
Adversarial Robustness of Program Synthesis Models

Mrinal Anand
Indian Institute of Technology,

Gandhinagar, India
mrinal.anand@iitgn.ac.in

Pratik Kayal
Indian Institute of Technology,

Gandhinagar, India
pratik.kayal@iitgn.ac.in

Mayank Singh
Indian Institute of Technology,

Gandhinagar, India
singh.mayank@iitgn.ac.in

Abstract

The resurgence of automatic program synthesis has been observed with the rise of
deep learning. In this paper, we study the behaviour of the program synthesis model
under adversarial settings. Our experiments suggest that these program synthesis
models are prone to adversarial attacks. The proposed transformer model has
higher adversarial performance than the current state-of-the-art program synthesis
model. We specifically experiment with ALGOLISP DSL-based generative models
and showcase the existence of significant dataset bias through different classes of
adversarial examples.

1 Introduction

With the recent onset in machine learning techniques, we witness a resurgence of automatic program
synthesis techniques [1, 2, 3, 4, 5]. The rich literature on automatic code generation is broadly
classified into two categories: (i) programming by example (PBE) [6], and (ii) programming by de-
scriptions (PBD) [7]. The PBE paradigm leverages input-output (I/O) examples alone to automatically
construct a program that satisfies these examples. Several real-world computer science applications
use the PBE paradigm for automatic code synthesis. For example, FlashFill [8], DeepCoder [9],
RobustFill [10] and SpreadsheetCoder [11]. DeepCoder [9], RobustFill [10], SpreadsheetCoder [11]
and use neural networks for inferring logic (a.k.a. Neural Code Synthesis). DeepCoder utilizes a
simple encoder-decoder-based learning framework to augment and speed up standard search-based
approaches like DFS, “Sort and add” enumeration, and Sketches [12]. RobustFill proposed a modified
attention-based RNN architecture to synthesize programs and showed significant improvements over
previous state-of-the-art neural synthesis approaches.

In contrast, the PBD paradigm uses descriptions with corresponding zero or few I/O code instances
to automatically construct a program. The PBD paradigm has recently received major attention,
thanks to the surge in the neural sequence-to-sequence approaches [7, 13, 14] and transformers based
approaches [11, 15] including GPT-3 [16]. However, the progress is fairly limited due to the unavail-
ability of large-scale real datasets. Polosukhin et al. [13] proposed a large-scale synthetic dataset,
ALGOLISP, and a corresponding neural architecture SEQ2TREE. SEQ2TREE generates Abstract
Syntax Trees (AST) from textual descriptions.The current state-of-the-art, SKETCHADAPT [17], uses
a combination of neural and sketch-based approaches for program synthesis. As a downside of neural
modeling, both paradigms necessitate large volumes of datasets in fully supervised settings. However,
due to the rare availability of good quality and large-scale real datasets, these approaches leverage
synthetic datasets. In this work we extensively experiment using ALGOLISP [13] dataset. ALGOLISP
is a synthetically constructed code generation dataset.
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Recently, we witnessed a growing interest in evaluating deep learning models against adversarial
attacks [18]. However, to the best of our knowledge, we do not find any work that evaluates
the adversarial robustness of neural program synthesis systems. Specifically, we are interested
in answering questions like “Are generative models trained on synthetically constructed datasets
sufficiently robust against adversarial attacks?” In this paper, we evaluate automatic program
synthesis models trained on synthetic datasets against adversarial attacks. We propose different
classes of adversarial attacks and show the inability of state-of-the-art code generation models to
generalize to extremely elementary test examples.

2 Problem Definition

After introducing the general program synthesis paradigm in the previous section, we are now in a
position to define the DSL-based program synthesis problem formally. Given a DSL (L), we aim
to learn a synthesis algorithm A such that given a text description (NL) and its corresponding code
snippet, (i1,o1), . . . , (in,on). The synthesis algorithm A learns a program P ∈ L, such that it satisfies
all the corresponding input-output test cases ej’s of description (NL) and code snippet (ij ,oj) pair,
i.e.,

∀j, k : P (ej(k,in)) = ej(k,out) :

1 ≤ j ≤ n & 1 ≤ k ≤ l
(1)

Where, ej(k,in) and ej(k,out) represents the input and output of the kth test case of description and
code snippet (ij ,oj) pair, respectively. Here, l represents the number of test cases corresponding to
each description and code snippet pair. Note that, in Eq. 1, we match the test cases and not the actual
generated code; a given textual description can possibly generate structurally dissimilar variants of
the ground truth code, preserving the logical functionalities.

