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I. MOTIVATION

Legged mobile manipulators are an intuitive robotic embod-

iment for operating in human environments. They allow using

different parts of their body to assist in loco-manipulation and

enhance their interaction capabilities. For instance, a robot can

adjust its torso posture using its legs to help its arms apply

more force to an object or use both arms and legs to open and

traverse a spring-loaded pull door. Loco-manipulation, at its

core, is a multi-contact planning and control problem, where the

robot must carefully coordinate contacts with its surroundings to

simultaneously move, maintain balance, and manipulate objects.

However, prior works [5, 47, 19, 46] simplify this complex

problem by separating locomotion from manipulation, limiting

the latter to the robot’s arm end-effector. Furthermore, existing

approaches [30, 28, 49] focus on scenarios where switching

between contact locations on the object is either non-existent

or hand-crafted by a skilled engineer. Consequently, a more

advanced framework for generating multi-modal behaviors is

necessary to address a broader spectrum of real-world tasks.

Obtaining real-world robot data is costly, which limits the

ability to generalize beyond a narrow set of tasks and operating

conditions [37]. For legged systems, this challenge is even more

pronounced due to their high Degrees-of-Freedom (DoFs),

which complicates teleoperation, and their non-fixed base,

which increases the risk of damaging hardware. As a result,

physics-based simulation [27] offers a more scalable alternative

to generate diverse training data, while also facilitating the

testing of control policies for legged systems.

My vision is to achieve robust whole-body loco-

manipulation skills for legged mobile manipulators

primarily through simulation, and transferring them

effectively to hardware.

To advance this vision, my research focuses on exploring:

(a) how to scale synthetic data generation for robot learning

and sim-to-real transfer of learned skills, (b) how to design a

flexible and robust whole-body controller that integrates both

mobility and manipulability, and (c) how to extend beyond

single end-effectors to more complex, coordinated multi-limbed

manipulation.

II. RESEARCH TO DATE AND RELATED WORK

A. Synthetic Data Generation for Robot Learning

A high simulation throughput often comes at the cost of

simulation accuracy [13]. Popular simulators [44, 10] use CPU-

based physics engines, which require massive clusters to meet
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Fig. 1. Different paradigms for whole-body planning and control of legged
mobile manipulators. The high-level planner may provide references to the
robot in the task-space for the individual limbs (through teleoperation or as a
learned policy) or in the joint-space (as offline motion plans).

the data demands of current learning algorithms. To overcome

this limitation, we developed a simulation framework for

robot learning [32] that leverages recent advances in GPU-

accelerated physics simulation and hyper-realistic rendering.

This framework allows users to train and deploy policies

for complex tasks, such as rough-terrain locomotion, in just

minutes. We integrated various robot learning workflows

and environments, enabling systematic training, testing, and

verification of robotic systems. This tool is now widely used

in both industry [12, 36] and academia [25, 48] and serves as

the foundation for my research on loco-manipulation skills.

B. Whole-Body Planning and Control 1 2

A holistic planning and control approach for mobile manip-

ulation needs to account for the high DoFs and potentially con-

flicting concurrent tasks and constraints. Recent works [39, 24]

design a real-time Model Predictive Controller (MPC) for

legged mobile manipulators to track end-effector poses. We

extended this MPC formulation to incorporate constraints

for avoiding unwanted self and environment collisions and

utilizing a real-time Signed Distance Field (SDF) representation

of the environment [31, 9]. Combining this controller with



a vision-based object-centric planner, we demonstrated that

this approach enables interaction with unknown cabinets and

drawers in static and dynamic kitchen scenes. It achieves higher

performance compared to conventional methods that decompose

the whole-body control or rely on inverse kinematics. These

results underscore the importance of whole-body coordination

for effective mobile manipulation.

While model-based optimal control techniques are often

effective for manipulating simpler objects, such as cabinets

and drawers, they are sensitive to modeling mismatches and

need a pre-specified contact pattern. This reliance limits

their robustness, particularly in handling large uncertainties

in object dynamics and unmodeled terrains. To overcome

these limitations, we investigated the application of Reinforce-

ment Learning (RL) for robust tracking of pose commands,

whether for a quadrupedal robot’s foot [3, 42] or its arm

end-effector [35]. The hardware results demonstrate that the

learned controllers can handle uneven and slippery terrains

as well as external disturbances by actively adapting the

robot’s posture. Compared to their model-based counterparts,

these controllers also offer a larger reachable workspace and

improved tracking. These advantages enable tasks previously

considered unachievable– such as opening a door with a

quadruped’s foot or carrying an unknown heavy payload.

