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Abstract

Population-based optimization (PBO) algorithms, renowned as powerful black-box opti-
mizers, leverage a group of individuals to cooperatively search for the optimum. The
exploration-exploitation tradeoff (EET) plays a crucial role in PBO, which, however, has
traditionally been governed by manually designed rules. In this paper, we propose a deep
reinforcement learning-based framework that autonomously configures and adapts the EET
throughout the PBO search process. The framework allows different individuals of the pop-
ulation to selectively attend to the global and local exemplars based on the current search
state, maximizing the cooperative search outcome. Our proposed framework is characterized
by its simplicity, effectiveness, and generalizability, with the potential to enhance numerous
existing PBO algorithms. To validate its capabilities, we apply our framework to several rep-
resentative PBO algorithms and conduct extensive experiments on the augmented CEC2021
benchmark. The results demonstrate significant improvements in the performance of the
backbone algorithms, as well as favorable generalization across diverse problem classes, di-
mensions, and population sizes. Additionally, we provide an in-depth analysis of the EET
issue by interpreting the learned behaviors of PBO.

1 Introduction

Using population-based Optimization (PBO) algorithms as black-box optimizers has received significant
attention in the last few decades (Golovin et al., 2017; Slowik & Kwasnicka, 2020). Typically, the PBO
algorithms deploy a population of individuals that work cooperatively to undertake both exploration (that
discovers new knowledge) and exploitation (that advances existing knowledge), so as to make the black-box
optimization problem “white” (Chen et al., 2009). Targeting global convergence to the global optimum, the
exploration-exploitation tradeoff (EET) is the most fundamental issue in the development of PBO algorithms.

Among the extensive literature focusing on the EET issues in PBO algorithms, hyper-parameters tuning is
one of the most promising way. In the vanilla PBOs (Kennedy & Eberhart, 1995; Storn & Price, 1997),
the EET-related hyper-parameters such as cognitive coefficient and social coefficient in Particle Swarm
Optimization (PSO) are set as static values throughout the search, necessitating laborious tuning for different
problem instances. The adaptive PBOs (Liang et al., 2015; Tanabe & Fukunaga, 2014), which introduce
manually designed rules to dynamically adjust EET hyper-parameters according to optimization states, soon
became more flexible and powerful optimizers that dominate the performance comparisons. However, they
rely heavily on human knowledge to turn raw features of the search progress into decisions on EET control,
which are hence labour-intensive.

In the recent “learning to optimize” paradigm, deep reinforcement learning (DRL) based approaches have
been found successful to complement or well replace conventional rule-based optimizers (Ma et al., 2022;
Mischek & Musliu, 2022). When it comes to the hyper-parameters tuning for PBOs, several early attempts
have already been made to control the EET hyper-parameters through DRL automatically (Tan & Li, 2021;
Yin et al., 2021). Though these works have demonstrated effectiveness in automating the EET strategy
design process in an end-to-end manner, they still suffer from several major limitations.
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Figure 1: The overview of GLEET as an MDP.

The first issue is the generalization of the learnt
model. Some of the existing works stipulated DRL
to be conducted online, where they trained and
tested the model directly on the target problem in-
stance, that is, their methods require (re-)training
for every single problem, such as DRL-PSO (Wu &
Wang, 2022), DE-DDQN (Sharma et al., 2019), DE-
DQN (Tan & Li, 2021) and RLHPSDE (Tan et al.,
2022). Some other works such as RLEPSO (Yin
et al., 2021) trained its agent by randomly choos-
ing a function from CEC2013 benchmark and then
tested on the same benchmark functions. However,
the train-test process is also unreasonable and online in some extends. Such design, in our view, may pre-
vent DRL from learning generalizable patterns and result in overfitting. To this end, we present the first
Generalizable Learning-based Exploration-Exploitation Tradeoff framework, called GLEET, that could
explicitly control the EET hyper-parameters of a given PBO algorithm to solve a class of PBOs problems
via reinforcement learning. Our GLEET performs training only once on a class of black-box problems of
interest, after which it uses the learned model to directly boost the backbone algorithm for other problem
instances within (and even without) the same class. The overview of our GLEET is illustrated in Fig. 1.
To fulfill the purpose, we formulate the GLEET as a more comprehensive Markov Decision Process (MDP)
than those in the existing works, with specially designed state space, action space, and reward function to
facilitate efficient learning.

The second issue arises from the oversimplified state representation and network architecture (i.e., a multi-
layer perceptron), which fail to effectively extract and process the features of the EET and problem knowl-
edge. In this paper, we design a Transformer-styled (Vaswani et al., 2017) network architecture that consists
of a feature embedding module for feature extraction, a fully informed encoder for information processing
amongst individuals, and an exploration-exploitation decoder for adjusting EET parameters. On the one
hand, the transformer architecture achieves invariance in the ordering of population members, making it
generalizable across problem dimension, population size and problem class. On the other hand, the pro-
posed model allows different individuals to adaptively and dynamically attend to the knowledge of other
individuals via the self-attention mechanism, so as to decide the EET behavior automatically.

Lastly, we conduct extensive experiments to verify our GLEET. Different from existing works, our augmented
dataset from the CEC2021 benchmark (Mohamed et al., 2021) is larger and more comprehensive. We evaluate
our GLEET by applying it to several representative PBO algorithms, i.e., the vanilla PSO (Kennedy &
Eberhart, 1995) the DMSPSO (Liang & Suganthan, 2005) and the vanilla DE (Storn & Price, 1997), though
we note that our GLEET has the potential to boost many other existing PBO algorithms. Results show
that GLEET could significantly ameliorate the backbone algorithms, making them surpass both adaptive
tuning methods and existing learning-based tuning methods. Meanwhile, our GLEET exhibits promising
generalization capabilities across different problem classes, population sizes and problem dimensions. We also
visualize the knowledge learnt by GLEET and interpret how it learns different EET strategies for different
problem classes, which further provides insights to the PBO area.

The rest of this paper is organized as follows: Section 2 reviews how the EET issue has been addressed in
traditional PBO algorithms and some recently proposed reinforcement learning-based frameworks. Section 3
introduces the preliminary concepts and notations related to DRL and PBO algorithms. In Section 4, we
present the technical details of the GLEET framework, including the problem definition, network design and
training process. The experiment setup and concrete experimental results are presented in Section 5.
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2 Related Works

2.1 Traditional EET Methods

The vanilla PBO algorithms address the EET issue in a static manner. For example, each individual in
the vanilla Particle Swarm Optimization (PSO) (Kennedy & Eberhart, 1995) controls the EET by paying
equal attention to the global best experience (for exploitation) and its personal best experience (for ex-
ploration). Another example is vanilla Differential Evolution (DE) (Storn & Price, 1997), where the EET
hyper-parameters F (exploitation by learning from the best history) and CR (exploration by perturbation
or so called crossover) is pre-defined by expert knowledge to balance the EET in the optimization process.
However, static EET parameters are problem agnostic hence require a tedious tuning process for each new
problem, and may also limit the overall search performance.

Several adaptive PBO variants that dynamically adjust the EET-related hyper-parameters along the op-
timization process were then proposed to address this issue. For PSO, several early attempts focused on
adaptively tuning its inertia weight (IW) hyper-parameter, such as (Shi & Eberhart, 1999; Tanweer et al.,
2015; Amoshahy et al., 2016), which were then surpassed by methods of considering tuning the accelera-
tion coefficient (AC) hyper-parameter using adaptive rules based on constriction function (Clerc & Kennedy,
2002), time-varying nonlinear function (Ratnaweera et al., 2004; Chen et al., 2018), fuzzy logic (Nobile et al.,
2018), or multi-role parameter design (Xia et al., 2019). GLPSO (Gong et al., 2016) self-adapts the EET by
genetic evolution. In the recent strong optimizer sDMSPSO (Liang et al., 2015), the tuning of IW and ACs
are considered together into a well-known multi-swarm optimizer DMSPSO (Liang & Suganthan, 2005) to
efficiently adjust EET, achieving superior performance. For DE, The parameters in mutation and crossover
are the key to control its EET. Therefore, SHADE (Tanabe & Fukunaga, 2013) adopted two memories for F
and Cr to record their statistical information instead of remembering their values. MadDE (Biswas et al.,
2021) and NL-SHADE-LBC (Stanovov et al., 2022) adopted the parameter memories proposed in SHADE
and employed multiple adaptive mutation and crossover operators together with the archive design. A linear
population reduction method was also used to enhance their performance. Generally, most of the above
methods rely heavily on human knowledge and are hence labour-intensive and vulnerable to inefficiencies.

2.2 Learning-based EET Methods

The EET issue was also tackled via (deep) reinforcement learning automatically. In the following, We sort
out some representative works and further highlight the motivation of this study.

2.2.1 For DE

In the work of Karafotias et al. (2014), Reinforcement Learning (RL) was firstly considered as a controller
for PBO’s hyper-parameters. The authors gave the first MDP formulation on the parameters control in PBO
algorithms and utilized Q-Learning to optimize this MDP. The study was followed by successive works such
as DE-DDQN (Sharma et al., 2019), DE-RLFR (Li et al., 2019) and DEDQN (Tan & Li, 2021). DE-DDQN
leverages a large body of ninety-nine features to ensure successful control on selection of DE’s mutation
operators. The authors adopted the Deep Q-Network (DQN) (Mnih et al., 2013) to process such a high-
dimensional input. DE-RLFR used simple fitness ranking information in the population as feature and
a Q-table agent (Watkins & Dayan, 1992) to accomplish the similar selection mission as the DE-DDQN.
Following the idea in DE-RLFR, DEDQN enriched the fitness ranking feature to a more systemic fitness
landscape analysis (FLA) features and used the similar DQN agent as in DE-DDQN. Despite adopting RL
for operator selection, recent works start to expand the strength of RL to hyper-parameters control in DE
algorithms. One of the two representative works is LDE (Sun et al., 2021), which learns to control the step
length F and crossover rate CR in DE algorithms. LDE adopted an LSTM network to efficiently learn from
the informative features extracted from population optimization history, while a traditional version of Policy
Gradient RL named REINFORCE (Williams, 1992) is employed to learn the optimal control policy. The
other is RLHPSDE (Tan et al., 2022), which takes the coupling of mutation operator and its hyper-parameter
value as the action space in a MDP, then leverages Q-learning to solve it.
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2.2.2 For PSO

Samma et al. (2016) firstly explored to control the ACs in PSO by Q-learning, which inspired many followers
to use deep Q-learning for topology structure selection in PSO (Xu & Pi, 2020) or parameter control in
multi-objective PBOs (Liu et al., 2019). In RLEPSO (Yin et al., 2021), the authors proposed to improve
EPSO (Lynn & Suganthan, 2017) by tuning its EET hyper-parameters based on the optimization schedule
feature and policy gradient method. In another recent work (Wu & Wang, 2022), the DRL-PSO optimizer
was presented to control the random variables in the PSO velocity update equations to address EET, where
DRL-PSO outperformed the advanced adaptive method sDMSPSO on a small test dataset.

