
Published in Transactions on Machine Learning Research (10/2024)

Certified Robustness against Sparse Adversarial Perturba-
tions via Data Localization

Ambar Pal ambar@jhu.edu
Department of Computer Science &
Mathematical Institute for Data Science
Johns Hopkins University
Baltimore, MD 21218, USA

René Vidal vidalr@upenn.edu
Department of Electrical and Systems Engineering &
Center for Innovation in Data Engineering and Science
University of Pennsylvania
Philadelphia, PA 19104, USA

Jeremias Sulam jsulam1@jhu.edu
Department of Biomedical Engineering &
Mathematical Institute for Data Science
Johns Hopkins University
Baltimore, MD 21218, USA

Reviewed on OpenReview: https: // openreview. net/ forum? id= 17Ld3davzF

Abstract

Recent work in adversarial robustness suggests that natural data distributions are localized,
i.e., they place high probability in small volume regions of the input space, and that this
property can be utilized for designing classifiers with improved robustness guarantees for
`2-bounded perturbations. Yet, it is still unclear if this observation holds true for more
general metrics. In this work, we extend this theory to `0-bounded adversarial perturbations,
where the attacker can modify a few pixels of the image but is unrestricted in the magnitude
of perturbation, and we show necessary and sufficient conditions for the existence of `0-robust
classifiers. Theoretical certification approaches in this regime essentially employ voting over
a large ensemble of classifiers. Such procedures are combinatorial and expensive or require
complicated certification techniques. In contrast, a simple classifier emerges from our theory,
dubbed Box-NN, which naturally incorporates the geometry of the problem and improves
upon the current state-of-the-art in certified robustness against sparse attacks for the MNIST
and Fashion-MNIST datasets.

1 Introduction

It is by now well known that adversarial attacks affect Machine Learning (ML) systems that can potentially
be used for security sensitive applications. However, despite significant efforts on robustifying ML models
against adversarial attacks, it has been observed that their performance on most tasks under adversarial
perturbation is not close to human levels. This motivated researchers to obtain theoretical impossiblity
results for adversarial robustness Shafahi et al. (2018); Dohmatob (2019); Dai & Gifford (2022), which state
that for general data distributions, no robust classifier exists against adversarial perturbations, even when the
adversary is limited to making small `p-norm-bounded perturbations. However, such results are seemingly in
conflict with the fact that humans can classify most natural images quite well under small `p-norm-bounded
perturbations. Even more, there is a rich literature on certified robustness, e.g., Zhang et al. (2018); Cohen
et al. (2019); Pal & Vidal (2020); Fischer et al. (2020); Jeong & Shin (2020); Jia et al. (2022); Pfrommer
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et al. (2023); Salman et al. (2022); Eiras et al. (2022); Pal & Sulam (2023), where the goal is to obtain and
analyze methods with provable guarantees on their robustness under adversarial attacks.

Pal et al. (2023) recently provided a solution to this apparent conflict, noting that existing impossibility
results become vacuous when the data distribution is such that a large probability mass is concentrated
on very small volume in the input space, a property they call (C, ε, δ)-concentration. This characterization
implies that at least 1 − δ probability mass is found in a region of volume at most Ce−nε for small δ ≈ 0
and large ε. As an example, this property dictates that sampling a random 224× 224 dimensional image is
extremely likely to not be a natural image. This property is intuitively satisfied for natural datasets like
ImageNet, and Pal et al. (2023) formally show that whenever a classifier robust against small `2-bounded
attacks exists for a data distribution (e.g., humans for natural images), this distribution must be concentrated.
This shows that indeed, robust classifiers against `2 attacks can be obtained for natural image distributions,
and there is no impossibility.

