

000 STABLETOKEN: A NOISE-ROBUST SEMANTIC SPEECH 001 TOKENIZER FOR RESILIENT SPEECHLLMs 002 003 004

005 **Anonymous authors**

006 Paper under double-blind review

007 008 ABSTRACT 009

011 Prevalent semantic speech tokenizers, designed to capture linguistic content, are
012 surprisingly fragile. We find they are not robust to meaning-irrelevant acoustic
013 perturbations; even at high Signal-to-Noise Ratios (SNRs) where speech is per-
014 fectly intelligible, their output token sequences can change drastically, increasing
015 the learning burden for downstream LLMs. This instability stems from two flaws:
016 a brittle single-path quantization architecture and a distant training signal indif-
017 ferent to intermediate token stability. To address this, we introduce StableToken,
018 a tokenizer that achieves stability through a consensus-driven mechanism. Its
019 multi-branch architecture processes audio in parallel, and these representations are
020 merged via a powerful bit-wise voting mechanism to form a single, stable token
021 sequence. StableToken sets a new state-of-the-art in token stability, drastically
022 reducing Unit Edit Distance (UED) under diverse noise conditions. This founda-
023 tional stability translates directly to downstream benefits, significantly improving
024 the robustness of SpeechLLMs on a variety of tasks.

025 1 INTRODUCTION 026

027 The application of Large Language Models (LLMs) to the speech domain has given rise to a new class
028 of powerful models: Speech Large Language Models (SpeechLLMs) (Hurst et al., 2024; Défossez
029 et al., 2024; Zeng et al., 2024). These models rely on a discrete speech tokenizer to convert continuous
030 audio into tokens sequences that the LLM can process. Among available methods, semantic tokenizers
031 have been widely adopted, as their low-bitrate, semantically-aligned outputs are highly compatible
032 with LLM architectures (Défossez et al., 2024; Zeng et al., 2024; Ding et al., 2025; Wu et al., 2025).

033 The design of semantic speech tokenizers has evolved from early self-supervised learning (SSL)
034 methods (Hsu et al., 2021; Baevski et al., 2020) towards a more direct, supervised paradigm (Du et al.,
035 2024a;b; Zeng et al., 2024). This modern paradigm centers on optimizing a VQ-based quantizer (Van
036 Den Oord et al., 2017) with a direct, end-to-end objective such as automatic speech recognition (ASR)
037 . This powerful combination has proven highly effective at producing semantically-rich and compact
038 discrete representations, leading to the widespread adoption of supervised semantic tokenizers as
039 the backbone of many modern SpeechLLMs (Zeng et al., 2024; Ding et al., 2025; Wu et al., 2025;
040 Huang et al., 2025; Fang et al., 2025).

041 Despite their widespread adoption and apparent success, we find that these semantic tokenizers harbor
042 a critical vulnerability: a profound lack of robustness. Contrary to their core design principle of
043 encoding semantics, even imperceptible acoustic noise can induce drastic shifts in their discrete
044 outputs (Figure 1). The general issue of tokenizer instability is also supported by recent findings on
045 earlier non-VQ-based SSL tokenizers (Messica & Adi, 2024). This instability creates a damaging
046 downstream effect: small acoustic changes trigger large token jumps, which break the crucial
047 speech–text alignment and pose a significant modeling challenge for the LLM, forcing it to learn
048 from an inconsistent or even chaotic input stream. This inherent fragility is severely amplified by
049 environmental noise, serving as a key cause for the performance degradation of SpeechLLMs in
050 real-world conditions (Ma et al., 2025b; Zhang et al., 2025; Yang et al., 2024c; Jiang et al., 2025). We
051 argue that enhancing tokenizer robustness is therefore a direct and promising path toward building
052 more resilient models.

053 We pinpoint the fragility of semantic tokenizers to two fundamental weaknesses. First, an **architec-**
054 **tural flaw**: these tokenizers rely on single-path quantization, a design that lacks fault tolerance. A

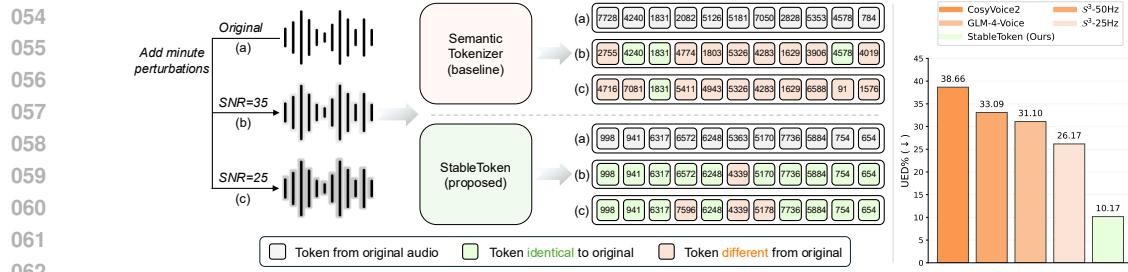


Figure 1: Illustration of StableToken: unlike traditional methods, StableToken yields consistent token sequences under minute perturbations with different Signal-to-Noise Ratios (SNRs). Robustness is measured by Unit Edit Distance (UED, \downarrow) between token sequences of the original and noise-perturbed audio. StableToken achieves significantly lower UED, indicating enhanced token stability.

minor perturbation near a quantization boundary is inevitably magnified into a completely different output token. This architectural vulnerability is then compounded by a **distant supervisory signal**: the standard ASR loss is indifferent to this intermediate token instability, as it only supervises the final transcribed text. This allows models to converge on solutions that are functionally correct but representationally fragile. The dual challenge of a brittle architecture and a distant supervisory signal necessitates a new tokenization paradigm.

Addressing this dual challenge is non-trivial. For the brittle architecture, an offline ensemble of models seems intuitive. However, this approach is untenable: (1) it prohibitively increases inference cost; (2) aggregating independently trained models is non-trivial, as their quantization boundaries are arbitrarily aligned; and (3) a token-level majority vote is too coarse. To tackle the distant supervisory signal, one might introduce a token-level consistency objective for clean and noisy input audios. Yet, this leads to notoriously unstable gradients when applied to discrete codes, making the model difficult to train. The failure of these straightforward approaches underscores the need for a more integrated paradigm.

We propose StableToken, which integrates a co-designed architecture and training strategy to overcome the dual challenges of architectural fragility and distant supervision. **Architecturally**, it introduces the voting-LFQ module—a multi-branch quantizer extended from the LFQ algorithm (Yu et al., 2023), with negligible inference overhead. Its core mechanism is a differentiable bit-level majority vote. During training, this enables a more fine-grained fusion of multi-branch information, leading to more stable and robust representation learning. At inference, this same mechanism provides profound error-correction, operating at the granular bit-level rather than the coarse token-level. This distinction is critical: not only does it ensure the final token remains correct when a minority of branches err due to noise, but it can even recover the token when a majority of branches fail at the token-level, as long as the underlying bit-level errors remain sparse.

This architectural robustness is further solidified by a tailored **training strategy**. We present the model with multiple "views" of an input—a clean version to a majority of branches and a perturbed version to a random minority—to create a stable reference. A consensus loss then leverages this reference to provide the explicit, intermediate supervision. The multi-branch architecture and multi-view training strategy are thus deeply intertwined: the architecture provides the necessary structure for the training signal, and the signal in turn unlocks the architecture's full potential.

We validate StableToken through comprehensive experiments. At the tokenizer level, it achieves a new state-of-the-art in **noise robustness**, slashing the Unit Edit Distance (UED) by over 60% relative (from 26.17% to 10.17%), all while maintaining top-tier **reconstruction fidelity**. This foundational superiority translates directly to **downstream SpeechLLMs**. In speech understanding, the downstream models yield significant robustness gains that are especially pronounced under severe noise. The performance gap between StableToken and baselines widens dramatically as the noise level increases. Similarly, for speech generation, the enhanced token consistency simplifies the learning task, resulting in substantially superior synthesis quality of downstream models. These results confirm that improving tokenizer robustness is directly and highly effective for building more resilient speechLLMs.

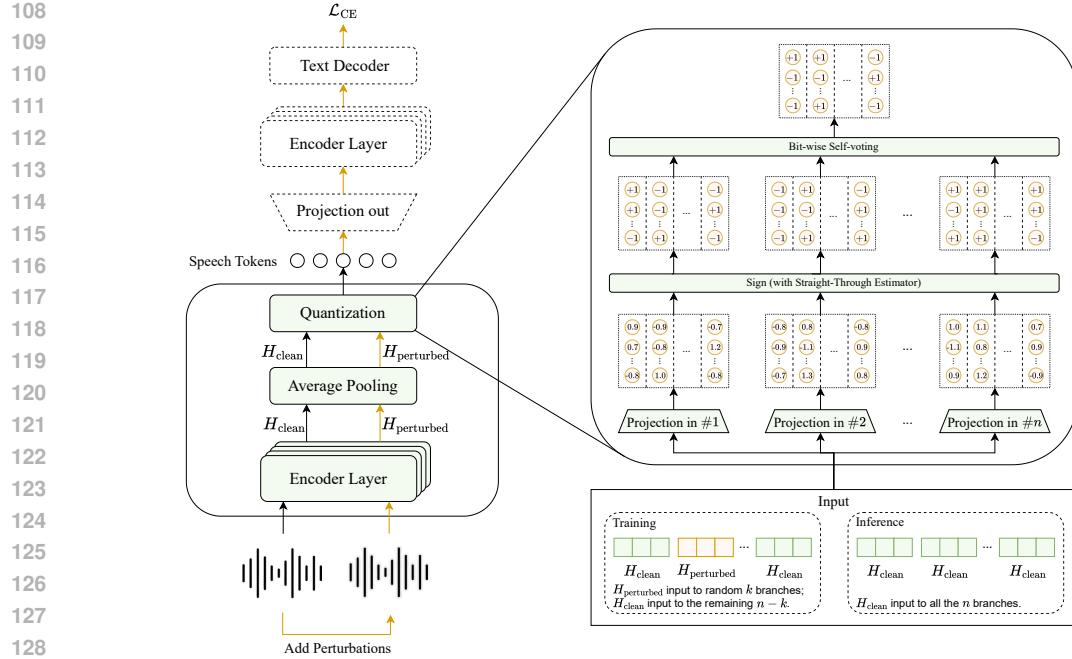


Figure 2: The architecture of StableToken. Our model replaces the standard single-path quantizer with a multi-branch **Voting-LFQ module**. The zoomed-in view shows n parallel branches generating independent binary representations. A bit-wise majority vote then aggregates them into a single token. During our **Noise-Aware Consensus Training**, a randomly selected minority of branches receive perturbed inputs ($H_{\text{perturbed}}$), while the majority receive clean inputs (H_{clean}). A consensus loss forces the perturbed branches to align with the consensus. The yellow paths are only used during training.

2 METHODS

2.1 OVERALL STRUCTURE

Our approach, StableToken, is designed to overcome the fragility of prevailing VQ-based semantic tokenizers. These tokenizers often produce unstable token sequences in the presence of subtle noise, a vulnerability stemming from two core weaknesses: (1) a single-path architecture that lacks fault tolerance, and (2) a distant supervisory signal that fail to enforce representational invariance.

StableToken adopts the architectural paradigm, established in works like (Du et al., 2024a; Zeng et al., 2024; Du et al., 2024b) of embedding a semantic tokenizer within an end-to-end ASR model. However, our approach fundamentally enhances this design by introducing two synergistic innovations to address its inherent instabilities: (1) the Voting-LFQ Module, a multi-branch quantizer that builds in architectural robustness, and (2) Noise-Aware Consensus Training, a training strategy that explicitly enforces invariance to acoustic perturbations.

2.2 THE VOTING-LFQ MODULE

The foundation of StableToken is a novel quantizer architecture designed for intrinsic robustness. As shown in Figure 2, the pretrained speech encoder first processes the input speech into a sequence of hidden states. These states are then downsampled via average pooling to produce a compact representation, $\mathbf{h} \in \mathbb{R}^D$, for each time step.

While traditional quantizers map \mathbf{h} to a token in a single, brittle step, our **Voting Look-up-Free Quantizer (Voting-LFQ)** is founded on redundancy and consensus. It begins by creating n independent "perspectives" of the input state \mathbf{h} using n parallel linear projection layers. Each branch $i \in \{1, \dots, n\}$ computes a projected vector $\mathbf{p}_i \in \mathbb{R}^d$:

$$\mathbf{p}_i = W_i \mathbf{h} + \mathbf{b}_i, \quad (1)$$

162 where $W_i \in \mathbb{R}^{d \times D}$ and $\mathbf{b}_i \in \mathbb{R}^d$ are the unique learnable parameters for that branch. Each
 163 projected vector is then binarized into $\mathbf{B}_i \in \{-1, +1\}^d$ using the non-differentiable sign function,
 164 i.e., $\mathbf{B}_i = \text{sign}(\mathbf{p}_i)$. We use the Straight-Through Estimator (STE) (Bengio et al., 2013) to enable
 165 end-to-end training.