However, all the above works neglected the generalization ability of the learned model as established in the
introduction. We note that in a related field of neural combinatorial optimization, researchers developed
several generalizable solvers to solve a class of similar problems based on DRL (Kwon et al., 2020; Ma et al.,
2022), however, their underlying MDPs and networks were specially designed for discrete optimization,
making them not suitable for the hyper-parameter tuning task studied in this paper. Furthermore, the
experiments of existing works are limited to small datasets (with only a dozen problem instances), which
makes their performance comparison inconclusive. For example, when we train and test the DRL-PSO on
much larger datasets in our experiments, we found that it could not outperform the sDMSPSO. Finally, the
network architecture and input features in most existing methods are very simple, which largely limits their
performance, especially when compared to the advanced adaptive PBO variants. Two recent works Meta-
ES(Lange et al., 2022) and Meta-GA(Lange et al., 2023) may share the same ambition with our GLEET.
They provide a brand new paradigms to meta-learn a NN parameterized population-based optimizer by
Neural Evolution. They are pre-trained on a set of synthetic problems with different landscape properties
and directly applied to unseen tasks. Notably, Meta-ES show remarkable robustness when zero-shot to
high-dimensional continuous controlling tasks.

3 Preliminary and Notations

3.1 Deep Reinforcement Learning

DRL methods specialize in solving MDP by learning a deep network model as its decision policy (Sutton &
Barto, 2018). Given an MDP formalized as M :=< S, A, T , R > , the agent obtains a state representation
s ∈ S and then decides an action a ∈ A which turns state s into next state s′ according to the dynamic
of environment T (s′|s, a) and then gets a reward R(s, a). The goal of DRL is to find a policy πθ(a|s)
(parameterized by the deep model θ) so as to optimize a discounted expected return Eπθ

[
∑T

t=1 γt−1R(st, at)].

3.2 Attention Mechanism

In the well-known Transformer model (Vaswani et al., 2017), the attention is computed by

Attn(Q, K, V ) = softmax
(

QKT

√
dk

)
V (1)

where Q, K, V are the vectors of queries, keys and values respectively, and dk is the dimension of queries
which plays a role as a normalizer. The Transformer consists of multiple encoders with self-Attention and
decoders, both encoder and decoder use Multi-Head Attention which maps vectors into different sub-spaces
for a better representation:

H = MHA(Q, K, V ) = Concat(H1, H2, · · ·, Hh)W O

Hi = Attn(QW Q
i , KW K

i , V W V
i )

(2)

where h denotes the number of heads, W O ∈ Rhdv×ds , W Q
i ∈ Rds×dk , W K

i ∈ Rds×dk and W V
i ∈ Rds×dv . For

self-attention, the Q, K, V can all be derived from one input source, whereas for general attention types, Q
can be from a different input source other than that of K and V .
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3.3 Particle Swarm Optimization

This algorithm deploys a population of particles (individuals) as candidate solutions, and in each iteration
t it improves each particle xi as

x
(t)
i = x

(t−1)
i + v

(t)
i ,

v
(t)
i = w × v

(t−1)
i + c1 × rnd×

(
pBest

(t−1)
i − x

(t−1)
i

)
+ c2 × rnd ×

(
gBest(t−1) − x

(t−1)
i

) (3)

where vi is the velocity; pBesti and gBest are the personal and global best positions found so far respectively;
w is an inertia weight; rnd returns a random number from [0, 1]; and c1 and c2 induce the EET where a
large c1 encourages the particle to explore different regions based on its own beliefs and a large c2 forces all
particles to exploit the global best one.

3.4 Differential Evolution

Differential Evolution (DE) proposed by Storn and Price (Storn & Price, 1997) used mutation, crossover
and selection to handle a population of solution vectors iteratively and search optimal solution using the
difference among population individuals. At each iteration t, the mutation operator is applied on individuals
to generate trail vectors. One of the classic mutation operators DE/current-to-pbest/1 on the individual xi

could be formulated as

v
(t)
i = x

(t−1)
i + F

(t)
i,1 · (x(t−1)

tpb − x
(t−1)
i ) + F

(t)
i,2 · (x(t−1)

r1 − x
(t−1)
r2 ) (4)

where F
(t)
i,1 and F

(t)
i,2 are the step lengths controlling the variety of trials, x

(t−1)
tpb is the random selected indi-

vidual from the top-p% best cost individuals, x
(t−1)
r1 and x

(t−1)
r2 are two different random selected individuals.

Then, the crossover is adopted to exchange values between the parent x
(t−1)
i and the trial individual v

(t)
i to

produce an offspring u
(t)
i :

u
(t)
i,j =

{
v

(t)
i,j if rand[0, 1] ≤ Cr

(t)
i or j = jrand

x
(t−1)
i,j otherwise

(5)

where u
(t)
i,j is the j-th value of the individual u

(t)
i and so do the items for x

(t−1)
i and v

(t)
i . The Cr

(t)
i is the

crossover rate and jrand is an index to ensure the difference between u
(t)
i and x

(t)
i . Finally, the selection

method eliminates those individuals with worse fitness than their parents.

4 Methodology of GLEET

4.1 MDP Formulation

Given a population P with N individuals, an PBO algorithm Λ, and a problem set D, we formulate the
dynamic hyper-parameter tuning as an MDP:

M :=< S = {si}N
i=1, A = {ai}N

i=1, T , R > (6)

where state S and action A take all individuals in the Population P into account. Each ai ∈ RM denotes the
choice of hyper-parameters for the i-th individual in Λ, where M denotes the number of hyper-parameters
to be controlled. For example, in DE/current-to-pbest/1 (Zhang & Sanderson, 2009), the hyper-parameters
F1, F2 and Cr need to be determined. The transition function T : A × Λ × P → P denotes evolution of
population P through algorithm Λ with hyper-parameters A. The reward function R : S × A × D → R+

measures the improvement in one optimization step brought by dynamic hyper-parameter settings.

While optimizing the hyper-parameters of Λ on a single problem instance may yield satisfactory results, it
can limit the generalization performance on unseen problems.To address this, we construct a problem set
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D comprising K problems (detailed in Section 5.1.1) to facilitate generalization. Correspondingly, the DRL
agent targets at the optimal policy πθ∗ that controls the dynamic hyper-parameters for Λ to maximize the
expected accumulated reward over all the problems Dk ∈ D as

θ∗ := arg max
θ∈Θ

1
K

K∑
k=1

T∑
t=1

γt−1R(S(t), A(t)|Dk). (7)

This approach ensures robust performance across a diverse range of problem instances and promotes gener-
alization capabilities.

4.1.1 State

We provide four principles for the GLEET state space design: a) it should describe the state of every
individual in the population; b) it should be able to characterize the optimization progress and the EET
behavior of the current population; c) it should be compatible across different kinds of PBO algorithms and
achieve generalization requirement; and d) it should be convenient to obtain in each optimization step of the
PBO process.

Following these four principles, we use a K-dimensional vector to define the state si for each individual in
PBO algorithm at time step t. The information required to calculate this state vector includes the global
best individual gBest in the population, each individual’s historical best information pBesti and current
position xi, as well as their evaluation values f(gBest), f(pBesti) and f(xi). For most of PBO algorithms,
information above is compatible and easy to obtain, which makes GLEET a generic paradigm for boosting
many kinds of PBO algorithms. Computational detail is shown in Eq. (8), K = 9 where we compute: si,{1,2}
as the search progress w.r.t. the gBest value and the currently consumed number of fitness evaluations
(FE); si,{3,4} as the stagnation status w.r.t. the number of rounds z(·) for which the algorithm failed to find
a better gBest or pBesti, normalized by the total rounds Tmax; si,{5,6} as the difference in evaluation values
between individuals and gBest or pBesti, normalized by the initial best value; si,{7,8} as the Euclidean
distance between particles and gBest or pBesti, normalized by the diameter of the search space; si,{9} as
the cosine function value of the angle formed by the current particle to the gBest and pBesti.

si,{1,2} =
{

f(gBest)
f(gBest(0)) ,

FEmax − FE

FEmax

}
, si,{3,4} =

{
z(gBest)

Tmax
,

z(pBesti)
Tmax

}
,

si,{5,6} =
{

f(xi) − f(gBest)
f(gBest(0)) ,

f(xi) − f(pBesti)
f(pBest

(0)
i )

}
, si,{7,8} =

{
||xi − gBest||

diameter
,

||xi − pBesti||
diameter

}
,

si,{9} = {cos (∠ (gBest − xi, pBesti − xi))} ,

(8)

Note that we also calculate the above K features for the global best position and N personal best positions
to learn embeddings for them (will be used in the decoder). We name the N ×K state features of {xi}N

i=1
as the population features, the 1×K state features of gBest as the exploitation features, and the N ×K
state features of {pBesti}N

i=1 as the exploration features, respectively. These three parts of features together
composite the state of GLEET’s MDP. We again emphasize that this state design is generic across different
PBO algorithms which makes GLEET generalizable for a large body of PBO algorithms.