While these results are encouraging, attacks that are bounded in Euclidean norm have nice analytical
properties that facilitated the results in Pal et al. (2023). In this work, we seek to understand if similar
notions can provide insights on provable defenses against sparse adversarial attacks (bounded in their `0
distance) where the adversary is limited to modifying a few pixels on the image, but those pixels can be
modified in an unbounded fashion. Even though for humans it seems trivial to correctly classify a natural
image corrupted in a few pixels, this problem has stood out as a particularly hard task for machine learning
models. The difference is extreme: Su et al. (2019) demonstrated that adversarially modifying a single pixel
leads to large performance degradation of many state of the art image recognition models. Standard ideas
for improving robustness, like adversarial training, seem to be empirically ineffective against sparse attacks.
Since then, researchers have resorted to enumerating a large number of subsets of the input pixels, and taking
a majority vote over the class predicted from each subset, as a means of obtaining classifiers robust to sparse
attacks. The resultant methods (Levine & Feizi, 2020b) are expensive, and need probabilistic certificates due
to the combinatorial blow-up in the number of subsets needed as the number of attacked pixels increases.
Follow-up work by Jia et al. (2022) has employed complicated certification schemes to reduce the slack in
these certificates, while still remaining computationally expensive. Most recently, Hammoudeh & Lowd (2023)
carefully selected these subsets to speed up the certificate computation. However, none of these existing
methods utilizes the geometry of the underlying data distribution highlighted by our results. Departing
from this stream of research, we propose a classifier that closely utilizes this underlying geometry to obtain
robustness certificates. As a result, we provide a classifier that is lighter and simpler than all existing works,
and an associated certification algorithm with `0 certificates that are better than prior work.

Our proof techniques extend results in Pal et al. (2023) to sparse adversarial attacks. In practice, one can
always project the pixel values to lie in some predefined range, say [0, 1], before classification, so we can
consider adversarial perturbations to lie within [0, 1]n without any loss of generality. In other words, our
adversary at power ε is allowed to modify an image from x to x′ such that ‖x− x′‖0 ≤ ε, ‖x′‖∞ ≤ 1. The
techniques in Pal et al. (2023) break down under such an adversary, as their first assumption is to restrict
attention to adversarial perturbations v such that x + v cannot lie ε-close to the boundary of the image
domain. In our case, the geometry of the problem is radically different: even a perturbation of size 1 is
sufficient to take any image to the boundary of the domain [0, 1]n (simply perturb any pixel to 1). As a
result, although we are motivated by Pal et al. (2023), our theory and certification algorithms are markedly
different from those in that work.

In the above setting, we show that whenever there exists a classifier robust to adversarial modification of a
few entries in the input, the underlying data distribution places a large mass, i.e., localizes, on low-volume
subsets of the input space. We further show that the converse holds too, albeit with a strengthening of the
localization condition; i.e., we show that when the data distribution localizes on low-volume subsets of the
input space, and these subsets are sufficiently separated from one another, then a robust classifier exists.
These results suggest that such underlying geometry in natural image distributions should be exploited for
constructing classifiers robust against `0 attacks. Indeed, we then propose a simple classifier, called Box
Nearest Neighbors (Box-NN), that utilizes this underlying geometry by having decision regions that are
unions of axis-aligned rectangular boxes in the input space. Such a classifier naturally allows for `0 robustness
certificates that improve upon prior work for certified defenses in a wide regime.
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To summarize, we make the following contributions in this work:

1. In Section 2 we show that if a data-distribution p defining a multi-class classification problem admits
a robust classifier whose error is at most δ under sparse adversarial perturbations to ε pixels, then
there is a subset S of volume at most Ce−ε2/n and a class k such that the class conditional qk places
a large mass qk(S) ≥ 1− δ on S, i.e., qk is (C, ε2/n, δ)-localized. The constant C captures certain
geometric properties of the robust classifier, and will be clarified later.

2. In Section 3, we show that a stronger notion of localization, which ensures that the class conditional
distributions are sufficiently separated with respect to the `0 distance, is sufficient for the existence of
a robust classifier. In fact, this result generalizes to any distance d, showing the existence of a robust
classifier w.r.t. perturbations bounded in distance d whenever the data distribution p is strongly
localized with respect to d.

3. In Section 4, we propose a classifier certifiably robust against sparse adversarial attacks, called
Box-NN, and derive certificates of `0 robustness for it. We then provide empirical evaluation on the
MNIST and the Fashion-MNIST datasets, and demonstrate that Box-NN obtains state-of-the-art
results in certified `0 robustness.