Formally, an adversarial text description (NL′) for a program synthesis model generates a program
(Padv) such that:

∀j, k : Padv(ej(k,in)) ̸= ej(k,out) :

1 ≤ j ≤ n & 1 ≤ k ≤ l
(2)

under the constraint that-
||NL′ −NL|| ≤ δ

where δ denotes the amount of perturbation. Let Porig denotes the program corresponding to NL
and Padv_sol corresponds to a program that can correctly solve NL′. Depending on whether Padv_sol
is the same as Porig, attacks can be classified into the following two categories:

Program Invariance Attacks: In these types of attacks, we perturb NL such that the original
program is also a solution of NL′ i.e., (Porig = Padv_sol).

Program Directional Attacks: In these type of attacks, we perturb NL such that the original
program is not a solution of NL′ i.e., (Porig ̸= Padv_sol).

3 The Adversarial Experiments

In this section, we first discuss the code generation models; we then propose a series of adversarial
attacks and conduct attacks on these models to demonstrate that a carefully crafted adversary can
drastically impact the overall performance.

3.1 Code Generation Models

In this paper, we thoroughly experiment with state-of-the-art DSL-based model, SketchAdapt [17].
SketchAdapt (hereafter ‘SA’) synthesizes programs from textual descriptions as well as input-output
test examples. It combines neural networks and symbolic synthesis by learning an intermediate
‘sketch’ representation. We compare SA with the ongoing paradigm of self-supervised learning model
in Natural Language Processing (NLP) namely transformer model [19](hereafter ‘TF’). Transformer-
based encoder-decoder models showcase that self-supervised models significantly outperform previ-
ous neural approaches like RNN and LSTM based attention architectures [20, 17, 13]. Besides, to
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understand the adversarial robustness, we answer questions like “Are self-supervised models robust
against adversarial attacks?” We show that the transformer architecture uses relatively lesser training
text (only problem description and no I/O pairs) and is more robust against adversarial attacks than
traditional neural code generation models.

3.2 Adversarial Attack Types

We define five classes of adversarial examples. All our proposed attacks are black-box un-targeted
attacks. Our attacks do not have any knowledge of the target model, nor does it have any informa-
tion about the gradients and model parameters. Table 1 shows representative examples of actual
descriptions and corresponding adversarial descriptions. The classes are:

1. Variable Change (VC): Changing single and multi-character variables and argument names
in the original problem description, input arguments, and program trees to examine if the
model correctly generates the corresponding output code. For example, replacing a variable
name ‘a’ with ‘b’ in the textual description (refer Table 1).

2. Redundancy Removal (RR): Removing filler or redundant words without affecting the
overall meaning of the input description. For example, the token ‘all’ is redundant and
removing the token from textual description wont affect the meaning.

3. Synonym Replacement (SR): Replacing words with their corresponding synonyms while
preserving the overall meaning of the input description. For example, replacing ‘maximum’
by ‘largest’ and ‘reverse’ by ‘backward’ in the textual description.

4. Voice Conversion (VoC): Converting a problem description in the active voice to its
corresponding passive voice. For example, the textual description mentioned in Table 1 is in
active voice and it gets converted to its corresponding passive voice.

5. Variable Interchange (VI): Interchanging variable names in problem descriptions compris-
ing multiple variables. For example, problem description with variable names ‘a’ and ‘b’,
the variable name ‘a’ replaced with ‘b’ and vice-versa.

Class Representative Example

VC

OD: Given a string a, what is the length of a.
OO: (strlen a)
AD: Given a string b, what is the length of b.
GT: (strlen b)
AO: (strlen a)

RR

OD: Given a number a, compute the product of all the numbers from 1 to a.
OO: (invoke1(lambda1(if(≤ arg1 1)1(*( self(-arg1 1)) arg1))) a)
AD: Given a number a, compute the product of the numbers from 1 to a.
GT: (invoke1(lambda1(if(≤ arg1 1)1(*( self(-arg1 1)) arg1))) a)
AO: ( * a 1 )

SR

OD: consider an array of numbers , what is reverse of elements in the given array that are odd
OO: (reverse ( filter a ( lambda1 ( == ( % arg1 2 )1))))
AD: consider an array of numbers , what equals reverse of elements in the given array that are odd
GT: (reverse ( filter a ( lambda1 ( == ( % arg1 2 )1))))
AO: (reduce ( filter a ( lambda1 ( == ( % arg1 2 )1))))