4.1.2 Action

Since the hyper-parameters in most PBO algorithms are continuous, and discretizing the action space may
damage the action structure or cause the curse of dimensionality issue (Lillicrap et al., 2015), GLEET prefers
continuous action space that jointly controls all N individuals’ choices of hyper-parameters (a(t)

1 , a
(t)
2 , ···, a

(t)
N ),

where a
(t)
i denotes M hyper-parameters for individual i at time step t. Concretely, the action probability

Pr(a) is a multiplication of normal distributions as follows,

Pr(a) =
N∏

i=1

M∏
m=1

p(am
i ), am

i ∼ N (µm
i , σm

i ) (9)
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Figure 2: Illustration of our network design. The network begins by embedding the state feature into two components:
the EET embedding and the population embedding. Next, a Fully Informed Encoder is employed to attend the
population embedding to the individual level. Finally, the individual’s EET configuration is determined by decoding
the information from the EET embedding using the Exploration-Exploitation Decoder.

where µm
i and σm

i are controlled by DRL agent. Generally, our policy network outputs N × M pairs
of (µm

i , σm
i ), where each (µm

i , σm
i ) is used to sample a parameter to control the EET of each individual

respectively.

4.1.3 Reward

We consider the reward function as follows,

r(t) = f(gBest(t−1)) − f(gBest(t))
f(gBest(0))

(10)

where the reward is positive if and only if a better solution is found. It is worth mentioning that there are
several practical reward functions proposed previously. Yin et al. (Yin et al., 2021) rewards an improvement
of solution 1 otherwise −1. Sun et al. (Sun et al., 2021) calculates a relative improvement between steps as
reward function. Wu et al. (Wu & Wang, 2022) has a similar form with our reward function but permits
negative reward. We conduct comparison experiments on these reward functions and ours, It turns out in
our experiment setting, reward function proposed in Eq. (10) stands out. Results can be found in Section 5.5.

4.2 Network Design

As depicted in Fig. 2, fed with the state features, our actor πθ first generates a set of population embeddings
(based on population features) and a set of EET embeddings (based on exploitation and exploration features).
The former is further improved by the fully informed encoders. These embeddings are then fed into the
designed decoder to specify an action. We also consider a critic vϕ to assist the training of the actor.

4.2.1 Feature embedding

We linearly project raw state features from Section 4.1 into three groups of 128-dimensional embeddings,
i.e., exploration embeddings (EREs) {hi}N

i=1, exploitation embedding (EIE) {g}, and population embeddings
(PEs) {ei}N

i=1. Then we concatenate each ERE with the EIE to form 256-dimensional vectors {hi||g}N
i=1

which are then processed by an MLP with structure (256×256× 128, ReLU is used by default) to obtain the
EET embeddings (EETs) {EEi}N

i=1 that summarize the current EET status.
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4.2.2 Fully informed encoder

The encoders mainly follow the design of the original Transformer, except that the positional encoding is
removed and layer normalization (Ba et al., 2016) is used instead of batch normalization (Ioffe & Szegedy,
2015). There are three main factors that lead us to favor full attention over sparse attention (Zaheer et al.,
2020): a) the number of embeddings (i.e., population size) in our task is relatively small compared with the
number of word embeddings in language processing, negating the need for sparse attention; and b) it gives
the network maximum flexibility without any predefined restrictions on sparsity and hence via the attention
scores, the network could automatically adjust the topology between individuals.

Specifically, our encoders update the population embeddings by

ê = LN(e(l−1) + MHA(l)(Q(l), K(l), V (l))), e(l) = LN(ê + FF(l)(ê)) (11)

where Q(l), K(l) and V (l) are transformed from population embeddings e(l−1) and l={1, 2} is the layer index
(we stack 2 encoders). The initial condition e(0) is the population embeddings embedded from the population
features as shown in Figure 2. The Feed Forward (FF) layer is an MLP with structure (128×256×128). The
final output by our encoders is the fully informed population embeddings (FIPEs) {e

(2)
i }N

i=1.

4.2.3 Exploration-exploitation decoder

Given the EETs and FIPEs, the exploration-exploitation decoder outputs the joint distribution of hyper-
parameter settings for each particle. The EET control logits H ({Hi}N

i=0) are calculated as:

Ĥ = LN(e(2) + MHAd(Qd, Kd, V d)), H = ReLU(FFlogit(LN(Ĥ + FFd(Ĥ)))) (12)

where we let Qd from EETs, and Kd,V d from FIPEs (different from the self-attention in the encoders); FFd

is with structure (128×256×128); and FFlogit is with structure (128×128). We then linearly transform
each {Hi}N

i=1 from 128 to 2M scalars which are then passed through the Tanh function and scaled to range
[µm

min, µm
max] and [σm

min, σm
max], respectively, in order to obtain the am

i = N (µm
i , σm

i ) for each individual.We
set all [µmin, µmax] = [0, 1] and all [σmin, σmax] = [0.01, 0.7]. To be specific, for PSO, we let M = 1 to control
c1,i in Eq. (3) for each particle i (leaving c2,i = 4 − c1,i by the suggestion of (Wang et al., 2018). For DE,
we let M = 3 to control F1,i, F2,i and Cri in Eq. (4) and Eq. (5).

4.2.4 Critic network

The critic vϕ shares the EET control logits H from the actor and has its own output layers. Specifically, it
performs a mean pooling for the logits H̄ =

∑N
i=1 Hi, and then processes it using an MLP with structure

(128×64×32×1 and LeakyReLU activation) to obtain the value estimation.

4.3 Training

Our GLEET agent can be trained via any off-the-shelf reinforcement learning algorithm, and we use the
T -step PPO (Schulman et al., 2017) in this paper. A training dataset containing a class of similar black-
box problem instances is generated before training (details in Section 5.1.1), from which a small batch of
problem instances is randomly sampled on the fly during training (which is different from previous works
that only leverages one single instance). Given the batch, we initialize a population of individuals according
to the backbone PBO algorithm for each problem instance and then let the on-policy PPO algorithm gather
trajectories while updating the parameters of the actor and the critic networks defined in Section 4.2. We
alternate between sampling trajectory T by T time steps and update κ times of the network parameters.
The learned model will be directly used to infer the EET control for other unseen problem instances.

5 Experiments

Our experiments research the following questions:
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• RQ1: How good is the control performance of GLEET against the previous static, adaptive tuning
and DRL-tuning methods, and whether GLEET can be broadly used for enhancing different PBO
algorithms?

• RQ2: Does GLEET possess the generalization ability on the unseen problems instances, dimensions,
and population sizes?

• RQ3: Can the learned behavior of GLEET be interpreted and recognized by human experts?
• RQ4: How crucial are reward design, the EET embeddings and the attention modules in our GLEET

implementation?

To investigate RQ1 to RQ4, we firstly instantiate GLEET to PSO and DE and compare their optimization
performance with several competitors such as PSO/DE’s original version, adaptive variants and reinforcement
learning-based versions, see Section 5.2. We then test the zero-shot generalization ability of GLEET by
directly applying the trained agent to unseen settings, see Section 5.3. Next, we visualize the controlled
EET patterns of GLEET and the decision layer of GLEET’s network to interpret the learned knowledge,
see Section 5.4. At last, for answering RQ4, we conduct ablation study on the reward mechanism, the EET
embeddings and the attention modules, see Section 5.5.

5.1 Experimental Setup

5.1.1 Dataset augmentation

The CEC 2021 numerical optimization test suite by Ali et al. (Mohamed et al., 2021) consists of ten challeng-
ing black-box optimization problems. The f1, f2, f3 and f4 are single problems which are not any problems’
hybridization or composition. For example, Bent Cigar function (f1) has the form as f(x) = x2

1+106 ∑d
i=2 x2

i ,
where d is the dimension of x. The f5, f6 and f7 hybridize some basic functions, resulting more difficult
problem because of solution space coupling. The f8, f9 and f10 are linear compositions of some single
problems, resulting more difficult problem because of fitness space coupling. Each problem has the form
F (x) = f(MT (x − o)), where f is the objective function, o is shift vector of the global optimum position,
M is the rotation matrix of the entire problem space, and we have the optimal cost as 0 for all the cases.
We then augment these ten problems to their problem sets by adding different shift and rotation. To be
concrete, for a function fi, we firstly generate a random shift with a range [omin, omax] which assures that the
optimum of the shifted problem instances will not escape from the present search space. Then we generate a
random standard orthogonal matrix M (Schmidt, 1907) and then apply it to the shifted function instance.
By repeatedly applying these two transformations above, we can get an augmented problem sets D. As one
purpose of this study is to perform generalizable learning on a class of problems, we construct an augmented
dataset D of a large number of benchmark problem instances. Specifically, for each problem class in the
CEC 2021, a total number of 1152 instances are randomly generated and divided into training and testing
sets with a partition of 128:1024 (note that we use small training but large testing sets to fully validate
the generalization). We train one GLEET agent per problem class and also investigate the performance of
GLEET if trained on a mixed dataset containing all the problem classes (all ten functions with different M
and o in a training set), denoted as fmix.

5.1.2 Competitors

As established, existing studies control the EET in static, adaptive, and learning-based manners. We choose
competitors for GLEET on PSO and GLEET on DE from these three categories. For PSO, we choose the
vanilla PSO (Shi & Eberhart, 1998) as static baseline, the PSO variants DMSPSO (Liang & Suganthan,
2005), sDMSPSO (Liang et al., 2015), GLPSO (Gong et al., 2016) as adaptive baselines, and DRL-PSO (Wu
& Wang, 2022) and RLEPSO (Yin et al., 2021) as the learning-based competitors. We instantiate GLEET
to the vanilla PSO and DMSPSO for comparison, denoted as GLEET-PSO and GLEET-DMSPSO. For
DE, we choose the DE/current-to-pbest/1 (Zhang & Sanderson, 2009) as static baseline, the DE variants
MadDE (Biswas et al., 2021), NL-SHADE-LBC (Stanovov et al., 2022) as adaptive baselines, and DE-
DDQN (Sharma et al., 2019), DEDQN (Tan & Li, 2021), LDE (Sun et al., 2021), RLHPSDE (Tan et al.,
2022) as the learning-based competitors. We instantiate GLEET on DE/current-to-pbest/1 to join the
comparison, denoted as GLEET-DE. Baselines GLPSO, MadDE, NL-SHADE-LBC, LDE, DE-DDQN are
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Table 1: Numerical comparison results for PSO algorithms on 10D problems, where the mean, standard deviations
and performance ranks are reported (with the best mean value on each problem highlighted in bold).

