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ABSTRACT

A significant challenge in many fields of science and engineering is making sense
of time-dependent measurement data by recovering governing equations in the
form of differential equations. We focus on finding parsimonious ordinary differen-
tial equation (ODE) models for nonlinear, noisy, and non-autonomous dynamical
systems and propose a machine learning method for data-driven system identifica-
tion. While many methods tackle noisy and limited data, non-stationarity — where
differential equation parameters change over time — has received less attention.
Our method, dynamic SINDy, combines variational inference with SINDy (sparse
identification of nonlinear dynamics) to model time-varying coefficients of sparse
ODEs. This framework allows for uncertainty quantification of ODE coefficients,
expanding on previous methods for autonomous systems. These coefficients are
then interpreted as latent variables and added to the system to obtain an autonomous
dynamical model. We validate our approach using synthetic data, including nonlin-
ear oscillators and the Lorenz system, and apply it to neuronal activity data from
C. elegans. Dynamic SINDy uncovers a global nonlinear model, showing it can
handle real, noisy, and chaotic datasets. We aim to apply our method to a variety of
problems, specifically dynamic systems with complex time-dependent parameters.

1 INTRODUCTION

Many fields of science and engineering now benefit from unprecedented amounts of data due to
increased efforts and technological breakthroughs in data collection. The challenge is to use these
measurements to expand our understanding of dynamical systems in areas like climate science,
neuroscience, ecology, finance, and epidemiology. Machine learning methods, such as neural
networks, are widely used for data-driven modeling, offering high prediction accuracy but limited
interpretability. In contrast, traditional techniques that identify ordinary and partial differential
equations (ODEs and PDEs) provide interpretable and generalizable insights into the system’s
underlying physics. While neural networks may lose accuracy as conditions change, in many systems
the governing differential equations remain reliable. The key question is whether we can combine the
strengths of deep learning with the clarity and simplicity of data-driven differential equation models.

A key challenge in data-driven system identification is that many systems exhibit nonlinear
behavior, such as switching between dynamical regimes (30; [17; 215 [34). These "hybrid systems"
(33), where continuous dynamics shift at discrete events, are more challenging to define and simulate
than classical systems with smooth vector fields (1; [5). Standard methods often assume that the
data comes from a system governed by a fixed set of equations and terms, but time-varying hidden
variables can further hinder identification of the system’s underlying dynamics. This motivates our
focus on non-autonomous (or non-stationary) systems, where sudden shifts or hidden continuous
dynamics complicate accurate modeling and prediction.

We introduce dynamic SINDy, a data-driven method for finding non-autonomous dynamic
systems with switching or continuously-varying latent variables. These systems are described by:

x = f(x(t),1) M

where x is vector-valued. A simple such example is x = A(¢)x. Importantly, we focus on systems
where the time-varying component and the main variables of interest x are separable (e.g., X =
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f(x,t) = sin(¢)x, but not x = f(x,t) = sin(¢x). Another assumption is that if multiple trajectories
of the system are available, these all display the same underlying switching or hidden variable
dynamics.

Dynamic SINDy combines the interpretability of differential equations with the power of deep
learning. It uses a deep generative model to uncover sparse governing equations directly from
data, employing a variational autoencoder (VAE) to generate time series for differential equation
coefficients. This enables data-driven discovery of equations for noisy and non-autonomous systems.
The paper is organized as follows: Section 2 introduces key concepts, including SINDy, variational
autoencoders, and dynamic VAEs. Section 3 describes the methodology, covering the datasets and
the dynamic SINDy framework. Section 4 demonstrates dynamic SINDy’s performance on various
systems, including non-autonomous oscillators, Lorenz, Lotka-Volterra, and neural activity data from
C. elegans. It also compares dynamic SINDy to switching linear dynamical systems (41) and group
sparse regression methods (19). Section 5 concludes the paper.