166 During **training**, we aggregate these n binary vectors in a bit-wise manner by averaging their values
 167 across branches for every dimension $j \in \{1, \dots, d\}$, resulting in a real-valued score:
 168

$$169 \quad 170 \quad (\mathbf{s}_{\text{final}})_j = \frac{1}{n} \sum_{i=1}^n (\mathbf{B}_i)_j. \quad (2)$$

171

172 Unlike the rigid assignment of a single bit (+1 or -1), these averaged scores can take nuanced
 173 values representing the confidence or consensus of all branches. This provides the model with richer
 174 feedback during optimization, helping it learn more robust and informative representations.

175 During **inference**, we perform one additional step to apply the sign function to these aggregated
 176 scores to obtain the final consensus-based binary vector:
 177

$$178 \quad (\mathbf{B}_{\text{final}})_j = \text{sign}((\mathbf{s}_{\text{final}})_j). \quad (3)$$

179

180 By using an odd number of parallel branches (n), we enforce a strict majority rule via a bit-wise vote,
 181 creating exceptional robustness against noise. This approach not only corrects errors when a minority
 182 of branches fail, but can also recover the true token even if a majority of branches are corrupted at
 183 the token-level. Recovery is possible as long as the underlying bit-level errors remain sparse. This
 184 resilience marks a significant advantage over fragile single-path quantizers and, in parallel, allows for
 185 more expressive representations during training.

186 Finally, by mapping its -1 and +1 entries to 0 and 1 respectively and treating the {0, 1} representation
 187 as a binary number, the stabilized binary vector $\mathbf{B}_{\text{final}}$ is deterministically mapped to an integer index
 188 $k \in \{0, \dots, 2^d - 1\}$. This index serves as the final, robust speech token. It is worth noting that our
 189 Voting-LFQ structure introduces negligible additional parameters and computational overhead during
 190 inference. A detailed complexity analysis is provided in Appendix B.6.

191

192 2.3 NOISE-AWARE CONSENSUS TRAINING

193

194 The Voting-LFQ architecture enables our novel training paradigm, designed to explicitly instill
 195 representational invariance. Our goal is to make the tokenizer robust to noise without degrading its
 196 performance on clean inputs.

197 The core mechanism works as follows: during each forward pass, for a given input audio \mathbf{w} , we
 198 generate a perturbed audio sample $\mathbf{w}' = \mathcal{A}(\mathbf{w})$, where $\mathcal{A}(\cdot)$ is a stochastic augmentation function
 199 applied at the waveform level (e.g., adding Gaussian noise; further details in Appendix B.3). Both \mathbf{w}
 200 and \mathbf{w}' are separately processed by the encoder to produce two corresponding hidden states, \mathbf{h} and \mathbf{h}' .
 201 we then randomly select a minority subset of k branches (where $k < n/2$) to receive the perturbed
 202 hidden state \mathbf{h}' , while the remaining $n - k$ majority branches receive the clean hidden state \mathbf{h} .

203 This setup allows the model to perform self-stabilization. To enforce this, we introduce the **consensus**
 204 **loss** ($\mathcal{L}_{\text{consensus}}$) which encourages all branches, whether they see a clean or noisy input, to produce
 205 similar pre-quantization representations. We compute a dynamic, "online" target $\bar{\mathbf{p}}_{\text{all}}$ by averaging
 206 the pre-quantization vectors \mathbf{p}_i from **all** n branches. The loss then penalizes the deviation of each
 207 branch from this global average:

$$208 \quad 209 \quad \mathcal{L}_{\text{consensus}} = \frac{1}{n} \sum_{i=1}^n \|\mathbf{p}_i - \bar{\mathbf{p}}_{\text{all}}\|_2^2, \quad \text{where} \quad \bar{\mathbf{p}}_{\text{all}} = \frac{1}{n} \sum_{j=1}^n \mathbf{p}_j. \quad (4)$$

210

212 By optimizing this objective, the clean-majority branches act as a stable anchor for the global average
 213 $\bar{\mathbf{p}}_{\text{all}}$, preventing it from being corrupted by the noisy inputs. Consequently, the noisy-minority
 214 branches are forced to learn representations that align with the clean consensus, effectively learning
 215 to ignore the perturbations. Optimizing on the continuous vectors \mathbf{p}_i provides a smoother and more
 effective gradient signal than working with the binarized \mathbf{b}_i .

216 2.4 FINAL TRAINING OBJECTIVE
217

218 The complete training objective for StableToken combines the ASR task loss with our consensus
219 loss and standard LFQ regularization terms. The primary task is optimized via a Cross-Entropy loss
220 (\mathcal{L}_{ASR}) on the ground-truth transcripts. Following the LFQ framework (Yu et al., 2023), we also
221 include a **commitment loss** ($\mathcal{L}_{\text{commitment}}$) to encourage the hidden states to stay close to the quantized
222 representations, and a **codebook entropy loss** ($\mathcal{L}_{\text{codebook}}$) to promote uniform usage of the discrete
223 codes. The final, composite loss function is a weighted sum:

$$224 \quad \mathcal{L}_{\text{total}} = \mathcal{L}_{\text{ASR}} + \lambda_1 \mathcal{L}_{\text{consensus}} + \lambda_2 \mathcal{L}_{\text{commitment}} + \lambda_3 \mathcal{L}_{\text{codebook}}, \quad (5)$$

225 where λ_1 , λ_2 , and λ_3 are scalar hyperparameters that balance the influence of each component.
226

227 3 EXPERIMENTAL SETUP
228

229 Our experiments are structured to comprehensively validate StableToken from three perspectives. We
230 first demonstrate its core superiority at the **tokenizer level**, establishing a new state-of-the-art in noise
231 robustness without compromising reconstruction quality (§4.1). We then show that this fundamental
232 stability translates directly into significant performance gains in **diverse downstream SpeechLLM**
233 **tasks**, including ASR, Speech Emotion Recognition (SER), and Text-to-speech (TTS) (§4.2). Finally,
234 we dissect the model through **ablation studies, qualitative analysis, and a case study** to verify the
235 contribution of each design component and provide insight into its inner workings (§4.3).
236

237 **Tokenizer Training.** Our StableToken model is built upon an encoder-decoder architecture initialized
238 from `whisper-large-v3` (Radford et al., 2023), with our Voting-LFQ module inserted into
239 the encoder’s mid-point. The tokenizer is pre-trained on a diverse 150k-hour speech corpus. Our
240 tokenizer vocabulary size is set to 8192 (corresponding to $d = 13$), and the frame rate is 25Hz. For
241 our main experiments, the number of voters is set to $N = 5$, a choice justified by our analysis in
242 Section 4.3. Full details on training data hyperparameters are provided in Appendix B.
243

244 **Baseline Models.** We benchmark StableToken against a comprehensive suite of SOTA models
245 across three categories: SSL-based, distilled, and supervised tokenizers. For all baselines, we use
246 their officially released models. The detailed list of baseline models can be found in Appendix D.
247

248 **Tokenizer-Level Evaluation.** We assess the tokenizer’s intrinsic properties. **Robustness** is mea-
249 sured by Unit Edit Distance (UED%, \downarrow) (Messica & Adi, 2024) on the FLEURS (Conneau et al., 2023)
250 benchmark under various synthetic perturbations and real-world noise conditions, which include
251 challenging out-of-domain (OOD) noise. A detailed description of the noise profiles is in Appendix E.
252 **Fidelity** is measured by Word Error Rate (WER%, \downarrow) and Mean Opinion Score (MOS, \uparrow) on the
253 LibriSpeech (Panayotov et al., 2015) and SEED (Anastassiou et al., 2024) benchmarks.
254

255 **Downstream Task Evaluation.** For downstream tasks, we follow a controlled, isogenic setup to
256 ensure fair comparison. Each tokenizer is integrated into a SpeechLLM framework using a pre-
257 trained `Qwen2.5-3B` (Yang et al., 2024a) backbone, which is then fine-tuned using a prompt-based
258 paradigm (Zeng et al., 2025). We evaluate on three tasks: (1) **ASR**: Assessed on noise-augmented
259 LibriSpeech (Panayotov et al., 2015) and the CHiME-4 (Vincent et al., 2017) benchmark using
260 WER (%); (2) **SER**: Assessed on a noise-augmented version of the ESD (Zhou et al., 2022) test
261 set using classification accuracy (%); (3) **TTS**: Assessed on the SEED-TTS (Anastassiou et al.,
262 2024) benchmark using both WER (%) and MOS. The aggregated training datasets, fine-tuning
263 hyperparameters, and prompts for each task are detailed in Appendix F.
264

265 4 RESULTS
266267 4.1 TOKENIZER-LEVEL PERFORMANCE
268

269 4.1.1 SUPERIOR NOISE ROBUSTNESS

As shown in Table 1, StableToken establishes a new state-of-the-art in noise robustness. It achieves
an average UED of **10.17%**, a dramatic improvement over both the best supervised baseline (S^3)

270 Table 1: Noise robustness comparison across different semantic tokenizers. Results are reported in
 271 UED% (\downarrow) under synthetic perturbation (Gaussian, Pink, Brown, Bit Crush) and real noise conditions.
 272 It is worth noting that a comparison is most meaningful between tokenizers of the same type. For a
 273 more comprehensive evaluation, we also include SSL and semantic distilled tokenizers as baselines.
 274

Model	#C	Frame Rate	Codebook Size	Gauss. Noise	Pink Noise	Brown Noise	Bit Crush	Real Noise	Real (OOD)	Avg.
SSL Semantic Tokenizer										
HuBERT-500 (Hsu et al., 2021)	1	50Hz	500	26.42	20.38	18.82	18.02	18.48	19.18	20.22
NAST (Messica & Adi, 2024)	1	50Hz	200	18.67	15.78	15.26	14.95	18.69	19.07	17.07
R-Spin (Chang & Glass, 2024)	1	50Hz	2048	21.56	17.08	15.47	14.95	15.08	14.75	16.48
Semantic Distilled Tokenizer										
SpeechTokenizer (Zhang et al., 2023)	1	50Hz	1024	37.39	28.05	28.06	21.38	22.33	23.09	26.72
	3	50Hz	1024	55.69	54.90	59.84	35.29	33.16	33.67	45.43
	8	50Hz	1024	72.74	72.72	75.91	54.01	48.43	48.63	62.07
X-Codec (Ye et al., 2025)	1	50Hz	1024	53.54	43.85	40.17	36.95	27.82	28.78	38.52
	3	50Hz	1024	71.76	59.95	57.88	50.26	41.25	42.44	53.92
	8	50Hz	1024	84.46	77.31	76.49	68.47	59.89	62.28	71.48
Mimi (Défossez et al., 2024)	8	12.5Hz	2048	72.68	59.82	60.19	43.58	41.66	42.62	53.43
Supervised Semantic Tokenizer										
GLM-4-Voice-Token. (Zeng et al., 2025)	1	12.5Hz	16384	42.44	32.12	30.22	25.53	27.67	28.62	31.10
S^3 Tokenizer (Du et al., 2024a)	1	25Hz	4096	35.40	27.09	25.45	20.64	23.88	24.58	26.17
S^3 Tokenizer (Du et al., 2024b)	1	50Hz	4096	46.05	35.90	33.46	27.20	27.70	28.21	33.09
StableToken (Ours)	1	25Hz	8192	12.93	9.76	9.37	7.32	10.65	10.96	10.17

293 Tokenizer, 26.17%) and the top-performing robust SSL-based model (R-Spin, 16.48%). Crucially,
 294 this strong performance holds even on out-of-distribution (OOD) real-world noise not seen during
 295 training, demonstrating the excellent generalization of our method. Furthermore, this outperformance
 296 is achieved using a significantly larger vocabulary than conventional tokenizers. This makes the result
 297 even more significant, as a larger vocabulary creates a finer-grained decision space, making the task
 298 of maintaining token-level invariance inherently more challenging. This substantial performance gap
 299 underscores the effectiveness of our co-designed architecture and training strategy.

300 301 4.1.2 EXCELLENT RECONSTRUCTION QUALITY

302 303 Table 2: Reconstruction results measured by WER (\downarrow) and MOS (\uparrow) on LibriSpeech (Panayotov et al.,
 304 2015) and SEED (Anastassiou et al., 2024) benchmarks.

Model	#C	Frame Rate	BPS	WER \downarrow				MOS \uparrow			
				LS-clean	LS-other	SEED en	SEED zh	LS-clean	LS-other	SEED en	SEED zh
GLM-4-Voice-Token. (Zeng et al., 2025)	1	12.5Hz	175	4.04	9.33	3.54	3.23	4.07	3.99	4.16	4.10
S^3 Tokenizer (Du et al., 2024a)	1	25Hz	300	5.78	13.38	5.91	4.26	3.40	3.31	3.40	3.31
S^3 Tokenizer (Du et al., 2024b)	1	25Hz	325	4.25	9.68	4.34	2.75	3.36	3.25	3.31	3.58
StableToken (Ours)	1	25Hz	325	3.84	7.99	3.44	2.62	4.09	3.83	4.01	4.18

312 To evaluate reconstruction quality, we follow the methodology of Du et al. (2024a;b); Zeng et al.
 313 (2024) and train a flow matching model to synthesize audio from our speech tokens. The results,
 314 shown in Table 2, demonstrate that the leap in noise robustness does not compromise the tokenizer’s
 315 fundamental quality. StableToken delivers state-of-the-art reconstruction performance, evidenced by
 316 its exceptional Word Error Rate (WER) and Mean Opinion Scores (MOS). These results validate
 317 StableToken as a versatile tokenizer that excels in both resilience and fidelity. Details on the audio
 318 reconstruction setup are provided in Appendix B.5.