Type Static Adaptive DRL
Algorithm PSO DMSPSO sDMSPSO GLPSO DRL-PSO RLEPSO GLEET-PSO GLEET-DMSPSO

Metrics Mean
(Std) Rank Mean

(Std) Rank Mean
(Std) Rank Mean

(Std) Rank Mean
(Std) Rank Mean

(Std) Rank Mean
(Std) Rank Mean

(Std) Rank

f1
7.071E+06

(1.104E+07) 7 5.903E+04
(8.036E+04) 4 6.408E+03

(1.670E+04) 2 1.646E+04
(1.652E+04) 3 1.296E+07

(1.513E+07) 8 5.418E+06
(7.420E+06) 6 2.748E+06

(4.205E+06) 5 2.471E+02
(7.676E+02) 1

f2
8.428E+02

(2.716E+02) 8 3.376E+02
(1.549E+02) 2 5.232E+02

(1.722E+02) 5 3.750E+02
(2.264E+02) 3 6.253E+02

(2.166E+02) 6 7.188E+02
(2.405E+02) 7 5.105E+02

(1.776E+02) 4 2.440E+02
(1.396E+02) 1

f3
2.934E+01

(7.850E+00) 7 1.563E+01
(2.546E+00) 2 2.678E+01

(6.625E+00) 6 1.781E+01
(3.677E+00) 3 2.174E+01

(5.245E+00) 5 3.022E+01
(7.809E+00) 8 2.120E+01

(4.705E+00) 4 1.498E+01
(2.357E+00) 1

f4
2.099E+00

(1.235E+00) 6 1.375E+00
(7.083E-01) 4 5.948E-01

(2.471E-01) 2 8.750E-01
(4.023E-01) 3 7.949E+00

(9.389E+00) 8 3.519E+00
(1.980E+00) 7 1.422E+00

(7.776E-01) 5 5.816E-01
(2.210E-01) 1

f5
3.395E+03

(5.793E+03) 6 4.282E+02
(2.221E+02) 3 3.714E+02

(2.183E+02) 1 2.223E+03
(1.614E+03) 6 1.048E+04

(2.057E+04) 8 2.119E+03
(2.912E+03) 5 1.847E+03

(2.552E+03) 4 3.716E+02
(1.866E+02) 2

f6
8.443E+01

(5.844E+01) 8 2.870E+01
(2.146E+01) 4 1.981E+01

(1.704E+01) 2 2.768E+01
(2.560E+01) 3 6.379E+01

(4.684E+01) 6 8.270E+01
(5.471E+01) 7 4.449E+01

(3.381E+01) 5 1.300E+01
(1.020E+01) 1

f7
1.722E+03

(3.667E+03) 5 2.134E+02
(1.462E+02) 3 1.709E+02

(1.277E+02) 2 8.152E+02
(5.051E+02) 5 1.431E+03

(1.850E+03) 7 1.151E+03
(9.557E+02) 6 4.977E+02

(3.549E+02) 4 1.302E+02
(8.489E+01) 1

f8
3.376E+02

(2.902E+02) 8 9.572E+01
(3.891E+01) 2 1.495E+02

(8.792E+01) 5 1.441E+02
(9.497E+01) 4 2.120E+02

(1.744E+02) 7 1.686E+02
(1.219E+02) 6 1.096E+02

(3.924E+01) 3 7.216E+01
(3.555E+01) 1

f9
2.370E+02

(5.916E+01) 8 1.690E+02
(4.759E+01) 4 1.392E+02

(5.788E+01) 2 1.953E+02
(2.989E+01) 6 2.010E+02

(6.135E+01) 7 1.862E+02
(6.679E+01) 5 1.665E+02

(6.137E+01) 3 1.202E+02
(2.016E+01) 1

f10
2.227E+02

(3.946E+01) 8 2.035E+02
(2.030E+01) 4 1.955E+02

(2.287E+01) 3 2.166E+02
(2.221E+01) 5 2.201E+02

(3.665E+01) 7 2.199E+02
(3.300E+01) 6 1.882E+02

(4.127E+01) 2 1.682E+02
(1.648E+01) 1

fmix
8.445E+05

(1.090E+06) 7 1.612E+02
(7.617E+01) 2 5.105E+02

(9.813E+02) 4 4.747E+02
(3.273E+02) 3 3.184E+05

(5.086E+05) 6 1.156E+06
(1.380E+06) 8 4.225E+04

(2.068E+04) 5 1.364E+02
(5.839E+01) 1

Avg Rank 7.45 3.09 3.09 4.00 6.82 6.45 4.00 (↑ 48%) 1.09 (↑ 35%)

tested based on the original source code provided by the original authors. For the other baselines (including
DMSPSO, sDMSPSO, DRL-PSO, RLEPSO, DE-DQN and RLHPSDE) that do not have open-source code
available, we implement them strictly following the pseudocodes in their original manuscripts. For all
baselines, we have followed their recommended hyper-parameter settings and ensured that the code and
settings we used could achieve similar performance on the benchmark they used in their original paper. The
learning-based competitors are trained on the same training sets as GLEET methods.

Table 2: Numerical comparison results for PSO algorithms on 30D problems, where the mean, standard deviations
and performance ranks are reported (with the best mean value on each problem highlighted in bold).

Type Static Adaptive DRL
Algorithm PSO DMSPSO sDMSPSO GLPSO DRL-PSO RLEPSO GLEET-PSO GLEET-DMSPSO

Metrics Mean
(Std) Rank Mean

(Std) Rank Mean
(Std) Rank Mean

(Std) Rank Mean
(Std) Rank Mean

(Std) Rank Mean
(Std) Rank Mean

(Std) Rank

f1
2.261E+08

(2.343E+08) 6 4.491E+07
(2.733E+07) 4 1.319E+06

(1.444E+06) 2 4.568E+05
(4.164E+05) 1 9.316E+08

(9.470E+08) 8 2.616E+08
(1.591E+08) 7 1.336E+08

(1.512E+08) 5 9.731E+06
(6.314E+06) 3

f2
4.022E+03

(6.617E+02) 8 3.114E+03
(5.146E+02) 3 3.248E+03

(4.834E+02) 4 2.841E+03
(7.063E+02) 2 3.759E+03

(6.517E+02) 6 3.998E+03
(3.071E+02) 7 3.442E+03

(5.692E+02) 5 2.648E+03
(5.041E+02) 1

f3
2.070E+02

(5.150E+01) 7 1.006E+02
(1.475E+01) 3 2.772E+02

(5.886E+01) 8 6.921E+01
(1.156E+01) 2 1.486E+02

(4.956E+01) 4 1.884E+02
(2.173E+01) 6 1.552E+02

(3.701E+01) 5 6.613E+01
(1.146E+01) 1

f4
2.762E+01

(1.660E+01) 6 1.066E+01
(3.076E+00) 3 5.738E+01

(4.634E+01) 7 6.644E+00
(2.526E+00) 1 1.237E+03

(2.401E+03) 8 1.860E+01
(1.087E+01) 5 1.680E+01

(9.320E+00) 4 9.433E+00
(2.633E+00) 2

f5
3.972E+05

(4.395E+05) 7 7.148E+04
(8.678E+04) 4 2.653E+03

(1.441E+032) 1 3.050E+04
(1.763E+04) 2 7.231E+05

(1.119E+06) 8 3.893E+05
(1.578E+05) 6 1.868E+05

(1.921E+05) 5 6.751E+04
(5.630E+04) 3

f6
9.998E+02

(3.003E+02) 8 3.778E+02
(1.581E+02) 3 5.722E+02

(1.994E+02) 4 3.162E+02
(1.816E+02) 2 9.500E+02

(3.291E+02) 7 8.127E+02
(1.257E+02) 6 6.880E+02

(2.149E+02) 5 3.114E+02
(1.159E+02) 1

f7
1.222E+05

(1.469E+05) 7 2.110E+04
(2.143E+04) 4 1.387E+03

(6.703E+02) 1 2.011E+04
(1.024E+04) 3 2.680E+05

(4.235E+05) 8 4.652E+04
(4.199E+04) 5 4.930E+04

(4.420E+04) 6 1.817E+04
(1.299E+04) 2

f8
3.659E+03

(1.379E+03) 7 1.009E+03
(6.969E+02) 2 2.185E+03

(1.061E+031) 4 1.774E+03
(1.002E+03) 3 3.196E+03

(1.347E+03) 6 3.867E+03
(6.564E+02) 8 2.414E+03

(1.283E+03) 5 8.505E+02
(5.703E+02) 1

f9
7.835E+02

(1.345E+02) 8 4.079E+02
(2.885E+01) 3 5.335E+02

(5.327E+01) 4 4.069E+02
(1.860E+01) 2 7.194E+02

(1.191E+02) 6 7.323E+02
(5.245E+01) 7 6.377E+02

(9.189E+01) 5 3.941E+02
(2.848E+01) 1

f10
4.158E+02

(7.642E+01) 6 2.984E+02
(3.578E+01) 4 2.765E+02

(2.845E+01) 2 2.836E+02
(3.336E+01) 3 6.963E+02

(3.283E+02) 8 4.222E+02
(3.785E+01) 7 3.930E+02

(7.612E+01) 5 2.608E+02
(2.852E+01) 1

fmix
2.218E+07

(3.048E+07) 7 5.774E+06
(3.103E+06) 4 6.366E+04

(6.227E+04) 3 5.313E+04
(4.039E+04) 2 1.948E+07

(3.566E+07) 6 4.438E+07
(3.849E+07) 8 7.452E+06

(6.845E+06) 5 4.894E+04
(4.098E+04) 1

Avg Rank 7.00 3.36 3.64 2.09 6.82 6.54 5.00 (↑ 35%) 1.55 (↑ 28%)

5.1.3 Settings

Following the suggestion of Ali et al. (Mohamed et al., 2021), the maximum number of function evaluations
(maxFEs) for all algorithms in experiments is set to 2 × 105 for 10D and 106 for 30D problems. The
search space of all problems is a real-parameter space [omin, omax]d with omin = −100 and omax = 100. We
accelerate the learning and testing process through batching problem instances in the training set and testing
set, with batch_size = 16. For the optimization of each instance, GLEET agent acquires states from the
population with N = 100 and samples hyper-parameters. For every T = 10 steps of optimization, the agent
updates its network for κ = 3 steps in an PPO algorithmic manner. The training runs MaxEpoch = 100
with the learning rates lr = 4e − 5 and decays to 1e − 5 at the end for both policy net and critic net.
For the fairness of comparison, all learning based algorithms update their model by equal steps. The rest
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Table 3: Numerical comparison results for DE algorithms on 10D problems, where the mean, standard deviations
and performance ranks are reported (with the best mean value on each problem highlighted in bold).