2 BACKGROUND AND PREVIOUS WORK

2.1 SYSTEM IDENTIFICATION OF NON-LINEAR DYNAMICAL SYSTEMS (SINDY)

SINDy (Sparse Identification of Nonlinear Dynamics) (43) is a data-driven method that uses
sparse regression on a library of nonlinear candidate functions to match data snapshots with their
derivatives, revealing the governing equations. The method assumes that only a few key terms
explain the system’s dynamics. More specifically, consider x(t) € R governed by the ODE:
x(t) = f(x(t)). Given m snapshots of the system X = [x(¢1),X(t2),...,X(t,;,)]7 and the esti-
mated time derivatives X = [X(¢1),X(t2), ..., X(t;,)]T , we construct a library of candidate func-
tions O(X) = [1,X,X?, ..., X?,sin(X), cos(X),...]. We then solve a sparse regression problem,
X = O(X)Z, to identify the optimal coefficients = and to reduce the number of terms, enforcing
parsimony. A sparsity-promoting regularization function R is added to the final loss to yield:

= = argming (X — O(X)Z)? + R(E) 2

Several innovations have followed the original formulation of SINDy (425 [18} 32} [14)). For instance,
integral and weak formulations (47; [20) have enhanced the algorithm’s robustness to noise. Of
relevance to our study, SINDy’s generalization to non-autonomous dynamical systems has been
previously explored using group sparsity norms (42) or clustering algorithms (33)).

2.2 (DYNAMIC) VARIATIONAL AUTOENCODERS FOR SYSTEM IDENTIFICATION

The Variational Autoencoder (VAE) (35; [11) combines neural network-based autoencoders with
variational inference for probabilistic modeling and data generation. Unlike standard autoencoders,
VAE:s stand out due to two key features: (i) VAEs encode input data X as a distribution in the
latent space, allowing the decoder to generate new data by sampling from this distribution; and
(i1) a regularization term ensures the latent space resembles a standard (e.g., normal) distribution,
making it continuous (nearby points generate similar outputs) and complete (all points produce
meaningful data). Further mathematical details can be found in Supplementary Material (SM)
Section 1.1. A related method of interest is HyperSINDy (28). It combines VAEs with SINDy to
discover differential equations from data. The VAE approximates the probability distribution of
equation coefficients, so that once trained, HyperSINDy generates accurate stochastic dynamics and
quantifies uncertainty, making it a powerful tool for model discovery.

In order to adapt the VAE/SINDy framework to non-autonomous systems, we would like
to implement generative architectures that capture the temporal dependencies in sequential data.
Dynamic VAEs (DVAEs) is an approach that extends VAEs to handle time series data (24). A number
of DVAE architectures are described that use recurrent neural networks or state-space models to
address both latent and temporal relationships (365 [37; [13} 225 23} 12 [265 395 146). We specifically use
timeVAE (10), which has shown strong performance in generating time series data by processing
entire sequences with dense and convolutional layers to capture correlations. Our approach is flexible,
allowing the VAE architecture to be swapped for other models better suited to the data or system
under study (SM Sec. 1.2).
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2.3  OTHER MACHINE LEARNING METHODS FOR NON-AUTONOMOUS DYNAMICAL SYSTEMS

Traditionally, methods for handling hybrid or switching systems often involve dividing time or
space into segments (16). For instance, reduced-order models for nonlinear systems segment
time intervals into smaller windows, then build a local, reduced approximation space for each
segment (25} 165 27). Clustering methods are also employed for modeling, particularly in complex
fluid flows, where clusters represent states that can transition via a Markov model (12} 3) or via
dynamic mode decomposition with control (315 4). Through data-informed geometry learning,
authors in (48)) reconstruct the relevant “normal forms", which are prototypical realizations of the
dynamics, providing bifurcation diagram and insights about the parameters even for non-autonomous
systems. Yet another method (49) applies Koopman operator theory using DMD algorithms to find
time-dependent eigenvalues, eigenfunctions, and modes in linear non-autonomous systems.

We compare dynamic SINDy with two existing methods (Section 4.6). First, we look at a
method (recurrent SLDS) (41) that extends switching linear dynamical systems (SLDS) (155 19) by
generating transitions through changes in a continuous latent state and external inputs, rather than
relying on a discrete Markov model for switching states. This model breaks the data into simpler
segments and is interpretable, generative, and efficiently fitted using modular Bayesian inference.
Second, we examine a method from (155 |9) that uses group-sparse penalization for model selection
and parameter estimation. This method assumes shared sparsity across parameters by applying
group-sparsity regularization to smaller time windows in the data, identifying the system for each
segment, and then combining the results.

