-art audio-to-MIDI transcription model2. The model is
selected based on a pilot study demonstrating strong accuracy in both note and pedal transcription. To
evaluate the generalization of disentangled representations in out-of-distribution (OOD) settings, we
additionally use the ATEPP dataset (Zhang et al., 2022), which contains 11,674 performances by 49
pianists spanning 25 composers, with explicit annotations of both composer and performer identities.

4.2 TRAINING SETUP

The joint model is trained on 3 NVIDIA A5000 GPUs with a total batch size of 144 sequences, each
containing 256 notes. Each training step comprises 36 sequences for EPR, APT, score reconstruction,
and performance reconstruction, respectively. Optimization is performed using AdamW (Loshchilov
& Hutter, 2019) for 40,000 steps, with a cosine decay learning rate schedule and linear warmup over
the first 4,000 steps, peaking at 5× 10−5. The PSR model is trained separately on a single GPU with
a batch size of 48, using the same schedule but with a peak learning rate of 1× 10−4.

4.3 METRICS

APT We evaluate APT using two widely adopted metrics: MUSTER (Nakamura et al., 2018;
Hiramatsu et al., 2021) and ScoreSimilarity (Suzuki, 2021; Cogliati & Duan, 2017). MUSTER
assesses high-level transcription accuracy with a focus on rhythmic structure, including sub-metrics
such as pitch edit distance (Ep), missing notes (Emiss), extra notes (Eextra), onset deviation (Eonset),
and offset deviation (Eoffset). ScoreSimilarity also captures pitch-level edit distances (Emiss, Eextra),
with additional metrics for stem direction (Estem), pitch spelling (Espell), and staff assignment (Estaff).

EPR We use both objective and subjective evaluations. Objectively, we compare the generated
performance to its human reference and compute three metrics: alignment rate, insertion rate,
and missing rate. Besides, we conduct objective statistics using three metrics (Tang et al., 2023;
Zhang et al., 2024): per-note variance of onset, duration, and velocity; KL divergence from human
distributions; and note-aligned mean absolute error (MAE) relative to human references. Subjectively,
we conduct a listening test with eleven participants trained in music performance. We randomly
sample five pieces from Bach, Rachmaninoff, Schubert, Scriabin, and Ravel to cover a range of
genres and styles. Each participant rates the outputs in randomized order on a 5-point Likert scale
(1–5) across four dimensions: dynamics, tempo, style, and overall human-likeness.

1https://musescore.com/
2https://github.com/EleutherAI/aria-amt
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Table 1: APT results on the ASAP dataset. Lower values indicate better performance across all metrics.
The best results are shown in bold, and the second-best are underlined. Statistical significance with
respect to the end-to-end baseline is denoted by † for p < 0.05 and ‡ for p < 0.01.

Method MUSTER ScoreSimilarity
Ep Emiss Eextra Eonset Eoffset Eavg Emiss Eextra Edur. Estaff Estem Espell

Neural Liu et al. (2022) 2.02 6.81 9.01 68.28 54.11 28.04 17.10 17.67 66.98 6.86 – 9.71
MuseScore MuseScore (2002) 2.41 7.35 9.64 47.90 49.44 23.35 16.17 16.74 55.23 21.87 29.87 9.69
Finale MakeMusic, Inc. (1988) 2.47 10.10 13.46 31.85 45.34 20.64 14.72 16.43 53.35 21.79 26.74 15.34
Shibata et al. (2021) (J-Pop) 2.09 6.38 8.67 25.02 29.21 14.27 10.80 11.39 71.38 – – –
Shibata et al. (2021) (Classical) 2.11 6.47 8.75 22.58 29.84 13.95 10.74 11.28 64.73 – – –
End-to-end Beyer & Dai (2024) 2.73 8.40 8.95 17.48 32.92 14.10 12.89 11.29 55.04 11.32 30.51 14.31

Ours 3.08‡ 8.43 7.33‡ 16.26† 27.30‡ 12.48‡ 13.43 9.48‡ 51.75 9.43‡ 28.60† 6.24‡

Table 2: Objective evaluation of EPR results. We compare variance (σ2), KL divergence, and MAE
for onsets (O), durations (D), and velocities (V ). For σ2, values closer to the Human reference are
better. For all other metrics, lower is better. Best results are in bold; second-best are underlined.
Different letters within a column indicate statistically significant differences (p < 0.01).

Method σ2 (O) σ2 (D) σ2 (V ) KL (D) MAE (D) KL (V ) MAE (V )

Human 0.12a 1.72a 241.04a – – – –
Score 0.07a 0.07b 1.36b 13.01a 0.46ab 13.00a 29.14a

DExter Zhang et al. (2024) 0.20b 4.15c 238.86a 1.48b 0.88c 2.32b 24.27b

VirtuosoNet Jeong et al. (2019) 0.02c 0.03d 52.54c 5.72cd 0.48a 4.91c 14.40c

EPR-Only 0.03c 0.67e 126.04d 6.43c 0.42d 2.05b 10.65d

Ours (Target) 0.02c 0.58f 151.03e 5.51d 0.37e 1.76d 10.33d

Ours (PSR) 0.02c 0.33e 161.51f 6.19c 0.44b 2.67e 15.24e

Table 3: Objective evaluation of EPR accuracy
on test samples using alignment (Align), insertion
(Insert), and missing (Miss) rates (p < 0.01).