Type Static Adaptive DRL
Algorithm DE MadDE NL-SHADE-LBC DE-DDQN DE-DQN LDE RLHPSDE GLEET-DE

Metrics Mean
(Std) Rank Mean

(Std) Rank Mean
(Std) Rank Mean

(Std) Rank Mean
(Std) Rank Mean

(Std) Rank Mean
(Std) Rank Mean

(Std) Rank

f1
6.423E+06

(6.523E+06) 8 7.951E-09
(1.447E-09) 3 6.545E-09

(1.017E-09) 2 5.631E+06
(4.565E+06) 6 5.723E+06

(5.065E+06) 7 3.855E+04
(6.856E+04) 4 6.453E+04

(1.142E+05) 5 1.136E-09
(1.789E-09) 1

f2
7.699E+02

(2.037E+02) 8 3.911E+02
(1.108E+02) 2 3.843E+02

(1.198E+02) 1 7.534E+02
(1.867E+02) 7 6.811E+02

(2.134E+02) 6 5.999E+02
(1.190E+02) 4 6.358E+02

(1.842E+02) 5 4.522E+02
(1.403E+02) 3

f3
2.099E+01

(2.393E+00) 5 1.793E+01
(2.489E+00) 2 1.821E+01

(2.430E+00) 3 3.052E+01
(2.355E+00) 7 3.242E+01

(3.564E+00) 8 1.903E+01
(1.675E+00) 4 2.101E+01

(1.716E+00) 6 1.746E+01
(2.419E+00) 1

f4
1.329E+00
(3.606E-01) 8 5.161E-01

(1.722E-01) 2 5.234E-01
(1.587E-01) 3 1.265E+00

(3.545E-01) 7 1.054E+00
(3.455E-01) 6 6.172E-01

(2.465E-01) 4 7.886E-01
(2.646E-01) 5 4.990E-01

(1.629E-01) 1

f5
1.747E+02

(9.863E+01) 7 1.789E+01
(2.175E+01) 2 1.711E+01

(2.543E+01) 1 1.652E+02
(9.665E+01) 6 1.795E+02

(1.005E+02) 8 3.719E+01
(3.787E+01) 4 3.831E+01

(3.857E+01) 5 3.573E+01
(3.274E+01) 3

f6
1.303E+01

(6.778E+00) 6 5.160E+00
(3.277E+00) 3 3.735E+00

(2.178E+00) 2 1.132E+02
(9.545E+00) 7 1.359E+02

(9.426E+00) 8 6.269E+00
(5.417E+00) 4 6.569E+00

(5.851E+00) 5 6.671E-01
(1.448E+00) 1

f7
4.726E+01

(4.073E+01) 8 9.162E+00
(9.163E+00) 3 8.424E+00

(8.127E+00) 2 3.656E+01
(3.212E+01) 6 4.598E+01

(3.532E+01) 7 1.278E+01
(1.552E+01) 4 1.953E+01

(2.354E+01) 5 8.226E+00
(1.497E+01) 1

f8
6.803E+01

(1.136E+01) 4 5.757E+01
(1.659E+01) 3 5.014E+01

(1.451E+01) 2 6.956E+01
(1.215E+01) 5 7.083E+01

(1.125E+01) 6 8.867E+01
(1.832E+01) 8 8.241E+01

(1.687E+01) 7 5.349E+01
(1.627E+01) 1

f9
1.765E+02

(2.277E+01) 8 8.424E+01
(3.828E+01) 1 8.765E+01

(3.934E+01) 2 1.533E+02
(2.545E+01) 5 1.456E+02

(1.916E+01) 4 1.612E+02
(3.313E+01) 6 1.655E+02

(3.438E+01) 7 1.249E+02
(5.208E+01) 3

f10
2.370E+02

(1.769E+01) 8 1.865E+02
(1.008E+01) 1 1.894E+02

(1.132E+01) 2 2.342E+02
(1.615E+01) 7 2.245E+02

(1.531E+01) 6 1.994E+02
(1.284E+01) 4 2.124E+02

(1.142E+01) 5 1.937E+02
(1.211E+01) 3

fmix
1.733E+02

(7.912E+01) 7 7.570E+01
(2.311E+01) 2 7.413E+01

(2.234E+01) 1 1.681E+02
(7.456E+01) 5 1.762E+02

(6.465E+01) 8 1.564E+02
(3.656E+01) 4 1.724E+02

(3.773E+01) 6 1.340E+02
(3.851E+01) 3

Avg Rank 7.00 2.18 1.91 6.18 6.73 4.55 5.55 1.91 (↑ 52%)

configurations of comparison algorithms follow that proposed in corresponding original papers. Experiments
are run on Intel i9-10980XE CPU, RTX 3090 GPU and 32GB RAM. When testing, each algorithm executes
10 independent runs and reports the statistical results.

5.2 Comparison Analysis

Table 4: Numerical comparison results for DE algorithms on 30D problems, where the mean, standard deviations
and performance ranks are reported (with the best mean value on each problem highlighted in bold).

Type Static Adaptive DRL
Algorithm DE MadDE NL-SHADE-LBC DE-DDQN DE-DQN LDE RLHPSDE GLEET-DE

Metrics Mean
(Std) Rank Mean

(Std) Rank Mean
(Std) Rank Mean

(Std) Rank Mean
(Std) Rank Mean

(Std) Rank Mean
(Std) Rank Mean

(Std) Rank

f1
1.658E+09

(5.924E+08) 8 7.098E+03
(7.247E+03) 3 6.234E+03

(6.435E+03) 2 5.362E+08
(4.631E+07) 6 5.659E+08

(4.355E+07) 7 4.563E+04
(3.624E+03) 4 4.863E+04

(3.731E+03) 5 1.639E-01
(4.818E-01) 1

f2
6.033E+03

(3.499E+02) 8 2.421E+03
(2.690E+02) 2 2.134E+03

(2.121E+02) 1 4.563E+03
(3.612E+02) 4 4.327E+03

(3.121E+02) 5 5.325E+03
(3.205E+02) 6 5.877E+03

(3.643E+02) 7 3.083E+03
(2.838E+02) 3

f3
1.701E+02

(2.740E+01) 7 7.796E+01
(7.228E+00) 3 7.345E+01

(7.048E+00) 2 1.673E+02
(2.445E+01) 5 1.995E+02

(2.853E+01) 8 1.456E+02
(1.656E+01) 4 1.683E+02

(1.343E+01) 6 6.733E+01
(8.379E+00) 1

f4
1.741E+01

(8.485E+00) 8 6.168E+00
(1.003E+00) 1 6.867E+00

(1.353E+00) 2 1.447E+01
(7.456E+00) 6 1.698E+01

(8.334E+00) 7 8.366E+00
(5.546E+00) 4 1.135E+01

(9.312E+00) 5 7.468E+00
(3.679E+00) 3

f5
4.503E+04

(4.176E+04) 8 1.183E+03
(3.542E+02) 2 1.023E+03

(3.334E+02) 1 1.463E+04
(3.642E+03) 7 1.386E+04

(4.545E+03) 6 3.945E+03
(5.645E+02) 4 4.895E+03

(5.997E+02) 5 3.099E+03
(4.503E+02) 3

f6
2.192E+02

(1.003E+02) 5 2.127E+02
(7.915E+01) 2 2.169E+02

(7.043E+01) 4 2.362E+02
(1.406E+02) 7 2.458E+02

(1.556E+02) 8 2.155E+02
(9.615E+01) 3 2.301E+02

(1.137E+02) 6 1.705E+02
(5.046E+01) 1

f7
1.056E+04

(9.032E+03) 8 5.156E+02
(2.473E+02) 3 4.675E+02

(2.122E+02) 2 1.037E+03
(6.373E+02) 6 1.652E+03

(5.193E+02) 7 7.893E+02
(2.435E+02) 4 8.961E+02

(3.154E+02) 5 3.788E+02
(2.277E+02) 1

f8
1.620E+03

(1.188E+03) 8 1.501E+02
(8.258E+01) 3 1.443E+02

(7.345E+01) 2 7.693E+02
(3.543E+02) 6 7.798E+02

(3.523E+02) 7 3.453E+02
(8.816E+01) 5 3.410E+02

(8.311E+01) 4 1.375E+02
(7.646E+01) 1

f9
4.227E+02

(2.089E+01) 4 3.989E+02
(1.330E+01) 1 4.231E+02

(1.437E+01) 5 4.313E+02
(2.345E+02) 7 5.015E+02

(2.577E+02) 8 4.132E+02
(1.346E+02) 3 4.303E+02

(1.825E+02) 6 4.105E+02
(1.523E+02) 2

f10
5.177E+02

(7.687E+01) 8 2.660E+02
(3.307E+00) 2 2.101E+02

(2.744E+00) 1 4.637E+02
(6.756E+01) 6 4.879E+02

(7.231E+01) 7 4.025E+02
(3.445E+01) 4 4.333E+02

(4.131E+01) 5 3.532E+02
(2.357E+01) 3

fmix
7.324E+07

(7.104E+07) 8 7.193E+03
(2.803E+03) 3 6.831E+03

(2.435E+03) 2 4.337E+07
(5.156E+07) 6 5.237E+07

(3.460E+07) 7 4.354E+04
(3.641E+03) 4 5.610E+04

(3.451E+03) 5 6.356E+03
(4.325E+03) 1

Avg Rank 7.27 2.27 2.18 6.00 7.00 4.09 5.36 1.82 (↑ 64%)

5.2.1 Comparison among the PSO variants

Table 1 and Table 2 shows the optimization results and the ranks obtained by different PSO algorithms
over the 10D and 30D problems respectively. We also present the average performance improvement of
GLEET compared with its backbone algorithm (e.g.,GLEET-PSO improves PSO with a 35% performance
gap), which lies on the right of the rank of the GLEET-PSO/GLEET-DMSPSO. It can be observed that
the performance of the proposed GLEET-DMSPSO generally and consistently dominates the competitors
on both 10D and 30D settings. Both GLEET-PSO and GLEET-DMSPSO significantly improve their back-
bones, i.e., PSO and DMSPSO, respectively, which validates the effectiveness of our GLEET in learning
generalizable knowledge to control the exploration and exploitation behavior for the algorithms under a
given problem class. The superiority of GLEET over the traditional adaptive algorithms sDMSPSO and
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Table 5: Generalization experiment results for different problem classes. The “Gap” column shows the difference in
optimization performance compared to the original agent (with negative values indicating improvement).

