
Published in Transactions on Machine Learning Research (02/2024)

Non-Uniform Smoothness for Gradient Descent

Albert S. Berahas albertberahas@gmail.com
Department of Industrial and Operations Engineering
University of Michigan

Lindon Roberts lindon.roberts@sydney.edu.au
School of Mathematics and Statistics
University of Sydney

Fred Roosta fred.roosta@uq.edu.au
School of Mathematics and Physics
University of Queensland
ARC Training Centre for Information Resilience

Reviewed on OpenReview: https: // openreview. net/ forum? id= 17ESEjETbP

Abstract

The analysis of gradient descent-type methods typically relies on the Lipschitz continuity of
the objective gradient. This generally requires an expensive hyperparameter tuning process
to appropriately calibrate a stepsize for a given problem. In this work we introduce a local
first-order smoothness oracle (LFSO) which generalizes the Lipschitz continuous gradients
smoothness condition and is applicable to any twice-differentiable function. We show that
this oracle can encode all relevant problem information for tuning stepsizes for a suitably
modified gradient descent method and give global and local convergence results. We also
show that LFSOs in this modified first-order method can yield global linear convergence
rates for non-strongly convex problems with extremely flat minima.

1 Introduction

In this work, we consider gradient descent-type algorithms for solving unconstrained optimization problems

min
x∈Rd

f(x), (1.1)

where f : Rd → R is continuously differentiable. Gradient descent-type methods for (1.1) have seen renewed
interest arising from applications in data science, where d is potentially very large (Bottou et al., 2018;
Wright, 2018). When analyzing such methods with a fixed stepsize, it is most commonly assumed that ∇f is
Lf -Lipschitz continuous and assume a stepsize of order 1/Lf , e.g. (Wright, 2018, Section 4). The key reason
behind this smoothness assumption is the resulting bound

|f(y)− f(x)−∇f(x)T (y − x)| ≤ Lf
2 ‖y − x‖

2
2, ∀x, y ∈ Rd.

In practice, however, Lf is usually not known. The simplest approach in this situation is to try several
stepsize choices as part of a (possibly automated) hyperparameter tuning process (Snoek et al., 2012). That
said there are often benefits to changing the stepsize at each iteration, with common approaches including
linesearch methods (Nocedal &Wright, 2006), Polyak’s stepsize for convex functions (Polyak, 1969) (although
this requires knowledge of the global minimum of f) and the Barzilai-Borwein stepsize (Barzilai & Borwein,
1988) (although global convergence theory exists only for strictly convex quadratic functions, and does not
converge for some (non-quadratic) strongly convex functions without modification (Burdakov et al., 2019)).

1

https://openreview.net/forum?id=17ESEjETbP

Published in Transactions on Machine Learning Research (02/2024)

In the setting where Lf is known, this approach is still limited pessimistic, as the stepsize is chosen to be
sufficiently small to ensure decrease throughout the domain, as it reflects the global smoothness of f . In an
iterative method it suffices to ensure decrease from one iterate to the next, and so of greater relevance is the
local smoothness of f in a neighborhood of the current iterate.

There are two natural ways that local smoothness could be used to modify the stepsizes in gradient descent.
First, we could dynamically estimate Lf by looking at how rapidly ∇f is changing near the current iterate.
This approach is followed in (Malitsky & Mishchenko, 2020), where Lf is estimated based on ‖∇f(xk) −
∇f(xk−1)‖2/‖xk−xk−1‖2. This estimation procedure allows for global convergence of a hyperparameter-free
variant of gradient descent for convex functions. An alternative approach for convex problems is to estimate
the distance from the starting point to the minimizer ‖x0−x∗‖ and use this to construct hyperparameter-free
methods (Carmon & Hinder, 2022; Defazio & Mishchenko, 2023; Mishchenko & Defazio, 2023). Alternatively,
we could assume the existence of an oracle that gives us a suitable local Lipschitz constant for ∇f (Mei et al.,
2021). There, it is assumed that one has access to an oracle L(x) that satisfies

|f(y)− f(x)−∇f(x)T (y − x)| ≤ L(x)
2 ‖y − x‖2

2, ∀y ∈ Rd. (1.2)

Although some useful properties arise when allowing a stepsize of 1/L(xk) for gradient descent (at current
iterate xk)—for example faster convergence than gradient descent with fixed stepsizes—the oracle L(x) has
limitations. For example, if we want to exploit extremely flat regions around minima, we may want L(x)→ 0
as x→ x∗, but for (1.2) to hold with L(x∗) = 0 requires f be a constant function.

In a separate line of work, (Zhang et al., 2020) considers gradient clipping methods applied to functions sat-
isfying a smoothness condition of the form ‖∇2f(x)‖2 ≤ L0 +L1‖∇f(x)‖2, which was empirically motivated
by training deep neural networks and also applies to some distributionally robust optimization problems (Jin
et al., 2021). This condition was slightly relaxed in (Xie et al., 2023) to the generalized Lipschitz condition

‖∇f(y)−∇f(x)‖2 ≤ (L0 + L1‖∇f(x)‖2) · ‖y − x‖2, ∀x ∈ Rd, ∀y ∈ B(x, 1/L1), (1.3)

noting in particular that the inequality only needs to hold for x and y sufficiently close.

In this work, we consider a more general and localized form of the approach from (Mei et al., 2021), where
our oracle only requires bounds similar to (1.2) to hold for y ∈ B(x,R) for some R > 0. Such a local first-
order smoothness oracle (LFSO), gives a local Lipschitz constant over an explicitly defined neighborhood.
Such LFSOs exist for any C2 function (not just those with Lipschitz continuous gradients), including those
satisfying the weaker smoothness condition from (Zhang et al., 2020; Jin et al., 2021) mentioned above.
Given the availability of a LFSO, we show how this can be used to construct a convergent gradient descent-
type iteration that does not require any hyperparameter tuning. Similar to the case of 1/Lf stepsizes, this
parameter-free result comes from the LFSO capturing all the relevant problem information.

To show the promise of this approach, we demonstrate in Section 4 how the incorporation of a LFSO allows
gradient descent to achieve a global linear convergence rate to arbitrarily flat minima of convex functions.
We do this by considering a class of objective functions which include f(x) = ‖x‖2p

2 for p → ∞, where
f(x) is extremely flat near the minimizer x∗ = 0. This is achieved by the LFSO allowing larger stepsizes
as x → x∗, counteracting the degeneracy of the minimizer. These functions are known to be difficult for
gradient descent iterations, and in fact provide the worst-case lower bounds for accelerated gradient descent
(Attouch et al., 2018; 2022).1 Further, in Section 5 we show that our LFSO approach gives global linear
convergence rates for objectives of the form f(x) = ‖x‖2p

2p for p → ∞, an alternative set of objectives with
very degenerate minimizers. Our numerical results in Section 6 show the global linear rate achieved in
practice by the LFSO approach for both types of objective functions, compared to the (expected) sublinear
rate for standard gradient descent. We note that the objective f(x) = ‖x‖2p

2p can alternatively be minimized
in 1 iteration using iteratively reweighted least-squares (IRLS). IRLS only has local convergence guarantees
for problems of the form f(x) = ‖Ax − b‖2p

2p when p < 3/2 and can diverge for larger p without careful
modification (Adil et al., 2019).

1Of course, LFSO requires more problem information than these methods to achieve this result.

2

Published in Transactions on Machine Learning Research (02/2024)

Compared to the similar methods mentioned above, LFSO is the only method with global and local conver-
gence theory for general C2 nonconvex objectives. By comparison, (Malitsky & Mishchenko, 2020; Carmon
& Hinder, 2022; Defazio & Mishchenko, 2023; Mishchenko & Defazio, 2023) only have global convergence
results for convex objectives2, and (Mei et al., 2021) only considers global convergence for nonconvex func-
tions in the presence of a specific non-uniform Łojasiewicz condition. Our numerical results for specific
convex functions in Section 6 show that the method from (Malitsky & Mishchenko, 2020) gives fast global
linear convergence on the same problems, but this is not proven. We also note that the LFSO approach is
potentially more suited for adaptation to stochastic optimization than (Malitsky & Mishchenko, 2020) as it
does not require taking differences of (stochastic) gradients.