Method Align ↑ Insert ↓ Miss ↓
Score 93.52a 3.57a 2.91a

DExter Zhang et al. (2024) 91.27b 5.11b 3.62b

VirtuosoNet Jeong et al. (2019) 91.88c 4.23a 3.90c

Ours (Target) 91.55d 4.13b 4.32d

Ours (PSR) 92.27a 3.77c 3.96a

Table 4: Performer (Perf) and composer (Comp)
identification accuracy based on performance
style (Style) and score content (Cont).

Setting F1 Recall Precision Acc.
Style→Perf 25.82 25.67 27.80 42.07
Cont→Perf 0.74 2.02 0.46 9.94

Style→Comp 52.45 50.29 55.99 77.46
Cont→Comp 3.03 4.66 3.75 29.99

5 RESULTS

5.1 EPR AND APT PERFORMANCE

APT In Table 1, we present the APT performance of our model and baseline systems, with
statistical significance evaluated using the Wilcoxon signed-rank test (Wilcoxon, 1945). Our model
achieves performance comparable to the state-of-the-art APT system, indicating that the learned score
representations capture key musical attributes such as pitch, rhythm, and structure. Our alignment-free
Seq2Seq formulation achieves competitive results without requiring explicit note-level alignment.
In contrast, methods such as Liu et al. (2022) and Shibata et al. (2021) attain lower pitch errors by
relying on note-aligned data, which simplifies pitch and onset prediction, but limits flexibility in
musically complex, one-to-many contexts (e.g. ornaments, trills, or expressive deviations).

EPR We compare against two strong alignment-based baselines: VirtuosoNet Jeong et al. (2019)
and DExter Zhang et al. (2024). Our method is evaluated under two conditions: with extracted target
styles (Ours–Target) and with PSR-generated styles (Ours–PSR). To specifically examine how our
joint framework influences EPR performance, we introduce an EPR-Only variant that retains only the
Score Encoder, Style Encoder, and Performance Decoder (Section 3.5), and is trained solely on the
ASAP dataset. We also take score MIDI (Score) as a baseline model; it is shaded in gray in Table 2
and Table 3 to indicate that it is not an EPR model and serves only as a comparison anchor. Statistical
significance is computed by Wilcoxon signed rank test (Wilcoxon, 1945) between our methods and
all baselines, with p < 0.05.
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(a) Subjective ratings of PSR outputs across musical
attributes (dynamics, tempo, and style).
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(b) Breakdown of the overall subjective ratings by com-
posers.

Figure 2: Subjective evaluation of expressive piano rendering performance across different systems,
including human renditions, direct-from-score, baselines, and our proposed models.

2 1 0 1 2
Feature 1

2

1

0

1

2

3

4

Fe
at

ur
e 

2

Ludwig van Beethoven
Frédéric Chopin
Johann Sebastian Bach
Robert Schumann
Franz Schubert
Wolfgang Amadeus Mozart
Claude Debussy
Sergei Rachmaninoff

(a) Two-dimensional projection of style embed-
dings, colored by composer clusters.
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(b) Two-dimensional projection of style embed-
dings, colored by performer clusters.

Figure 3: Two-dimensional visualization of performance style representations from real performances,
with colors indicating clusters by composer or performer.

The objective statistics in Table 2 show that our models exhibit duration and velocity variances that
more closely match those of human performances compared with other baselines, reflecting more
natural expressive variability. While DExter shows even larger duration and velocity variance, this
does not translate to better quality, as listening tests suggest it results from unstable dynamics rather
than meaningful expressiveness. In contrast, our models achieve lower KL and MAE scores than
most baselines (especially Ours–Target), confirming that they faithfully replicate the fine-grained
expressive details found in human renditions. Moreover, the consistent improvement of Ours–Target
over the EPR-Only variant indicates that joint modeling, together with training on additional unpaired
data, leads to better EPR performance, validating the effectiveness of our joint framework.

The accuracy evalution in Table 3 shows that Ours (PSR) achieves the highest alignment rate (92.27%)
and the lowest insertion rate (3.77%), demonstrating the effectiveness of our alignment-free sequence-
to-sequence formulation. Subjective results in Figure 2 show that Ours (Target) achieves the highest
ratings across all attributes and styles, with Ours (PSR) closely following and outperforming baseline
systems. Both variants perform strongly across composers, particularly on Bach and Scriabin.

5.2 REPRESENTATION DISENTANGLEMENT

Performer/composer identification To further analyze the structure of the learned representations,
we perform performer and composer identification using score content and performance style
representations on the ATEPP dataset Zhang et al. (2022), which is split into training, validation, and
test sets with an 8:1:1 ratio. We evaluate four model configurations: using either the score content or
performance style representation as input, and predicting either the composer or performer as the
target. Each performance MIDI is segmented into 256-note chunks and processed by the trained
joint model to extract latent representations, which are then averaged across chunks to obtain a single
representation per piece. For visualization, we insert a 2D bottleneck layer before the classification
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(a) Two-dimensional projection of style embed-
dings extracted from actual performances using
the joint model.