Ag-f2 Ag-f3 Ag-f4 Ag-fmix PSO
Mean
(Std) Gap Mean

(Std) Gap Mean
(Std) Gap Mean

(Std) Gap Mean
(Std) Gap

Si
m

pl
e

f2
5.105E+02

(1.776E+02) 0.000% 5.164E+02
(1.812E+02) 1.156% 5.195E+02

(1.880E+02) 1.763% 5.179E+02
(1.871E+02) 1.450% 8.428E+02

(2.716E+02) 65.093%

f3
2.213E+01

(5.090E+00) 4.387% 2.120E+01
(4.705E+00) 0.000% 2.179E+01

(4.786E+00) 2.783% 2.175E+01
(4.805E+00) 2.594% 2.934E+01

(7.850E+00) 38.396%

f4
1.546E+00
(9.959E-01) 8.720% 1.412E+00

(8.379E-01) −0.703% 1.422E+00
(7.776E-01) 0.000% 1.451E+00

(8.399E-01) 2.039% 2.099E+00
(1.235E-01) 47.609%

C
om

pl
ex f5

1.928E+03
(2.374E+03) 4.356% 1.592E+03

(1.980E+03) −13.793% 1.514E+03
(1.600E+03) −18.043% 1.709E+03

(2.126E+03) −7.482% 3.395E+03
(5.793E+03) 83.812%

f8
1.480E+02

(9.429E+01) 2.697% 1.479E+02
(9.514E+01) 2.596% 1.458E+02

(9.395E+01) 1.194% 1.447E+02
(9.449E+01) 0.400% 3.376E+02

(2.902E+01) 208.029%

GLPSO further shows the powerfulness of using a learning-based agent to derive policies instead of manually
designed heuristic.

Our GLEET achieves the state-of-the-art performance among learning-based competitors on all test cases
when considering the comparison among GLEET-PSO, DRL-PSO and RLEPSO. The three algorithms are all
based on DRL, amongst GLEET-PSO and DRL-PSO adopt the same backbone and the RLEPSO improves
the EPSO algorithm. Different from the three peer algorithms, we explicitly embed EET information into
the state representation to make it more expressive and design an attention-based architecture to make
the individuals in population fully informed and exploration-exploitation aware. With the increasing of
dimensions, difficulty of searching surges due to the exponential growth of search space. Facing that difficulty,
DRL-PSO and RLEPSO suffer from sharp performance decline, which may be caused by the oversimplified
network or the defect of EET information in state representation. Adaptive PSO variants sDMSPSO and
GLPSO still have stable performance on high-dimensional problems, which proves that manually designed
adaptive PBOs are still competing. Manual adaptive variants sDMSPSO can not improve the backbone
DMSPSO on 30D problems (considering the average rank). However, on some specific functions (i.e.,f5 and
f7), sDMSPSO dominates others. This may reveal that adaptive control of EET by manual design has poor
generalization. GLEET dominates the optimization performance on composition problem sets (f8, f9 and
f10) either under 10D or 30D setting, which indicates that GLEET may perform more stable on complex
problem, which is favorable.

5.2.2 Comparison among the DE variants

Table 3 and Table4 shows the optimization results and the ranks obtained by different DE algorithms over
the ten problem classes on 10D and 30D spaces respectively. A consistent conclusion can be deduced as
the results above on PSO algorithms. Additionally, it can be noticed that, by taking DE as backbone, the
GLEET-DE performs generally better than the GLEET-PSO algorithm.

Besides the conclusions above, we propose an especially challenging task to further examine the control of
EET in each algorithm, where we mix all ten problem sets up for training and testing (fmix). We trained
GLEET-PSO and GLEET-DMSPSO and GLEET-DE on fmix. The line fmix in Table 1 to Table 4 shows
the optimization results in such a mixed dataset of the GLEET and those competitors on both 10D and
30D settings, which further verifies that GLEET can not only learns well among similar problems but also
learns well among different problem classes.

5.3 Generalization Analysis

In the above experiments, the agents are trained on a set of problem instances and tested on another set of
unseen ones within the same problem class, which in some ways showed the desired generalization ability
of our GLEET. We now continue to evaluate the zero-shot generalization of GLEET under more critical
conditions in the following.
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(a) f1 (b) f2 (c) f3 (d) f4 (e) f5

(f) f6 (g) f7 (h) f8 (i) f9 (j) f10

Figure 3: Generalization across different problem dimensions.

(a) f1 (b) f2 (c) f3 (d) f4 (e) f5

(f) f6 (g) f7 (h) f8 (i) f9 (j) f10

Figure 4: Generalization across different population sizes.

5.3.1 Generalization across problems

GLEET is generalizable across problem classes. We train four GLEET-PSO agents, denoted as Ag-f2, Ag-f3,
Ag-f4, Ag-fmix, on the following four problem sets: the Schwefel (f2) class, the biRastrigin (f3) class, the
Grierosen (f4) class and the mixture problems of the above three (fmix), and then test their performance
on unseen problem classes including more complex problem f5 and f8. Table 5 presents the averaged
performance on ten runs and the performance “Gap” between each of the above agent and the original
agent trained on the designated problem class. PSO is taken as a baseline and the “Gap” measures its
performance difference with GLEET-PSO trained on the designated problem class. The “Gap" is calculated
as f ′−f

f , where f ′ is the performance of the agent trained on another problem class, and f is performance of
the the original agent trained on the designated problem class.“Gap" indicates how much better (less than
0) or worse (greater than 0) when applying a model trained on another problem class. For example, Ag-f2
is trained on f2, when we zero-shot it directly to f5, it achieves a slightly lower performance than the f5’s
original agent by 4.356%, which is acceptable. Generally speaking, it can be observed from the table that
the agents exhibit promising and even better performance on those different problem classes, which validates
the good generalization of the trained policies on unseen problem classes.
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Figure 6: The performance curve of GLEET-
DMSPSO on 10D Schwefel (f2) problem along
the training set size.

5.3.2 Generalization across dimensions and population sizes

We train GLEET-PSO on 10D problem, denoted as GLEET-10D, and apply the model to optimize 30D
problems. The performance of GLEET-10D is compared with the original PSO and the GLEET-30D model
trained on 30D problems. Fig. 3 depicts the convergence curves on the 10D problems for illustration,
where we also annotate the “Gap” to quantify the final generalization bias. Without any further tuning,
GLEET-10D outperforms the original PSO and with a well acceptable gap to GLEET-30D on most of the
problems, which further verifies that GLEET is generalizable between different problem dimensions owing
to our dimension-free state representation in Section 4.1. In Fig. 4, GLEET-500Pop is the model trained
with population size 500 while GLEET-100Pop is trained on population size 100. They are both tested on
the scenario of 500 population size. We show that GLEET-100Pop outperforms not only the original PSO
but also the GLEET-500Pop on most of the problems. This indicates that, on the one hand, the proposed
attention-based en/decoder supports the generalization to a different population size; and on the other hand,
through good EET control, a population of 100 particles is sufficient to provide good optimization results.

5.3.3 Generalization beyond optimization horizon

Running the agent for more generations than the training horizon is a well-know challenge for meta-learned
optimizers. To reveal GLEET’s generalization ability across generations, we run GLEET-DMSPSO trained
with 2e5 maxFEs for more generations (up to 1e6 maxFEs) and compare it with DMSPSO. Fig. 5 shows the
generalization performance on 10D Schwefel (f2) problems. It can be seen that comparing to the DMSPSO,
GLEET-DMSPSO has a larger cost decrease alone the generations, indicating that GLEET agent has learned
how to deal with a longer episode and improves the performance of the backbone DMSPSO.

5.3.4 Impact of Training set size

Existing RL-based optimizers were trained on a single or a few of problem instances. Although experiments
in Section 5.2 have validated the effective of GLEET, the relationship between the performance and the
training set size remains to be explore. To showcase the benefits of training the policy on a distribution of
problems, we train GLEET-DMSPSO with different training set sizes: 1, 16, 64, 256 and 1024. Taking 10D
Schwefel (f2) as a case, the performance of GLEET-DMSPSO is shown in Fig. 6. The results demonstrate
that training agents on a set of problem instances may lead to a better performance than training on a single
instance, which aligns with our motivations and conclusions. This may because larger training set allows
the agent to capture full knowledge about the problem distribution and utilize the knowledge to adaptively
control the exploration-exploitation tradeoff which promotes the optimization performance (as done in our
GLEET), while training on single instances may lead to overfitting and lose the generalization on unseen
instances even in the similar distribution (as done in most existing works).

5.3.5 Out-of-distribution Generalization

The generalization analysis in above experiments is conducted within CEC problems. To further evalu-
ate the generalization of GLEET, we introduce a realistic continuous optimization benchmark, Protein-
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Table 6: Numerical comparison results on 12D Protein-Docking problems, where the mean, standard deviations,
runtime and performance ranks (according to the mean costs) are reported (with the best mean value highlighted in
bold).