319 320 4.2 DOWNSTREAM SPEECHLLM PERFORMANCE

321 322 The ultimate measure of a tokenizer’s utility is its impact on downstream tasks. We find that
 323 StableToken’s intrinsic robustness consistently translates to superior performance in ASR, SER, and
 TTS, especially in challenging, noisy conditions.

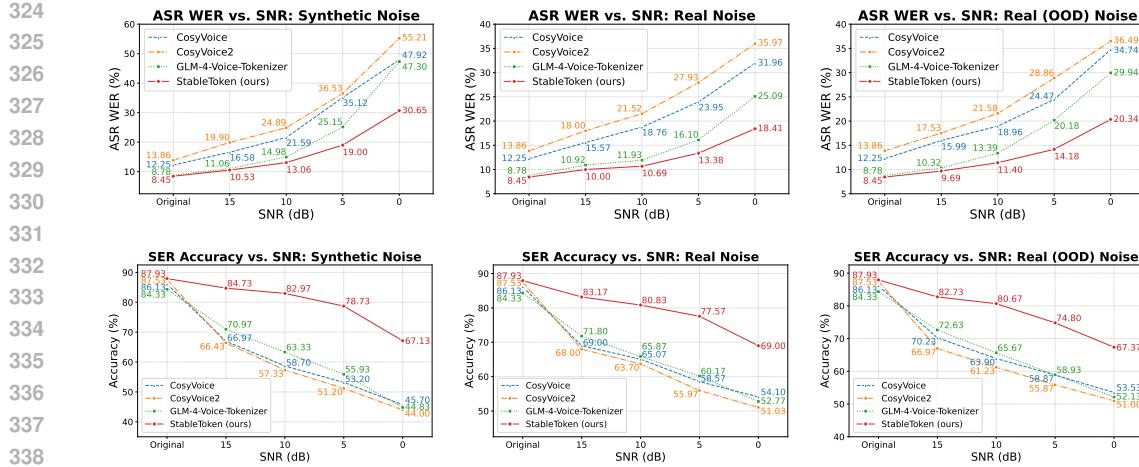


Figure 3: Performance of downstream SpeechLLMs under various noise conditions and SNR levels. **(Top Row)** ASR performance, measured in Word Error Rate (WER, \downarrow). **(Bottom Row)** SER performance, measured in Accuracy (\uparrow). In both tasks, StableToken consistently demonstrates superior robustness, with the performance gap widening as noise severity increases.

Table 3: Downstream SpeechLLMs performance comparison on ASR (CHiME-4) and TTS (SEED-TTS) benchmarks. In both tasks, integrating StableToken into the downstream SpeechLLM leads to substantially improved performance, demonstrating its noise robustness and versatility.

Tokenizer	LLM-base	ASR				TTS			
		Dev Set		Test Set		SEED-TTS _{EN}		SEED-TTS _{ZH}	
		Real	Sim.	Real	Sim.	WER \downarrow	MOS \uparrow	WER \downarrow	MOS \uparrow
CosyVoice	Qwen2.5-3B	38.66	40.82	54.63	47.71	7.80	3.52	8.73	3.47
CosyVoice2	Qwen2.5-3B	43.91	48.39	59.83	55.01	7.22	3.75	9.89	3.37
GLM-4-Voice	Qwen2.5-3B	36.92	36.38	51.08	43.09	6.19	4.19	5.26	3.85
StableToken	Qwen2.5-3B	25.56	25.36	35.90	30.61	4.43	4.12	3.02	4.08

4.2.1 ROBUST ASR PERFORMANCE

StableToken significantly contributes to a robust downstream ASR model. Figure 3 shows that while all systems perform comparably on clean audio, the performance gap widens dramatically as noise increases. Under the most severe OOD real-world noise at 0dB SNR, the model with StableToken achieves a WER of 20.34%, a relative reduction of over 30% compared to the baseline’s 29.94%.

This robustness generalizes to complex acoustic scenes. On the CHiME-4 (Vincent et al., 2017) benchmark (Table 3), the StableToken-based system achieves WERs of 35.90% (test-real set) and 30.61% (test-simulated set), marking relative reductions of approximately 30% over the next-best baseline. This confirms that token-level stability is a direct driver of downstream model resilience.

4.2.2 ROBUST SER PERFORMANCE

Figure 3 shows that the StableToken-based model consistently achieves higher classification accuracy across all noise types and levels. While performance is similar across all tokenizers on clean audio, the StableToken-based model’s accuracy degrades much more slowly as noise increases, demonstrating greater robustness in isolating emotional cues from corrupted audio.

4.2.3 SUPERIOR TTS PERFORMANCE

As shown in Table 3, StableToken delivers superior TTS performance, with significantly lower WER on both subsets, as well as an improved MOS on SEED-TTS_{ZH} and competitive performance on

SEED-TTS_{EN}. The reduction in WER confirms that our tokenizer enables more intelligible speech synthesis that faithfully reproduces the intended text. Concurrently, the MOS score demonstrates high naturalness and auditory quality of the synthetic speech. Together, these results strongly support StableToken as an effective and information-rich representation for speech synthesis.

In summary, across understanding (ASR, SER) and generation (TTS), StableToken consistently enables stronger, more reliable downstream performance. This dual advantage affirms its effectiveness as a powerful, versatile foundation for real-world speech systems.

4.3 ANALYSIS

4.3.1 COMPONENT ABLATION STUDY

Table 4: Sequential ablation study of StableToken. We jointly evaluate tokenizer robustness (UED \downarrow) and semantic preservation (ASR WER \downarrow). Results show that each component contributes to robustness, with the full model providing optimal stability and semantic fidelity. ASR is measured on the validation set during tokenizer training.

Model Configuration	Tokenizer Robustness (UED % \downarrow)						ASR (WER % \downarrow)	
	Gauss. Noise	Brown Noise	Pink Noise	Bit Crush	Real Noise	Real (OOD)	LS-Clean	LS-Other
StableToken (Full)	12.93	9.76	9.37	7.32	10.65	10.96	2.03	4.68
‘‘ w/o Consensus Loss	24.80	19.06	17.81	14.03	16.97	17.43	2.03	4.88
‘‘ w/o Noise-Aware Training	30.77	23.05	21.30	17.32	20.95	21.51	2.19	5.52
‘‘ w/o Multi-Branch	34.53	25.44	24.58	19.83	23.68	24.47	2.39	5.85

Our sequential ablation study, presented in Table 4, confirms that each component of StableToken is critical for its performance. First, removing the *Consensus Loss* causes the significant degradation in token robustness (e.g., UED on Real OOD noise increases from 10.96% to 17.43%), which underscores the importance of enforcing explicit agreement between branches. Subsequently, removing the *Noise-Aware Training* further harms performance, particularly the preservation of semantic content (WER on LibriSpeech-Other increases from 4.88% to 5.52%). Finally, reverting to a single-branch baseline results in the poorest performance overall. This highlights the *Multi-Branch architecture*’s dual role: it is the structural enabler for our training strategy and acts as an effective ensemble at inference, mitigating quantization errors common in single-path designs (Ma et al., 2025a).

4.3.2 ANALYSIS OF VOTER COUNT (N)

To determine the optimal number of voters that best balances performance and computational cost, we conduct preliminary training runs for each configuration. The results in Table 5 show a clear trend: increasing N from 3 to 5 yields substantial improvements in both robustness and semantic preservation. However, a further increase to $N = 7$ offers only marginal gains that do not justify the added computational overhead. We therefore select $N = 5$ as the optimal configuration for all experiments. Analysis of parameters and FLOPs for different N can be found in Appendix B.6.

Table 5: Impact of the number of voters (N) on tokenizer robustness and semantic preservation.

Number of Voters (N)	Tokenizer Robustness (UED % \downarrow)						ASR (WER % \downarrow)	
	Gauss. Noise	Brown Noise	Pink Noise	Bit Crush	Real Noise	Real (OOD)	LS-Clean	LS-Other
$N = 3$	20.66	15.42	14.44	11.55	14.89	15.27	2.24	5.47
$N = 5$	18.68	13.87	13.11	10.50	14.06	14.49	2.22	5.38
$N = 7$	18.10	13.35	12.51	9.84	13.79	14.11	2.36	5.52

432
433
434 Table 6: Case study on error correction via bit-wise voting.
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449

Output Source	Token @ Pos. 68 (Vote on Bit #4)	Token @ Pos. 80 (Vote on Bit #5, #7)	Token @ Pos. 105 (Vote on Bit #3)	Token @ Pos. 114 (Vote on Bit #2, #6)
Clean Reference	5517 ...10001101	3485 ...10011101	2920 ...01101000	6939 ...00011011
Voter 1 (Noisy)	5533 ...10011101	3485 ...10011101	2920 ...01101000	6939 ...00011011
Voter 2 (Noisy)	5517 ...10001101	3517 ...10111101	2912 ...01100000	6943 ...00011111
Voter 3 (Noisy)	5517 ...10001101	3517 ...10111101	2920 ...01101000	6939 ...00011011
Voter 4 (Noisy)	5517 ...10001101	3485 ...10011101	2920 ...01101000	7003 ...01011011
Voter 5 (Noisy)	5533 ...10011101	3357 ...00011101	2920 ...01101000	6939 ...00011011
Final Voted Output	5517 Bit #4: 3 vs 2 → 0	3485 Bit #5: 3 vs 2 → 0 Bit #7: 4 vs 1 → 1	2920 4 vs 1 → 1	6939 Bit #2: 4 vs 1 → 0 Bit #6: 4 vs 1 → 0

450
451 4.3.3 CASE STUDY
452453 Table 6 provides a case study illustrating the error correction capability of the voting-LFQ module.
454 For instance, at position 80, noise causes three voters to generate erroneous tokens. Specifically,
455 Voters 2 and 3 flip bit #5, while Voter 5 flips bit #7. Despite **most voters** predicting incorrect tokens,
456 the voting mechanism operating at the bit level allows for correct recovery. For bit #5, the correct
457 value '0' wins by a 3-to-2 majority, and for bit #7, the correct value '1' wins by a 4-to-1 majority,
458 successfully reconstructing the original token (3485). Similar corrections occur at positions 68, 105
459 and 114. This case study highlights a key advantage of StableToken: its resilience does not depend
460 on every branch being perfect, but on the collective ability to override sparse bit-flip errors.
461462 5 RELATED WORK
463464 **Semantic Speech Tokenizers** SSL tokenizers rely on self-supervised learning (SSL) to extract
465 discrete units from audio (Chen et al., 2022; Chung et al., 2021; Conneau et al., 2021; Chiu et al.,
466 2022), but are proven suboptimal for generative speechLLMs (Mousavi et al., 2024; Guo et al., 2025).
467 **Hybrid approaches** combine acoustic tokenizers with semantic distillation to balance fidelity and
468 content (Zhang et al., 2023; Ye et al., 2025; Siahkoohi et al., 2022; Yang et al., 2024b), yet their
469 high data rate and structural incompatibility with LLMs introduce practical challenges. Recent **fully**
470 **supervised methods** have proven suitable for SpeechLLMs, which produce linguistic tokens while
471 retaining sufficient phonetic information (Zeng et al., 2025; Du et al., 2024a), supporting expressive
472 and efficient end-to-end SpeechLLMs (Zeng et al., 2024; Ding et al., 2025; Wu et al., 2025).
473474 **Noise Robustness** While extensive research has focused on constructing robust Automatic Speech
475 Recognition (ASR) models (Wang et al., 2022; Tjandra et al., 2023; Eickhoff et al., 2023; Gong et al.,
476 2023; Ahn et al., 2025), the stability of discrete speech tokens under noisy conditions has received
477 much less attention. Recently, R-SPIN (Chang & Glass, 2024) and NAST (Messica & Adi, 2024)
478 have begun addressing this gap, but are limited to traditional SSL-based speech tokenizers.
479480 A more detailed discussion of related work is presented in Appendix H due to page limit.
481482 6 CONCLUSION
483484 We introduce StableToken, a novel tokenizer designed to solve the critical instability of existing
485 semantic tokenizers in noisy environments. By employing a multi-branch architecture and a consensus
mechanism with bitwise voting, StableToken achieves state-of-the-art token stability. This stability
directly translates to significant improvements in the robustness of downstream SpeechLLMs.
486