3 METHODS

3.1 DATASETS

We use a synthetic dataset capturing dynamics of a non-autonomous harmonic oscillator:
&= A(t)y
y= Bt)z ©)

where A(t) and B(t) are the time-varying coefficients of the ODE. The time dependence of these
coefficients renders the system non-autonomous and difficult to discover using classical methods.
We test our approach to see if it can handle switching coefficients, as well as explore continuously
varying coefficients, such as sinusoidal functions at different frequencies or finite Fourier series
(Figure[TJA, Suppl. Fig. 2). To ensure robustness against randomness, we add Gaussian noise with
varying levels of variance to the time series.

We replace a set of constant coefficients with a set of time series (sigmoidal, switching,
sinusoidal, finite Fourier series) for more complex systems, such as the chaotic Lorenz system:

& =o(t)(y — )

y=uz(p(t) —2) -y ©)

i=xy—B(t)z
We use large-scale neural recordings from whole-brain imaging to model neuronal population dynam-
ics. C. elegans, with its 302 precisely mapped neurons, offers an ideal balance of simple behavior and
complex neuronal activity. We analyze calcium imaging data from Kato et al., which includes neural
recordings from the head ganglia and manual annotations of seven behaviors: forward movement,
reversal, two types of reversal-to-forward turns, and two forward-to-reversal turns (38). Previous
studies show that high-dimensional neuronal activity simplifies into low-dimensional patterns, with

clear clusters in principal component space representing forward and backward movements. This
provides a valuable opportunity to study the link between neural activity and behavior.

3.2 SYSTEM IDENTIFICATION FOR NON-AUTONOMOUS DYNAMICAL SYSTEMS

We explore various VAE architectures designed for inference and generation of time series data. The
input is the original time series X, and the output are time series of ODE coefficients:

El:t = V(Xl:t) (5)
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where V' is the (VAE) architecture, and =1 .; is the output time series. ‘Autoencoder” is a misnomer
because the input is not designed to match the output in this VAE architecture. The ODE coefficients

are linearly combined with a pre-determined SINDy library of basis functions to yield X:

X(t) = 0(X(#),1) - E(t) (©)
where ©(X(t),t) is a row vector comprising of a polynomial basis up to cubic monomials:
OX(t),t) = [1 Xq1(t) ... X.(t) XZ(t) ... X3(t)], where X; are features of X. Although
we choose a polynomial basis for all of our experiments, the basis can change depending on the
problem at hand or any prior information (43).

Our goal is to match X, the derivative we estimate from data using numerical methods, to the output
X of our model (Eq. ( “) The loss function takes the following form:

loss = Z HX )| + M Rria + A2 R(E) N

where A; 5 are hyperparameters of the optimization and R, Ry,q are regularization terms. Ry;q is
the Kullback-Leibler divergence (KLD) loss, part of the ELBO (evidence lower bound) loss in
VAEs (see SM Section 1.1). Regularization terms impose that Z(¢) is sparse (in coefficients) to
encourage parsimony and that Z(¢) has minimal total variation. More details about the loss function
and training, specifically the inference and generation models, can be found in the SM, Sec. 1.3.

We focus on two neural network architectures in our experiments. First, timeVAE (SM Sec.
1.2.1, Suppl. Fig. 1A) is simple for proof-of-concept testing (10); however, its major drawback is that
it requires the entire time series as input, which can be impractical for long sequences, especially
in high-dimensional systems due to memory constraints. To address this, we introduce a new
architecture called dynamic HyperSINDy (SM Sec. 1.2.2, Suppl. Fig. 1B). Alternatively, we can use
DVAE architectures, which allow sequential data input, overcoming timeVAE’s limitations (24).

4 RESULTS

4.1 SYSTEM IDENTIFICATION OF NON-AUTONOMOUS HARMONIC OSCILLATORS

We begin by identifying noisy, non-autonomous dynamical systems using a simple toy model — a
non-autonomous harmonic oscillator with time-varying ODE coefficients (Eq. [3] Figure[I). First, we
vary the coefficient A(t) in a switch-like fashion (Figure la) (c)). The system behaves like a classic
harmonic oscillator, but with a frequency switch. The inferred coefficients (Figure[2} Suppl. Fig. 4)
and the reconstructed trajectories (Suppl. Fig. 6) align well with the true values. These trajectories
are generated during testing, with z sampled from a standard normal distribution.