VoC

OD: Given a number a , your task is to compute a factorial
OO: invoke1(lambda1(if(<= arg1 1) 1 (*(self(-arg1 1)) arg1)))a)
AD: Your task is to compute a factorial, given a number a
GT: invoke1(lambda1(if(<= arg1 1) 1 (*(self(-arg1 1)) arg1)))a)
AO: (filter a ( partial1 b >))

VI

OD: You are given an array of numbers a and numbers b , c and d , define e as elements in a starting
at position b ending at the product of c and d ( 0 based ) , what is e
OO: ( slice a d ( * c b ) )
AD: you are given an array of numbers a and numbers b , c and e , define d as elements in a starting
at position b ending at the product of c and e ( 0 based ) , what is d
GT: ( slice a e ( * c b ) )
AO: ( slice a d ( * c b ) )

Table 1: Representative examples from each adversarial class. Here, OD, OO, AD, AO, and GT
represent the original description, original output, adversarial description, adversarial output, and
ground truth code of adversarial description respectively.
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It is important to note that the application of VC and VI will also modify the original code along with
the change in the program description. However, RR, SR, and VoC do not led to the modification
of the original code. For example, consider the representative example for VC class in Table 1,
changing variable name from a to b led to the modified code that can solve the problem i.e. from
(strlen a) to (strlen b). Now, model predicting any other token except the variable b is an
adversary. In case of RR, removing redundant token is a program invariance perturbation. Therefore,
the adversarial examples of class VoC, RR and SR belongs to Program Invariance Attack and VC,
VI belongs to Program Directional Attack.

We construct adversarial examples using the holdout test instances following classwise constraints in
a semi-supervised fashion. For example, an adversarial instance belonging to the VI class can only
be generated if the problem description contains two or more variables. In addition, we used several
NLP libraries for basic linguistic tasks. For example, we use the NLTK library to stochastically
remove some stopwords from the program descriptions to generate instances for RR class. Similarly,
we leverage POS tagging to identify active/passive voice to construct instances for the VoC class.
And POS tagging and Wordnet hierarchies to construct instances for SR class. Overall, we use about
1000 adversarial instances, equally divided per adversary class, for evaluating program synthesis
systems.

3.3 Extent of Perturbations

To measure the extent of perturbation in our proposed adversarial attacks, we experiment with the
following two distance metrics:

1. Edit Distance: We use the popular Levenshtein distance (hereafter, ‘Lev’) to calculate the
distance between adversarial description and the corresponding original description. It is
defined as the minimum number of edit operations (delete, insert and substitute) required
to convert one string to the other. We also report the ratio of Levenshtein distance to the
length of sentences (hereafter, ‘LevR’) to measure the extent of perturbation per length
of the sentence. Table 2 (columns 4 and 5) shows distance values for the five adversarial
classes. Except for VoC where the entire sentence structure changes, the other classes
comprise examples constructed from significantly low perturbations. Note that, we limit
the perturbation rate in SR to 1, as higher perturbations were leading to out-of-vocabulary
problems and other grammatical inconsistencies.

2. Embedding Similarity: We also measure the cosine similarity between adversarial de-
scription and the corresponding original description using sentence embeddings derived
from pretrained model BERT [21]. The sentence embeddings are derived from a siamese
network trained using triplet loss [22]. We convert the similarity value into a distance value
by subtracting it by 1 (hereafter, ‘BERT’). We keep the embedding length as 768. Again,
the lower the BERT values, the closer are the two descriptions. Table 2 (column 6) reiterate
the distance-based observations. Note that, as contextual embeddings successfully capture
voice-related changes, the adversarial class VoC also shows low perturbation distance. An-
other interesting observation is that while the class SR has minimum perturbation using

‘Lev’ distance, on the other hand, class VC has minimum perturbation using BERT based
distance. All the attacks are bounded by a maximum perturbation rate δ ≤ 0.05 using BERT
based distance metric (max observed perturbation is 0.044 in RR).

3.4 Human Evaluation

We also perform human evaluation to exhibit the quality of our constructed adversarial attacks. The
experimental setup has been mentioned in Appendix A.
We summarize the human evaluation experiment in Table 2 (column 7-12). The grammatical score
serves as a measure of the syntactical integrity of the problem description, and the naturalness score
deals with the overall semantics of the description. As evident from the table, the grammatical score
and naturalness score of original sentences are higher than adversarial sentences. The evaluators
were correctly able to identify the minor grammatical mistakes present in the RR class. Also, since
changing the variables only does not add much human notable noise, evaluators were finding it
difficult to distinguish between original sentences and adversarial sentences for VC and VI classes
as depicted in the results of Table 2 (column 7-12). We also present the % confusion score that
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Adv. Class Error (%) Distance Grammatical Score Naturalness Score
SA TF Lev LevR BERT Ori Adv %Conf Ori Adv %Conf