486 REPRODUCIBILITY STATEMENT
487488 To facilitate reproducibility of our work, we have provided detailed descriptions of the datasets,
489 hyperparameters, and other experimental details used in our study in Section 3 and Appendix B,
490 E, F. Our code and model checkpoint will be released publicly upon acceptance to further support
491 reproducibility and foster future research.492
493 REFERENCES
494495 Adaeze Adigwe, Noé Tits, Kevin El Haddad, Sarah Ostadabbas, and Thierry Dutoit. The emotional
496 voices database: Towards controlling the emotion dimension in voice generation systems. *arXiv*
497 *preprint arXiv:1806.09514*, 2018.498 Hyebin Ahn, Kangwook Jang, and Hoirin Kim. Hubert-vic: Improving noise-robust automatic speech
499 recognition of speech foundation model via variance-invariance-covariance regularization. *arXiv*
500 *preprint arXiv:2508.12292*, 2025.501 Philip Anastassiou, Jiawei Chen, Jitong Chen, Yuanzhe Chen, Zhuo Chen, Ziyi Chen, Jian Cong,
502 Lelai Deng, Chuang Ding, Lu Gao, et al. Seed-tts: A family of high-quality versatile speech
503 generation models. *arXiv preprint arXiv:2406.02430*, 2024.504 Rosana Ardila, Megan Branson, Kelly Davis, Michael Henretty, Michael Kohler, Josh Meyer, Reuben
505 Morais, Lindsay Saunders, Francis M Tyers, and Gregor Weber. Common voice: A massively-
506 multilingual speech corpus. *arXiv preprint arXiv:1912.06670*, 2019.507 Alexei Baevski, Steffen Schneider, and Michael Auli. vq-wav2vec: Self-supervised learning of
508 discrete speech representations. *arXiv preprint arXiv:1910.05453*, 2019.509 Alexei Baevski, Yuhao Zhou, Abdelrahman Mohamed, and Michael Auli. wav2vec 2.0: A framework
510 for self-supervised learning of speech representations. *Advances in Neural Information Processing
511 Systems*, 33:12449–12460, 2020.512 Evelina Bakhturina, Vitaly Lavrukhin, Boris Ginsburg, and Yang Zhang. Hi-fi multi-speaker english
513 tts dataset. *arXiv preprint arXiv:2104.01497*, 2021.514 Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients through
515 stochastic neurons for conditional computation. *arXiv preprint arXiv:1308.3432*, 2013.516 Hui Bu, Jiayu Du, Xingyu Na, Bengu Wu, and Hao Zheng. Aishell-1: An open-source mandarin
517 speech corpus and a speech recognition baseline. In *2017 20th conference of the oriental chapter
518 of the international coordinating committee on speech databases and speech I/O systems and
519 assessment (O-COCOSDA)*, pp. 1–5. IEEE, 2017.520 Carlos Busso, Murtaza Bulut, Chi-Chun Lee, Abe Kazemzadeh, Emily Mower, Samuel Kim, Jean-
521 nette N Chang, Sungbok Lee, and Shrikanth S Narayanan. Iemocap: Interactive emotional dyadic
522 motion capture database. *Language resources and evaluation*, 42(4):335–359, 2008.523 Houwei Cao, David G Cooper, Michael K Keutmann, Ruben C Gur, Ani Nenkova, and Ragini Verma.
524 Crema-d: Crowd-sourced emotional multimodal actors dataset. *IEEE transactions on affective
525 computing*, 5(4):377–390, 2014.526 Heng-Jui Chang and James Glass. R-Spin: Efficient Speaker and Noise-invariant Representation
527 Learning with Acoustic Pieces. In *Proceedings of the 2024 Conference of the North American
528 Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume
529 1: Long Papers)*, pp. 642–662. Association for Computational Linguistics, 2024.530 Heng-Jui Chang, Alexander H Liu, and James Glass. Self-supervised fine-tuning for improved
531 content representations by speaker-invariant clustering. In *Proc. Interspeech 2023*, pp. 2983–2987,
532 2023.533 Guoguo Chen, Shuzhou Chai, Guanbo Wang, Jiayu Du, Wei-Qiang Zhang, Chao Weng, Dan Su,
534 Daniel Povey, Jan Trmal, Junbo Zhang, et al. Gigaspeech: An evolving, multi-domain asr corpus
535 with 10,000 hours of transcribed audio. *arXiv preprint arXiv:2106.06909*, 2021.

540 Sanyuan Chen, Chengyi Wang, Zhengyang Chen, Yu Wu, Shujie Liu, Zhuo Chen, Jinyu Li, Naoyuki
 541 Kanda, Takuya Yoshioka, Xiong Xiao, et al. Wavlm: Large-scale self-supervised pre-training
 542 for full stack speech processing. *IEEE Journal of Selected Topics in Signal Processing*, 16(6):
 543 1505–1518, 2022.

544 Chung-Cheng Chiu, James Qin, Yu Zhang, Jiahui Yu, and Yonghui Wu. Self-supervised learning
 545 with random-projection quantizer for speech recognition. In *International Conference on Machine
 546 Learning*, pp. 3915–3924. PMLR, 2022.

548 Yu-An Chung, Yu Zhang, Wei Han, Chung-Cheng Chiu, James Qin, Ruoming Pang, and Yonghui
 549 Wu. W2v-bert: Combining contrastive learning and masked language modeling for self-supervised
 550 speech pre-training. In *2021 IEEE Automatic Speech Recognition and Understanding Workshop
 551 (ASRU)*, pp. 244–250. IEEE, 2021.

552 Alexis Conneau, Alexei Baevski, Ronan Collobert, Abdelrahman Mohamed, and Michael Auli.
 553 Unsupervised cross-lingual representation learning for speech recognition. 2021.

555 Alexis Conneau, Min Ma, Simran Khanuja, Yu Zhang, Vera Axelrod, Siddharth Dalmia, Jason Riesa,
 556 Clara Rivera, and Ankur Bapna. Fleurs: Few-shot learning evaluation of universal representations
 557 of speech. In *2022 IEEE Spoken Language Technology Workshop (SLT)*, pp. 798–805. IEEE, 2023.

558 Alexandre Défossez, Laurent Mazaré, Manu Orsini, Amélie Royer, Patrick Pérez, Hervé Jégou,
 559 Edouard Grave, and Neil Zeghidour. Moshi: a speech-text foundation model for real-time dialogue.
 560 *arXiv preprint arXiv:2410.00037*, 2024.

562 Ding Ding, Zeqian Ju, Yichong Leng, Songxiang Liu, Tong Liu, Zeyu Shang, Kai Shen, Wei Song,
 563 Xu Tan, Heyi Tang, et al. Kimi-audio technical report. *arXiv preprint arXiv:2504.18425*, 2025.

564 Zhihao Du, Qian Chen, Shiliang Zhang, Kai Hu, Heng Lu, Yexin Yang, Hangrui Hu, Siqi Zheng,
 565 Yue Gu, Ziyang Ma, et al. Cosyvoice: A scalable multilingual zero-shot text-to-speech synthesizer
 566 based on supervised semantic tokens. *arXiv preprint arXiv:2407.05407*, 2024a.

568 Zhihao Du, Yuxuan Wang, Qian Chen, Xian Shi, Xiang Lv, Tianyu Zhao, Zhifu Gao, Yexin Yang,
 569 Changfeng Gao, Hui Wang, et al. Cosyvoice 2: Scalable streaming speech synthesis with large
 570 language models. *arXiv preprint arXiv:2412.10117*, 2024b.

571 Kate Dupuis and M Kathleen Pichora-Fuller. Toronto emotional speech set (tess). 2010.

573 Patrick Eickhoff, Matthias Möller, Theresa Pekarek Rosin, Johannes Twiefel, and Stefan Wermter.
 574 Bring the Noise: Introducing Noise Robustness to Pretrained Automatic Speech Recognition. In
 575 *Artificial Neural Networks and Machine Learning – ICANN 2023*, pp. 381–392. Springer Nature
 576 Switzerland, 2023.

577 Qingkai Fang, Shoutao Guo, Yan Zhou, Zhengrui Ma, Shaolei Zhang, and Yang Feng. Llama-omni:
 578 Seamless speech interaction with large language models. *arXiv preprint arXiv:2409.06666*, 2024.

580 Qingkai Fang, Yan Zhou, Shoutao Guo, Shaolei Zhang, and Yang Feng. Llama-omni2: Llm-
 581 based real-time spoken chatbot with autoregressive streaming speech synthesis. *arXiv preprint
 582 arXiv:2505.02625*, 2025.

583 Eduardo Fonseca, Xavier Favory, Jordi Pons, Frederic Font, and Xavier Serra. Fsd50k: an open
 584 dataset of human-labeled sound events. *IEEE/ACM Transactions on Audio, Speech, and Language
 585 Processing*, 30:829–852, 2021.

586 Daniel Galvez, Greg Diamos, Juan Ciro, Juan Felipe Cerón, Keith Achorn, Anjali Gopi, David Kanter,
 587 Maximilian Lam, Mark Mazumder, and Vijay Janapa Reddi. The people’s speech: A large-scale
 588 diverse english speech recognition dataset for commercial usage. *arXiv preprint arXiv:2111.09344*,
 589 2021.

591 Itai Gat, Felix Kreuk, Tu-Anh Nguyen, Ann Lee, Jade Copet, Gabriel Synnaeve, Emmanuel Dupoux,
 592 and Yossi Adi. Augmentation invariant discrete representation for generative spoken language
 593 modeling. In *Proceedings of the 20th International Conference on Spoken Language Translation
 (IWSLT 2023)*, pp. 465–477, 2023.

594 Yuan Gong, Sameer Khurana, Leonid Karlinsky, and James Glass. Whisper-AT: Noise-Robust
 595 Automatic Speech Recognizers are Also Strong General Audio Event Taggers. In *Proc. Interspeech*
 596 2023, pp. 2358–2362, 2023. doi: 10.21437/Interspeech.2023-1511.

597

598 Yiwei Guo, Zhihan Li, Hankun Wang, Bohan Li, Chongtian Shao, Hanglei Zhang, Chenpeng Du,
 599 Xie Chen, Shujie Liu, and Kai Yu. Recent advances in discrete speech tokens: A review. *arXiv*
 600 preprint *arXiv:2502.06490*, 2025.

601

602 Haorui He, Zengqiang Shang, Chaoren Wang, Xuyuan Li, Yicheng Gu, Hua Hua, Liwei Liu, Chen
 603 Yang, Jiaqi Li, Peiyang Shi, et al. Emilia: An extensive, multilingual, and diverse speech dataset
 604 for large-scale speech generation. In *2024 IEEE Spoken Language Technology Workshop (SLT)*,
 605 pp. 885–890. IEEE, 2024.

606

607 Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhota, Ruslan Salakhutdinov,
 608 and Abdelrahman Mohamed. Hubert: Self-supervised speech representation learning by masked
 609 prediction of hidden units. *IEEE/ACM transactions on audio, speech, and language processing*,
 29:3451–3460, 2021.

610

611 Ailin Huang, Boyong Wu, Bruce Wang, Chao Yan, Chen Hu, Chengli Feng, Fei Tian, Feiyu Shen,
 612 Jingbei Li, Mingrui Chen, et al. Step-audio: Unified understanding and generation in intelligent
 613 speech interaction. *arXiv preprint arXiv:2502.11946*, 2025.

614

615 Wenyong Huang, Zhenhe Zhang, Yu Ting Yeung, Xin Jiang, and Qun Liu. Spiral: Self-supervised
 616 perturbation-invariant representation learning for speech pre-training. In *ICLR*, 2022.

617

618 Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
 619 trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. *arXiv preprint*
 620 *arXiv:2410.21276*, 2024.

621

622 Philip Jackson and SJUoSG Haq. Surrey audio-visual expressed emotion (savee) database. *University*
 623 *of Surrey: Guildford, UK*, 2014.

624

625 Léo Jacqmin, Lina M Rojas-Barahona, and Benoit Favre. " do you follow me?": A survey of recent
 626 approaches in dialogue state tracking. *arXiv preprint arXiv:2207.14627*, 2022.

627

628 Jesin James, Li Tian, and Catherine Inez Watson. An open source emotional speech corpus for human
 629 robot interaction applications. In *Interspeech*, pp. 2768–2772, 2018.

630

631 Chengze Jiang, Zhuangzhuang Wang, Minjing Dong, and Jie Gui. Survey of adversarial robustness
 632 in multimodal large language models. *arXiv preprint arXiv:2503.13962*, 2025.

633

634 Jacob Kahn, Morgane Riviere, Weiyi Zheng, Evgeny Kharitonov, Qiantong Xu, Pierre-Emmanuel
 635 Mazaré, Julien Karadayi, Vitaliy Liptchinsky, Ronan Collobert, Christian Fuegen, et al. Libri-light:
 636 A benchmark for asr with limited or no supervision. In *ICASSP 2020-2020 IEEE International*
 637 *Conference on Acoustics, Speech and Signal Processing (ICASSP)*, pp. 7669–7673. IEEE, 2020.

638

639 Chris Dongjoo Kim, Byeongchang Kim, Hyunmin Lee, and Gunhee Kim. Audiocaps: Generating
 640 captions for audios in the wild. In *Proceedings of the 2019 Conference of the North American*
 641 *Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume*
 642 *1 (Long and Short Papers)*, pp. 119–132, 2019.

643

644 Jungil Kong, Jaehyeon Kim, and Jaekyoung Bae. Hifi-gan: Generative adversarial networks for
 645 efficient and high fidelity speech synthesis. *Advances in neural information processing systems*,
 646 33:17022–17033, 2020.

647

648 Chia-Hsuan Lee, Hao Cheng, and Mari Ostendorf. Dialogue state tracking with a language model
 649 using schema-driven prompting. In Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and
 650 Scott Wen-tau Yih (eds.), *Proceedings of the 2021 Conference on Empirical Methods in Natural*
 651 *Language Processing*, pp. 4937–4949, Online and Punta Cana, Dominican Republic, November
 652 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.404. URL
 653 <https://aclanthology.org/2021.emnlp-main.404/>.