In the general nonconvex case with Lipschitz continuous gradients, LFSO recovers the standard O(ε−2)
iteration complexity required to find an ε-optimal point. The per-iteration cost of LFSO is one gradient
evaluation and up to two LFSO evaluations. In terms of scalability, the practicality of this approach depends
on how efficient an LFSO evaluation is; identifying general settings where LFSOs are easily computable is
an important direction for future work. However, for all the example problems considered in this work,
the computational cost of evaluating the LFSO is similar to (or cheaper than) the cost of a single gradient
evaluation. Our approach also avoids the need for any expensive tuning of learning rates (and in some cases
achieving global linear convergence rates).

This introduction and first analysis of LFSO methods demonstrates it to be a promising avenue for future
work, by giving an explicit mechanism to decoupling stepsize selection from objective smoothness (and hence
avoiding hyperparameter tuning), and in some specific circumstances being able to adapt to extremely flat
regions of the objective function. The LFSO approach requires a more complex oracle and a choice of initial
radii Rk (for examples in Sections 4 and 5, Rk = ‖∇f(xk)‖2 is used), and so an important starting point
for future work would be the efficient construction of such oracles (and indeed it would be useful to know
when such oracles are easy to compute), and developing a systematic understanding of suitable values for
Rk. This future work would enable a thorough numerical evaluation of the LFSO approach on more realistic
problems.

2 Algorithmic Framework

We now introduce our new oracle and show our algorithmic framework which incorporates the LFSO oracle
into a gradient descent-type method.
Definition 2.1. Suppose f : Rd → R is continuously differentiable. A function L : Rd × (0,∞)→ [0,∞) is
a local first-order smoothness oracle (LFSO) for f if

|f(y)− f(x)−∇f(x)T (y − x)| ≤ L(x,R)
2 ‖y − x‖2, (2.1)

for all x ∈ Rd, all y ∈ B(x,R) and for some R > 0, and L is non-decreasing in the second argument R.

For example, if f is Lf -smooth—i.e., ∇f is Lipschitz continuous with constant Lf—then L(x,R) = Lf
defines an LFSO for f . Treating this as an oracle rather than a problem constant encodes the common
algorithmic assumption that Lf is known. However, LFSOs exist for a much broader class than Lf -smooth
functions.
Lemma 2.2. If f is C2(Rd), then L(x,R) = maxy∈B(x,R) ‖∇2f(y)‖ is an LFSO for f .

Proof. It is straightforward that L is non-decreasing in R. In this case, the property (2.1) is well-known, for
instance (Cartis et al., 2022, Corollary A.8.4 & Theorem A.8.5)

Another common smoothness class is the case of C2 functions with Lipschitz continuous Hessians. In this
case, Lemma 2.2 gives us a simple, explicit form for an LFSO.

2Furthermore, (Carmon & Hinder, 2022) requires uniformly bounded (stochastic) (sub)gradients, and (Defazio &Mishchenko,
2023; Mishchenko & Defazio, 2023) require f to be Lipschitz continuous.

3

Published in Transactions on Machine Learning Research (02/2024)

Lemma 2.3. If f is C2(Rd) and ∇2f is LH-Lipschitz continuous, then L(x,R) = ‖∇2f(x)‖ + LHR is an
LFSO for f .

Proof. This follows from Lemma 2.2 and that ‖∇2f(y)‖ ≤ ‖∇2f(x)‖+ LH‖x− y‖ for all y ∈ B(x,R).

A useful property that we will use to get explicit formulae for LFSOs is the following straightforward
consequence of (2.1).
Lemma 2.4. Suppose L is a LFSO for f and L̃(x,R) ≥ L(x,R) for all x ∈ Rd and all R > 0. Then L̃ is
an LFSO for f if and only if L̃ is non-decreasing in R.

To incorporate an LFSO into a gradient descent-like iteration, a natural step would be to consider an iteration
of the form

xk+1 = xk −
η

L(xk, Rk)∇f(xk), (2.2)

for some appropriately chosen values of Rk > 0 and η > 0. In the case where f is Lf -smooth, standard
convergence theory (e.g., (Wright, 2018, Theorem 4.2.1)) would suggest that a value such as η = 1 is
appropriate. This shows that the LFSO notion encapsulates the problem-specific aspect of choosing a
suitable stepsize.

However, the choice of Rk is not so straightforward: for property (2.1) to be useful—typically to prove that
f(xk+1) < f(xk)—we would need xk+1 ∈ B(xk, Rk). This is not guaranteed if Rk is chosen too small, as the
following example illustrates.
Example 2.5. If d = 1 and f(x) = x4 then a suitable LFSO is

L(x,R) = 24x2 + 24R2,

using Lemmas 2.2 and 2.4, as well as

max
|y−x|≤R

12y2 = 12 max{(x−R)2, (x+R)2} ≤ 12(2x2 + 2R2),

from Young’s inequality. Suppose xk = 1 and η = 1, then from (2.2) we may compute

|xk+1 − xk| =
1

6 + 6R2
k

.

and so xk+1 /∈ B(xk, Rk) whenever Rk is smaller than R∗ ≈ 0.16238, the unique real root of p(R) =
6R3 + 6R2 − 1.

To avoid this issue, we first pick an arbitrary value for Rk, then possibly increase it to a sufficiently large
value that xk+1 is in the required neighborhood of xk. The resulting method is given in Algorithm 1. Note
that it requires one evaluation of ∇f and possibly two evaluations of L (oracle calls) per iteration.

Computational Cost of LFSO Evaluation In practice, the computational cost of L (performed poten-
tially twice per iteration of Algorithm 1) will depend on the specific problem being analyzed. However, for
the examples in this work the cost of one LFSO evaluation is small, of the same order as a single gradient
evaluation (or potentially cheaper if the gradient has already been evaluated).

In Section 4, where f(x) = h(g(x)), the dominant cost of the LFSO (4.2) is the evaluation of ‖∇g(x)‖, but
∇g(x) has already been evaluated when originally computing ∇f(x).

In Section 5 for linear regression problems, provided quantities only depending on the problem parameters
A have been pre-computed, the LFSO (5.3) is dominated by one residual calculation Ax− b. This residual
is computed when evaluating the gradient, so the LFSO cost is dominated by evaluating ‖Ax − b‖∞ when
Ax − b is already known, of cost O(n) for a problem with n residuals. This is cheaper than the cost of a
gradient evaluation, which also requires a matrix-vector product not present in the LFSO evaluation.

4

Published in Transactions on Machine Learning Research (02/2024)

Algorithm 1 Gradient Descent with LFSO.
Input: Starting point x0 ∈ Rd, stepsize factor η > 0.
1: for k = 0, 1, 2, . . . do
2: Choose any Rk > 0
3: Set

R̃k := max
{
Rk,

η

L(xk, Rk)‖∇f(xk)‖
}
. (2.3)

4: Iterate

xk+1 = xk −
η

L(xk, R̃k)
∇f(xk). (2.4)

5: end for

In Appendix A, we also derive an LFSO for 2-class logistic regression and show the same cost as Section 5:
the dominant cost of evaluating the LFSO is an extra O(n) for training data of length n (beyond information
already computed in a gradient evaluation), plus gradient evaluation requires an extra matrix-vector product
not present in the LFSO evaluation.

3 Convergence Analysis

In this section we provide global convergence results for the general nonconvex and PL/strongly convex
cases, and also local convergence rates to non-degenerate local minima. To enable these, we prove a descent
lemma (Lemma 3.2) suitable for Algorithm 1.
Assumption 3.1. The function f : Rd → R is continuously differentiable and bounded below by f∗, and L
is an LFSO for f .
Lemma 3.2. If Assumption 3.1 holds, then Algorithm 1 produces iterates satisfying

f(xk+1) ≤ f(xk)− η

L(xk, R̃k)

(
1− η

2

)
‖∇f(xk)‖2, (3.1)

for all k = 0, 1,

Proof. Since R̃k ≥ Rk and L is non-decreasing in R, we have that

‖xk+1 − xk‖ = η

L(xk, R̃k)
‖∇f(xk)‖ ≤ η

L(xk, Rk)‖∇f(xk)‖ ≤ R̃k, (3.2)

and so (2.1) can be used. That is,

f(xk+1)− f(xk) ≤ − η

L(xk, R̃k)
‖∇f(xk)‖2 + L(xk, R̃k)

2

(
η2

L(xk, R̃k)2
‖∇f(xk)‖2

)
,

= − η

L(xk, R̃k)

(
1− η

2

)
‖∇f(xk)‖2,

which gives the desired result.