2 Existence of an `0-Robust Classifier implies Localization

We will take our data domain to be [0, 1]n, to mimic the standard natural image classification tasks1, i.e.,
X = {x : ‖x‖∞ ≤ 1}. We will take our label domain to be Y = {1, 2, . . . ,K}, and assume that we have a
classification task defined by a joint data distribution p over X × Y. The marginal distribution over the
classes will be denoted by pY . The conditional distribution pX|Y=k for each class k ∈ Y will be denoted by
qk

2. Further, we will say that the classes are balanced when pY (k) = 1
K for all k ∈ Y.

In this work, we will study adversarial robustness for non-trivial classifiers that are not constant over the
entire domain X . For any such classifier f : X → Y, we recall the standard definition of robust risk Rd(f, ε)
against perturbations bounded in a distance d as

Rd(f, ε) = P
(x,y)∼p

(∃x̄ ∈ Bd(x, ε) such that f(x̄) 6= y) .

Similarly, we define a classifier f to be (ε, δ)-robust with respect to a distance d if the robust risk against
perturbations at a distance bounded by ε is at most δ, i.e., Rd(f, ε) ≤ δ.

For the rest of this section, we will assume that p defines a task for which one can obtain a classifier f
such that R`0(f, ε0) ≤ δ, where ε0 is a non-negative integer denoting the maximum number of co-ordinates
that an adversary can perturb. Given such an f , we will show that p should satisfy the special property of
localization. In other words, we will obtain a necessary condition for `0 robustness. This special property of
(C, ε, δ)-localization3 is similar to Pal et al. (2023, Definition 2.2), with a slight modification:
Definition 2.1 (Localized Distribution, modification of Pal et al. (2023)). A probability distribution q over
a domain X ⊆ Rn is said to be (C, ε, δ)-localized if there exists a subset S ⊆ X such that q(S) ≥ 1− δ but
Vol(S) ≤ C exp(−ε). Here, Vol denotes the standard Lebesgue measure on Rn, and q(S) denotes the measure
of S under q.

Definition 2.1 is similar to Pal et al. (2023, Definition 2.2) but it removes the explicit dimension of the
problem, i.e., n, from the volume constraint. This allows one to state the results in Pal et al. (2023), as
well as ours, under the same definition. Additionally, we rename the property from concentration in Pal
et al. (2023) to localization, in order to distinguish ourselves from the well known notion of concentration of
measure. These two notions are related and, before proceeding, we compare them in more detail.

1Albeit with a scaling – natural images are typically stored with each pixel value in [0, 255].
2The conditional density is defined in a standard fashion as qk(x) = p(x, k)/pY (k).
3Here, the quantity C, similar to ε and δ, is a parameter of localization, and controls the extent of localization. C can be

determined directly given access to a distribution p, or indirectly via Theorem 2.2 given access to a robust classifier.
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The notion of measure concentration from high dimensional probability theory roughly states that for a given
large dimension n, “a well behaved function h of the random variables Z1, Z2, . . . , Zn takes values close to
its mean Eh(Z1, . . . , Zn) with high probability” (Talagrand, 1996). A popular quantification of this notion
states that for a metric space (X , d) and a probability distribution q over X , the concentration function α
defined as

αq,d(t) = sup
S⊆X , q(S)≥1/2

1− q(S+t), (1)

decreases “very fast” with t, where recall that S+t = {x ∈ X : d(x, S) ≤ t}. We typically say that q has the
property of measure concentration if there is an exponential decay as αq,d(t) ∼ exp(−γt) for all t ≥ 0, and
some universal constant γ.

In contrast, the definition of (C, ε, δ)-localization requires the existence of S ⊆ X such that q(S) ≥ 1 − δ
and Vol (S) ≤ C exp(−ε). Concentration and localization are similar in the underlying message: most of the
mass in q is concentrated near a small region in space. However, the mathematical formalization is different,
as localization does not require a fast enough rate of decay of the measure, and hence does not require an
underlying metric on the space X . In order to show that a given distribution q localizes, it is sufficient to
provide a single instance of a set S ⊆ X that satisfies the localization parameters. For our data domain
X = [0, 1]n, we will consider a family of probability distributions given by qa = Unif([0, a]n) for a ∈ (0, 1],
and comment on their localization and measure concentration parameters, to shed light into their similarities
and differences.

For any S ⊆ [0, a]n ⊆ X , we can simplify 1− δ ≤ qa(S) = 1
anVol (S) ≤ 1

an exp(−ε) to obtain that

qa is
(

1, log
(

1
1− δ

)
+ n log

(
1
a

)
, δ

)
− localized for any δ ∈ [0, 1].

From the above we can see that keeping δ, a < 1 fixed, qa becomes “more localized” as the dimension n
increases. Similarly, keeping δ, n fixed, qa becomes more localized as a gets closer to 0. In this sense, the
localization parameters depend on the scale of the support of the underlying distribution.