648 Keon Lee, Kyumin Park, and Daeyoung Kim. Dailytalk: Spoken dialogue dataset for conversational
 649 text-to-speech. In *ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and*
 650 *Signal Processing (ICASSP)*, pp. 1–5. IEEE, 2023.

651 Xinjian Li, Shinnosuke Takamichi, Takaaki Saeki, William Chen, Sayaka Shiota, and Shinji Watanabe.
 652 Yodas: Youtube-oriented dataset for audio and speech. In *2023 IEEE Automatic Speech Recognition*
 653 *and Understanding Workshop (ASRU)*, pp. 1–8. IEEE, 2023.

654 Zheng Lian, Haiyang Sun, Licai Sun, Kang Chen, Mingyu Xu, Kexin Wang, Ke Xu, Yu He, Ying Li,
 655 Jinming Zhao, et al. Mer 2023: Multi-label learning, modality robustness, and semi-supervised
 656 learning. In *Proceedings of the 31st ACM international conference on multimedia*, pp. 9610–9614,
 657 2023.

658 Alexander H Liu, Heng-Jui Chang, Michael Auli, Wei-Ning Hsu, and Jim Glass. Dinosr: Self-
 659 distillation and online clustering for self-supervised speech representation learning. *Advances in*
 660 *Neural Information Processing Systems*, 36:58346–58362, 2023.

661 Wenrui Liu, Zhifang Guo, Jin Xu, Yuanjun Lv, Yunfei Chu, Zemin Liu, and Junyang Lin. Analyzing
 662 and mitigating inconsistency in discrete speech tokens for neural codec language models. In
 663 *Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume*
 664 *1: Long Papers)*, pp. 31035–31046, 2025.

665 Steven R Livingstone and Frank A Russo. The ryerson audio-visual database of emotional speech
 666 and song (ravdess): A dynamic, multimodal set of facial and vocal expressions in north american
 667 english. *PLoS one*, 13(5):e0196391, 2018.

668 Vasista Sai Lodagala, Sreyan Ghosh, and Srinivasan Umesh. Ccc-wav2vec 2.0: Clustering aided cross
 669 contrastive self-supervised learning of speech representations. In *2022 IEEE Spoken Language*
 670 *Technology Workshop (SLT)*, pp. 1–8. IEEE, 2023.

671 Chuofan Ma, Yi Jiang, Junfeng Wu, Jihan Yang, Xin Yu, Zehuan Yuan, Bingyue Peng, and Xiao-
 672 juan Qi. Unitok: A unified tokenizer for visual generation and understanding. *arXiv preprint*
 673 *arXiv:2502.20321*, 2025a.

674 Ziyang Ma, Yakun Song, Chenpeng Du, Jian Cong, Zhuo Chen, Yuping Wang, Yuxuan Wang, and
 675 Xie Chen. Language model can listen while speaking. In *Proceedings of the AAAI Conference on*
 676 *Artificial Intelligence*, volume 39, pp. 24831–24839, 2025b.

677 Shoval Messica and Yossi Adi. Nast: Noise aware speech tokenization for speech language models.
 678 In *Proc. Interspeech 2024*, pp. 4169–4173, 2024.

679 Pooneh Mousavi, Luca Della Libera, Jarod Duret, Artem Ploujnikov, Cem Subakan, and Mirco
 680 Ravanelli. Dasb-discrete audio and speech benchmark. *arXiv preprint arXiv:2406.14294*, 2024.

681 Tu Anh Nguyen, Wei-Ning Hsu, Antony d’Avirro, Bowen Shi, Itai Gat, Maryam Fazel-Zarani, Tal
 682 Remez, Jade Copet, Gabriel Synnaeve, Michael Hassid, et al. Expresso: A benchmark and analysis
 683 of discrete expressive speech resynthesis. *arXiv preprint arXiv:2308.05725*, 2023.

684 Kari Ali Noriy, Xiaosong Yang, and Jian Jun Zhang. Emns/imz/corpus: An emotive single-
 685 speaker dataset for narrative storytelling in games, television and graphic novels. *arXiv preprint*
 686 *arXiv:2305.13137*, 2023.

687 Vassil Panayotov, Guoguo Chen, Daniel Povey, and Sanjeev Khudanpur. Librispeech: an asr corpus
 688 based on public domain audio books. In *2015 IEEE international conference on acoustics, speech*
 689 *and signal processing (ICASSP)*, pp. 5206–5210. IEEE, 2015.

690 Karol J Piczak. Esc: Dataset for environmental sound classification. In *Proceedings of the 23rd ACM*
 691 *international conference on Multimedia*, pp. 1015–1018, 2015.

692 Adam Polyak, Yossi Adi, Jade Copet, Eugene Kharitonov, Kushal Lakhota, Wei-Ning Hsu, Ab-
 693 delrahman Mohamed, and Emmanuel Dupoux. Speech resynthesis from discrete disentangled
 694 self-supervised representations. *arXiv preprint arXiv:2104.00355*, 2021.

702 Soujanya Poria, Devamanyu Hazarika, Navonil Majumder, Gautam Naik, Erik Cambria, and Rada
 703 Mihalcea. Meld: A multimodal multi-party dataset for emotion recognition in conversations. *arXiv*
 704 *preprint arXiv:1810.02508*, 2018.

705 Vineel Pratap, Qiantong Xu, Anuroop Sriram, Gabriel Synnaeve, and Ronan Collobert. Mls: A
 706 large-scale multilingual dataset for speech research. *arXiv preprint arXiv:2012.03411*, 2020.

708 Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, and Ilya Sutskever.
 709 Robust speech recognition via large-scale weak supervision. In *International conference on*
 710 *machine learning*, pp. 28492–28518. PMLR, 2023.

711 Ali Siahkoohi, Michael Chinen, Tom Denton, W Bastiaan Kleijn, and Jan Skoglund. Ultra-low-bitrate
 712 speech coding with pretrained transformers. In *Proc. Interspeech 2022*, pp. 4421–4425, 2022.

713 714 Amitay Sicherman and Yossi Adi. Analysing discrete self supervised speech representation for
 715 spoken language modeling. In *ICASSP*, 2023.

716 Fengping Tian, Chenyang Lyu, Xuanfan Ni, Haoqin Sun, Qingjuan Li, Zhiqiang Qian, Haijun Li,
 717 Longyue Wang, Zhao Xu, Weihua Luo, et al. Marco-voice technical report. *arXiv preprint*
 718 *arXiv:2508.02038*, 2025.

719 720 Andros Tjandra, Sakriani Sakti, and Satoshi Nakamura. deHuBERT: Disentangling Noise in a
 721 Self-supervised Model for Robust Speech Recognition. *arXiv preprint arXiv:2302.14597*, 2023.

722 723 Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. *Advances in*
 724 *neural information processing systems*, 30, 2017.

725 726 Christophe Veaux, Junichi Yamagishi, and Kirsten MacDonald. Cstr vctk corpus: English multi-
 727 speaker corpus for cstr voice cloning toolkit. 2017.

728 Emmanuel Vincent, Shinji Watanabe, Aditya Arie Nugraha, Jon Barker, and Ricard Marxer. An
 729 analysis of environment, microphone and data simulation mismatches in robust speech recognition.
 730 *Computer Speech & Language*, 46:535–557, 2017.

731 732 Changhan Wang, Morgane Riviere, Ann Lee, Anne Wu, Chaitanya Talnikar, Daniel Haziza, Mary
 733 Williamson, Juan Pino, and Emmanuel Dupoux. Voxpopuli: A large-scale multilingual speech
 734 corpus for representation learning, semi-supervised learning and interpretation. *arXiv preprint*
 735 *arXiv:2101.00390*, 2021.

736 737 Kaisiyuan Wang, Qianyi Wu, Linsen Song, Zhuoqian Yang, Wayne Wu, Chen Qian, Ran He, Yu Qiao,
 738 and Chen Change Loy. Mead: A large-scale audio-visual dataset for emotional talking-face
 739 generation. In *European conference on computer vision*, pp. 700–717. Springer, 2020.

740 Xiong Wang, Yangze Li, Chaoyou Fu, Yunhang Shen, Lei Xie, Ke Li, Xing Sun, and Long Ma.
 741 Freeze-omni: A smart and low latency speech-to-speech dialogue model with frozen llm. *arXiv*
 742 *preprint arXiv:2411.00774*, 2024.

743 744 Yiming Wang, Jinyu Li, Heming Wang, Yao Qian, Chengyi Wang, and Yu Wu. Wav2vec-Switch:
 745 Contrastive Learning from Original-noisy Speech Pairs for Robust Speech Recognition. In *ICASSP*
 746 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
 747 pp. 7632–7636. IEEE, 2022.

748 749 Boyong Wu, Chao Yan, Chen Hu, Cheng Yi, Chengli Feng, Fei Tian, Feiyu Shen, Gang Yu, Haoyang
 750 Zhang, Jingbei Li, et al. Step-audio 2 technical report. *arXiv preprint arXiv:2507.16632*, 2025.

751 752 Zhifei Xie and Changqiao Wu. Mini-omni: Language models can hear, talk while thinking in
 753 streaming. *arXiv preprint arXiv:2408.16725*, 2024.

754 755 An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
 756 Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. *arXiv preprint*
 757 *arXiv:2412.15115*, 2024a.

Dongchao Yang, Haohan Guo, Yuanyuan Wang, Rongjie Huang, Xiang Li, Xu Tan, Xixin Wu, and
 758 Helen Meng. Uniaudio 1.5: Large language model-driven audio codec is a few-shot audio task
 759 learner. *Advances in Neural Information Processing Systems*, 37:56802–56827, 2024b.

756 Wanqi Yang, Yanda Li, Meng Fang, Yunchao Wei, Tianyi Zhou, and Ling Chen. Who can with-
 757 stand chat-audio attacks? an evaluation benchmark for large language models. *arXiv preprint*
 758 *arXiv:2411.14842*, 2024c.

759

760 Zhen Ye, Peiwen Sun, Jiahe Lei, Hongzhan Lin, Xu Tan, Zheqi Dai, Qiuqiang Kong, Jianyi Chen,
 761 Jiahao Pan, Qifeng Liu, et al. Codec does matter: Exploring the semantic shortcoming of codec
 762 for audio language model. In *Proceedings of the AAAI Conference on Artificial Intelligence*,
 763 volume 39, pp. 25697–25705, 2025.

764 Lijun Yu, José Lezama, Nitesh B Gundavarapu, Luca Versari, Kihyuk Sohn, David Minnen, Yong
 765 Cheng, Vighnesh Birodkar, Agrim Gupta, Xiuye Gu, et al. Language model beats diffusion-
 766 tokenizer is key to visual generation. *arXiv preprint arXiv:2310.05737*, 2023.

767 Heiga Zen, Viet Dang, Rob Clark, Yu Zhang, Ron J Weiss, Ye Jia, Zhifeng Chen, and Yonghui Wu.
 768 Libritts: A corpus derived from librispeech for text-to-speech. *arXiv preprint arXiv:1904.02882*,
 769 2019.

770

771 Aohan Zeng, Zhengxiao Du, Mingdao Liu, Kedong Wang, Shengmin Jiang, Lei Zhao, Yuxiao Dong,
 772 and Jie Tang. Glm-4-voice: Towards intelligent and human-like end-to-end spoken chatbot. *arXiv*
 773 *preprint arXiv:2412.02612*, 2024.

774 Aohan Zeng, Zhengxiao Du, Mingdao Liu, Lei Zhang, Yuxiao Dong, Jie Tang, et al. Scaling speech-
 775 text pre-training with synthetic interleaved data. In *The Thirteenth International Conference on*
 776 *Learning Representations*, 2025.

777

778 Binbin Zhang, Hang Lv, Pengcheng Guo, Qijie Shao, Chao Yang, Lei Xie, Xin Xu, Hui Bu, Xiaoyu
 779 Chen, Chenchen Zeng, et al. Wenetspeech: A 10000+ hours multi-domain mandarin corpus for
 780 speech recognition. In *ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech*
 781 *and Signal Processing (ICASSP)*, pp. 6182–6186. IEEE, 2022.

782 Jian Zhang, Linhao Zhang, Bokai Lei, Chuhan Wu, Wei Jia, and Xiao Zhou. Wildspeech-bench:
 783 Benchmarking audio llms in natural speech conversation. *arXiv preprint arXiv:2506.21875*, 2025.

784

785 JTFLM Zhang and Huibin Jia. Design of speech corpus for mandarin text to speech. In *The blizzard*
 786 *challenge 2008 workshop*, 2008.

787 Linhao Zhang and Houfeng Wang. Using bidirectional transformer-crf for spoken language under-
 788 standing. In *CCF international conference on natural language processing and chinese computing*,
 789 pp. 130–141. Springer, 2019.

790

791 Linhao Zhang, Dehong Ma, Xiaodong Zhang, Xiaohui Yan, and Houfeng Wang. Graph lstm
 792 with context-gated mechanism for spoken language understanding. In *Proceedings of the AAAI*
 793 *conference on artificial intelligence*, volume 34, pp. 9539–9546, 2020.

794

795 Xin Zhang, Dong Zhang, Shimin Li, Yaqian Zhou, and Xipeng Qiu. Speechtokenizer: Unified speech
 796 tokenizer for speech large language models. *arXiv preprint arXiv:2308.16692*, 2023.