Concurrent research [16, 7, 26, 20], including ours [11],

combine these RL-based tracking policies with learned high-

level task-space planners for object manipulation. However,

these methods still operate on a single end-effector for

manipulation, whether on the leg or the arm.

C. Multi-Limbed Object Manipulation 3

A higher number of DoFs increases the exploration com-

plexity for an RL agent, often resulting in sub-optimal

behaviors [18]. For instance, when training a quadrupedal robot

to push a large box to a target location, the agent may learn to

use a single leg and rarely use other limbs, even when those are

closer to the object. To address this asymmetry in the learned

behavior, we investigated symmetry-based augmentation [1]

for the on-policy algorithm, PPO [38]. Directly applying this

augmentation causes numerical instabilities, as the augmented

samples are off-policy. To resolve this issue, we proposed

an alternative policy update rule to stabilize the learning

process [33]. On quadrupedal box climbing and pushing tasks,

we demonstrated that this approach accelerates convergence

and leads to more optimal behaviors. It allows the robot to

naturally use the closest leg for manipulation, eliminating the

need for hand-crafted rewards to enforce limb selection.

An alternate direction to improve the quality of learned

RL behaviors is incorporating reference motion data. This

technique is widely adopted for animating physically sim-

ulated characters [4, 34, 43], and more recently humanoid

robots [21, 17]. Although these works demonstrate multi-limb

tracking, they follow the reference motions at a fixed rate and

involve limited or no object interaction. These assumptions

make these methods brittle, as they struggle to deal with

slippages or failed grasps. We highlight this issue in our

work on interacting with large articulated objects, such as

spring-loaded doors and dishwashers, with a quadrupedal

mobile manipulator [41]. To overcome this limitation, we

proposed an adaptive scheme for updating the reference

motions, synthesized offline using Trajectory Optimization

(TO) [40, 6]. Compared to prior works [34, 14], our proposed

state-dependent update scheme enables a higher success rate in

simulation despite model mismatches and significant external

disturbances. Furthermore, the learned policies transfer reliably

on hardware, enabling the robot to use its legs or arm for

object interaction as dictated by the reference motion, while

also exhibiting recovery behaviors, such as handle regrasping,

that were absent in the demonstrations.

III. ONGOING AND FUTURE RESEARCH

A. Benchmark for Multi-Contact Loco-Manipulation Skills

The TO methods for multi-contact reference synthesis [40, 6]

offer a scalable approach to generating a large dataset for vari-

ous loco-manipulation tasks entirely in simulation [32]. Unlike

existing datasets [45, 29], which have limited or no object

interaction, this new dataset will feature high multi-modality,

both in sensory inputs (through simulated exteroceptive and

proprioceptive sensors) and interaction strategies (by utilizing

different limbs or contact locations on the object). This dataset,

along with the corresponding simulated environments in [32],

will open up several exciting research avenues for building

and evaluating a generalizable loco-manipulation framework

for unknown environments.

B. Generative Models for Online Whole-Body Planning

As an initial step, I propose investigating generative mod-

els [8, 22] as a state-based high-level planner that provides

whole-body references to the RL tracking policy from [41]. This

approach offers the benefit of online kinematic planning via

the high-level planner, combined with a robust tracking policy

that can handle dynamic variations and external disturbances.

The next step will involve utilizing image embeddings from

on-board cameras as inputs to the model, instead of relying on

the object’s state. This will also require investigating different

memory architectures to handle large occlusions that occur

when the robot is near the object.

C. Language-Conditioned Whole-Body Planning

While my current research primarily focuses on quadrupedal

mobile manipulators, I believe the insights gained from these

works are also applicable to bipedal legged systems. Given their

similar morphology to humans, additional data sources– such as

internet-scale human videos– could also be leveraged for these

platforms [15]. However, simply scaling datasets may not be

sufficient to build a truly generalizable system [37]. Achieving

this goal requires fundamental algorithmic improvements that

enable these systems to reason about their embodiment in

novel situations. Given the recent advancements in large

language models for reasoning [2], one potential paradigm

for generalization could be conditioning the high-level planner

on language prompts. Through this approach, new situations

could be addressed by providing a language description at

inference time, which would influence the style and intent of

the generated motion [23].
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