In contrast, as measure concentration depends on an underlying metric, the concentration parameters are
independent of the scale of the support when the metric is invariant to scaling. As an example, for X equipped
with the hamming metric, d0(x, x′) = ‖x− x′‖0, the concentration function for the distribution qa can be
shown to be

αqa,d0(t) ≤ 2 exp
(
− t

2

n

)
. (2)

Armed with the above definition, we will now derive a necessary condition for `0-robustness in terms of
localization, by using a measure-concentration result w.r.t. the `0 distance due to Talagrand (1995).
Theorem 2.2. If there exists a non-trivial (ε, δ)-robust classifier f with respect to the `0 distance for a data
distribution p, then at least one of the class conditionals q1, q2, . . . , qK must be (C, ε2/n, δ)–localized according
to Definition 2.1. Further, if the classes are balanced, then all the class conditionals are (Cmax, ε

2/n,Kδ)-
localized. Here, C and Cmax are constants dependent on f .

Proof. We are given a classifier f which is (ε, δ)-robust w.r.t. perturbations bounded in the `0 distance. In
other words, we have R`0(f, ε) ≤ δ. Expanding this we get∑

k

P (∃x̄ ∈ B`0(x, ε) such that f(x̄) 6= k) P(y = k) ≤ δ.

In other words, there exists a class k′ satisfying qk′
(
{x ∈ X : ∃x̄ ∈ B`0(x, ε) such that f(x̄) 6= k′}

)
≤ δ.

Defining the unsafe set for the class k′ as Uk′ = {x ∈ X : ∃x̄ ∈ B`0(x, ε) such that f(x̄) 6= k′}, we have shown

qk′(Uk′) ≤ δ. (3)
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Define Ak′ ⊂ X to be the region where f predicts k′, i.e., Ak′ = {x ∈ X : f(x) = k′}. Further, for any set
Z define Z+ε to be all the points in the domain X which are at most ε away from Z in `0 distance, i.e.,
Z+ε = {x ∈ X : ∃x̄ ∈ Z such that ‖x− x̄‖0 ≤ ε} Then, we have

Uk′ = {x ∈ X : ∃x̄ such that ‖x− x̄‖0 ≤ ε, f(x̄) 6= k′}
= {x ∈ X : ∃x̄ ∈ (X \Ak′) such that ‖x− x̄‖0 ≤ ε}
= (X \Ak′)+ε.

Now, we will use measure concentration on the unit cube from Talagrand (1995, Proposition 2.1.1):

Lemma 2.3 (Proposition 2.1.1 in Talagrand (1995)). For B ⊆ [0, 1]n, dist(x,B) = minz∈B ‖x− z‖0, any
measure µ on [0, 1], we have

P
x∼µn

(dist(B, x) ≥ t) ≤ 1
Px∼µn(x ∈ B) exp(−t2/n).

Note that since the domain [0, 1]n has n-dimensional volume 1, i.e., Vol([0, 1]n) = 1, the uniform measure of
any set µn(B) = Vol(B), for B ⊆ [0, 1]n. Substituting B = X \Ak′ , t = ε, µ = Unif([0, 1]), in Lemma 2.3, we
obtain

Vol(X \Ak′)+ε ≥ 1− exp(−ε2/n)
Vol(X \Ak′)

.

Using Vol(X \ Uk′) = 1−Vol(X \Ak′)+ε, we obtain

Vol(X \ Uk′) ≤
exp(−ε2/n)
Vol(X \Ak′)

. (4)

Finally, combining (3), (4), and taking S = X \ Uk′ , we have

qk′(S) ≥ 1− δ, Vol(S) ≤ C exp(−ε2/n),

where C = 1
1−Vol(Ak′ )

, showing that qk′ is (C, ε2/n, δ)-localized. If the classes were balanced, repeating
the above argument for each class shows that qk is (C, ε2/n,Kδ)-localized for all k ∈ Y for Cmax =
maxk′(1/(1−Vol(Ak′))).

Discussion on Theorem 2.2. A few comments are in order for the above result.