797

798 Jinming Zhao, Tenggan Zhang, Jingwen Hu, Yuchen Liu, Qin Jin, Xinchao Wang, and Haizhou
 799 Li. M3ed: Multi-modal multi-scene multi-label emotional dialogue database. *arXiv preprint*
 800 *arXiv:2205.10237*, 2022.

801

802 Kun Zhou, Berrak Sisman, Rui Liu, and Haizhou Li. Emotional voice conversion: Theory, databases
 803 and esd. *Speech Communication*, 137:1–18, 2022.

804

805

806

807

808

809

810 **A LARGE LANGUAGE MODEL (LLM) USAGE STATEMENT**
811812 In accordance with the conference policies on Large Language Model (LLM) usage, we hereby
813 disclose the following: After completing the initial draft of this paper, we utilized an LLM to enhance
814 grammar and polish the writing of this manuscript. No new research ideas, experimental designs, or
815 scientific content were generated by the LLM. All scientific contributions, analyses, and conclusions
816 presented in this work are solely those of the authors. We take full responsibility for the content of
817 this paper, including all sections that have been revised or improved with LLM assistance. The LLM
818 is not an author and did not contribute to the research ideation or substantive scientific writing.819 This statement is provided to ensure transparency and compliance with the conference's policies on
820 LLM usage.
821822 **B DETAILS OF STABLETOKEN**
823825 **B.1 TRAINING DATASETS FOR STABLETOKEN**
826827 We train our StableToken model on hundreds of thousands of hours of both open-source data and
828 in-house data. All open-source datasets used in this work are listed in Table 7.
829830 Table 7: Summary of datasets used for training StableToken
831

832 Dataset	833 Duration (#hours)	834 Task	835 Language(s)
836 LibriSpeech (Panayotov et al., 2015)	960	837 ASR	838 English
839 Multilingual LibriSpeech (Pratap et al., 2020)	27,322	840 ASR	841 English
842 The People's Speech (Galvez et al., 2021)	5,568	843 ASR	844 English
845 GigaSpeech (Chen et al., 2021)	10,000	846 ASR	847 English
848 Yodas (Li et al., 2023)	29,155	849 ASR	850 English
851 Hi-Fi TTS (Bakhturina et al., 2021)	292	852 ASR	853 English
854 VCTK (Veaux et al., 2017)	44	855 ASR	856 English
857 LibriTTS (Zen et al., 2019)	586	858 ASR	859 English
860 VoiceAssistant-400K (Xie & Wu, 2024)	679	861 ASR	862 English
863 AISHELLL-1 (Bu et al., 2017)	150	864 ASR	865 Chinese
866 WenetSpeech (Zhang et al., 2022)	10,005	867 ASR	868 Chinese
869 Common Voice (Ardila et al., 2019)	2,133	870 ASR	871 English, Chinese
872 Emilia (He et al., 2024)	96,750	873 ASR	874 English, Chinese

846 **B.2 TRAINING HYPERPARAMETERS FOR STABLETOKEN**
847848 Table 8 summarizes the main hyperparameters used throughout StableToken training.
849850 Table 8: Hyperparameters used for training StableToken
851

852 Hyperparameter	853 Value
854 optimizer_type	AdamW
855 lr_scheduler	OneCycleLR
856 max_lr	1.5e-5
857 warmup_steps	1000
858 weight_decay	0.01
859 grad_clip	1.0
860 consensus_loss_weight (λ_1)	0.25
861 commitment_loss_weight (λ_2)	0.25
862 codebook_entropy_loss_weight (λ_3)	1.0

864 B.3 DETAILS OF STOCHASTIC PERTURBATIONS DURING TRAINING
865

866 We detail the construction and parameterization of the stochastic augmentation function $\mathcal{A}(\cdot)$ as
867 introduced in Section 2.3. For each sample, one perturbation type is randomly selected from the
868 following five categories: Gaussian Noise, Pink Noise, Brown Noise, Bit Crush Distortion, and
869 Real-world Noise. The intensity of the selected perturbation is then uniformly sampled from a
870 predefined range specific to each type, as summarized in Table 9. For real-world noise, an additional
871 random selection of a noise audio clip is performed. The pool of noise clips consists of samples
872 from the AudioCaps (Kim et al., 2019), FSD50k (Fonseca et al., 2021), and ESC-50 (Piczak, 2015)
873 datasets. Notably, the ESC-10 subset of ESC-50 is excluded from training and reserved exclusively
874 for evaluation as out-of-domain real-world noise.

875 Table 9: Perturbation types and their corresponding intensity ranges utilized during training.
876

Perturbation Type	Intensity Range
Gaussian Noise	$16 \leq \text{SNR} \leq 30$
Pink Noise	$16 \leq \text{SNR} \leq 24$
Brown Noise	$12 \leq \text{SNR} \leq 24$
Bit Crush Distortion	$8 \leq \text{Bit Depth} \leq 14$
Real-world Noise	$12 \leq \text{SNR} \leq 24$

884 B.4 DISCUSSION OF CONSENSUS OBJECTIVE LOSS CHOICES
885

886 We choose the L_2 loss (Mean Squared Error Loss) for the consensus objective in Eq. 4 due to several
887 considerations:

888 First, L_2 loss offers a simple and direct way to minimize the differences among multiple branches. At
889 the same time, its form is also naturally compatible with the existing commitment loss in quantization-
890 based models, thus facilitating stable optimization and consistent gradient behavior across objectives.
891 Furthermore, by averaging representations from all branches, the resulting target inherently incorpo-
892 rates a form of confidence weighting, as outlier branch results are diluted in the mean.

893 Second, since all branches originate from the same underlying input, with only noise perturbations in
894 minority branches, the goal is not to increase inter-class separation as in contrastive learning, but to
895 enforce similarity across the noisy and clean versions. The L_2 loss directly minimizes the Euclidean
896 distance between the branches and their consensus, effectively encouraging robust invariance without
897 introducing additional factors or requiring extra sampling. Moreover, cosine similarity is less sensitive
898 to the number of bit flips in high-dimensional binary codes, especially when representations are
899 already close, such as the flip of a single bit, which corresponds to small changes in angle and often
900 results in diminished gradient signals and less effective correction of localized errors.

902 B.5 AUDIO RECONSTRUCTION DETAILS
903904 Table 10: Summary of datasets used for training the flow matching model
905

Dataset	Language(s)
Librilight (Kahn et al., 2020)	English
WenetSpeech (Zhang et al., 2022)	Chinese
Yodas2 (Li et al., 2023)	English, Chinese
Emilia (He et al., 2024)	English, Chinese

913 Following the framework of CosyVoice (Du et al., 2024a) and GLM-4-Voice (Zeng et al., 2025), we
914 train a flow matching model to reconstruct audio from speech tokens. The model takes as input the
915 speech token representations and produces Mel spectrograms. Finally, a HiFi-GAN vocoder (Kong
916 et al., 2020) converts the generated Mel spectrograms into the speech waveforms. The datasets
917 for training the flow matching model is listed in Table 10 (excluding our in-house datasets, which
918 comprise both English and Chinese speech data), and the training hyperparameters in Table 11.

Table 11: Hyperparameters used for training the flow matching model

Hyperparameter	Value
optimizer_type	Adam
lr_scheduler	WarmupLR
learning_rate	3.0e-4
warmup_steps	25000
grad_clip	1.5
batch_type	dynamic
max_frames_in_batch	10000

B.6 ANALYSIS ON COMPUTATIONAL EFFICIENCY

B.6.1 COMPUTATIONAL OVERHEAD OF DIFFERENT VOTER COUNTS

To further explore the computational overhead brought by increasing the number of voters (N), we present the model parameter counts and floating-point operations (FLOPs) for models with $N = 1, 3, 5$, and 7 in Table 12. Both metrics are measured using the THOP library¹. For FLOPs calculation, we use an input audio with a duration of **30 seconds**.

The results show that as N increases, the model parameters increase linearly, but the increment between adjacent N values is relatively small (about 0.033M parameters). The FLOPs for different N are also very close, indicating that enlarging N does not introduce significant extra computational cost. This suggests that increasing the number of voters achieves better performance and robustness with only minimal impact on model size and inference efficiency.

Table 12: Model parameters and inference FLOPs for different voter counts N on a 30-second input audio.

Number of Voters (N)	#Parameters (M)	#FLOPs (G)
$N = 1$	320.261	480.978
$N = 3$	320.294 (\uparrow 0.010%)	481.003 (\uparrow 0.005%)
$N = 5$	320.328 (\uparrow 0.021%)	481.028 (\uparrow 0.010%)
$N = 7$	320.361 (\uparrow 0.031%)	481.053 (\uparrow 0.016%)

B.6.2 EMPIRICAL INFERENCE EFFICIENCY BENCHMARK

From an architectural standpoint, the overhead introduced by the multi-branch design is negligible. The core design of StableToken confines the multi-branch architecture to the lightweight quantization stage only, while the computationally expensive Transformer Encoder remains a single-path process. Since the parallel quantization branches can be executed concurrently with high efficiency on modern hardware, this design introduces almost no additional end-to-end latency compared to conventional single-path tokenizers.

To rigorously evaluate the practical inference efficiency of StableToken, we conducted a comprehensive benchmark test measuring latency, Real-Time Factor (RTF), throughput, and memory footprint. We compared StableToken against a strong baseline, GLM-4-Voice-Tokenizer (Zeng et al., 2025), under identical hardware conditions using both an NVIDIA H20 GPU and an AMD EPYC 9K84 96-Core Processor.

The tests covered various batch sizes and audio durations. The detailed results are summarized in Table 13 (GPU) and Table 14 (CPU).

Based on these results, we observe the following: (1) **Latency, RTF, and Throughput:** The empirical data aligns with our theoretical analysis. The end-to-end latency and RTF of StableToken are nearly identical to the baseline, showing a slight advantage at larger batch sizes (e.g., 2.0% faster at a batch

¹<https://github.com/Lyken17/pytorch-OpCounter>

972
973
974 Table 13: Inference Efficiency and Resource Usage on a single NVIDIA H20 GPU.
975
976

Batch Size	Duration (s)	Metric	StableToken (25 tokens/s)	GLM-4-Voice (12.5 tokens/s)	Difference (%)
1	1	Latency (ms)	9.11	9.00	+1.22%
		RTF	0.0091	0.0090	+1.22%
		Throughput (s/s)	109.77	111.11	-1.21%
		Memory (MB)	1330	1538	-13.5%
1	30	Latency (ms)	63.17	63.19	-0.03%
		RTF	0.0021	0.0021	-0.03%
		Throughput (s/s)	474.92	474.79	+0.03%
		Memory (MB)	1693	1853	-8.6%
16	10	Latency (ms)	235.96	239.57	-1.5%
		RTF	0.0015	0.0015	-1.5%
		Throughput (s/s)	678.08	667.87	+1.5%
		Memory (MB)	2173	2328	-6.7%
32	60	Latency (ms)	1622.86	1656.49	-2.0%
		RTF	0.0008	0.0009	-2.0%
		Throughput (s/s)	1183.10	1159.08	+2.1%
		Memory (MB)	13978	14230	-1.8%

995 Table 14: Inference Efficiency and Resource Usage on an AMD EPYC 9K84 96-Core Processor.
996

Batch Size	Duration (s)	Metric	StableToken (25 tokens/s)	GLM-4-Voice (12.5 tokens/s)	Difference (%)
1	1	Latency (ms)	104.27	116.62	-10.6%
		RTF	0.1043	0.1166	-10.6%
		Throughput (s/s)	9.59	8.57	+11.9%
		Memory (MB)	2349	2727	-13.9%
1	30	Latency (ms)	1790.86	1809.86	-1.0%
		RTF	0.0597	0.0603	-1.0%
		Throughput (s/s)	16.75	16.58	+1.0%
		Memory (MB)	2357	2739	-13.9%
16	10	Latency (ms)	5287.85	5687.53	-7.0%
		RTF	0.0330	0.0355	-7.0%
		Throughput (s/s)	30.26	28.13	+7.6%
		Memory (MB)	2566	2982	-14.0%
32	60	Latency (ms)	52021.89	55549.44	-6.4%
		RTF	0.0271	0.0289	-6.4%
		Throughput (s/s)	36.91	34.56	+6.8%
		Memory (MB)	2957	3117	-5.1%

1016
1017
1018
1019 size of 32 on GPU). Throughput matches or slightly exceeds the baseline across all tested scenarios.
1020 (2) **Memory Footprint:** StableToken consistently consumes less memory than the baseline, with
1021 savings of up to 13.5% on GPU and 14.0% on CPU. We attribute this efficiency to the use of Lookup-
1022 Free Quantization (LFQ), which is inherently more resource-efficient than the Vector Quantization
1023 (VQ) employed by the baseline.

1024 In summary, the benchmarks demonstrate that StableToken achieves improved token stability without
1025 compromising inference efficiency. Its latency and throughput are competitive with strong baselines,
while offering a lower memory footprint.

1026
1027

B.7 ANALYSIS OF TOKEN DISTRIBUTION AND CROSS-LINGUAL EFFICIENCY

1028
1029
1030
1031
1032

In this section, we investigate the fundamental properties of the token distribution generated by our multi-branch architecture. Specifically, we analyze the entropy, vocabulary efficiency, and language-specificity of the learned representations. We conduct a statistical analysis on the Chinese and English token distributions to verify whether the architecture effectively learns distinct phonetic representations without introducing significant bias or inefficiency.