Since the LFSO captures all the necessary problem information, the requirements on the stepsize factor η
are straightforward.

5

Published in Transactions on Machine Learning Research (02/2024)

3.1 Global Convergence

Theorem 3.3. If Assumption 3.1 holds and 0 < η < 2, then either

lim inf
k→∞

‖∇f(xk)‖ = 0, or lim
k→∞

L(xk, R̃k) =∞.

Proof. From Lemma 3.2, we have

f(xk)− f(xk+1) ≥ η(2− η)
2L(xk, R̃k)

‖∇f(xk)‖2. (3.3)

By summing over k we get

∞∑
k=0

‖∇f(xk)‖2

L(xk, R̃k)
≤ 2[f(x0)− f∗]

η(2− η) <∞, (3.4)

hence limk→∞ ‖∇f(xk)‖2/L(xk, R̃k) = 0, and the result follows.

Of course, this is not quite a convergence proof, as we need to be concerned about the risk of L(xk, R̃k)
growing unboundedly, which could occur in cases such as f(x) = sin(x2) if ‖xk‖ → ∞ during the iteration.
One simple situation where this behavior does not occur is the following.
Corollary 3.4. Suppose Assumption 3.1 holds and 0 < η < 2. If the sublevel set {x ∈ Rd : f(x) ≤ f(x0)}
is bounded, L is continuous in x, and the choices Rk are bounded, then limk→∞ ‖∇f(xk)‖ = 0.

Proof. If Rk ≤ R for all k, then L(xk, Rk) ≤ L(xk, R). From Lemma 3.2, we know xk ∈ {x ∈ Rd : f(x) ≤
f(x0)} for all k. Then we know that Rk, ‖∇f(xk)‖ and L(xk, Rk) are all bounded, and so R̃k is bounded
too. Finally, this means L(xk, R̃k) is bounded, so limk→∞ ‖∇f(xk)‖2/L(xk, R̃k) = 0 (derived in the proof of
Theorem 3.3) gives the result.

In fact, under the assumptions of Corollary 3.4, (3.4) actually gives us the common O(ε−2) worst-case
iteration complexity rate3 for nonconvex problems (e.g., (Cartis et al., 2022, Chapter 2)). We note that
these assumptions are weaker than assuming Lf -smoothness everywhere, as we only care about the LFSO
in the initial sublevel set.
Remark 3.5. The above (in particular (3.2)) still works if we replace ‖∇f(xk)‖ in (2.3) with any upper bound
Ck ≥ ‖∇f(xk)‖. This will be useful in Section 5.

In the case where f satisfies the Polyak-Łojasiewicz (PL) inequality with parameter µ > 0—for example if
f is µ-strongly convex—we can achieve convergence even in some cases where L(xk, R̃k) → ∞, provided it
does not increase too quickly.
Theorem 3.6. Suppose Assumption 3.1 holds and 0 < η < 2. If f is µ-PL, that is

f(x)− f∗ ≤ 1
2µ‖∇f(x)‖2, ∀x ∈ Rd, (3.5)

and
∞∑
k=0

1
L(xk, R̃k)

=∞,

then limk→∞ f(xk) = f∗.
3i.e., the maximum number of iterations before ‖∇f(xk)‖ ≤ ε is first attained.

6

Published in Transactions on Machine Learning Research (02/2024)

Proof. From Lemma 3.2 and (3.5), we get

f(xk+1)− f∗ ≤ f(xk)− f∗ − η

L(xk, R̃k)

(
1− η

2

)
‖∇f(xk)‖2, (3.6)

≤

[
1− µη(2− η)

L(xk, R̃k)

]
(f(xk)− f∗). (3.7)

By summing over k we get, by the assumption in the theorem statement,
∞∑
k=0

µη(2− η)
L(xk, R̃k)

=∞, (3.8)

and so the result follows from (Bertsekas, 2015, Prop A.4.3).

We should note that if f is coercive (e.g. if f is strongly convex) then the sublevel set {x : f(x) ≤ f(x0)} is
bounded, and so Corollary 3.4 guarantees convergence (provided the Rk are bounded).

3.2 Local Convergence Rate

Encouraged by the result in Theorem 3.6, we now consider the local convergence rate of Algorithm 1 to
non-degenerate local minimizers.
Theorem 3.7. Suppose Assumption 3.1 holds and 0 < η < 2. Suppose also that f is also C2(Rd) and x∗
is a local minimizer of f with λmin(∇2f(x∗)) > 0, L is continuous in x, and Rk > 0 for all k. If x0 is
sufficiently close to x∗ in the sense that

• ‖x0−x∗‖ ≤ R1 (where B(x∗, R1) is a region where f is µ := λmin(∇2f(x∗))/2-strongly convex), and

• f(x0)− f(x∗) ≤ µR2
2/2 (where R2 ≤ R1/2 and ‖∇f(x)‖ ≤ µR1/(2η) whenever x ∈ B(x∗, R2)

then xk → x∗ R-linearly, with

‖xk − x∗‖2 ≤ Lmax

µ

(
1− µη(2− η)

Lmax

)k
‖x0 − x∗‖2, (3.9)

for constant Lmax > 0 (defined in (3.10) below).

Proof. Since f is C2, there exists a neighborhood B(x∗, R1) within which f is µ-strongly convex for µ :=
λmin(∇2f(x∗))/2. Given this neighborhood, define

Lmax := max
x∈B(x∗,R1)

max
0≤R≤R1

L(x,R). (3.10)

Hence, whenever ‖xk − x∗‖ ≤ R1, we have L(xk, Rk) ≤ Lmax. Strong convexity also gives

f(y)− f(x)−∇f(x)T (y − x) ≥ µ

2 ‖y − x‖
2,

for any x, y ∈ B(x∗, R1), and so it follows that L(x,R) ≥ µ for all x ∈ B(x∗, R1) and R > 0.

Since f is C1, there exists4 an R2 ≤ R1/2 such that ‖∇f(x)‖ ≤ µR1/(2η) for all x ∈ B(x∗, R2). Then if
‖xk − x∗‖ ≤ R2, we have

‖xk+1 − x∗‖ ≤ ‖xk − x∗‖+ η

L(xk, R̃k)
‖∇f(xk)‖ ≤ R2 + R1

2 ≤ R1.

4Since ∇f is continuous, there is a ball B(x∗, R′2) such that ‖∇f(x)‖ ≤ ε for all x ∈ B(x∗, R′2) (with ε arbitrary, such as
µR1/(2η) as above). Then take R2 = min(R1/2, R′2).

7

Published in Transactions on Machine Learning Research (02/2024)

Now, for any x ∈ B(x∗, R1), by strong convexity in this region, it follows that if f(x) − f(x∗) ≤ µR2
2/2

then ‖x− x∗‖ ≤ R2. Given this, suppose that x0 is sufficiently close to x∗ in the sense that x0 ∈ B(x∗, R1)
and f(x0) − f(x∗) ≤ µR2

2/2. We then have that x0 ∈ B(x∗, R2) and so x1 ∈ B(x∗, R1) from the above.
Lemma 3.2 implies that f(x1) ≤ f(x0) and so x1 also satisfies f(x1)− f(x∗) ≤ µR2

2/2, which in turn implies
x1 ∈ B(x∗, R2).

By induction, we conclude that xk ∈ B(x∗, R1) for all k (and also that xk ∈ B(x∗, R2) for all k). Then, by
the same reasoning as (3.7), since (3.5) holds in B(x∗, R1) and L(xk, R̃k) ≤ Lmax, we have

f(xk+1)− f(x∗) ≤
(

1− µη(2− η)
Lmax

)
(f(xk)− f(x∗)),

and we have a linear convergence rate of f(xk)→ f(x∗).

Finally, we use the strong convexity result that (Nesterov, 2004, Lemma 1.2.3 & Theorem 2.1.7)

µ

2 ‖x− x
∗‖2 ≤ f(x)− f(x∗) ≤ Lmax

2 ‖x− x∗‖2,

to conclude that

‖xk − x∗‖2 ≤ 2
µ

(f(xk)− f(x∗)) ≤ 2
µ

(
1− µη(2− η)

Lmax

)k
(f(x0)− f(x∗))

≤ Lmax

µ

(
1− µη(2− η)

Lmax

)k
‖x0 − x∗‖2,

giving (3.9).