1. Theorem 2.2 demonstrates that whenever a non-constant `0 robust classifier exists for a data distribution,
this distribution must be localized. This could be instantiated for real data sets like ImageNet to obtain
interesting observations about the underlying distribution. For instance, humans are robust to perturbation
of a few pixels to any image in ImageNet. Then, Theorem 2.2 tells us that ImageNet is localized. Note,
however, that the localization parameters (i.e., C, ε, δ for the human classifier) are unknown.

2. The localization parameters in Theorem 2.2 are different than the concentration parameters in Pal et al.
(2023, Theorem 2.1). Specifically, Pal et al. (2023, Theorem 2.1) shows that (C, nε, δ)-concentration
is a necessary condition for `2-robustness under Definition 2.1, and we will now show that (C, ε2/n, δ)-
localization is a necessary condition for `0-robustness. This demonstrates that the existence of a classifier
robust to `0 classifier implies a different kind of localization of the data distribution than robustness to
`2 perturbations. While Pal et al. (2023) assume that their data lies in a unit `2 ball with adversarial
perturbation strength ε ∈ [0, 1], we assume that our data lies in a unit `∞ ball and with perturbation
strength ε ∈ {0, 1, 2, . . . , n}. As such a direct comparison of the parameters is not immediate as our work
deals with objects very different from Pal et al. (2023).

3. Theorem 2.2 suggests that for obtaining `0 robust classifiers, we should try to find and classify over the
sets that the distribution localizes on. This is a significant departure from the existing literature on
`0-robust classifiers Levine & Feizi (2020a); Jia et al. (2022); Hammoudeh & Lowd (2023), and indeed, we
will obtain a classifier in Section 4 that respects such geometry.
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We have now demonstrated that localization is a necessary condition for the existence of a classifier robust
to perturbations bounded in the `0 distance, i.e., perturbations having a small support. Inspired by the
investigations in Pal et al. (2023), we will now consider whether this condition is also sufficient.

3 d-Strong Localization implies Existence of a d-Robust Classifier

Localization of the data distribution ensures that each class conditional concentrates on a small volume
subset of X . However, as noted in Pal et al. (2023), these subsets might intersect too much, in which case
there might not exist a classifier with low standard risk, i.e., R`0(f, 0). Hence, one cannot expect localization
to be sufficient for the existence of a classifier with low robust risk, i.e., R`0(f, ε) with ε > 0. However, if
these subsets were separated enough, then one can expect to use them to build a robust classifier. Indeed, we
will now formalize this intuition to obtain a condition stronger than localization, which will be shown to be
sufficient for the existence of a robust classifier.
Definition 3.1 (d-Strongly Localized Distributions, generalizing Pal et al. (2023)). A distribution p is said
to be (ε, δ, γ)-strongly-localized with respect to a distance d, if each class conditional distribution qk localizes
over the set Sk ⊆ X such that qk(Sk) ≥ 1− δ, and qk

(⋃
k′ 6=k S

+2ε
k′

)
≤ γ, where S+ε denotes the ε-expansion

of the set S in d, i.e., S+ε = {x : ∃x̄ ∈ S such that d(x, x̄) ≤ ε}.

With the above definition, we will now obtain a generalization of Pal et al. (2023, Theorem 3.1) to an arbitrary
distance d:
Theorem 3.2. If p is (ε, δ, γ)-strongly localized with respect to a distance d, then there exists a classifier f
such that Rd(f, ε) ≤ δ + γ.

Proof. At a high level, we will construct a classifier g that predicts the label k over an ε-expansion of the set
Sk on which the class conditional qk localizes. We will then “shave off” some regions from each Sk to ensure
g is well defined. For the rest of the input space X we will predict an arbitrary label, as we incur at most γ
in robust risk. Our construction of the robust classifier f is same as that in Pal et al. (2023), extended to
general d. However, bounding the robust risk of f needs technical innovations, since we are bounding the
robust risk with respect to a general distance d, as opposed to the `2 norm in Pal et al. (2023).

For each k ∈ {1, 2, . . . ,K}, let Sk be the set over which the conditional density qk is localized, i.e., qk(Sk) ≤ 1−δ.
Define S+ε to be the ε-expansion of the set S, as S+ε = {x : ∃x′ ∈ S, d(x, x′) ≤ ε}. Define Ck to be the
ε-expanded version of the localized region Sk but removing the ε-expanded version of all other regions Sk′ , as

Ck =
(
S+ε
k \ ∪k′ 6=kS

+ε
k′

)
∩ X .