1033
1034
1035

Our analysis focuses on two main aspects: (1) Evaluating the efficiency of vocabulary space utilization for individual languages. (2) Assessing the degree of distributional overlap between Chinese and English to confirm the capture of language-specific features.

1036
1037
1038
1039
1040
1041
1042
1043

B.7.1 VOCABULARY UTILIZATION AND DISTRIBUTION ENTROPY

1044
1045
1046
1047
1048
1049
1050

We first analyze the vocabulary usage of StableToken on the LibriSpeech-test (English) and AISHELL (Chinese) datasets. As shown in Table 15, both languages utilize a substantial portion of the available vocabulary. The high entropy values observed for both languages indicate that the token distributions are rich and dispersed, rather than collapsing into a small subset of tokens. This suggests that the tokenizer maintains high representational capacity for both languages.

Table 15: Vocabulary Utilization Statistics on LibriSpeech and AISHELL

Metric	English	Chinese
Total Tokens	969,440	906,250
Unique Tokens Used	8,139 (99.35%)	7,565 (92.35%)
Token Entropy	12.43	11.68

1051
1052
1053

B.7.2 CROSS-LINGUAL TOKEN SPECIFICITY

1054
1055
1056

To assess the language specificity of the learned codebook, we examine the overlap of high-frequency tokens between languages. We identify the top-frequency tokens for one language and calculate their occurrence frequency in the other.

1057
1058
1059
1060

Tables 16 and 17 present these comparisons. The results indicate that tokens with high frequency in one language are extremely rare or non-existent in the other. This disjointed usage pattern demonstrates that the model has successfully learned specialized, language-specific phonetic units, allocating distinct sub-spaces of the codebook to different languages.

1061

Table 16: Frequency Analysis of Top 5 English Tokens

Token ID	Freq. (English)	Freq. (Chinese)	Rank in Chinese
1877	0.4803%	0.0119%	2455
3813	0.3693%	0.00%	N/A
3809	0.3377%	0.00%	N/A
3812	0.3090%	0.00%	N/A
3808	0.2957%	0.0001%	7320

1070
1071
1072

Table 17: Frequency Analysis of Top 5 Chinese Tokens

Token ID	Freq. (Chinese)	Freq. (English)	Rank in English
3810	0.7531%	0.0042%	6276
3811	0.7530%	0.0002%	8045
7910	0.7392%	0.0027%	6850
3815	0.6933%	0.0001%	8104
3234	0.6815%	0.0001%	8085

1080
1081

B.7.3 QUANTITATIVE DISTRIBUTIONAL DIVERGENCE

1082
1083
1084

To formally quantify the difference between the token distributions of the two languages, we calculate the Kullback-Leibler (KL) Divergence. As shown in Table 18, the significant non-zero KL Divergence values confirm that the model maintains distinct probability distributions for each language.

1085
1086
1087
1088
1089
1090
1091

Table 18: KL Divergence between Language Token Distributions

Metric	Value
KL Divergence (English Chinese)	2.81
KL Divergence (Chinese English)	2.05

1092
1093
1094
1095

Collectively, these analyses demonstrate that the multi-branch voting mechanism robustly allocates specific regions of the codebook to different languages, capturing unique phonetic characteristics while maintaining efficient vocabulary utilization.

1096
1097
1098
1099
1100
1101

B.8 LONG AUDIO PROCESSING AND BOUNDARY STABILITY

1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112

In this section, we clarify the model’s configuration regarding input duration and analyze the stability of tokenization at segment boundaries. This analysis is crucial for understanding the model’s behavior in streaming scenarios or when processing long audio via chunking.

1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125

B.8.1 MODEL CONFIGURATION AND SEGMENT LENGTH

StableToken inherits the architectural specifications and processing conventions of its backbone, *whisper-large-v3*. Consequently, the model is configured as follows: (1) **Maximum Duration**: The tokenizer processes a maximum input audio duration of 30 seconds per inference pass, consistent with the Whisper context window. (2) **Training Constraint**: During training, all audio segments were constrained to this 30-second window. Audio files exceeding this duration in the training dataset were truncated to the first 30 seconds. (3) **Inference Strategy**: For audio exceeding 30 seconds, StableToken employs a standard chunking strategy. The input is segmented into 30-second (or smaller) chunks which are processed independently. The resulting token sequences are then concatenated to form the final output.

B.8.2 ANALYSIS OF BOUNDARY STABILITY

1113
1114
1115
1116
1117

A potential concern with chunk-based processing is whether token stability degrades at the boundaries of audio segments (i.e., the beginning and end of a chunk), which could lead to defects when chunks are concatenated together.

1118
1119
1120
1121
1122
1123
1124
1125

To investigate this, we analyzed the distribution of tokenization inconsistencies across different temporal regions of the input audio under Gaussian noise perturbation. We segmented the test audio clips into three regions: (1) **Start**: The first 15% of the audio duration; (2) **Middle**: The central 70% of the audio duration; and (3) **End**: The final 15% of the audio duration. We calculated the Unit Edit Distance (UED) independently for each region. The results are presented in Table 19.

1126
1127
1128
1129
1130
1131
1132
1133

Table 19: Distribution of UED across different temporal regions of audio clips under Gaussian noise.

Region	Inconsistencies	Ref. Tokens	UED	% of Total Inconsistencies
Start (0-15%)	16,585	119,770	13.85%	16.29%
Middle (15-85%)	69,333	550,069	12.60%	68.11%
End (85-100%)	15,884	116,016	13.69%	15.60%
Overall	101,802	785,855	12.95%	100.00%

The empirical results indicate that UED is consistent across all regions. The UED in the middle region (12.60%) is only marginally lower than that at the start (13.85%) and end (13.69%). Furthermore, the

1134 proportion of total inconsistencies occurring in the start (16.29%) and end (15.60%) regions closely
 1135 aligns with their respective 15% share of the audio duration.
 1136

1137 This uniformity demonstrates that there is no significant degradation in token stability at the segment
 1138 boundaries. The consensus mechanism employed by StableToken maintains robustness consistently
 1139 throughout the audio clip, supporting the effectiveness of the chunking strategy for long audio
 1140 processing.

C ABLATION STUDY ON ARCHITECTURAL HYPERPARAMETERS

1141 In this section, we investigate the impact of two key architectural hyperparameters on model per-
 1142 formance: the depth at which the quantizer is placed within the encoder, and the ratio of clean to
 1143 perturbed branches during training. We compare our proposed configuration (**L16 + 3:2**, which means
 1144 the quantizer is placed at Layer 16 with a 3:2 clean-to-noisy branch ratio) against three variants: (1)
 1145 **Shallower Quantization (L8 + 3:2)**: The quantizer is placed at Layer 8; (2) **Deeper Quantization**
 1146 (**L24 + 3:2**): The quantizer is placed at Layer 24; and (3) **Reduced Noise Ratio (L16 + 4:1)**: The
 1147 ratio of clean to perturbed branches is set to 4:1.

1148 Table 20 summarizes the performance of each model checkpoint at 100k training steps across tokenizer
 1149 robustness (UED), Automatic Speech Recognition (ASR), and Speech Emotion Recognition (SER)
 1150 tasks.

1151 Table 20: Ablation study on quantizer placement and perturbation ratio. UED is calculated under
 1152 Gaussian Noise. LibriSpeech WER is reported for test-clean / test-other. SER is evaluated on the
 1153 ESD dataset.

Configuration (Layer + Clean:Noisy)	Robustness (UED%, ↓)	ASR (WER%, ↓)			SER (Acc%, ↑)
		LibriSpeech	WenetSpeech	KeSpeech	
L16 + 3:2 (Ours)	18.68	2.22 / 5.38	10.91	11.00	67.38
L8 + 3:2	22.05	2.39 / 5.82	11.84	11.24	66.90
L24 + 3:2	13.65	2.52 / 5.96	10.16	11.03	59.51
L16 + 4:1	20.94	2.40 / 5.91	11.00	11.57	62.14

C.1 EFFECT OF QUANTIZER PLACEMENT

1165 The results demonstrate a clear trade-off associated with the quantizer’s depth: (1) **Deep Quantization**
 1166 (**L24**): Placing the quantizer at the deep layer forces it to operate on highly abstract, semantic
 1167 features. This yields the highest tokenizer robustness (lowest UED) and strong ASR performance on
 1168 challenging datasets like WenetSpeech. However, at this depth, much of the fine-grained acoustic
 1169 information (e.g., prosody and timbre) has been abstracted away, resulting in a significant degradation
 1170 in SER performance (59.51% vs. 67.38%). (2) **Shallow Quantization (L8)**: Operating on shallower
 1171 features at Layer 8 retains acoustic details but lacks sufficient semantic abstraction. This leads to both
 1172 poorer tokenizer robustness and degraded ASR performance compared to the deeper configurations.
 1173 (3) **Balanced Configuration (L16)**: Our proposed placement at Layer 16 strikes an effective balance.
 1174 It captures sufficiently robust semantic content for high-performance ASR while retaining enough
 1175 acoustic detail to excel in paralinguistic tasks like SER.

C.2 EFFECT OF PERTURBATION RATIO

1176 Comparing the 3:2 and 4:1 clean-to-noisy ratios reveals the importance of the training signal difficulty:
 1177 The 3:2 ratio results in significantly better tokenizer robustness compared to the 4:1 ratio (18.68%
 1178 vs. 20.94% UED). A higher proportion of perturbed branches creates a more challenging training
 1179 objective for the consensus mechanism.

1180 This enhanced robustness translates directly to downstream tasks. We hypothesize that the more
 1181 diverse training signal forces the model to learn representations that are truly invariant to perturbations
 1182 rather than relying on the clean majority. This richer representation benefits both semantic (ASR) and
 1183 paralinguistic (SER) performance.

1188
 1189 In conclusion, these ablation studies validate the design choices of the proposed model. The combina-
 1190 tion of Layer 16 placement and a 3:2 noise ratio optimizes the trade-off between semantic robustness
 1191 and acoustic feature preservation.
 1192

1193 D BASELINE MODELS

1194
 1195 The baseline models considered in our study are as follows: (1) **HuBERT-500** (Hsu et al., 2021),
 1196 a self-supervised speech representation model that leverages iterative offline clustering to produce
 1197 pseudo-labels and employs a masked prediction loss; we use the official checkpoint with 500 clusters²;
 1198 (2) **NAST** (Messica & Adi, 2024), a noise-aware speech tokenization approach comprising a predictor,
 1199 residual encoder, and decoder, in which the predictor representations of clean speech and augmented
 1200 speech are explicitly aligned; (3) **R-Spin** (Chang & Glass, 2024), which enhances the robustness of
 1201 speech representations by learning discrete, speaker- and noise-invariant acoustic units through a
 1202 prediction-based training objective; (4) **SpeechTokenizer** (Zhang et al., 2023), which introduces a
 1203 hierarchical encoder-decoder framework with residual vector quantization (RVQ) to unify semantic
 1204 and acoustic tokens; (5) **X-Codec** (Ye et al., 2025), which augments the RVQ backbone with semantic
 1205 features from a pre-trained semantic encoder and applies a semantic reconstruction loss to achieve
 1206 higher fidelity in audio generation; (6) **Mimi** (Défossez et al., 2024), a neural audio codec using RVQ
 1207 to convert audio into discrete tokens, where the first quantization level is distilled to capture semantic
 1208 information; (7) **CosyVoice (S³ Tokenizer)** (Du et al., 2024a), which extracts supervised semantic
 1209 tokens from a multilingual speech recognition encoder for LLM-based TTS, thereby improving
 1210 content consistency and speaker similarity in voice cloning; (8) **CosyVoice2** (Du et al., 2024b),
 1211 which introduces finite-scalar quantization (FSQ) to improve the codebook utilization and updates
 1212 the model architecture for streaming synthesis capabilities; (9) **GLM-4-Voice** (Zeng et al., 2025),
 1213 which fine-tunes a pre-trained ASR model by including a pooling layer and a vector quantization
 1214 layer, producing discrete tokens that strongly preserve semantic information at low frame rates.
 1215

1216 E NOISE PROFILES

1217
 1218 In tokenizer-level evaluation, we augment the FLEURS (Conneau et al., 2023) benchmark with a
 1219 variety of synthetic perturbations, including Gaussian Noise, Pink Noise, Brown Noise and Bit Crush
 1220 Distortion, as well as real-world noise samples from the ESC-50 (Piczak, 2015) dataset. Specifically,
 1221 the ESC-10 (Piczak, 2015) subset is used as out-of-domain (OOD) real-world noise and is excluded
 1222 from our StableToken training pipeline, while the remaining 40 noise categories from ESC-50 are
 1223 incorporated into the training process and thus are considered in-domain real-world noise.
 1224

1225 We carefully adjusted the noise level to ensure that the added noise does not obscure the semantic
 1226 content of the original audio and does not affect human perception of the speech. A summary of all
 1227 perturbation types and their corresponding intensity is provided in Table 21.