4 Global Rates for Compositions of Functions

Motivated by problems with very flat minima, we now consider the performance of Algorithm 1 when the
objective function has a specific compositional structure.
Assumption 4.1. The objective is f(x) = h(g(x)) where:

• The function g : Rd → R is twice continuously differentiable, ∇g is Lg-Lipschitz continuous, and g
is µg-PL with minimizer x∗ satisfying g(x∗) = 0

• The function h : [0,∞)→ R is twice continuously differentiable, strictly increasing, strictly convex,
h′′ is non-decreasing, and h′(t) = Θ(tp) as t→ 0+, for some p ≥ 1

We note that the assumptions on g imply that

2µg g(x) ≤ ‖∇g(x)‖2 ≤ 2Lg g(x), ∀x ∈ Rd, (4.1)

where the right-hand inequality follows from (Wright, 2018, eq. (4.1.3)), and that x∗ (the minimizer of g) is
also a minimizer for f with f(x∗) = h(0).

The function g could be, for example g(x) = ‖Ax − b‖2
2 for some consistent linear system Ax = b, but in

general need not be convex. We are most interested in Assumption 4.1 when the outer function h is very flat
near 0, such as h(t) = tp for p > 2, although other functions such as h(t) = t are also allowed. In general,
this means that f is not PL, as shown by the case g(x) = x2 and h(t) = t2.

Even though f is not PL, we will show that the iterates generated by Algorithm 1 exhibit a global linear
convergence rate, which is typically only seen for PL functions (for standard GD-type methods). To show
this, we will need the following technical results.

8

Published in Transactions on Machine Learning Research (02/2024)

Lemma 4.2. Suppose Assumption 4.1 holds and we perform the iteration

xk+1 = xk − ηk∇g(xk),

where there exists ε ∈ (0, 1/Lg] such that ε ≤ ηk ≤ 2/Lg − ε for all k. Then

g(xk) ≤ (1− µgε(2− Lgε))k g(x0).

Proof. This is a generalization of (Karimi et al., 2016, Theorem 1), which proves the case where ε = 1/Lg
(i.e. ηk = 1/Lg for all k). Since g is Lg-smooth, we have

g(xk+1) ≤ g(xk)− ηk‖∇g(xk)‖2 + Lgη
2
k

2 ‖∇g(xk)‖2,

= g(xk)− ηk
(

1− Lgηk
2

)
‖∇g(xk)‖2,

≤ g(xk)− 2µgηk
(

1− Lgηk
2

)
g(xk),

where the last inequality holds from (4.1), and so

g(xk+1) ≤
(

1− 2µgηk
(

1− Lgηk
2

))
g(xk),

or

g(xk) ≤ (1− µgηk (2− Lgηk))k g(x0).

The term µgηk(2 − Lgηk) is positive for all ηk ∈ (0, 2/Lg) and maximized for ηk = 1/Lg, in which case
µηk(2− Lgηk) = µg/Lg ≤ 1. Hence, if ηk ∈ [ε, 2/Lg − ε], then

0 < µgε(2− Lgε) ≤ µgηk(2− Lgηk) ≤ µg/Lg ≤ 1.

The result then follows.

Corollary 4.3. Suppose the assumptions of Lemma 4.2 hold. Then ‖∇f(xk)‖ → 0, R-linearly.

Proof. Since ∇f(x) = h′(g(x))∇g(x), we use (4.1) to get

‖∇f(xk)‖ = h′(g(xk)) · ‖∇g(xk)‖ ≤
√

2Lg · h′(g(xk)) ·
√
g(xk),

noting that h′(g(xk)) > 0 since h is strictly increasing. Then by Lemma 4.2, we get g(xk) ≤ g(x0) and so

‖∇f(xk)‖ ≤
√

2Lg · h′(g(x0)) (1− µgε(2− Lgε))k/2√
g(x0),

where we have used that h′ is increasing (since h is increasing and convex), and so ‖∇f(xk)‖ → 0 R-linearly
with rate (1− µgε(2− Lgε))1/2.

Now for the objective given by Assumption 4.1, we have

∇f(x) = h′(g(x))∇g(x) and ∇2f(x) = h′′(g(x))∇g(x)∇g(x)T + h′(g(x))∇2g(x),

and so for the purposes of calculating L(x,R) we estimate

max
‖s‖≤R

‖∇2f(x+ s)‖ ≤ h′′(g(x+ s))‖∇g(x+ s)‖2 + h′(g(x+ s))Lg.

Using (4.1) and ‖∇g(x+ s)‖ ≤ Lg‖s‖+ ‖∇g(x)‖ we get the LFSO

L(x,R) = h′′
(

[LgR+ ‖∇g(x)‖]2
2µg

)
[LgR+ ‖∇g(x)‖]2 + h′

(
[LgR+ ‖∇g(x)‖]2

2µg

)
Lg. (4.2)

9

Published in Transactions on Machine Learning Research (02/2024)

Note that L is non-decreasing in R follows since h′ and h′′ are non-decreasing, and h′′ > 0 (Assumption 4.1).

By observing the form of L(x,R) (4.2), it is natural to consider Rk = ‖∇g(xk)‖, since these two quantities
(i.e. R and ‖∇g(x)‖) always appear together and it is a computable/known value. It is this choice that will
give the fast global convergence rate of Algorithm 1.
Lemma 4.4. Suppose Assumption 4.1 holds and we choose Rk = ‖∇g(xk)‖ and any η > 0 in Algorithm 1
(with LFSO (4.2)). Then R̃k = Dk‖∇g(xk)‖ for some Dk ∈ [1,max(1, η/Lg)].

Proof. Substituting our choice of Rk in (4.2) we get

R̃k = max

‖∇g(xk)‖, ηh′(g(xk))‖∇g(xk)‖
h′′
(

(Lg+1)2‖∇g(xk)‖2

2µg

)
(Lg + 1)2‖∇g(xk)‖2 + h′

(
(Lg+1)2‖∇g(xk)‖2

2µg

)
Lg

 ,

≤ max

‖∇g(xk)‖,
ηh′
(
‖∇g(xk)‖2

2µg

)
‖∇g(xk)‖

h′
(

(Lg+1)2‖∇g(xk)‖2

2µg

)
Lg

 ,

≤ max
{

1, η
Lg

}
‖∇g(xk)‖,

where the last line follows from h strictly convex (so h′ is non-decreasing). This gives Dk ≤ max{1, η/Lg}.
That Dk ≥ 1 follows from R̃k ≥ Rk (by definition of R̃k).

We can now show our global linear rate for Algorithm 1 for this specific problem class.
Theorem 4.5. Suppose Assumption 4.1 holds and we choose Rk = ‖∇g(xk)‖ and η ∈ (0, 2) in Algorithm 1
(with LFSO (4.2)). Then ‖∇f(xk)‖ → 0 R-linearly.

Proof. From Lemma 4.4, we have

L(xk, R̃k) = h′′
(

(LgDk + 1)2‖∇g(xk)‖2

2µg

)
(LgDk + 1)2‖∇g(xk)‖2 + h′

(
(LgDk + 1)2‖∇g(xk)‖2

2µg

)
Lg.

Our iteration can be expressed as

xk+1 = xk −
η h′(g(xk))
L(xk, R̃k)

∇g(xk).

Since h is convex, we have h′′ ≥ 0 and h′ is non-decreasing, so using (4.1) we get

L(xk, R̃k) ≥ h′
(

(LgDk + 1)2‖∇g(xk)‖2

2µg

)
Lg ≥ h′

(
‖∇g(xk)‖2

2µg

)
Lg ≥ h′(g(xk))Lg,

which gives

η h′(g(xk))
L(xk, R̃k)

≤ η

Lg
. (4.3)

Separately, since h′ > 0 and h′′ is non-decreasing, we have (for any t ≥ 0)

t · h′′(t) ≤
∫ 2t

t

h′′(s)ds = h′(2t)− h′(t) ≤ h′(2t),

and so

h′′
(

(LgDk + 1)2‖∇g(xk)‖2

2µg

)
(LgDk + 1)2‖∇g(xk)‖2 ≤ 2µgh′

(
(LgDk + 1)2‖∇g(xk)‖2

µg

)
.

10

Published in Transactions on Machine Learning Research (02/2024)

Since h′ is non-decreasing, we then conclude

L(xk, R̃k) ≤ (2µg + Lg)h′
(

(LgDk + 1)2‖∇g(xk)‖2

µg

)
.