When varying both A(t) and B(t) as sinusoids with different frequencies, the resulting tra-
jectories generally capture their oscillations, though some higher error and a large outlier appear
toward the end (Figure [2J(d), Suppl. Fig. 3). We also successfully reproduce coefficients composed of
multiple frequencies (a finite Fourier series) in Figures [2[()-(f). In (f), some error occurs in the first
half because the system approaches a fixed point where the derivative is nearly zero. In such cases,
system identification becomes difficult, as multiple solutions can produce the same dynamics.

4.2 UNCERTAINTY QUANTIFICATION IN NON-AUTONOMOUS HARMONIC OSCILLATORS

We use VAEs to quantify uncertainty by estimating the standard deviation of the coefficients over time.
Therefore we generate multiple trajectories by sampling z from a standard normal distribution during
testing. Figures [3(a)-(c) show examples of trajectories from networks trained on noisy data with two
noise levels: low (0.01) and high (0.5) standard deviations. As expected, trajectories vary more under
high noise than low noise. Our results show that the estimated standard deviation generally follows
the true coefficient variations. First, we compute the standard deviation across generated samples at
each time point and average these deviations (Figure[3|B(a)). Second, we subtract a smooth mean
from the trajectory samples and calculate the standard deviation over time (Figure [3| B(b)). Both
methods demonstrate that standard deviation aligns with the ground truth, particularly for switch
signal coefficients, but is less clear for Fourier series coefficients. Further work is needed to improve
standard deviation estimation, considering the VAE architecture and hyperparameters.
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A Set of synthetic datasets used to test dynamic SINDy
(coefficient time series and trajectory)

(a) sigmoid (b) switch signal (c) Fourier series
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Figure 1: (A). Synthetic dataset to test dynamic SINDy with non-autonomous harmonic oscillators
(Eq. ). Top: Example (SINDy) coefficient time series A(t); Bottom: corresponding trajectories in
phase space (B). Dynamic SINDy general architecture schematic; two DVAEs shown as example.

4.3 SYSTEM IDENTIFICATION IN A NON-AUTONOMOUS, CHAOTIC TOY DATASET

We next modified the Lorenz system by allowing one of its key parameters (o, p, 3) to vary over time,
similar to the non-autonomous harmonic oscillator examples. The modified Lorenz equations are:

= alt)y - )
y=z(p—2) -y
z=uay— Bz (®)

Here, o(t) varies over time as a sigmoid, switch function, sinusoid, or as a Fourier series with 7
overlapping frequencies. Despite these changes, the system still converges to a global attractor.

For system identification, we used two dynamic SINDy architectures: the timeVAE, effec-
tive for shorter time series (1000-2000 points), and dynamic HyperSINDy (SM Sec. 1.2.2), suitable
for longer time series. Training occurs in two stages: first, we apply a sparsity penalty to set small
coefficients to zero; second, we fine-tune the remaining coefficients. After training, we remove the
encoder and generate time series from the decoder, closely matching the ground truth across different
parameters and functions (Figure ] Suppl. Fig. 5). Hyperparameters are listed in SM, Sec. 1.3.
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Generated time series of SINDy coefficients (nonlinear oscillator)
after training the dynamic SINDy architecture
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Figure 2: Dynamic SINDy generates coefficient time series that match ground truth for non-
autonomous harmonic oscillators (Eq. (3)). (a)-(f) different examples of time-varying A(t), B(t).
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Figure 3: (A) Dynamic SINDy generates coefficient time series for different levels of Gaussian noise
in the coefficient. (B) Inferred noise (standard deviation, or std) scales with ground truth Gaussian
noise for different time-varying coefficients. (a) std computed over many generated samples, then
averaged (b) std computed over time, then averaged over samples (see Sec. 4.2)

4.4 DYNAMIC SINDY USED FOR IDENTIFYING LATENT VARIABLES AND THEIR DYNAMICS

Dynamic SINDy is particularly useful for discovering hidden (latent) variables from incomplete
datasets. We demonstrate this using a toy model from ecology: the Lotka-Volterra equations, which
describe predator-prey dynamics between two species:

T = ax — Bxy

y=—vy+oxy ©))

In our example, we only observe the prey population, z, and aim to use dynamic SINDy to uncover
the hidden predator population, y, and reconstruct a full 2D autonomous system in x and y.
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Generated time series of SINDy coefficients (Lorenz) after training
the dynamic SINDy architecture
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Figure 4: Dynamic SINDy generates coefficient time series that match ground truth for Lorenz
dynamics (Eq. ). (a)-(h) different examples of time-varying o (t), p(t), 5(t).

We apply dynamic SINDy to x, using a library with just three terms: xz,z2,23. As ex-

pected, & is expressed solely in terms of x, with the 22 and 22 terms vanishing. We derive a time
series for the coefficient ¢, where & = zg(t). This inferred § correlates with the hidden y, where
7 = q - (a — By), with ¢ being a scaling factor applied to x before using dynamic SINDy. From §(t),
we can infer y and compare it to the true population. In noiseless data, we accurately reconstruct the
predator dynamics|[6JA, but with more noise, recovery becomes harder [fB. Using , we form a new
2D system of equations:

T=a-xy
j=b+c-z+d-j+e-zj (10)

where a, b, ¢, d, e are new model parameters. Comparing the inferred coefficients to the original
Lotka-Volterra system by changing variables from y to y and using standard SINDy and the pysindy
package, we find a close match (Figure[6C). We applied this same approach to the non-autonomous
harmonic oscillator (Eq. 3] SM Sec. 2.1), further confirming that dynamic SINDy can successfully
identify hidden variables and form complete autonomous systems.

4.5 DYNAMICS IN THE NEMATODE C. ELEGANS DURING LOCOMOTION BEHAVIOR

Modern neuroscientific data is noisy, nonlinear, and incomplete, with recordings from hundreds or
thousands of neurons, yet many network features and neurons remain unmeasured. This makes it a
challenging test for dynamic SINDy’s ability to model such complex systems. To demonstrate our
method’s potential, we use a dataset of C. elegans neural activity (Sec. 3.1, (38)). Unlike previous
approaches that rely on probabilistic state space models or hidden Markov models 1455 7)),
our method uncovers a global nonlinear switching model (8 29). This model captures key features
of the neural data: two stable fixed points representing forward and reversal behaviors, transitions
between them, and variability in those transitions, reflecting real neural dynamics.

We first apply PCA to the data from one animal to obtain low-dimensional dynamics that
cluster according to behavioral states (Figure [6JA,B). Notably, only two dimensions are necessary to
differentiate between forward, backward, and turning behaviors, although differentiating between
various types of turns requires more dimensions. For a minimally complex model, we focus on the
neural trajectory described by the dominant PC mode and its derivative. Our goal is to identify a
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Latent variable discovery B Latent variable discovery S System identification for new
Lotka Volterra, no noise Lotka Volterra, 6 =0.1, 1.0 autonomous system with SINDy
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Figure 5: Dynamic SINDy can be used for latent variable discovery. (A). Inferred (blue) versus true
(orange) y time series, from noiseless Lotka-Volterra. (B). Same as in (A), when noise of different
standard deviations o is added to the Lotka-Volterra trajectory. (C). Inferred versus true coefficients
in the Lotka-Volterra 2D ODE system, using SINDy for system identification.

nonlinear, parsimonious, and global model of the form:

iy (11)
j = f(z,8) + u(t) (12)

where « is the data projected onto the first principal component, f is an unknown function, u(t) is a
potential switching or control signal, and 3 is a vector of parameters we would like to fit to our data.

We apply dynamic SINDy to minimize the error between the model’s derivatives (2(t), §(t)) and
the dominant PC derivatives from the data. Following sections 4.1 and 4.3, we identify the sparsity
pattern of the SINDy coefficients, enforcing & = y. The method highlights the terms 1, z, y, 22, 23
for describing y and calculates their time-varying coefficients (SM Sec. 3.1, 3.2). To further simplify
the model, we set coefficients for all variables to be constant, except the flexible term u which we
can also reduce to a time series of switches (Figure[gD, see SM Sec. 3.2.1) without meaningfully
affecting global dynamics. Converting u into a switching signal simplifies this term, helping to
regularize the model and improve interpretability. This approach aligns with previous studies
showing bistability and sudden transitions in behavior.