Type Static PSO Adaptive PSO DRL-based PSO
Algorithm PSO DMSPSO sDMSPSO GLPSO DRL-PSO RLEPSO GLEET-PSO GLEET-DMSPSO

Metrics Mean
(Std)

Mean
(Std)

Mean
(Std)

Mean
(Std)

Mean
(Std)

Mean
(Std)

Mean
(Std)

Mean
(Std)

Protein
Docking

5.153E+02
(2.151E+01)

4.771E+02
(3.345E+01)

5.101E+02
(3.155E+01)

5.061E+02
(3.700E+01)

5.180E+02
(4.940E+01)

4.895E+02
(4.129E+01)

4.832E+02
(3.865E+01)

4.681E+02
(3.650E+01)

Runtime(s) 0.539 1.156 1.137 1.103 14.341 1.307 2.134 2.515
Rank 18 5 16 14 19 11 9 1

Type Static DE Adaptive DE DRL-based DE
Algorithm DE MadDE NL-SHADE-LBC DE-DDQN DE-DQN LDE RLHPSDE GLEET-DE

Metrics Mean
(Std)

Mean
(Std)

Mean
(Std)

Mean
(Std)

Mean
(Std)

Mean
(Std)

Mean
(Std)

Mean
(Std)

Protein
Docking

4.853E+02
(4.331E+01)

4.803E+02
(4.278E+01)

4.786E+02
(2.462E+01)

5.039E+02
(5.681E+01)

5.211E+02
(6.375E+01)

4.970E+02
(2.767E+01)

5.069E+02
(5.082E+01)

4.794E+02
(2.697E+01)

Runtime(s) 0.943 1.565 1.486 20.687 1.734 1.791 1.895 2.467
Rank 10 8 6 13 20 12 15 7

Type SMAC3 CMA-ES
Algorithm SMAC3-DMSPSO CMA-ES IPOP-CMA-ES PSA-CMA-ES

Metrics Mean
(Std)

Mean
(Std)

Mean
(Std)

Mean
(Std)

Protein
Docking

5.134E+02
(3.406E+01)

4.743E+02
(5.972E+01)

4.716E+02
(4.634E+01)

4.720E+02
(4.943E+01)

Runtime(s) 1.150 4.834 23.451 15.672
Rank 17 4 2 3

Docking (Hwang et al., 2010). The benchmark contains 280 instances of different protein-protein complexes.
These problems are characterized by rugged objective landscapes and are computationally expensive to eval-
uate. The distribution of Protein-Docking problems is significantly different from the CEC problems, we
zero-shot the models agents trained on 10D fmix problems to the Protein-Docking benchmark to evaluate
the out-of-distribution generalization of GLEET. Besides, in realistic optimization there are lots of widely
adopted sota methods beyond DE and PSO, such as quasi-hyperparameter-free approach CMA-ES (Hansen
et al., 2003) and hyper-parameter optimization method SMAC3 (Lindauer et al., 2022). Therefore SMAC3,
CMA-ES and its advanced variant IPOP-CMA-ES (Auger & Hansen, 2005), PSA-CMA-ES (Nishida & Aki-
moto, 2018) with population size adaption are adopted as baselines in the experiment. For SMAC3, we train
it on the 10D fmix training problem set to tune the parameter in DMSPSO as GLEET-DMSPSO does, a
difference is that the parameter is the same across individuals, iterations and problem instances. Then we
apply the learned parameter value to DMSPSO and test it on the Protein-Docking benchmark. All algo-
rithms optimize 1000 maxFEs on each problem instances. We collect their mean values, standard deviations
and average runtime for runs in Table 6. Results show that GLEET-DMSPSO outperforms the comparison
algorithms. The performance of GLEET indicates that GLEET achieve remarkable generalization perfor-
mance on out-of-distribution problems. The poor performance of SMAC3-DMSPSO may be because that
SMAC3 fixed the hyper-parameter values for all individuals and iterations, which is less flexible for particles
to exploration and exploitation in the searching space, while DMSPSO itself has effective adaptive rules
which ensure a successful searching.

5.4 Interpretability

In this section, we take GLEET-PSO as an example to show GLEET’s interpretability since the exploration
and exploration tradeoff (EET) is explicitly represented by the “c1” and “c2” in PSO’s update formula, which
facilitates easy interpretation and analysis. Fig. 8 illustrates how the distribution of EET hyper-parameter
c1,i

1 changes along the optimization process for two different problems: a relatively simple problem, the
Schwefel (f2) and a difficult one, the Hybrid (f6). Here we let X-axis represent the optimization steps,
Y-axis represent the distribution of the output actions, and Z-axis represent the current distribution of c1,i

1c1,i is the individual impact coefficient in Eq. (3) but differs for different particles, while the social impact coefficient is
c2,i = 4 − c1,i.
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(a) Optimization curve (b) Exploration case (c) Exploitation case

Figure 7: Visualization of the attention patterns and the moving of particles during exploration and exploitation
controlled by GLEET. In Exploration case, GLEET leans to make the particle as far as possible from the most
attended neighbour to get max exploration ability. In Exploitation case, GLEET leans to make the particle as close
as possible to the most attended neighbour to reach the global optimum.

for all particles under the control of GLEET. It can be observed that our GLEET automatically controls
the EET hyper-parameters throughout the search, with the patterns displayed first in exploration and then
in exploitation till the conclusion of the iteration. Meanwhile, it is worth noting that GLEET favors a more
complex EET control pattern for difficult problems such as the one shown in Fig. 8(b), where two rounds of
exploration and exploitation emerge.

(a) Simple problem (b) Difficult problem

Figure 8: Visualization of action distribution
changes as the optimization process advances.

In Fig. 7, we further visualize how the attention among the
population (in GLEET-PSO’s decoder) affects the moving of
particles to perform exploration or exploitation on a 2D toy
problem. We highlight an exploration example and an exploita-
tion example in the convergence curve shown in Fig. 7(a). Per-
taining to the first case, we observe that the particle made a
big improvement after taking the action. In Fig. 7(b), we can
see that the particle is located near the centre of the search
space, while the majority of the other particles are scattered to
the right. The pBest and gBest particles are in two opposite
directions. Note that in this case the most attended particle is
a negative sample with a very worse fitness value, the current
particle learns to strengthen the utilization of the exemplar located on a much different direction from this
negative sample, which hence learns from the pBest direction and achieves a great improvement. Pertaining
to the second case in Fig. 7(c), the particle attends to the gBest and decides to perform exploitation around
it. This interpretable behavior verifies our analysis of choosing full attention in Section 4.2.

5.5 Ablation study

We first substitute the reward function we have designed in Eq. (10) by other rational ones designed by
recently proposed works and observe the performance of these reward functions. We then perform the
ablation study on GLEET’s own EET embeddings and the attention modules to examine their effectiveness.

5.5.1 Analysis on the reward design

Reward quality plays a crucial role in determining the final performance of the policy as it guides the policy
update during the training process. In Table 7, we provide a comparison of various practical reward functions
recently proposed, including our own approach. Specifically, we consider the reward function r1 proposed
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Table 7: The comparison among different reward functions, where the mean and standard deviations of ten runs on
the test set are reported (with the best mean value on each problem highlighted in bold).

Metric f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

Ours Mean
(Std)

2.471E+02
(7.676E+02)

2.440E+02
(1.396E+02)

1.498E+01
(2.357E+00)

5.816E-01
(2.210E-01)

3.716E+02
(1.866E+02)

1.300E+01
(1.020E+01)

1.302E+02
(8.489E+01)

7.216E+01
(3.555E+01)

1.202E+02
(2.016E+01)

1.682E+02
(1.648E+01)

r1
Mean
(Std)

5.846E+05
(5.353E+05)

3.253E+02
(1.433E+02)

1.559E+01
(6.938E+00)

1.412E+00
(7.098E-01)

4.515E+02
(2.043E+02)

3.089E+01
(2.492E+01)

2.254E+02
(1.577E+02)

1.136E+02
(4.948E+01)

1.742E+02
(6.542E+01)

1.923E+02
(2.184E+01)

r2
Mean
(Std)

1.461E+01
(4.200E+01)

2.591E+02
(1.408E+02)

1.490E+01
(2.272E+00)

7.330E-01
(2.801E-01)

4.052E+02
(2.156E+02)

1.799E+01
(1.087E+01)

1.715E+02
(1.257E+02)

7.816E+01
(3.618E+01)

1.345E+02
(6.539E+01)

1.699E+02
(1.678E+01)

r3
Mean
(Std)

4.752E+04
(9.845E+04)

2.404E+02
(1.256E+02)

1.510E+01
(2.283E+00)

6.065E-01
(2.045E-01)

3.645E+02
(1.721E+02)

2.315E+01
(1.774E+01)

2.056E+02
(2.043E+02)

8.305E+01
(3.945E+01)

1.311E+02
(6.742E+01)

1.705E+02
(1.719E+01)

Table 8: Ablation studies on the the EET embeddings and the attention modules of GLEET, where the mean and
standard deviations of ten runs on the test set are reported (with the best mean value on each problem highlighted
in bold).

Metric f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

w/o both Mean
(Std)

3.734E+06
(7.314E+06)

6.055E+02
(2.713E+02)

2.302E+01
(6.237E+00)

1.849E+00
(1.010E+00)

2.202E+03
(3.284E+03)

9.543E+01
(5.366E+01)

7.542E+02
(7.417E+02)

3.633E+02
(2.251E+02)

2.975E+02
(6.088E+01)

2.222E+02
(4.119E+01)

w/o EETs Mean
(Std)

3.345E+06
(6.453E+06)

5.723E+02
(2.018E+02)

2.252E+01
(6.092E+00)

1.804E+00
(1.003E+00)

2.050E+03
(2.377E+03)

7.939E+01
(6.198E+01)

7.034E+02
(7.314E+02)

3.348E+02
(2.507E+02)

2.351E+02
(6.014E+02)

2.201E+02
(3.414E+01)

w/o MHA Mean
(Std)

3.124E+06
(5.269E+06)

5.066E+02
(1.767E+02)

2.029E+01
(4.273E+00)

1.710E+00
(1.046E+00)

2.145E+03
(2.540E+03)

8.159E+01
(5.959E+01)

6.777E+02
(6.397E+02)

3.132E+02
(2.588E+02)

2.263E+02
(6.031E+01)

2.180E+02
(3.635E+01)

GLEET Mean
(Std)

2.748E+06
(4.205E+06)

5.105E+02
(1.776E+02)

2.120E+01
(4.705E+00)

1.422E+00
(7.776E-01)

1.847E+03
(2.552E+03)

4.449E+01
(3.381E+01)

4.977E+02
(3.549E+02)

1.096E+02
(3.924E+01)

1.665E+02
(6.137E+01)

1.882E+02
(4.127E+01)

by Yin et al. (Yin et al., 2021), which assigns a reward of 1 for improvement and −1 otherwise:

r
(t)
1 =

{
1 if f(gBest(t)) < f(gBest(t−1))
−1 otherwise

(13)

Sun et al. (Sun et al., 2021) introduced another reward function, denoted as r2, which measures the relative
improvement between consecutive steps as the reward:

r
(t)
2 = f(Best(t−1)) − f(Best(t))

f(Best(t−1)) (14)

where Best(t) is the best particle in the t time step population.