From (4.1) we then have

L(xk, R̃k) ≤ (2µg + Lg)h′
(

2Lg(LgDk + 1)2g(xk)
µg

)
.

Denoting Ck := 2Lg(LgDk + 1)2/µg, this means

η h′(g(xk))
L(xk, R̃k)

≥ η h′(g(xk))
(2µg + Lg)h′(Ckg(xk)) .

We note that 1 ≤ Ck ≤ Cmax := 2Lg(Lg max(1, η/Lg) + 1)2/µg from µg ≤ Lg and Lemma 4.4, respectively.
Also, since Algorithm 1 is monotone (Lemma 3.2, noting Assumption 3.1 is implied by Assumption 4.1), we
have f(xk) ≤ f(x0) and so g(xk) ≤ g(x0) since h is increasing.

Now, since h′(t) = Θ(tp) as t→ 0+, there is an interval [0, δ] constants 0 < C1 ≤ C2 for which

C1t
p ≤ h′(t) ≤ C2t

p, ∀t ∈ [0, δ]

If Ckg(xk) ≤ δ, then we have
h′(g(xk))
h′(Ckg(xk)) ≥

C1g(xk)p
C2C

p
kg(xk)p ≥

C1

C2C
p
max

> 0.

By contrast, if Ckg(xk) > δ, then g(x0) ≥ g(xk) > δ/Cmax. Since h′ is continuous and strictly positive for
all t > 0, we have

ε0 := min
δ/Cmax≤t≤g(x0)

h′(t)
h′(Cmaxt)

> 0,

and so in this case we have
h′(g(xk)

h′(Ckg(xk)) ≥
h′(g(xk))

h′(Cmaxg(xk)) ≥ ε0.

In either case, we have
η h′(g(xk))
L(xk, R̃k)

≥ η

2µg + Lg
min

(
C1

C2C
p
max

, ε0

)
> 0. (4.4)

The result then follows by combining (4.3) and (4.4) with η ∈ (0, 2) and Corollary 4.3.

We reiterate that this result is a global linear rate, and does not require x0 to be sufficiently close to x∗
(although the actual linear rate does potentially depend on x0). This applies to functions with extremely
flat minima, such as f(x) = ‖x‖2p

2 for any p ≥ 1 (by taking g(x) = ‖x‖2
2 and h(t) = tp).

5 Global Rate for Linear Regression

Another important problem class where Algorithm 1 can achieve a global linear rate (at least in some cases),
is the case of linear regression with an `p loss function:

min
x∈Rd

f(x) := ‖Ax− b‖2p
2p =

n∑
i=1

(aTi x− bi)2p, (5.1)

for some A ∈ Rn×d with rows ai ∈ Rd for i = 1, . . . , n, and b ∈ Rn, and p ∈ N. The choice of norm here avoids
any issues of non-smoothness in the objective, but taking p→∞ again recovers a situation with extremely
flat local minima. Our theoretical results will hold in the case where A is sufficiently well-conditioned, which
in particular includes the case f(x) = ‖x‖2p

2p.

11

Published in Transactions on Machine Learning Research (02/2024)

Assumption 5.1. The matrix A has full rank, n ≤ d, and κ(A)4 < n/(n − 1), where κ(A) is the 2-norm
condition number of A.

Observe that Assumption 5.1 implies the system Ax = b is consistent. We also note that Assumption 5.1 is
quite restrictive, especially when n is large, requiring the rows of A to be almost orthonormal. Given this,
we delegate the technical details of this section to Appendix B.

For (5.1), we have

∇f(x) = 2pAT (Ax− b)2p−1 and ∇2f(x) = 2p(2p− 1)AT diag(Ax− b)2p−2A,

where (Ax− b)p is understood to represent element-wise powers. We now need to provide an LFSO for f(x)
(5.1). In the case p = 1—that is, typical linear least-squares regression—we have ∇2f(x) = 2p(2p− 1)ATA
and so we automatically get

L(x,R) = 2‖A‖2
2, (5.2)

as a valid LFSO. In the case p = 2, 3, 4, . . . a valid LFSO for (5.1) is

L(x,R) = 2p(2p− 1)‖A‖2
2 · 22p−3

[
‖Ax− b‖2p−2

∞ +
(

max
i=1,...,n

‖ai‖2p−2
2

)
R2p−2

]
, (5.3)

as derived in Appendix B.1. We note that substituting p = 1 into (5.3) recovers (5.2) and so (5.3) is a valid
LFSO for all p ∈ N. Observing the form of (5.3), a natural choice for Rk is Rk = ‖Axk − b‖∞.
Theorem 5.2. Suppose Assumption 5.1 holds, and we choose Rk = ‖Axk−b‖∞ and η ∈ (0, 1] in Algorithm 1
(with LFSO (5.3)). Then for any p ∈ N, the residual ‖rk‖ → 0 Q-linearly.

Proof. See Appendix B.2.

The above gives a global linear rate under some restrictive assumptions on the problem (5.1). They are
satisfied if A = I, for example, which gives us the objective f(x) = ‖x‖2p

2p for any p.

6 Numerical Experiments

In this section, we provide some brief numerical experiments confirming the global linear rate for Algorithm 1
(with an appropriate choice of Rk and no tuning of the fixed stepsize η = 1) for objectives of the form
f(x) = ‖x‖2p

2 as in Section 4 and f(x) = ‖x‖2p
2p as in Section 5. In all cases, we use d = 10 dimensional

problems and starting point x0 = (1, . . . , 1)T and p = 1, . . . , 5. For both objectives, the p = 1 case gives
the strongly convex objective f(x) = ‖x‖2

2, but for p > 1 we only have (non-strong) convexity and a
flat neighborhood of the global minimizer x∗ = 0. In all cases we plot the normalized gradient decrease
‖∇f(xk)‖2/‖∇f(x0)‖2 as a function of iteration k, for up to 104 iterations.

For standard gradient descent with fixed stepsize, we get the results shown in Figure 1. To see sufficiently
fast convergence, some mild tuning of the stepsize η was required. For both objectives, we see that gradient
descent achieves a global linear rate for p = 1 as expected, but a clearly sublinear rate for all p > 1, again
in line with expectations.

When running Algorithm 1, we use Rk = ‖∇g(xk)‖2 = 2‖x‖2 for f(x) = ‖x‖2p
2 (based on the framework

of Section 4) and Rk = ‖x‖∞ for f(x) = ‖x‖2p
2p (based on the framework of Section 5). The corresponding

results are given in Figure 2. Here we see the expected global linear rate for all values of p, not just the
strongly convex case p > 1. We do note however that the rate of convergence is faster for smaller values of
p.

By comparison, Appendix C.1 shows the same results for the adaptive gradient descent algorithm of (Malitsky
& Mishchenko, 2020) (using the recommended starting stepsize η0 = 10−10, which is automatically adjusted
after the first iteration). This method outperforms both standard gradient descent and Algorithm 1, and
indeed appears to show a global linear convergence rate for all problems. However, this result is not proven,
and no convergence results for this method are known for nonconvex objectives.

12

Published in Transactions on Machine Learning Research (02/2024)

0 2000 4000 6000 8000 10000
Iteration k

10−8

10−6

10−4

10−2

100
‖∇

f
(x

k
)‖
/‖
∇
f

(x
0
)‖

p = 1 (η = 0.01)

p = 2 (η = 0.01)

p = 3 (η = 0.001)

p = 4 (η = 0.0001)

p = 5 (η = 1.5e− 05)

(a) f(x) = ‖x‖2p
2 (varying η values)

0 2000 4000 6000 8000 10000
Iteration k

10−8

10−6

10−4

10−2

100

‖∇
f

(x
k
)‖
/‖
∇
f

(x
0
)‖

p = 1

p = 2

p = 3

p = 4

p = 5

(b) f(x) = ‖x‖2p
2p (all use η = 10−2)

Figure 1: Global sublinear rate ‖∇f(xk)‖ → 0 achieved by gradient descent with fixed stepsize for non-
strongly convex functions with flat minima. Plots show ‖∇f(xk)‖2/‖∇f(x0)‖2 as a function of k.