Similar to the construction in Pal et al. (2023), we will use these regions to define the classifier f : X →
{1, 2, . . . ,K} as

f(x) =



1, if x ∈ C1

2, if x ∈ C2
...
K, if x ∈ CK
1, otherwise

.

We will now show that Rd(f, ε) ≤ δ + γ, which can be recalled to be

Rd(f, ε) =
∑
k

qk(Uk)pY (y = k), (5)

where the qk mass in (5) is over the set of all points x ∈ X that admit an ε-adversarial example for the class
k, defined as

Uk = {x ∈ X : ∃x̄ ∈ Bd(x, ε) ∩ X such that f(x̄) 6= k}. (6)
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As we saw earlier in the proof of Theorem 2.2, Uk = (X \ Ck)+ε ∩ X . We will obtain an upper bound on
qk(Uk), which will in turn give us an upper bound on Rd(f, ε).

Let A = S+ε
k ∩ X and B = ∪k′ 6=kS+ε

k′ . As Ck = A \B, we have

X \ Ck = X ∩ (A ∩Bc)c

= X ∩ (Ac ∪B)
= (X ∩Ac) ∪ (X ∩B)
=
(
X ∩

(
S+ε
k

)c) ∪ (∪k′ 6=k(X ∩ S+ε
k′ )
)
.

Then, we can expand (X \ Ck)+ε

(
X ∩

(
S+ε
k

)c)+ε ∪
(
∪k′ 6=k(X ∩ S+ε

k′ )+ε) ,
from the property (U ∪ V )+ε = U+ε ∪ V +ε. Now, since all the mass of qk lies in X , i.e., qk(X ) = 1, we have
qk(X ∩ V ) = qk(V ) for any set V . Applying this, we have

qk(Uk) = qk(X \ Ck)+ε

≤ qk
(
X ∩

(
S+ε
k

)c)+ε + qk
(
∪k′ 6=k(X ∩ S+ε

k′ )+ε)
≤ qk

((
S+ε
k

)c)+ε + qk
(
∪k′ 6=k(S+ε

k′ )+ε) .
Now applying Lemma A.1 we have

((
S+ε
k

)c)+ε =
((
S+ε
k

)−ε)c. Again from Lemma A.1 we know that

(V +ε)−ε ⊇ V for any set V . Hence, we have
((
S+ε
k

)−ε)c ⊆ Sck. Continuing,
qk(Uk) ≤ qk(Sck) + qk

(
∪k′ 6=kS+2ε

k′

)
≤ δ + γ,

Finally, as
∑
k pY (y = k) = 1, from (6) we have Rd(f, ε) ≤ δ + γ.

We note that (Pal et al., 2023, Theorem 3.2) follows as a direct corollary of our result Theorem 3.2 by taking
d to be the `2 distance.

Implications for Existing Impossibility Results. In our setting, Shafahi et al. (2018) prove that for any
classifier f : X → {1, 2, . . . ,K} for any class k with P (Y = k) ≤ 1/2, any point x ∼ qk is either mis-classified,
or admits an ε-adversarial example with probability at least

1− βqk exp
(
−ε2/n

)
, (7)

where βqk = 2 supx qk(x) depends on the class conditional qk. When qk is localized, βqk can grow faster than
exp

(
−ε2/n

)
, making the lower bound vacuous. This implies that for localized data-distributions there is no

impossibility, and there is a wide class of high-dimensional classification problems for which robust classifiers
exist. We now provide a concrete example.
Example 3.1. Let us consider a problem with 2 classes defined by the distribution p such that P (Y = 0) =
P (Y = 1) = 1/2, the class conditional q1 = P (X|Y = 1) = Unif(B`∞(1, ε)), and similarly q2 = P (X|Y =
2) = Unif(B`∞(−1, ε)). For this distribution, βq1 = βq2 = exp(n), and the lower bound (7) becomes vacuous
for ε ≤

√
n as

1− βqk exp
(
−ε2/n

)
= 1− 2 exp(−ε2/n+ n) ≤ 0.

Even though Example 3.1 is quite simple, the construction of small `∞ balls in the input space containing
most of the mass of the distribution is quite general, and depicts a wide class of data-distributions where
existing impossibility results are vacuous. We will now demonstrate that these general theoretical ideas lead
to practical `0 robust classifiers.
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4 `0-Adversarially Robust Classification via the Box-NN classifier

In this section, our aim will be to derive a `0-robust classifier by utilizing the geometry exposed by Theorem 3.2.
To this end, we will first investigate how a robust classifier looks like for a simple 2-class problem in 3-
dimensions. This will motivate a general form of a classifier whose decision regions are axis-aligned cuboids,
or boxes. Finally, we will generalize this classifier to obtain a `0-robust classifier and derive corresponding `0
certificates.