(b) Two-dimensional projection of style embed-
dings generated by the PSR model from corre-
sponding scores.

Figure 4: Two-dimensional visualization of style representations across historical eras. Colored
regions denote era-specific clusters with centroids marked by black crosses; white arrows indicate
temporal progression of musical styles.

head and project the resulting embeddings onto a 2D plane. The classification results and visualization
are presented in Table 4 and Figure 3, respectively.

The results in Table 4 demonstrate the effectiveness of the disentangled representations. Classifiers
using the style representation zs achieve substantially higher composer and performer accuracy than
those using the content representation zc, confirming successful disentanglement of performance
style from score content. While zc primarily encodes pitch and rhythmic structure, it is expected to
preserve performance-independent musical characters (e.g. composer-specific information). This
explains why the composer classifier using zc (Cont→Comp) still achieves a non-trivial accuracy
of 29.99%. Notably, the composer classifier using zc (Style→Comp) shows much higher accuracy
(77.46%). Beyond the effective disentanglement, we attribute this result to two other factors: first, as
a global embedding, zs is better suited for capturing high-level stylistic features than the note-level
zc; second, professional pianists often align their performance style with the composer’s stylistic
conventions, thereby encoding composer information directly into their expression.

The visualization in Figure 3 further supports our findings, with style embeddings forming clear
clusters by composer and performer. We also observe that embeddings from human performances
contain information about both the artist and the composition. This further supports our assumption
that skilled pianists adapt their style to the piece, validating the motivation behind our PSR module.

Style transfer evaluation To further evaluate the disentanglement of content and style, we con-
ducted a subjective listening test on style transfer between pieces from distinct genres. For each test
case, listeners rated generated outputs on two criteria: style similarity to a reference performance and
overall listening quality. We compared three conditions for the rendered style: the original (Original),
the transferred reference style (Target), and an interpolation of both (Mean) to study the learned style
feature space. As shown in Figure 5, the Target condition achieves the highest style similarity ratings
in Samples 1 and 3, indicating successful transfer. Notably, this improvement does not compromise
overall quality. The Mean condition yields consistently strong quality across all samples, suggesting
that the style space is well-structured and supports smooth interpolation.

5.3 EFFECTIVENESS OF PSR

To evaluate the styles generated by the PSR model, we collect 5,003 performances from the ATEPP
dataset with aligned scores. For each performance, we obtain two style vectors: one extracted directly
from the performance using the joint model, and one generated from the corresponding score using
the PSR model. Each piece is assigned to one of four historical eras—Baroque, Classical, Romantic,
or Modern—based on title and composer metadata parsed using GPT-4o mini (Achiam et al., 2023).

We project the style vectors into 2D using the classifier from Section 5.2. As shown in Figure 4, the
PSR-generated styles (right) closely mirror those extracted from real performances (left), exhibiting
similar clustering structure, era-wise separation, and centroid locations. This alignment, together
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Figure 5: Subjective ratings for three generated samples using different style settings. Listeners rated
each output on style similarity and overall listening quality.

with the subjective results in Figure 2, supports the PSR model’s ability to synthesize stylistically
meaningful embeddings from score content alone.

6 CONCLUSION

In this paper, we present a unified framework for expressive piano performance rendering (EPR) and
automatic performance transcription (APT), built upon disentangled latent representations of score
content and performance style. To enable flexible style-aware rendering, we introduce a DDPM-based
Performance Style Recommendation (PSR) module that generates expressive styles directly from
score content. Evaluated through objective metrics, subjective listening tests, and representation
visualizations, our approach achieves performance on par with state-of-the-art methods across both
EPR and APT tasks. Our findings demonstrate that: (a) the joint model effectively learns disentangled
representations of content and style; (b) EPR can be formulated as a sequence-to-sequence task
without requiring note-level alignment; (c) the model supports flexible style transfer; and (d) the
PSR module produces stylistically appropriate outputs conditioned solely on the score. As future
work, we aim to extend this framework to popular music, which presents greater stylistic diversity
and practical relevance than classical music.
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APPENDICES

The appendix is structured into 6 main parts. Appendix A specifies the data processing details involved
in the paper. Appendix B presents implementation details of our proposed methods. Appendix C
provides subjective listening test details. Appendix D presents supplementary experimental results on
GPT-4o results verification, diversity analysis of EPR, and ablation studies. Appendix E discusses
challenges and future work. In Appendix F, we provide several examples of expressive piano
rendering (EPR) and automatic piano transcription (APT). Finally, we disclose the use of LLMs in
Appendix G.

A DATA PROCESSING DETAILS

A.1 DATA FILTERING

To construct a clean and consistent symbolic dataset from MuseScore, we apply a series of rule-based
filters to exclude low-quality or incompatible piano scores. A score is retained only if it satisfies all
of the following criteria:
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• Staff structure: The score must contain exactly two staves, conforming to standard piano
notation.