Our approach identifies a cubic function for the differential equation model: & = f(x, 8) + u(t) =
0.002 - 23 + 0.00872% — 0.22 - y + 0.05 - = + u;, where u; alternates between vy = —0.266 and
w1 = 0.044 (see SM Sec. 3.1 for details). Each time u switches, the cubic function shifts, altering the
fixed point that the trajectory converges to. This switching signal u enables the transitions between
the two fixed points, which correspond to forward and reversal behaviors. Overall, the reconstructed
data captures key features like fixed points and transitions (Figures [6E-F, [6G). By labeling the
trajectory based on behaviors, we align the inferred dynamics with the training data (Figure [6H).

The reconstructions are accurate regardless of whether we use the processed switching term
u (Figure [6] D) or the original time series u (Figure [6] C). However, v alone does not adequately
explain the data; removing other terms leads to poor fits or instability. By systematically eliminating
different terms, we find that all are essential for capturing the dynamics. When we initialize the
inferred ODE system from different starting points and use v from training, the resulting dynamics
qualitatively match the data. This suggests that our method effectively avoids overfitting. Unlike
Morrison et. al., which relies on selecting a model based on human-labeled behavioral states,
dynamic SINDy is fully data-driven and does not require labeled data to partition the phase space
(29). Additionally, unlike Fieseler et. al., our model accommodates nonlinear dynamics with
two stable fixed points (8). A key advantage of our ODE model is the potential for biologically
interpretable parameters (see (29). SM Sec. 3.3 offers a more comprehensive discussion of the
benefits of our framework, comparing our global nonlinear switching model to previous studies. In
summary, we have demonstrated that dynamic SINDy can do automatic data-driven model discovery,
generating a nonlinear model with minimal input from the data scientist.
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Figure 6: (A). C. elegans neuronal activity is low-dimensional and clusters according to behavior;
(B). Neuronal activity in phase space given by the first principal coordinate and its derivative; (C).
Dynamic SINDy inferred constant term; (D). Processing coefficient in (C) as switch; (E) and (F)
ODE model’s match to ground truth trajectories; (G) (and (H)) 2D model trajectory (with labeled
behavior).

4.6 DYNAMIC SINDY AND OTHER METHODS FOR SYSTEM IDENTIFICATION

We begin by comparing dynamic SINDy with switching linear dynamic systems (SLDS) (13} [9)
and its extension, rSLDS (41). SLDS uses a discrete latent variable, z;, to partition the state space
between switches (see SM Sec. 4.1), simplifying complex nonlinear dynamics into more manageable
linear segments. The rLDS extension allows switches to depend on continuous latent states and
external inputs using logistic regression (41). We evaluate how well SLDS/rSLDS identifies
switching signals in the dynamical systems studied so far, specifically inferring where the latent
variable z changes for switching to occur. We use coefficients based on sigmoids and two types
of switching signals (refer to the "ground truth” in Figure [7]A). Running SLDS or rLDS generates
samples of the latent variable z that segment the training trajectory, enabling us to compare this
segmentation with the actual ground truth switches.

We find that for a sigmoidally varying coefficient, SLDS identifies the switch fairly well
(Figure[7A (a), (b)), as shown by the colored trajectories and the insets comparing the z; time series
to the ground truth; although for Lorenz dynamics, the predicted change in the latent state z; is
slightly delayed relative to the actual switch (Figure[7A (b)). However, SLDS struggles when there
are multiple state switches in the time series (Figures (c) and (d)). For the harmonic oscillator,
rSLDS produces a model with too many switches and is more complex than the ground truth. For
Lorenz dynamics, both SLDS and rSLDS switch periodically whenever the dynamics change between
attractors, but this periodicity does not match the true switches defined by the coefficients. To address
these challenges, we added time as a new dimension to the dataset, represented as a simple feature
vector [1,2,...,T)], where T is the total number of time steps. The goal was for SLDS/rSLDS to
recognize that the switches are time-dependent rather than state-dependent. However, this addition
did not improve the performance of SLDS or rSLDS.