4.1 Development and Robustness Certification

Consider n = 3, and say there are two classes, cat and dog, defining conditional distributions q1 and q2,
strongly localized over S1 and S2 respectively, such that q1(S+1

2 ) = 0 and q2(S+1
1 ) = 0. In such a situation,

Theorem 3.2 (invoked with ε = 1) constructs a robust classifier fA as the following:

fA(x) =


dog, if x ∈ S+1

1
cat, if x ∈ S+1

2
cat, otherwise.

.

However, in practice, S1, S2 might be very complex, and hence fA might be computationally hard to evaluate.
For instance, Fig. 1 shows an illustration where these sets (shaded green and orange) have complicated shapes.

xdog

xcat

Bcat

Bdog

Figure 1: S1 is the green shaded region around xdog, where the class dog is localized, and S2 is the orange
shaded region around xcat, where the class cat is localized.

From Fig. 1, we see that the classifier fA is robust to 1-pixel perturbations whenever x ∈ S1 or x ∈ S2, as
Theorem 3.2 predicts. More importantly, we see that a perturbation of a single pixel of any xcat ∈ S2 lies
within the union of the orange cuboids. In other words, {x′ ∈ [0, 1]3 : ‖x−x‖0 ≤ 1, x ∈ S1} = S+1

1 ⊆ Orange,
and similarly for the dog class. Furthermore, we see that the intersection of these orange cuboids is given by
the cube Bcat. We can see that for any x ∈ Bcat, no single-pixel perturbation v can take x+ v outside the
orange region Orange, and similarly for the dog class. However, Bcat, Bdog are very efficiently described,
they are simply axis-aligned polyhedra enclosing S2 and S1 respectively. This motivates our modified classifier
fB ,

fB(x) =


dog, if x ∈ B+1

dog

cat, if x ∈ B+1
cat

cat, otherwise.
.

While fB is efficient to describe, it ignores a large portion of the input region outside the green and the orange
cuboids, i.e., X \B+1

dog ∪B
+1
cat, by making the constant prediction cat in this region. We can further extend fB

to attempt to correctly classify those regions as well, by computing `0 distances to our boxes Bcat, Bdog, as

fC(x) = arg min
y∈{cat,dog}

dist(x,By),

8
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where
dist(x, S) = min

v
‖v‖0 sub. to x+ v ∈ S (8)

gives the minimum number of pixel changes needed to get from x to S. While solving (8) is computationally
hard for general S, the following lemma shows that for our axis-aligned boxes B, (8) can be computed
efficiently, in closed form. The proofs of all our results can be found in Appendix A.
Lemma 4.1 (`0 distance to axis-aligned boxes). For an axis aligned box B(a, b) specified as B(a, b) = {x : a ≤
x ≤ b}, where a, b, x ∈ Rn, and all inequalities are element-wise, we have

dist(x,B(a, b)) =
n∑
i=1

1 (xi 6∈ [ai, bi]) ,

which can be computed in O(n) operations.

For real data distributions, however, having a single box per class would be overly simplistic and not provide
good accuracy. Thus, we generalize fC to our Box-NN classifier operating on boxes B = {B1, B2, . . . , BM},
such that we have an label ym ∈ {1, 2, . . . ,K} associated with each Bm. Our Box-NN classifier is then
defined as

Box-NN(x,B) = ym? , where m? = arg min
m

dist(x,Bm).

Note that, so far, we have not described how these boxes B are learned from data. This will be the subject
of Section 4.2 and onward. We can now obtain a `0 robustness certificate for Box-NN via the following
Theorem.
Theorem 4.2 (Robustness Certificate for Box-NN). Given a set of boxes B and their associated labels
{ym}Mm=1, define

m? = arg min
m

dist(x,Bm), d1 = dist(x,Bm?),

and
d2 = min

m : ym 6=ym∗
dist(x,Bm).

Then, with margin(x) def= d2 − d1, we have Box-NN(x,B) = Box-NN(x′,B) whenever ‖x′ − x‖0 <
margin(x)/2.