• Note count: The total number of notes must be at least 100.

• Bar count: The score must span at least 10 bars.

• Note density: No individual bar may contain more than 64 notes, to avoid overly dense
notation.

• Time signature: The time signature must fall within a musically plausible range: the
number of beats per measure must be between 1 and 16, and the beat type must belong to
the set {2, 4, 8, 16, 32}.

• Key signature: The notated key signature, expressed as the number of fifths, must lie within
[−7, 7]. In addition, the mean distance between the notated and estimated keys (Temperley,
1999; Cancino-Chacón et al., 2022) must not exceed 1.

To compute key signature distance, we segment each score into contiguous regions with a constant
notated key signature. For each segment, we estimate the key and compare it to the notated key. Let
ki ∈ [−7, 7] denote the notated key signature and k̂i ∈ [−7, 7] the estimated key. The key distance is
defined as:

di = min
(
|ki − k̂i|, |ki − k̂i + 12|, |ki − k̂i − 12|

)
, (9)

accounting for circularity in the circle of fifths. The final mean key distance is computed as:

D =
1

N

N∑
i=1

di, (10)

where N is the number of key-stable segments. Only scores with D ≤ 1 are retained.

A.2 DATA REPRESENTATION DETAILS

Score The score representation captures structural and timing information relevant for expressive
rendering. The input encodes performance-related features, while the output is extended to include
additional notation-specific attributes necessary for producing readable sheet music.

Time-based features, including inter-onset interval (IOI), onset-in-bar, note value, and downbeat,
are discretized into consistent vocabularies spanning 0 to 6 quarter lengths, each with 145–146 bins.
Boolean-valued attributes, such as grace note and hand/staff assignment, are encoded as binary
values. The score output additionally predicts symbolic formatting elements such as voice number,
articulation markings (e.g., trill, staccato), and engraving-specific cues including stem direction and
accidentals (e.g., double flats and sharps). All features are treated as discrete classification targets
using small, well-defined vocabularies summarized in Table 5.

Performance MIDI The performance representation captures expressive aspects of human exe-
cution, including timing, articulation, and dynamics. At the input level, we extract four note-level
features: Pitch (MIDI number), IOI (inter-onset interval in seconds), Duration (extended by pedal
usage), and Velocity (loudness). IOI and Duration are quantized into 200 bins, while Velocity is
coarsely grouped into 8 bins for robustness.

For output, we adopt a structured token-based representation (Huang & Yang, 2020), implemented
using the miditok library (Fradet et al., 2021). The model generates discrete token sequences
that include Note-On, Duration, Velocity, and Time-Shift events, enabling expressive sequence
generation without explicit note-level alignment. Special tokens such as BOS (beginning of sequence)
and PAD are also used to facilitate training and formatting. Table 6 provides the vocabulary sizes and
ranges for all input and output features.
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Table 5: Vocabulary size and value ranges of input and output parameters for music score.

Parameter Nvocab Range/Values Input Output

Onset-in-Bar 145 [0, 6] quarter-length ✓ ✓
Inter-Onset Interval (IOI) 145 [0, 6] quarter-length ✓
Pitch 128 [0, 127] ✓ ✓
Note Value 145 [0, 6] quarter-length ✓ ✓
Measure Length 146 [0, 6] ∪ {false} ✓ ✓
Grace 2 boolean ✓ ✓
Hand/Staff 2 boolean ✓ ✓
Trill, Grace, Staccato 2 each boolean ✓
Voice 8 [1, 8] ✓
Stem 3 {up, down, none} ✓
Accidental 6 {♭♭, ♭, ♮, ♯, ♯♯, none} ✓

Table 6: Vocabulary size and value ranges of input and output parameters for performance MIDI.

Parameter Nvocab Range/Values Input Output

Pitch (pi) 128 [0, 127] ✓
IOI (oi) 200 [0, 8] seconds ✓
Duration (di) 200 [0, 8] seconds ✓
Velocity (vi) 8 [0, 127] ✓

Note-On Token 88 [21, 108] ✓
Duration Token 32 32 discrete steps ✓
Velocity Token 32 32 velocity bins ✓
Time-Shift Token ∼200 quantized by beat res ✓
Special Tokens 2 {PAD, BOS} ✓

B IMPLEMENTATION DETAILS

B.1 JOINT MODEL

Our joint model is implemented in PyTorch Lightning and trained via multi-task learning to simulta-
neously handle EPR, APT, and masked reconstruction from unpaired data. This section outlines the
training tasks, loss formulation, optimization strategy, and implementation setup.

Training tasks Each training step involves four supervised or self-supervised subtasks:

• APT The score decoder reconstructs symbolic score tokens from the performance content
encoder.

• EPR The performance decoder generates MIDI tokens conditioned on the score content
encoder and a style embedding.

• Score Reconstruction The score encoder is trained using random masking to reconstruct
full sequences from partially masked inputs.