0 2000 4000 6000 8000 10000
Iteration k

10−15

10−13

10−11

10−9

10−7

10−5

10−3

10−1

101

‖∇
f

(x
k
)‖
/‖
∇
f

(x
0
)‖

p = 1

p = 2

p = 3

p = 4

p = 5

(a) f(x) = ‖x‖2p
2

0 2000 4000 6000 8000 10000
Iteration k

10−15

10−13

10−11

10−9

10−7

10−5

10−3

10−1

101

‖∇
f

(x
k
)‖
/‖
∇
f

(x
0
)‖

p = 1

p = 2

p = 3

p = 4

p = 5

(b) f(x) = ‖x‖2p
2p

Figure 2: Global linear rate ‖∇f(xk)‖ → 0 achieved by Algorithm 1 for non-strongly convex functions with
flat minima. Plots show ‖∇f(xk)‖2/‖∇f(x0)‖2 as a function of k.

Runtime Performance Since Algorithm 1 is more computationally expensive than gradient descent on
a per-iteration basis (from up to two evaluations of the LFSO per iteration), the above results are shown in
terms of runtime (rather than iterations) in Appendix C.2. We see that Algorithm 1 is slower than gradient
descent, but not significantly (within a factor of 2 for the slower problems p = 3, 4, 5).

Mis-specification of Rk The above results for Algorithm 1 assume that Rk is chosen according to the
theoretical results in Sections 4 and 5. In Appendix C.3, we consider the impact of significantly mis-specifying
Rk (i.e. by changing the order of magnitude, not just adjusting by a constant) in Algorithm 1. We see that
using Rk too small appears to have minimal impact on the convergence rate and Rk too large worsens the
convergence rate to sublinear.

7 Conclusions and Future Work

We have introduced a new oracle for local first-order smoothness, which exists for a wide range of functions
and encodes all of the problem information relevant for selecting stepsizes for gradient descent-type methods.
Using the LFSO, we introduced a practical gradient descent-type method, and showed global and local

13

Published in Transactions on Machine Learning Research (02/2024)

convergence results under reasonable assumptions. We then showed that this method gives global linear
rates for some specific (non-strongly) convex functions with degenerate local minima.

There are many potential directions for future study of LFSOs, including automatic differentiation techniques
for building LFSOs and understanding how to pick the forcing sequenceRk. This would enable more extensive
numerical testing of the LFSO approach to ascertain its usefulness on problems of more practical interest.
Additionally, the use of LFSOs in broader optimization settings, such as constrained, bilevel, nonsmooth
and/or stochastic optimization is an interesting direction for future work.

Acknowledgments

FR was partially supported by the Australian Research Council through an Industrial Transformation Train-
ing Centre for Information Resilience (IC200100022). Albert S. Berahas was partially supported by the Office
of Naval Research under award number N00014-21-1-2532.

References
Deeksha Adil, Richard Peng, and Sushant Sachdeva. Fast, provably convergent irls algorithm for p-
norm linear regression. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox,
and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 32. Curran
Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/file/
46c7cb50b373877fb2f8d5c4517bb969-Paper.pdf.

Hedy Attouch, Zaki Chbani, Juan Peypouquet, and Patrick Redont. Fast convergence of inertial dynamics
and algorithms with asymptotic vanishing viscosity. Mathematical Programming, 168(1–2):123–175, 2018.

Hedy Attouch, Zaki Chbani, Jalal Fadili, and Hassan Riahi. First-order optimization algorithms via inertial
systems with Hessian driven damping. Mathematical Programming, 193(1):133–155, 2022.

Jonathan Barzilai and Jonathan M. Borwein. Two-point step size gradient methods. IMA Journal of
Numerical Analysis, 8(1):141–148, 1988. doi: 10.1093/imanum/8.1.141.

Dimitri Bertsekas. Convex Optimization Algorithms. Athena Scientific, 2015.

Léon Bottou, Frank E. Curtis, and Jorge Nocedal. Optimization methods for large-scale machine learning.
SIAM Review, 60(2):223–311, 2018. doi: 10.1137/16M1080173.

Oleg Burdakov, Yuhong Dai, and Na Huang. Stabilized Barzilai-Borwein method. Journal of Computational
Mathematics, 37(6):916–936, 2019. doi: 10.4208/jcm.1911-m2019-0171.

Yair Carmon and Oliver Hinder. Making sgd parameter-free. In Po-Ling Loh and Maxim Raginsky (eds.),
Proceedings of Thirty Fifth Conference on Learning Theory, volume 178 of Proceedings of Machine Learn-
ing Research, pp. 2360–2389. PMLR, 02–05 Jul 2022. URL https://proceedings.mlr.press/v178/
carmon22a.html.

Coralia Cartis, Nicholas I. M. Gould, and Philippe L. Toint. Evaluation Complexity of Algorithms for
Nonconvex Optimization: Theory, Computation and Perspectives. Number 30 in MOS-SIAM Series on
Optimization. MOS/SIAM, Philadelphia, 2022.

Aaron Defazio and Konstantin Mishchenko. Learning-rate-free learning by d-adaptation. The 40th Interna-
tional Conference on Machine Learning (ICML 2023), 2023.

Jikai Jin, Bohang Zhang, Haiyang Wang, and Liwei Wang. Non-convex distributionally robust optimization:
Non-asymptotic analysis. In 35th Conference on Neural Information Processing Systems, 2021.

Hamed Karimi, Julie Nutini, and Mark Schmidt. Linear convergence of gradient and proximal-gradient
methods under the Polyak-Lojasiewicz condition. In Joint European Conference on Machine Learning and
Knowledge Discovery in Databases, pp. 795–811, 2016.

14

https://proceedings.neurips.cc/paper_files/paper/2019/file/46c7cb50b373877fb2f8d5c4517bb969-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/46c7cb50b373877fb2f8d5c4517bb969-Paper.pdf
https://proceedings.mlr.press/v178/carmon22a.html
https://proceedings.mlr.press/v178/carmon22a.html

Published in Transactions on Machine Learning Research (02/2024)

Yura Malitsky and Konstantin Mishchenko. Adaptive gradient descent without descent. In Proceedings of
the 37th International Conference on Machine Learning, 2020.

Jincheng Mei, Yue Gao, Bo Dai, Csaba Szepesvari, and Dale Schuurmans. Leveraging non-uniformity in first-
order non-convex optimization. In Proceedings of the 38th International Conference on Machine Learning,
2021.

Konstantin Mishchenko and Aaron Defazio. Prodigy: An expeditiously adaptive parameter-free learner.
arXiv preprint arXiv:2306.06101, 2023.

Kevin P. Murphy. Machine Learning: A Probabilistic Perspective. MIT Press, 2012.

Yurii Nesterov. Introductory Lectures on Convex Optimization. Springer US, 2004. ISBN 978-1-4020-7553-7.

Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer Series in Operations Research and
Financial Engineering. Springer, New York, 2nd ed edition, 2006.

B.T. Polyak. Minimization of unsmooth functionals. USSR Computational Mathematics and Mathematical
Physics, 9(3):14–29, 1969. doi: 10.1016/0041-5553(69)90061-5.

Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical Bayesian optimization of machine learning al-
gorithms. In NIPS’12: Proceedings of the 25th International Conference on Neural Information Processing
Systems, volume 2, pp. 2951–2959, 2012. doi: 10.5555/2999325.2999464.

Stephen J. Wright. Optimization algorithms for data analysis. In Michael W. Mahoney, John C. Duchi,
and Anna Gilbert (eds.), The Mathematics of Data, volume 25 of IAS/Park City Mathematics Series, pp.
49–97. American Mathematical Society, Providence, Rhode Island, 2018. doi: 10.1090/pcms/025/02.

Chenghan Xie, Chenxi Li, Chuwen Zhang, Qi Deng, Dongdong Ge, and Yinyu Ye. Trust region methods for
nonconvex stochastic optimization beyond Lipschitz smoothness. arXiv preprint arXiv:2310.17319, 2023.

Jingzhao Zhang, Tianxing He, Suvrit Sra, and Ali Jadbabaie. Why gradient clipping accelerates training:
A theoretical justification for adaptivity. In Proceedings of the 8th International Conference on Learning
Representations ICLR, 2020.