Furthermore, Xue et al. (Xue et al., 2022) identified the issue of premature convergence in PBOs and proposed
a novel triangle-like reward function, denoted as r3, to address this concern:

r
(t)
3 = (1/2) · (p2

t+1 − p2
t ), (15)

pt+1 =
{

f(g(0))−f(g(t))
f(g(0)) if f(g(t)) < f(g(t−1))

pt otherwise
(16)

where g(t) denotes gBest(t).

We train GLEET-PSO with these reward functions and compare their optimization results. It turns out that
under the experiment setting in this paper, our reward function stands out. In comparison, r1 presents poor
performance on all problems, r2 and r3 are acceptable on simpler problems. Notably, our reward function
demonstrated better performance on more complex problems. We recognize the importance of investigating
this issue further in future work, with the aim of designing more compatible and effective reward functions.

5.5.2 Analysis on the network design

We now conduct ablation studies to verify the effectiveness of our state representation (Section 4.1) and
network designs (Section 4.2) in the instantiation of GLEET to PSO. Specifically, we compare GLEET-PSO
with its degraded versions “GLEET w/o EETs”, “GLEET w/o MHA”, and “GLEET w/o both”. Here, the
first version removes the exploration and exploitation features in the states and thus the decoder could only
perform self-attention based on FIPEs given that EETs are no longer available; the second variant removes all
the MHA in the en/decoders; and the third variant removes both the first and the second designs. The results
presented in Table 8 demonstrate the critical importance of both EETs and MHA in GLEET. The inclusion
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Table 9: Ablation studies on the the state representation, where the mean and standard deviations of ten runs on
the test set are reported (with the best mean value on each problem highlighted in bold).

Metric f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

w/o s1∼4
Mean
(Std)

3.546E+06
(6.675E+06)

6.672E+02
(2.965E+02)

2.412E+01
(6.153E+00)

1.745E+00
(1.331E+00)

2.163E+03
(2.974E+03)

7.329E+01
(4.993E+01)

7.588E+02
(7.464E+02)

5.971E+02
(3.699E+02)

3.610E+02
(6.631E+01)

2.876E+02
(4.273E+01)

w/o s5∼6
Mean
(Std)

3.376E+06
(5.975E+06)

6.034E+02
(2.311E+02)

2.358E+01
(6.274E+00)

1.773E+00
(1.231E+00)

2.189E+03
(2.112E+03)

6.912E+01
(6.134E+01)

7.331E+02
(7.762E+02)

2.062E+02
(2.371E+02)

3.034E+02
(6.237E+02)

2.766E+02
(4.130E+01)

w/o s7∼9
Mean
(Std)

3.383E+06
(5.668E+06)

5.977E+02
(2.232E+02)

2.316E+01
(5.985E+00)

1.786E+00
(1.187E+00)

2.107E+03
(2.313E+03)

6.812E+01
(6.900E+01)

7.201E+02
(6.861E+02)

4.691E+02
(2.743E+02)

2.981E+02
(6.217E+01)

2.537E+02
(3.935E+01)

GLEET Mean
(Std)

2.748E+06
(4.205E+06)

5.105E+02
(1.776E+02)

2.120E+01
(4.705E+00)

1.422E+00
(7.776E-01)

1.847E+03
(2.552E+03)

4.449E+01
(3.381E+01)

4.977E+02
(3.549E+02)

1.096E+02
(3.924E+01)

1.665E+02
(6.137E+01)

1.882E+02
(4.127E+01)

of EETs allows for explicit incorporation of exploration and exploitation information from the optimization
process into the decoders. The fully-informed MHA plays a crucial role in facilitating the learning of more
useful features through the interaction between individual embeddings of the population. This finding partly
justifies the oversimplification of the network architectures used in existing learning-based approaches.

5.5.3 Analysis on the state representation

In this section we conduct ablation studies on the features in state representation. As introduced in Sec-
tion 4.1.1, there are nine features in the state which can be divided into three parts: the features about
search progress (s1∼4), the distribution of costs (s5∼6) and about population distribution (s7∼9). To evalu-
ate their effect we ablate each of them from GLEET-PSO agent and train them on the 10D problems. Their
performance is shown in Table 9 where GLEET is the baseline with full state features. Results indicates
that firstly removing any one of the three parts features would significantly affect the learning effectiveness
of GLEET. Besides, the optimization progress feature s1 ∼ s4 contribute most to GLEET, which can be
interpreted as a informative signal telling GLEET when and where to adjust the hyper-parameter values for
better searching behaviour. A comprehensive state representation would help learning indeed.

5.5.4 Analysis on the RL hyper-parameters

RL algorithms can be very sensitive to hyper-parameters, to make a deeper analysis on GLEET we explore
the effect of batch size and trajectory length T . The batch size may not influence the training stability. In
PPO, the length of trajectory segments could impact the reward accumulation and the later learning steps.
For the batch size we compare the performance with 8, 16, 32 ad 64 batch sizes. For the trajectory length
we adopt the values of 5, 10 and 20. The other hyper-parameters are frozen in the experiment. Taking
GLEET-DMSPSO with 10D Schwefel (f2) as a case, the results for batch sizes and trajectory lengths are
shown in Fig. 9 and Fig. 10 respectively. The experimental results show that GLEET-DMSPSO with 8, 16,
32, and 64 batch sizes consistently exhibits good performance on 10D Schwefel (f2) problems regardless of
the numbers of the batch size, and the results of varying trajectory lengths reveal that a proper and moderate
length may benefit the final performance since a shorter trajectory may increase the training variance and
an overlong trajectory may reduce leaning steps in episodes (10 length trajectory has 200 K-epoch learning
in a 2000 generation episode but the 20 length one only has 100) which may degrade the performance.

Batch = 8 Batch = 16 Batch = 32 Batch = 64
Batch size

1.8

2.0

2.2

2.4

2.6

2.8

Lo
g1

0 
co

st

245.40
±140.51

244.03
±139.62

244.70
±140.05

243.60
±140.18

Figure 9: The boxplots of GLEET-DMSPSO
on Schwefel (f2) problem with different batch
sizes.

T = 5 T = 10 T = 20
Trajectory length

1.6

1.8

2.0
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2.4

2.6

2.8

3.0

3.2
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g1

0 
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st 265.74
±157.87

244.03
±139.62

251.37
±130.34

Figure 10: The boxplots of GLEET-DMSPSO
on Schwefel (f2) problem with different trajec-
tory length T .
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6 Conclusion

This paper proposed a generalizable GLEET framework for dynamic hyper-parameters tuning of the EET
issue in PBO algorithms. A novel MDP was formulated to support training on a class of problems, and
then inference on the other unseen ones. We instantiated the GLEET to well-known PBO algorithms by
specially designing an attention-based network architecture that consists of a feature embedding module, a
fully informed encoder, and an exploration-exploitation decoder. Experimental results verified that GLEET
not only improves the backbone algorithms significantly, but also exhibits favorable generalization ability
across different problem classes, dimensions, etc. However, there are still some limitations in this study.
Although GLEET has shown the state-of-the-art generalization performance among the RL-based methods,
the handcrafted population features and EET features based on the Fitness Landscape Analysis may still
show vulnerability to high-dimensional scenario. Besides, GLEET may not be able to be applied on backbone
optimizers without explicit EET control parameters. Moreover, the population size of the backbone optimizer
can not change dynamically which changes the action space of the MDP and makes the training meaningless.
Future work includes but is not limited to addressing the above limitations, in order to further boost the
performance of learning-based PBOs. Additionally, it deserves to research into a standardized evaluation
environment to facilitate the comprehensive comparisons among different learning-based PBO methods.
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A RL Hyper-parameter

Table 10 shows the used Hyper-parameters.

Table 10: The used Hyper-parameters

Parameters Values

D
at

as
et

Training set size 128
Testing set size 1024
Batch size 16
Problem dim 10D, 30D
maxFEs 2e5, 1e6
Search space [−100, 100]
Number of runs 10

PP
O

MaxEpoch 100
Trajectory length T 10
K-epoch κ 3
Learning rate lr 4e − 5 to 1e − 5
Gamma γ 0.999
Eps clip 0.1
Max gradient norm 0.1

N
et

wo
rk

Feature input dim K 9
Population Embedding dim 128
Exploration Embedding dim 128
Exploitation Embedding dim 128
EET Embedding dim 128
Attention heads 8
Actor hidden dim 32 × 8
Critic hidden dim 32 × 16
Controlled dim M (PSO) 1
Controlled dim M (DMSPSO) 1
Controlled dim M (DE) 3
EET Embedding dim 128

G
LE

ET
-P

BO

PS
O

Population size N 100
Max velocity 10
Inertial factor 0.728

D
M

SP
SO

Population size N 99
Sub-swarm size 3
Regroup generation 10
Max velocity 10
Inertial factor 0.728

D
E Population size N 100

B Boxplots for numerical comparison results

Fig. 11 presents the boxplots of comparison results between PSO methods on 10D (Table 1) and 30D (Table 2)
problems. Fig. 12 shows the boxplots of comparison results between DE methods in Table 3 and Table 4.
Due to the various scales of costs, the boxplots present the log10 values. It can be seen that although the
costs could be largely variant on some problems (e.g., variants on f1 can up to three orders of magnitude),
the overall ranking and the conclusions are invariant with that in Section 5.2. GLEET significantly improves
the backbone algorithms and dominates the optimization performance on 10D and 30D problems.
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(a) PSO in 10D f1
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(b) PSO in 10D f2
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(c) PSO in 10D f3
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(d) PSO in 10D f4
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(e) PSO in 10D f5
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(f) PSO in 10D f6
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(g) PSO in 10D f7
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(h) PSO in 10D f8
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(i) PSO in 10D f9
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(j) PSO in 10D f10
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(k) PSO in 10D f11
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(l) PSO in 30D f1
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(m) PSO in 30D f2
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(n) PSO in 30D f3
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(o) PSO in 30D f4
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(p) PSO in 30D f5
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Figure 11: The boxplots for the comparison results of Table 1 and Table 2
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Figure 12: The boxplots for the comparison results of Table 3 and Table 4
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