• MIDI Reconstruction The performance content encoder and decoder reconstruct MIDI
sequences from masked inputs in a similar fashion.

Additionally, a Kullback-Leibler (KL) regularization term is applied to the style embedding to
encourage compactness and diversity in the latent style space.

Training loss Let LAPT, LEPR, Lrec,X , and Lrec,Y denote the cross-entropy losses for APT, EPR,
score reconstruction, and MIDI reconstruction, respectively. The total training objective is given by:

Ltotal = LAPT + LEPR + λrec · (Lrec,X + Lrec,Y) + λKL · LKL, (11)

where λrec = 0.2 and λKL = 0.1. We apply a 50% masking rate to encoder inputs during reconstruc-
tion, and a lighter masking rate of 10–20% to decoder inputs to improve robustness and mitigate
overfitting.
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Optimization We use AdamW optimizers (Loshchilov & Hutter, 2019) with a learning rate of
5× 10−5, following a cosine learning rate schedule with 4,000 warm-up steps and 40,000 total steps.
Gradient updates are manually scheduled, and training is performed using mixed precision (fp16).

Batching and scheduling Each training step processes 144 sequences (each of length 256 notes),
evenly divided among the four subtask types: APT, EPR, unpaired score, and unpaired MIDI. Data
loaders for each subset are interleaved and sampled in parallel. KL regularization is computed once
per batch using the mean and variance of the predicted style embeddings.

Implementation notes All model components use a unified embedding dimension of d = 512,
with task-specific embedding layers. Attention masks are dynamically modified during training to
simulate incomplete inputs, following masked language modeling strategies. The system is trained
on 3 NVIDIA A5000 GPUs using batch-level data parallelism.

B.2 PERFORMANCE STYLE RECOMMENDATION (PSR)

The performance style recommendation (PSR) module is designed to generate expressive style
embeddings directly from symbolic scores, enabling performance rendering without requiring paired
expressive data at inference time. The overall architecture is illustrated in Figure 6.

Overview The PSR model comprises two components: (1) a transformer-based score encoder that
extracts a global content embedding from a symbolic score sequence, and (2) a denoising diffusion
probabilistic model (DDPM) that generates a style vector conditioned on this content embedding.
This pipeline enables sampling stylistically coherent vectors from Gaussian noise, guided by the
structure of the input score.

Score encoder We adopt a transformer encoder fg,X (x) to process the input score sequence.
Following the BERT-style design (Devlin et al., 2019), a special [CLS] token is prepended to the
sequence, and its final-layer hidden state is used as the global score content representation eg ∈ RD.

Diffusion network We employ a DDPM (Ho et al., 2020) with velocity prediction (Salimans &
Ho, 2022) to model the conditional distribution over style embeddings given the content vector.
During training, the model learns to recover a ground-truth style vector zs, extracted from human
performances via the joint model, from a noisy version zts produced by the forward diffusion process.
A sinusoidal timestep embedding et is concatenated with the projected content embedding e′g and
the noisy style vector zts, and passed through a multi-layer perceptron (MLP) to predict the velocity
target vtarget. The model is optimized with the following mean squared error loss:

LPSR = Ezs,eg,t

[∥∥gs(zts, et, e′g)− vtarget
∥∥2
2

]
. (12)

Inference At inference time, a style vector is initialized from a standard Gaussian distribution and
iteratively denoised using the exponential moving average (EMA) version of the MLP denoising
network. The resulting style embedding ẑs can be combined with the score content to condition the
expressive rendering model. This one-to-many mapping enables diverse, plausible, and stylistically
appropriate generation from symbolic input alone.

B.3 MODEL COMPLEXITY

Table 7 summarizes the model sizes and inference speeds for both APT and EPR, tested on a single
NVIDIA A5000 GPU. Several observations can be drawn. First, although our unified model contains
substantially more parameters (188.21M) than the end-to-end APT baseline (32.60M), its APT
inference speed (4.86s/sample) remains comparable because only the APT-specific modules are active
during APT decoding; the additional EPR-related parameters are not involved in this forward pass.
Second, APT inference is consistently faster than EPR within the unified architecture. This follows
from the shorter output sequences in APT, whereas EPR must generate longer sequences under the
structured performance representation (Section 3.1). Third, EPR inference speed varies widely across
baseline systems. VirtuosoNet is the fastest (0.35s/sample) as it is trained on note-aligned data and
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Figure 6: Architecture of the performance style recommendation (PSR) module. Given a symbolic
score, we extract a global content embedding using a transformer encoder and train a diffusion model
to predict the style embedding from noise.

Table 7: Comparison of model parameters and inference speed for APT and EPR.

Method Number of Parameters APT Inference speed EPR Inference speed
Dexter (Zhang et al., 2024) 62.41M - 14.14s/sample
Virtuosonet (Jeong et al., 2019) 5.16M - 0.35s/sample
End-to-End (Beyer & Dai, 2024) 32.60M 4.56s/sample -

Ours 188.21M 4.8564s/sample 10.1726s/sample

does not require autoregressive decoding, while DExter is the slowest (14.14s/sample) due to its
diffusion-based design requiring multiple denoising iterations. Our unified model falls between these
two extremes: despite performing autoregressive decoding and modeling fine-grained expressive
attributes, it achieves a reasonable EPR inference time (10.17s/sample) while supporting both tasks
within a single architecture.