A LFSO for Logistic Regression

Here we derive an LFSO suitable for 2-class logistic regression. Following (Murphy, 2012, Chapter 8), the
empirical risk minimization problem is

min
w∈Rd

f(w) =
n∑
i=1

[yi log(µi(w)) + (1− yi) log(1− µi(w)))],

where µi(w) = σ(wTxi) for σ(t) = 1/(1 + e−t), and we have features xi ∈ Rd and labels yi ∈ {0, 1}. The
associated gradient and Hessian may be written as

∇f(w) = XT (µ(w)− y), and ∇2f(w) = XTS(w)X,

where X ∈ Rn×d and y ∈ Rn contain the training data and labels, µ(w) ∈ Rn has entries µi(w), and
S(w) = diag(σ′(wTxi)) ∈ Rn×n.

Since σ′(t) ∈ [0, 1/4] for all t, we automatically have ‖∇2f(w)‖2 ≤ 1
4‖X‖

2
2. Thus ∇f is Lf -smooth and so

Algorithm 1 with η = 1 can reduce to standard gradient descent with learning rate 1/Lf .

If we want to get a tighter LFSO, we start by noting that σ′(t) = σ(t)(1 − σ(t)) and so σ′′(t) = 2σ(t)3 −
3σ(t)2 + σ(t), and since σ(t) ∈ [0, 1] we have |σ′′(t)| ≤

√
3/18 for all t. Hence by Cauchy-Schwarz and

Taylor’s Theorem, we have

σ′((w + s)Txi) ≤ σ′(wTxi) +
√

3R‖xi‖2

18 ,

15

Published in Transactions on Machine Learning Research (02/2024)

whenever ‖s‖2 ≤ R. Hence a more precise LFSO for this problem is

L(w,R) = ‖X‖2
2 max
i=1,...,n

min
{
σ′(wTxi) +

√
3R‖xi‖2

18 ,
1
4

}
. (A.1)

If the data X is separable, then near the optimum w∗ it is likely that all wTxi are far from zero, and so
σ′(wTxi)� 1/4, and so taking this LFSO with small R may improve on the simpler L(w,R) = 1

4‖X‖
2
2 from

Lipschitz continuous gradients.

The computational cost of evaluating ∇f(w) is one evaluation of µi(w) = σ(wTxi) for each i and one matrix-
vector product with X. If ‖X‖2

2 and ‖xi‖2 have been pre-computed, then since σ′(wTxi) = µi(w)(1−µi(w)),
computing the LFSO (A.1) requires the evaluation of each µi(w) plus O(n) in extra calculations. Thus one
LFSO evaluation is actually computationally cheaper than one gradient evaluation.

B Technical Details for Section 5

B.1 Derivation of LFSO

Here we derive the LFSO (5.3) for problem (5.1) with p = 2, 3, 4,
Lemma B.1. For any x1, . . . , xm ∈ R and t ≥ 1, we have∣∣∣∣∣

m∑
i=1

xi

∣∣∣∣∣
t

≤ mt−1
m∑
i=1
|xi|t.

Proof. If t = 1, this is the triangle inequality. For t > 1, we use Hölder’s inequality to get

|xT e|t ≤
(
‖x‖t‖e‖t/(t−1)

)t
,

where x = (x1, . . . , xm) ∈ Rm and e = (1, . . . , 1) ∈ Rm. The result then follows from ‖e‖tt/(t−1) = mt−1.

Using Lemma B.1, we get
(aTi x− bi + aTi s)2p−2 ≤ 22p−3 [(aTi x− bi)2p−2 + (aTi s)2p−2] ,

for any p = 2, 3, 4, Noting that ‖ diag(Ax− b)2p−2‖2 = ‖Ax− b‖2p−2
∞ , for this range of p we get

max
y∈B(x,R)

‖∇2f(y)‖2 = max
‖s‖2≤R

‖∇2f(x+ s)‖2,

≤ max
‖s‖2≤R

2p(2p− 1)‖A‖2
2 max
i=1,...,n

(aTi x− bi + aTi s)2p−2,

≤ max
i=1,...,n

max
‖s‖2≤R

2p(2p− 1)‖A‖2
2 · 22p−3[(aTi x− bi)2p−2 + (aTi s)2p−2],

≤ max
i=1,...,n

2p(2p− 1)‖A‖2
2 · 22p−3((aTi x− bi)2p−2 + ‖ai‖2p−2

2 R2p−2),

and so (5.3) is a valid LFSO.

B.2 Proof of Theorem 5.2

Given the choice Rk = ‖Axk − b‖∞, and noting that Algorithm 1 works if ‖∇f(xk)‖ in (2.3) is replaced by
any upper bound for ‖∇f(xk)‖, we have for p ≥ 2,

R̃k = max

{‖Axk − b‖∞, 2pη‖A‖
√
n‖Axk − b‖2p−1

∞

2p(2p− 1)‖A‖2
2 · 22p−3

[
‖Axk − b‖2p−2

∞ +
(

maxi=1,...,n ‖ai‖2p−2
2

)
‖Axk − b‖2p−2

∞

]
 ,

= max

‖Axk − b‖∞, η
√
n‖Axk − b‖∞

(2p− 1)‖A‖2 · 22p−3
[
1 +

(
maxi=1,...,n ‖ai‖2p−2

2

)]
 ,

= c1(A,n, p, η)‖Axk − b‖∞,

16

Published in Transactions on Machine Learning Research (02/2024)

where

c1(A,n, p, η) := max

1, η
√
n

(2p− 1)‖A‖2 · 22p−3
[
1 +

(
maxi=1,...,n ‖ai‖2p−2

2

)]
 .

Thus we have

L(xk, R̃k) = 2p(2p− 1)‖A‖2
2 · 22p−3

[
‖Axk − b‖2p−2

∞ +
(

max
i=1,...,n

‖ai‖2p−2
2

)
c1(A,n, p, η)‖Axk − b‖2p−2

∞

]
,

= 2p c2(A,n, p, η)‖Axk − b‖2p−2
∞ , (B.1)

where

c2(A,n, p, η) := (2p− 1)‖A‖2
2 · 22p−3

[
1 +

(
max

i=1,...,n
‖ai‖2p−2

2

)
c1(A,n, p, η)

]
,

again for p = 2, 3, 4, For p = 1, since L(x,R) is independent of R, we always have L(xk, R̃k) = 2p‖A‖2
2,

or equivalently (B.1) with c2(A,n, 1, η) := ‖A‖2
2. Finally, our iteration is

xk+1 = xk −
η

c2(A,n, p, η)‖Axk − b‖2p−2
∞

AT (Axk − b)2p−1.

Since we assume our linear system is consistent, we know (5.1) has a global minimizer at f(x∗) = 0, and so
a suitable error metric is the residual, rk := Axk − b. Written in terms of the residual, our iteration is

rk+1 = rk −
η

c2(A,n, p, η)‖rk‖2p−2
∞

AAT r2p−1
k . (B.2)

In the case p = 1, the residual iteration (B.2) becomes

rk+1 =
[
I − η

‖A‖2
2
AAT

]
rk,

and so ‖rk‖ → 0 linearly for all η ∈ (0, 1], as expected.

Instead, if p ≥ 2, it suffices to consider the case rk 6= 0. Here, (B.2) may be written as

rk+1 =
[
I − η

c2
AAT

]
rk + η

c2
AAT

[
rk −

r2p−1
k

‖rk‖2p−2
∞

]
, (B.3)

dropping the arguments c2 = c2(A,n, p, η) for brevity. To handle the nonlinearity in the second term, we
first look at the difference

ek := rk −
r2p−1
k

‖rk‖2p−2
∞

.

Looking at ek in terms of each component separately, and writing |[rk]i| = ‖rk‖∞/αk,i for some αk,i ≥ 1
(with αk,i =∞ if [rk]i = 0), we get

[ek]i =
(

1− 1
α2p−2
k,i

)
[rk]i.

Note specifically that αk,i = 1 for the index i for which |[rk]i| = ‖rk‖∞. Then for any M > 1, we have

‖ek‖2
2 =

∑
i:αk,i≥M

(
1− 1

α2p−2
k,i

)2

[rk]2i +
∑

i:αk,i<M

(
1− 1

α2p−2
k,i

)2

[rk]2i ,

≤
∑

i:αk,i≥M

[rk]2i +
∑

αk,i<M

(
1− 1

M2p−2

)2
[rk]2i ,

= ‖rk‖2
2 −

∑
i:αk,i<M

(
2

M2p−2 −
1

M4p−4

)
[rk]2i .