1228
 1229 Table 21: Details of synthetic and real-world perturbations used for noise augmentation.
 1230

Perturbation Type	Intensity Value
Gaussian Noise	SNR = 25
Pink Noise	SNR = 22
Brown Noise	SNR = 16
Bit Crush Distortion	Bit Depth = 10
Real-world Noise	SNR = 16
OOD Real-world Noise	SNR = 16

1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
²<https://github.com/facebookresearch/fairseq/tree/main/examples/hubert>

1242 F DETAILS OF DOWNSTREAM TASK EVALUATION
12431244 F.1 TRAINING DATASETS FOR SPEECHLLMs
12451246 In this section, we summarize the speech datasets employed for training SpeechLLMs in Table 22,
1247 covering various tasks including Automatic Speech Recognition (ASR), Speech Emotion Recognition
1248 (SER), Text-to-Speech (TTS), and Speech Next Token Prediction (SNTP).
12491250 Table 22: Summary of datasets used for training SpeechLLMs
1251

1253 Dataset	1254 Task	1255 Language(s)
1254 LibriSpeech (Panayotov et al., 2015)	1255 ASR	1256 English
1255 Multi-Lingual LibriSpeech (Pratap et al., 2020)	1256 ASR	1257 English
1256 TESS (Dupuis & Pichora-Fuller, 2010)	1257 SER	1258 English
1257 SAVEE (Jackson & Haq, 2014)	1258 SER	1259 English
1258 RAVDESS (Livingstone & Russo, 2018)	1259 SER	1260 English
1259 MELD (Poria et al., 2018)	1260 SER	1261 English
1260 MEAD (Wang et al., 2020)	1261 SER	1262 English
1261 JL-Corpus (James et al., 2018)	1262 SER	1263 English
1262 IEMOCAP (Busso et al., 2008)	1263 SER	1264 English
1263 Espresso (Nguyen et al., 2023)	1264 SER	1265 English
1264 EmoV-DB (Adigwe et al., 2018)	1265 SER	1266 English
1265 EMNS (Noriy et al., 2023)	1266 SER	1267 English
1266 Dailytalk (Lee et al., 2023)	1267 SER	1268 English
1267 CREMA-D (Cao et al., 2014)	1268 SER	1269 Chinese
1268 CASIA (Zhang & Jia, 2008)	1269 SER	1270 Chinese
1269 M3ED (Zhao et al., 2022)	1270 SER	1271 Chinese
1270 MER2023 (Lian et al., 2023)	1271 SER	1272 Chinese
1271 CSEMOtions (Tian et al., 2025)	1272 SER	1273 English, Chinese
1272 ESD (Zhou et al., 2022)	1273	1274
1273 Hi-Fi TTS (Bakhturina et al., 2021)	1274 TTS	1275 English
1274 VCTK (Veaux et al., 2017)	1275 TTS	1276 English
1275 LibriTTS (Zen et al., 2019)	1276 TTS	1277 English
1276 GigaSpeech (Chen et al., 2021)	1277 SNTP	1278 English
1277 VoxPopuli (Wang et al., 2021)	1278 SNTP	1279 English
1278 MagicData ³	1279 TTS	1280 Chinese
1279 AISHELL-1 (Bu et al., 2017)	1280 TTS	1281 Chinese
1280 WenetSpeech (Zhang et al., 2022)	1281 SNTP	1282 Chinese

1283 F.2 TRAINING HYPERPARAMETERS FOR SPEECHLLMs
12841285 Table 23 summarizes the main hyperparameters used throughout downstream SpeechLLM training.
1286 Unless otherwise specified, these settings are uniformly adopted for all tasks and models.
12871288 F.3 PROMPTS USED IN DOWNSTREAM TASKS
12891290 This appendix contains the complete lists of textual prompts used for Automatic Speech Recognition
1291 (ASR), Speech Emotion Recognition (SER), and Text-to-Speech (TTS) tasks. For both fine-tuning
1292 and inference, a prompt was randomly selected from the corresponding set for each sample.
12931294
1295 ³<https://www.openslr.org/68/>

1296
1297

Table 23: Hyperparameters used for training all downstream SpeechLLMs.

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

F.3.1 ASR TRANSCRIPTION PROMPTS

1310

1311 Please transcribe the following audio content into text.
 1312 Please convert the following recording into text.
 1313 Please transcribe this audio recording into text.
 1314 Transcribe the following audio content into text.
 1315 Convert the following recording into text.
 1316 This audio recording needs to be transcribed into text.
 1317 Recognize and convert the following speech content into text.
 1318 Turn the following audio file into text.
 1319 Transcribe this recording into text.
 1320 Transcribe the following audio file into text.
 1321 Convert this speech recording into text.
 1322 Recognize the following audio content and convert it into text.
 1323 Transcribe the following recording into text.

1324

1325

F.3.2 SER EMOTION PROMPTS

1326

1327 What is the emotion of this text?
 1328 Analyze the sentiment of the following sentence.
 1329 Identify the feeling expressed in this audio.
 1330 Is the tone of this message positive or negative?
 1331 Detect the emotion in the user's feedback.
 1332 What emotion is being conveyed here?
 1333 Classify the emotion of this statement.
 1334 Tell me the emotional state of the speaker.
 1335 Analyze the emotional content of this speech.

1336

1337

F.3.3 TTS SYNTHESIS PROMPTS

1339

1340 Please synthesize the following text into speech.
 1341 Convert the following text to speech.
 1342 Transform the following text into speech.
 1343 This text needs to be synthesized into speech.
 1344 Synthesize the following text into speech.
 1345 Turn the following text into speech.
 1346 Generate speech from the following text.
 1347 Convert the text below into speech.
 1348 Create speech from the following text.
 1349 Produce speech from the following text.
 Render the following text as speech.

1350 G FULL RECONSTRUCTION RESULTS

1352 The comprehensive results for the tokenizer-level reconstruction quality evaluation are provided in
 1353 Table 24. Note that SSL-based semantic tokenizers are not included in this comparison, as there are
 1354 no publicly available decoders for reconstructing audio from their generated tokens.

1356 Table 24: WER (↓) and MOS (↑) on LibriSpeech (Panayotov et al., 2015) and SEED (Anastassiou
 1357 et al., 2024). StableToken combines strong noise robustness with competitive reconstruction quality.
 1358 It is worth noting that a comparison is most meaningful between tokenizers of the same type.

1360 Model	#C	Frame Rate	BPS	WER ↓				MOS ↑			
				LS- clean	LS- other	SEED en	SEED zh	LS- clean	LS- other	SEED en	SEED zh
Semantic Distilled tokenizer											
SpeechTokenizer (Zhang et al., 2023)	1	50Hz	500	4.77	16.06	10.37	74.98	2.51	2.49	2.51	2.44
	3	50Hz	1500	4.03	10.72	4.93	7.81	3.00	2.89	2.89	3.06
	8	50Hz	4000	3.21	6.58	2.77	2.25	3.32	3.10	3.22	3.44
X-Codec (Ye et al., 2025)	1	50Hz	500	3.98	9.02	4.72	5.96	3.17	3.04	3.05	3.18
	3	50Hz	1500	3.16	6.11	2.74	2.24	3.43	3.17	3.19	3.38
	8	50Hz	4000	3.09	5.49	2.25	1.74	3.47	3.19	3.19	3.33
Mimi (Défossez et al., 2024)	8	12.5Hz	1100	4.65	9.84	3.86	2.81	3.26	3.06	3.15	3.19
Supervised Semantic tokenizer											
GLM-4-Voice-Token. (Zeng et al., 2025)	1	12.5Hz	175	4.04	9.33	3.54	3.23	4.07	3.99	4.16	4.10
S^3 Tokenizer (Du et al., 2024a)	1	25Hz	300	5.78	13.38	5.91	4.26	3.40	3.31	3.40	3.31
CosyVoice2 (Du et al., 2024b)	1	25Hz	325	4.25	9.68	4.34	2.75	3.36	3.25	3.31	3.58
StableToken (Ours)	1	25Hz	325	3.84	7.99	3.44	2.62	4.09	3.83	4.01	4.18

1377 H RELATED WORK

1379 **Semantic Speech Tokenizers** The evolution of LLMs has driven the transition of spoken dialogue
 1380 models from traditional pipelines to end-to-end SpeechLLMs (Zhang & Wang, 2019; Zhang et al.,
 1381 2020; Jacqmin et al., 2022; Lee et al., 2021; Fang et al., 2024; Défossez et al., 2024; Wang et al.,
 1382 2024), with semantic tokenizers becoming increasingly crucial. The design of semantic tokenizers
 1383 has evolved through several distinct paradigms. Early approaches utilized self-supervised learning
 1384 (SSL) to derive discrete units from unlabeled data (Hsu et al., 2021; Baevski et al., 2020; Chen et al.,
 1385 2022; Chung et al., 2021; Conneau et al., 2021; Chiu et al., 2022; Baevski et al., 2019; Liu et al., 2023;
 1386 Gat et al., 2023; Huang et al., 2022; Lodagala et al., 2023; Chang et al., 2023). The vast majority of
 1387 tokens produced by these methods are designed for discriminative tasks. It is reported that discretized
 1388 SSL tokens primarily encode phonetic information, causing high Gross Pitch Error (GPE) when
 1389 paired with a vocoder for audio generation, making them unsuitable for end-to-end SpeechLLMs
 1390 (Sicherman & Adi, 2023; Polyak et al., 2021; Mousavi et al., 2024; Guo et al., 2025).

1391 A second category employs a hybrid approach, enhancing an acoustic tokenizer with semantic
 1392 distillation to balance acoustic fidelity and semantic content (Zhang et al., 2023; Ye et al., 2025;
 1393 Défossez et al., 2024; Siahkoohi et al., 2022; Yang et al., 2024b). This design enables strong
 1394 performance on both generative and discriminative tasks. However, their integration with downstream
 1395 large language models (LLMs) is hampered by several significant challenges. First, to preserve high
 1396 fidelity, these methods tend to encode excessive acoustic details, which results in a high bits-per-
 1397 second (BPS) rate. This high data rate generates longer token sequences, thereby increasing the
 1398 computational load and impairing training efficiency. Furthermore, their reliance on Residual Vector
 1399 Quantization (RVQ) produces hierarchical tokens that are inherently incompatible with the flat input
 1400 structure expected by most LLMs. Collectively, the high data rate, the structural mismatch, and
 1401 the overhead of processing superfluous acoustic information present substantial obstacles to their
 1402 application in modern SpeechLLMs.

1403 More recently, a third and more direct paradigm has gained traction: fully supervised training. Given
 1404 that the primary goal is to capture semantic and phonetic information, this approach directly uses an
 1405 Automatic Speech Recognition (ASR) objective for supervision. The process involves quantizing the

1404 intermediate representations of a powerful ASR encoder and optimizing the model with an ASR loss,
 1405 ensuring the resulting tokens directly represent linguistic units (Zeng et al., 2025; Du et al., 2024a;b).
 1406 Subsequently, a downstream vocoder is trained to convert these discrete tokens into mel-spectrograms
 1407 for speech synthesis. This tokenizer design is foundational to the current state-of-the-art end-to-
 1408 end SpeechLLMs, underscoring its effectiveness and growing adoption. Interestingly, research has
 1409 revealed that while the ASR objective targets linguistic content, the resulting tokens retain sufficient
 1410 extra-phonetic information (e.g., prosody). This is likely because the ASR encoder implicitly learns
 1411 to model prosodic features as they serve as valuable auxiliary cues for achieving high transcription
 1412 accuracy. This retained information allows an integrated LLM to generate highly expressive synthesis
 1413 and convey complex emotions. Consequently, this design’s ability to support expressive generation
 1414 has made it a foundational choice for state-of-the-art SpeechLLMs (Zeng et al., 2024; Ding et al.,
 1415 2025).

1416 **Noise Robustness** Ensuring the stability of discrete speech tokens in the presence of noise is critical
 1417 for the performance of modern Speech Language Models (SLMs). However, this issue has been
 1418 largely overlooked compared to the extensive research focused on improving the robustness of the
 1419 Automatic Speech Recognition (ASR) model itself (Wang et al., 2022; Tjandra et al., 2023; Eickhoff
 1420 et al., 2023; Gong et al., 2023; Ahn et al., 2025). Recently, two studies have begun to address this
 1421 gap by investigating the noise robustness of traditional SSL-based speech tokenizers.

1422 R-SPIN (Chang & Glass, 2024) addresses this by learning speaker- and noise-invariant discrete units
 1423 through a data-efficient self-supervised framework. It extends the speaker-invariant clustering of
 1424 Spin by using an additional noise-perturbed view of the input and an auxiliary loss that predicts
 1425 "acoustic pieces," which are phoneme-aligned pseudo-labels, to prevent model collapse and ensure
 1426 the resulting discrete units represent pure linguistic content . In contrast, NAST (Messica & Adi,
 1427 2024) proposes an architecture designed explicitly for robust tokenization, consisting of a predictor, a
 1428 residual encoder, and a decoder. Its training is governed by a combination of a reconstruction loss, a
 1429 diversity loss to encourage codebook usage, and a crucial robustness loss that penalizes changes in
 1430 the predicted token distribution between clean and noise-augmented versions of the same utterance,
 1431 thereby directly optimizing for token-level stability. Liu et al. (2025) introduce slice-consistency
 1432 and perturbation-consistency constraints to mitigate discrete representation inconsistency, but their
 1433 approach targets acoustic tokenizers (rather than semantic tokenizers), which prioritize audio detail
 1434 reconstruction. Therefore, noise invariance is less meaningful in their context, making their work
 1435 fundamentally different from ours.

1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457