C SUBJECTIVE LISTENING TEST INSTRUCTIONS

C.1 OVERVIEW

We conduct our subjective evaluation using a Google Form 3, structured into two sections: (1)
evaluation of performance style recommendation (PSR), and (2) evaluation of style transfer. Each
participant completes both sections, with an average completion time of approximately 32 minutes.
Figure 7 shows sample survey pages along with participant instructions. Detailed descriptions of the
survey structure are provided below.

C.2 SURVEY STRUCTURE

Part I: Overall Evaluation Participants are presented with 4 music clips, each accompanied by 6
audio renditions generated by different EPR models. Each rendition is rated along the following four
dimensions:

• Dynamics: Naturalness and expressiveness of loudness variation.
• Tempo: Naturalness and expressiveness of tempo fluctuations over time.
• Performance Style: Appropriateness of the performance’s character, mood, and interpreta-

tion.
3https://docs.google.com/forms
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(a) Overall evaluation of EPR. (b) Style transfer evaluation.

Figure 7: Screenshots of survey pages and instructions of our online survey.

• Overall Human-Likeness: How convincingly the performance resembles that of a human.

Ratings are provided on a 5-point Likert scale ranging from 1 (Very Poor) to 5 (Very Good).

Part II: Style Similarity Participants are presented with 3 examples. Each example consists of:

• A reference performance.
• Three test renditions generated by different models, with varied content but intended to

share the same performance style.

Each test rendition is rated on:

• Performance Style Similarity: The extent to which the style (e.g., rhythm, dynamics, pedal
usage) matches the reference, independent of pitch content.

• Overall Human-Likeness: Perceived expressiveness and realism of the performance.

All ratings are again provided on a 5-point Likert scale.

C.3 ADDITIONAL NOTES

• Participants are instructed to evaluate variation and human-likeness, rather than personal
preference or audio fidelity.

• All audio sources are anonymized; both the order of clips and model outputs are randomized
to reduce potential bias.

• Participants are encouraged to use headphones in a quiet environment for optimal listening
conditions.

• The total duration of the survey is approximately 20–25 minutes. No personal data is
collected.
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Table 8: Agreement matrices between human annotators and GPT-4o. Cohen’s κ values: Annotator
1 (A1) v.s. Annotator 2 (A2) = 0.89; Annotator 1 (A1) v.s. GPT-4o = 0.85; Annotator 2 (A2) v.s.
GPT-4o = 0.89. B = Baroque, C = Classical, R = Romantic, T = Contemporary.

A1 vs. A2 A1 vs. GPT-4o A2 vs. GPT-4o
B C R T B C R T B C R T

B 22 0 0 0 22 0 0 0 22 0 0 0
C 0 10 4 0 0 6 8 0 0 6 4 0
R 0 0 53 2 0 0 55 0 0 0 58 0
T 0 0 1 8 0 0 1 8 0 0 2 8

Table 9: Average pairwise MAEs for human renditions and model outputs.

Duration MAE Velocity MAE

Human 0.06 11.62
Model 0.08 8.01

Table 10: Pairwise MAEs among 7 human renditions.

(a) Durations

H1 H2 H3 H4 H5 H6 H7

H1 0.00 0.06 0.07 0.06 0.06 0.07 0.06
H2 0.00 0.06 0.06 0.05 0.06 0.05
H3 0.00 0.07 0.07 0.06 0.06
H4 0.00 0.06 0.08 0.05
H5 0.00 0.06 0.05
H6 0.00 0.06
H7 0.00

(b) Velocities

H1 H2 H3 H4 H5 H6 H7

H1 0.00 10.66 14.11 15.82 10.94 12.46 12.90
H2 0.00 13.23 13.82 11.01 12.23 12.26
H3 0.00 9.05 11.42 9.02 9.33
H4 0.00 12.16 10.80 11.26
H5 0.00 11.12 10.78
H6 0.00 9.66
H7 0.00

D SUPPLEMENTARY EXPERIMENTAL RESULTS

D.1 HUMAN VERIFICATION OF GPT-4O OUTPUTS

To assess the reliability of GPT-4o predictions in Section 5.3, we conducted a human verification
study on 100 randomly sampled movements, independently annotated by two professionally trained
pianists into four eras (Baroque, Classical, Romantic, Contemporary). Agreement was measured
using Cohen’s κ = po−pe

1−pe
, where po is the observed agreement and pe is the expected agreement by

chance. As shown in Table 8, inter-annotator agreement was high (κ = 0.89), and GPT-4o showed
similarly strong consistency with both annotators (κ = 0.85 and κ = 0.89). Most disagreements
occurred in transitional works between Classical and Romantic eras, where stylistic boundaries are
ambiguous. For example, Piano Sonata No. 26 in E-flat, Op. 81a “Les adieux”: II. Abwesenheit
(Andante espressivo) was annotated as Classical by both human experts but labeled as Romantic by
GPT-4o. Such cases are reasonable given the transitional nature of the repertoire. Overall, these
results confirm that GPT-4o aligns closely with expert judgment and can be used as a reliable reference
for PSR evaluation.