VC 48.0 42.5 2.24 .05 .005 4.2 4.25 99% 3.95 3.85 98%
RR 4.70 3.70 4.55 .13 .044 4.20 3.60 88% 4.15 3.60 89%
SR 5.70 8.10 1 .03 .013 4.40 3.85 90% 4.25 3.90 92%

VoC 70.2 24.9 16.54 .54 .015 4.00 3.45 89% 3.90 3.65 98%
VI 70.0 67.7 4.2 .08 .043 3.70 3.50 96% 3.45 3.60 95%

Average 39.72 29.38 5.70 0.22 0.024 4.10 3.73 92.4% 3.94 3.71 94.4%
Table 2: Error percentage (columns 2–3) of SA and TF for different adversarial classes. Distance
between (columns 4–6) adversarial and the corresponding original description. Human Evaluation
(columns 7–12) of the adversarial attacks. Ori, Adv and %Conf represents original examples,
adversarial examples and percentage of confusion in distinguishing between adversarial and original
description, respectively.

reflects how much difficulty evaluators are facing in distinguishing between adversarial and original
sentences. Mathematically, it is defined as %confusion =

(
1− | original value - adversarial value |

5

)
× 100.

The high % confusion scores showcase the quality of constructed adversarial examples.

4 Result and Discussion

In this section, we will discuss the overall performance of SA and TF under adversarial settings. To
facilitate reproducible research, we make the codebase and dataset available at https://tinyurl.
com/yzenyxpz.

Table 2 presents generation performance of SA and TF under adversarial settings using error
percentage i.e. (100 - Accuracy %), lower the error % better is the adversarial robustness. Surprisingly,
SA fails to generalize and produce significantly poor results under the adversarial setting. In particular,
it performs very poorly on the VoC and VI classes. We argue that SA’s inefficiency is primarily due to
the original AlgoLISP dataset, where the majority of the program descriptions are present in the active
voice. Furthermore, the original AlgoLISP dataset is heavily biased to a few variable names and their
ordering. For example, if variables b and d are interchanged, the model fails to recognize this change
and outputs code as if no change has been done on the input sentences. A similar observation was
noted for examples of class VC, where the model fails to recognize the change in variable name in a
few instances. Nevertheless, relatively the performance of VC is higher than that of VI, we believe
this is because, in general the instances of class VC has longer and complex sentences, and the model
fails to recognize the variable often. TF shows more robustness than SA in four out of five classes.

Even though TF showed more robustness than SA under adversarial settings, we observe a significant
drop in the overall performance in both systems. We claim that the performance drop under the
adversarial setting is attributed to bias in the synthetic dataset generation process. Some of the
potential bias scenarios are: (1) small set of chosen variable names, (2) limited number of operations,
(3) limited vocabulary usage, (4) variables occur in a sequential and alphabetical manner.

5 Conclusion

In this paper, we propose a series of program-specific adversarial attacks to showcase limitations
in SOTA code generation models’ robustness. We experimented with a transformer-based model
and showcased the superior performance of TF over previous SOTA systems and robustness under
adversarial settings. In the future, we plan to extend our methodology and develop a general
framework to study the adversarial robustness of code generation systems trained on synthetic and
natural programming datasets.
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A Human Evaluation

A.1 Experimental Setup

We hired two evaluators, familiar with LISP programming language to evaluate the quality of
constructed adversarial attacks. These human evaluators had no background knowledge about the
project or the construction of adversarial attacks whatsoever. We first-of-all educate evaluators about
the task by presenting them a set of program descriptions from the original ALGOLISP dataset.
For this experiment, we randomly select ten instances from each adversary class along with the
corresponding original instance (a sample dataset of a total of 100 instances). We only provide
the textual description of the problem, and all other meta-information such as class of problem,
arguments, and type(adversary/original) were hidden from the evaluators. Next, we instruct them to
evaluate each instance in the sampled set based on the following two criteria:

• Grammatical Correctness: We ask the evaluators to rate the grammatical correctness of
the sentences on a scale of 1–5. The rating of 1 being ‘completely grammatically incorrect
description’ and 5 representing ‘grammatically sound and correct’.

• Naturalness: We also ask the evaluators to judge the quality of the sentences on the basis
of naturalness of the texts, i.e., how likely the test samples are drawn from the original data
distribution. We ask to rate each sample on a scale of 1–5. The rating of 1 being ‘completely
outside data distribution/unfamiliar example’ and 5 representing ‘definitely from original
data distribution’.
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