17

Published in Transactions on Machine Learning Research (02/2024)

Since M > 1, there is at least one i with αk,i < M (the index corresponding to ‖rk‖∞). So,∑
i:αk,i<M

[rk]2i ≥ ‖rk‖2
∞ ≥

1
n
‖rk‖2

2,

using standard norm equivalences. All together, we have

‖r̃k+1‖2
2 ≤

[
1− 1

n

(
2

M2p−2 −
1

M4p−4

)]
‖rk‖2

2,

for any M > 1. This bound is tightest as M → 1+, with 2
M2p−2 − 1

M4p−4 → 1− in this case. So by taking M
sufficiently close to 1, we get

‖r̃k+1‖2 ≤ (1− ε)1/2‖rk‖2,

for any ε < 1/n. Returning to (B.3), we get

‖rk+1‖2 ≤
[∥∥∥∥I − η

c2
AAT

∥∥∥∥
2

+ η‖A‖2
2

c2
(1− ε)1/2

]
‖rk‖2,

≤
[
‖I − ηB‖2 + η‖B‖2(1− ε)1/2

]
‖rk‖2,

where B := AAT /c2 has ‖B‖2 ≤ 1 since c2 ≥ ‖A‖2
2. Thus ‖rk‖2 → 0 Q-linearly provided ‖I − ηB‖2 +

η‖B‖2(1− ε)1/2 < 1.

Defining σi > 0 as the ith singular value of B ∈ Rn×n, since ‖B‖2 ≤ 1 and B is full rank (since A is full
rank and n ≤ d) we know 0 < σn ≤ σ1 ≤ 1. Since η ∈ (0, 1] by assumption, we have

‖I − ηB‖2 + η‖B‖2(1− ε)1/2 = max{|1− ησ1|, |1− ησn|}+ η(1− ε)1/2σ1,

= (1− ησn) + η(1− ε)1/2σ1.

This factor is in (0, 1) provided

ησn − η(1− ε)1/2σ1 ∈ (0, 1).

Since η, σn ≤ 1, this holds if σn > (1 − ε)1/2σ1. Since κ(A)2 = κ(B) = σ1/σm, this is equivalent to
κ(A)4 < 1/(1− ε). Since ε < 1/n is arbitrary, this holds from κ(A)4 < n/(n− 1) (Assumption 5.1).

C Additional Numerical Results

C.1 Adaptive Gradient Descent

The below shows the convergence of adaptive gradient descent (Malitsky & Mishchenko, 2020) on the same
test problems as Section 6.

0 20 40 60 80 100
Iteration k

10−15

10−13

10−11

10−9

10−7

10−5

10−3

10−1

101

‖∇
f

(x
k
)‖
/‖
∇
f

(x
0
)‖

p = 1

p = 2

p = 3

p = 4

p = 5

(a) f(x) = ‖x‖2p
2

0 20 40 60 80
Iteration k

10−15

10−13

10−11

10−9

10−7

10−5

10−3

10−1

101

‖∇
f

(x
k
)‖
/‖
∇
f

(x
0
)‖

p = 1

p = 2

p = 3

p = 4

p = 5

(b) f(x) = ‖x‖2p
2p

Figure 3: Convergence ‖∇f(xk)‖ → 0 achieved by adaptive gradient descent (Malitsky & Mishchenko, 2020)
for non-strongly convex functions with flat minima. Plots show ‖∇f(xk)‖2/‖∇f(x0)‖2 as a function of k.

18

Published in Transactions on Machine Learning Research (02/2024)

C.2 Runtime Performance

In the below we compare the gradient decrease achieved by gradient descent (fixed η) and Algorithm 1 as in
Section 6, but measured by runtime (total CPU time) rather than iterations.

0.00 0.01 0.02 0.03 0.04 0.05 0.06

CPU time (s)

10−8

10−6

10−4

10−2

100

‖∇
f

(x
k
)‖
/‖
∇
f

(x
0
)‖

p = 1 (η = 0.01)

p = 2 (η = 0.01)

p = 3 (η = 0.001)

p = 4 (η = 0.0001)

p = 5 (η = 1.5e− 05)

(a) f(x) = ‖x‖2p
2 (varying η values)

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

CPU time (s)

10−8

10−6

10−4

10−2

100

‖∇
f

(x
k
)‖
/‖
∇
f

(x
0
)‖

p = 1

p = 2

p = 3

p = 4

p = 5

(b) f(x) = ‖x‖2p
2p (all use η = 10−2)

Figure 4: Convergence rate ‖∇f(xk)‖ → 0 achieved by gradient descent with fixed stepsize for non-strongly
convex functions with flat minima. Plots show ‖∇f(xk)‖2/‖∇f(x0)‖2 as a function of CPU time.

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175

CPU time (s)

10−15

10−13

10−11

10−9

10−7

10−5

10−3

10−1

101

‖∇
f

(x
k
)‖
/‖
∇
f

(x
0
)‖

p = 1

p = 2

p = 3

p = 4

p = 5

(a) f(x) = ‖x‖2p
2

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175

CPU time (s)

10−15

10−13

10−11

10−9

10−7

10−5

10−3

10−1

101

‖∇
f

(x
k
)‖
/‖
∇
f

(x
0
)‖

p = 1

p = 2

p = 3

p = 4

p = 5

(b) f(x) = ‖x‖2p
2p

Figure 5: Convergence rate ‖∇f(xk)‖ → 0 achieved by Algorithm 1 for non-strongly convex functions with
flat minima. Plots show ‖∇f(xk)‖2/‖∇f(x0)‖2 as a function of CPU time.

C.3 Sub-optimal choice of Rk

The results for Algorithm 1 presented in Section 6 use the choices of Rk given in Sections 4 and 5 (namely
Roptimal
k = ‖∇g(xk)‖2 = 2‖x‖2 for f(x) = ‖x‖2p

2 and Roptimal
k = ‖x‖∞ for f(x) = ‖x‖2p

2p). Here we consider
the performance of Algorithm 1 when Rk is significantly mis-specified (i.e. change in the order of Rk, not
just constants).

19

Published in Transactions on Machine Learning Research (02/2024)

0 2000 4000 6000 8000 10000
Iteration k

10−15

10−13

10−11

10−9

10−7

10−5

10−3

10−1

101

‖∇
f

(x
k
)‖
/‖
∇
f

(x
0
)‖

p = 1

p = 2

p = 3

p = 4

p = 5

(a) f(x) = ‖x‖2p
2 , Rk =

√
Roptimal

k

0 2000 4000 6000 8000 10000
Iteration k

10−15

10−13

10−11

10−9

10−7

10−5

10−3

10−1

101

‖∇
f

(x
k
)‖
/‖
∇
f

(x
0
)‖

p = 1

p = 2

p = 3

p = 4

p = 5

(b) f(x) = ‖x‖2p
2p, Rk =

√
Roptimal

k

0 2000 4000 6000 8000 10000
Iteration k

10−15

10−13

10−11

10−9

10−7

10−5

10−3

10−1

101

‖∇
f

(x
k
)‖
/‖
∇
f

(x
0
)‖

p = 1

p = 2

p = 3

p = 4

p = 5

(c) f(x) = ‖x‖2p
2 , Rk = (Roptimal

k)2

0 2000 4000 6000 8000 10000
Iteration k

10−15

10−13

10−11

10−9

10−7

10−5

10−3

10−1

101

‖∇
f

(x
k
)‖
/‖
∇
f

(x
0
)‖

p = 1

p = 2

p = 3

p = 4

p = 5

(d) f(x) = ‖x‖2p
2p, Rk = (Roptimal

k)2

Figure 6: Performance of Algorithm 1 with sub-optimal choices of Rk. Plots show ‖∇f(xk)‖2/‖∇f(x0)‖2 as
a function of k.

In Figure 6c for p ∈ {3, 4, 5}, we note that the significant reduction in convergence rate is likely because the
new Rk is initially significantly too large. For p ∈ {1, 2} we are in the regime where Rk is too small (as
x→ 0), and this appears to have minimal impact on the speed of convergence.

20

	Introduction
	Algorithmic Framework
	Convergence Analysis
	Global Convergence
	Local Convergence Rate

	Global Rates for Compositions of Functions
	Global Rate for Linear Regression
	Numerical Experiments
	Conclusions and Future Work
	LFSO for Logistic Regression
	Technical Details for Section 5
	Derivation of LFSO
	Proof of Theorem 5.2

	Additional Numerical Results
	Adaptive Gradient Descent
	Runtime Performance
	Sub-optimal choice of Rk