D.2 DIVERSITY ANALYSIS OF EPR

To verify that the model captures one-to-many expressive variation rather than collapsing to an
averaged output, we analyzed diversity on a score from ASAP with 7 human performances and 7
model outputs generated via top-k sampling (k = 5). Pairwise note-aligned MAEs were computed
for durations and velocities. As summarized in Table 9, the average human MAEs were 0.06
(duration) and 11.62 (velocity), while the model achieved 0.08 and 8.01, respectively. Detailed
pairwise matrices (Table 10, Table 11) show that model outputs exhibit meaningful internal variation,
following the diversity observed in human renditions. This demonstrates that the proposed model
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Table 11: Pairwise MAEs among 7 model outputs.

(a) Durations

M1 M2 M3 M4 M5 M6 M7

M1 0.00 0.08 0.11 0.13 0.06 0.10 0.12
M2 0.00 0.08 0.10 0.06 0.09 0.09
M3 0.00 0.08 0.06 0.05 0.04
M4 0.00 0.07 0.09 0.08
M5 0.00 0.07 0.05
M6 0.00 0.06
M7 0.00

(b) Velocities

M1 M2 M3 M4 M5 M6 M7

M1 0.00 6.09 10.06 9.47 7.73 8.26 8.14
M2 0.00 9.82 8.53 8.61 9.94 9.62
M3 0.00 6.17 10.12 7.48 8.45
M4 0.00 8.19 7.16 8.40
M5 0.00 6.50 5.00
M6 0.00 4.37
M7 0.00

Table 12: APT results on different proportions of paired/unpaired data. Lower is better for all metrics.
The best results are shown in bold, and the second-best are underlined.

Method MUSTER ScoreSimilarity
Ep Emiss Eextra Eonset Eoffset Eavg Emiss Eextra Edur. Estaff Estem Espell

paired + 0% unpaired 3.10 9.33 8.09 16.69 29.29 13.30 13.98 10.13 59.45 10.02 30.60 8.44
paired + 25% unpaired 2.94 8.86 7.80 16.37 28.36 12.87 13.66 10.10 60.06 8.86 30.58 7.46
paired + 50% unpaired 3.24 9.74 7.59 17.07 27.99 13.13 14.91 9.96 56.86 7.91 31.61 10.49
paired + 100% unpaired 3.08 8.43 7.33 16.26 27.30 12.48 13.43 9.48 51.75 9.43 28.60 6.24

Table 13: Performer (Perf) and composer (Comp) identification under two data settings: paired +
0% unpaired and paired + 100% unpaired. Boldface is kept only for Style→Perf and Style→Comp
to highlight the effect of adding unpaired data. The rightmost block reports the per-metric gain ∆
(100% unpaired − 0% unpaired).

Setting paired + 0% unpaired paired + 100% unpaired ∆ (100% − 0%)

F1 Recall Precision Acc. F1 Recall Precision Acc. ∆F1 ∆Rec. ∆Prec. ∆Acc.

Style→Perf 19.33 19.17 20.21 33.76 25.82 25.67 27.80 42.07 +6.49 +6.50 +7.59 +8.31
Cont→Perf 0.71 1.94 0.44 9.68 0.74 2.02 0.46 9.94 +0.03 +0.08 +0.02 +0.26

Style→Comp 46.33 43.51 55.24 69.07 52.45 50.29 55.99 77.46 +6.12 +6.78 +0.75 +8.39
Cont→Comp 2.92 4.57 4.37 30.16 3.03 4.66 3.75 29.99 +0.11 +0.09 −0.62 −0.17

Table 14: Ablation of KL weight on KL divergence, active units (AU), and classification accuracy
(CA).

KL weight KL divergence AU CA
0 1.11 512 0.94

0.5 0.69 512 0.91
1 0.09 512 0.88
5 0.10 512 0.76

captures distributional expressiveness in performance generation rather than regressing to a mean
output.

D.3 ABLATION STUDIES

Ablations on unpaired data To evaluate the impact of unpaired data, we conduct an ablation
study by varying the ratio of unpaired data used in training. We train four model variants using
0% (paired data only), 25%, 50%, and 100% of our curated unpaired datasets, while keeping all
other hyperparameters constant. The APT results in Table 12 show that incorporating unpaired
data generally enhances performance. Adding just 25% of the unpaired data provides a consistent
improvement over the baseline model trained only on paired data, while using the full 100% unpaired
dataset achieves the best overall performance.
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Figure 8: Two-dimensional performance style visualization of paired + 0% unpaired variant repre-
sentations, with colors indicating clusters by composer or performer.