Another method for identifying non-autonomous systems, discussed in references
and SM Sec. 4.2, involves dividing the trajectory into smaller time windows and applying SINDy
to each segment while enforcing a consistent sparsity pattern across all windows. We tested this
approach on two toy datasets, using SINDy coefficients modeled as sigmoids, sinusoidal functions,
and a Fourier series with seven frequencies. Without the group sparsity regularization, the sparsity
patterns varied across the windows, highlighting the importance of group sparsity for achieving a
coherent solution. The group sparsity approach worked well when the coefficients were sigmoid
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functions with varying smoothness (Figure[7]B (a) and (c)). However, it struggled with sinusoidal
and Fourier series coefficients, particularly in the Lorenz system (]Z| B(b) and (d)). In cases of
misidentified coefficients, the algorithm also generated incorrect sparsity patterns. We conclude that
neither SLDS or rSLDS, nor the group sparsity method are as effective as our method in identifying
non-autonomous dynamical systems from data.

A SLDS/rSLDS to recontruct trajectories/states

(a) grourjd trth - SLDS/1SLDS () ground truth - harmonic
harmonic oscillatior /r oscillatior(switch signal)

(sigmoid)6 _
E n :

rSLDS

inferred 2 inferred z

truez truez

(b)  groundtruth- (d)  ground truth -
Lorenz (sigmoid) Lorenz (switch signal)
inferred z ]

SLDS

inferred z

truez

truez

Legend:
— state 1: z=0
== state2: z=1

Group sparsity method to discover SINDy coefficient time series

(@) harmonicoscillator ()  harmonic oscillator (c)  Lorenzdynamics (d) Lorenzdynamics
sigmoid finite Fourier series sigmoid finite Fourier series

©] —— inferreq ODE parameter

011 —+— inferred ODE parameter 151 —+— inferred ODE parameter 7/~ "%

—+— true ODE parameter

~+— true ODE par:

parameter
parameter

; pa_rame:ter
porameter
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time time time

Figure 7: (A) SLDS/rSLDS infers switching behavior for non-autonomous harmonic oscillators and
Lorenz dynamics as coefficients vary. (a)-(d) left: ground truth dynamics, labeled switch values
colored blue and orange. Inset shows true coefficient. (a)-(d) right: dynamics labeled by inferred
switch. Inset: ground truth z and samples of discrete latent values z labeled by switch. (B) Inferred
SINDy coefficients versus ground truth using group sparsity method.

5 CONCLUSION

We have developed dynamic SINDy, an extension of SINDy designed for data-driven identification of
noisy, nonlinear, and non-autonomous dynamical systems, as well as for discovering latent variables.
We demonstrated the effectiveness of dynamic SINDy on both benchmark synthetic datasets and a
real, noisy, chaotic dataset of neuronal activity from C. elegans.

However, our method has some limitations. First, the DVAE architecture has many hyper-
parameters to tune, and results may not be robust to these settings, especially in noisy datasets.
A systematic approach for hyperparameter tuning and addressing multiple solutions is necessary.
To prevent overfitting, we should encourage simpler time series through regularization. Although
we included a simple approximation of total variation term in our loss function, realistic datasets
might require more sophisticated regularization. Future research should explore different DVAE
architectures to evaluate their accuracy in reproducing dynamics and their ability to quantify
uncertainty. It would also be valuable to apply our method to experiments with different trial
dynamics and types of noise than those studied here (e.g., varying switching points across trials).
Lastly, we aim to apply dynamic SINDy to realistic data from fields like biology, physics, and
engineering to uncover hidden dynamics and fully utilize its potential for discovering latent variables.

10
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6 REPRODUCIBILITY STATEMENT

A detailed list of models, neural network architectures, algorithms, parameters, hyperparameters, etc.
can be found in the Supplementary Material. The methods section in the main text contains important
information about the synthetic datasets we have created to test our model, as well as a description of
the C. elegans dataset from (38)). A set of useful Python scripts is provided. While the code is still
messy, the authors commit to improve it and make it quite accessible. The hope is that it will soon
become an important reference to accompany the manuscript.
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