Furthermore, to study the influence of unpaired data on representation disentanglement, we conduct
performer and composer identification in Section 5.2. As shown in Table 13, introducing unpaired data
significantly enhances the quality of the style representation. For both performer (Style→Perf) and
composer (Style→Comp) identification, all metrics see a substantial improvement, with classification
accuracy increasing by +8.31% and +8.39%, respectively. In contrast, the classification performance
using the content representation remains almost unchanged. These results indicate that our model
effectively leverages unpaired data to enrich the style embedding while successfully preserving the
disentanglement between performance style and score content.

To further examine the effect of unpaired data, we visualize the learned style embeddings for the
paired + 0% unpaired variant and the paired + 100% unpaired variant (Figure 8). Compared with
Figure 3, the paired + 0% unpaired variant exhibits noticeably less structure, with composer and
performer clusters partially overlapping. Incorporating unpaired data produces clearer and more
compact clusters, indicating that the additional data helps the model learn more discriminative and
coherent style representations.

KL divergence analysis We evaluate latent informativeness across different KL weights for the KL
divergence loss introduced in Section 3.3 using three metrics (Wang et al., 2021): (i) KL divergence
between posterior and prior, (ii) Active Units (AU) measuring the number of latent dimensions
with sample variance > 0.01, and (iii) style classification accuracy (CA) using zs and ground-truth
era labels from Section 5.3. As shown in Table 14, stronger KL regularization reduces both KL
divergence and classification accuracy, while the number of active units remains consistently high
(512). This indicates that although some information compression occurs, the latent representation
does not undergo full posterior collapse, and still preserves musically meaningful information.

E DISCUSSION ON CHALLENGES AND FUTURE WORK

Beyond classical genres Our joint framework is inherently genre-agnostic: it does not rely on
classical-specific score structures and can, in principle, generalize to any musical style given suitable
supervision. Our current study focuses on classical piano performance primarily due to data avail-
ability, as existing score–performance aligned datasets such as ASAP (Foscarin et al., 2020) contain
exclusively classical repertoire. Extending expressive performance rendering to other genres (e.g.,
jazz or pop) introduces additional challenges. First, these genres lack large curated paired datasets,
making supervised learning more difficult. Second, many non-classical traditions involve improvisa-
tion, flexible phrase structures, and rhythmically nuanced conventions (e.g., swing timing) that are
not well captured by classical-style fully notated scores. For instance, jazz performances are typically
aligned to lead sheets rather than detailed five-line staff notation, making precise score–performance
alignment inherently ambiguous. As future work, we aim to curate genre-specific datasets and adopt
notation formats appropriate to each style (e.g., lead sheets for jazz, chord charts for pop) to extend
our unified EPR framework beyond classical music and enable genre-aware expressive rendering.
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Transcription biases Our use of unpaired YouTube performances offers valuable stylistic diversity
and follows a data construction strategy similar to ATEPP (Zhang et al., 2022). Nonetheless, this
pipeline may also introduce transcription-related artifacts, as the audio-to-MIDI system can impose
quantization biases or systematic timing regularities. As a result, the style encoder may inadvertently
learn these artifacts rather than capturing purely human expressive behavior. In the long term, we
aim to pursue end-to-end performance modeling by generating audio directly from score notation,
thereby mitigating domain shifts introduced by intermediate MIDI representations and allowing the
model to learn stylistic nuances more faithfully from raw human performances.

F EXAMPLES OF EPR AND APT

EPR Demos are available at https://jointpianist.github.io/epr-apt/. The page
includes two sections: (1) rendering results from various models, including ours, on five music
pieces from different composers; and (2) style transfer results on three music pieces, showcasing the
flexibility of our method.

APT Examples of APT outputs are shown in Figure 9–Figure 11. For each sample, the ground-truth
score is displayed at the top, and the predicted score from our model at the bottom. Missing notes in
the target scores are highlighted with red bounding boxes, while inserted notes in the predicted scores
are highlighted with blue bounding boxes.

G THE USE OF LARGE LANGUAGE MODELS (LLMS)

In accordance with the ICLR policy, we disclose the use of Large Language Models (LLMs) as
assistive tools in the preparation of this manuscript. The specific applications are detailed below:

• Data annotation: We employed an LLM to assist in the annotation of our dataset. The
detailed methodology and human verification have been introduced in Section 5.3 and
Appendix D.1.

• Literature search: LLMs were used as a tool to aid in the initial search and summarization
of relevant prior work.

• Writing and polishing: We utilized an LLM for proofreading and language refinement.

All authors have carefully reviewed and edited the manuscript. We take full responsibility for all
content of this paper, including the final research ideas, experimental results, and the accuracy and
integrity of the text.
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Target

Transcription

Figure 9: Ground truth score (upper) and transcribed score (lower) from Piano Sonata No.12 in F
Major, K 332, by Wolfgang Amadeus Mozart (APT sample 1).
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Target

Transcription

Figure 10: Ground truth score (upper) and transcribed score (lower) from Keyboard Sonata in E
major, Hob.XVI:31, by Franz Joseph Haydn (APT sample 2).
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Figure 11: Ground truth score (upper) and transcribed score (lower) from Ballade No. 1 in G minor,
Op. 23, by Frédéric Chopin (APT sample 3).
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