Key Intuition. Our robust classifier Box-NN is essentially a generalization of the nearest-neighbor classifier
to a nearest-box classifier, specifically suited to `0 metrics. This simple form turns out to be the right choice,
in the sense of the theoretical motivation of our previous section, for defending against sparse perturbations.
As we will shortly see, Box-NN also empirically produces better certificates than prior work in several
regimes.

Having developed the geometric intuition and the theoretical robustness guarantees for Box-NN, we will
now describe how we learn our classifier from data, and the associated challenges.

4.2 Learning Box-NN from Data

In this section, we are concerned with learning boxes {Bm} and their associated labels {ym}, such that
Box-NN obtains a high accuracy under sparse adversarial perturbations. For the rest of this section, we will
refer to the classifier Box-NN as fθ, with the learnable parameters θ = {ak, bk, yk}Mk=1 following the notation
in Lemma 4.1.

The quantity we are interested in maximizing is the robust accuracy, defined as 1−R`0(fθ, ε) following our
notation in Section 2. As we do not have access to the data distribution, we will instead be concerned with
maximizing the empirical robust accuracy RobustAcc(fθ, ε) defined over a set of samples {xi, yi}Ni=1 given by

1
N

N∑
i=1

1 [∀x′ : ‖x′ − xi‖0 ≤ ε, fθ(x′) = yi] . (9)

9
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The objective in (9) is a complicated object, and direct maximization w.r.t. θ is challenging. In the following,
we will first lower bound (9) and then use several optimization tricks to efficiently maximize this lower bound.

Recall from Theorem 4.2 that fθ(x) = fθ(x′) for all x′ satisfying ‖x− x′‖0 ≤ Cθ(x) def= margin(x)/2, where
Cθ is a pointwise certificate (at x) of robustness for fθ. With this, we have the certified accuracy lower bound
RobustAcc(fθ, ε) ≥ CertAcc(fθ, ε) defined as

CertAcc(fθ, ε)
def= 1

N

N∑
i=1

1[fθ(xi) = yi] · 1[Cθ(xi) ≥ ε]. (10)

We will take a gradient based optimization approach to maximize (10) over θ. However, since the gradients
of 1[·] are zero almost everywhere (and discontinuous otherwise), we will progressively relax the indicators in
(10). To this end, we maximize the integral of CertAcc(fθ, ε) over all ε ≥ 0 instead of treating it point-wise4,
leading to the objective

L1(θ) = 1
N

N∑
i=1

1[fθ(xi) = yi] · Cθ(xi). (11)

Approximating min. Recall from Theorem 4.2 that the margin involves the min function,

margin(x) = min
m

dist(x,Bm)− min
m : ym 6=ym?

dist(x,Bm).

The gradient of min w.r.t. its input (c1, . . . , cM ) is extremely sparse5, and hence a very small number of
parameters θi are updated at each step of gradient descent using gradients of (11). As a result, optimization
is extremely slow. We remedy this by using a soft approximation to min which has dense gradients,

minτ{c1, . . . , cM}
def=

M∑
m=1

cm
exp(−τcm)∑
j exp(−τcj)

, (12)

where τ is a parameter that approximately controls the sparsity of the gradients. The function minτ is equal
to min in the limit τ →∞, and reduces to the average when τ = 0.

Furthermore, we find that for many data points xi, a small number of boxes m contribute a lot to the final
loss due to large distances dist(xi, Bm). As a result, learning is slow for parameters corresponding to the
remaining boxes. To prevent such imbalance, we clip the certificates to 50. With these approximations, we
obtain

L2(θ) = 1
N

N∑
i=1

1[fθ(xi) = yi] · C̃θ(xi),

where C̃θ(x) is defined as

min
(

minτ
m

dist(x,Bm)− minτ
m : ym 6=ym?

dist(x,Bm), 50
)
. (13)

Relaxing Indicator Functions. Now observe that L2 is still a function of indicator functions, due to the
dist function in (13), which was derived in Lemma 4.1 to be dist(x,B(a, b)) =

∑n
i=1 1 (xi 6∈ [ai, bi]). Again,

as the gradients of 1[·] are zero almost everywhere, we perform a conical approximation to 1 (xi 6∈ [ai, bi])
which has non-zero gradients:

conical(x, ai, bi)
def= max(ai − x, 0) + max(x− bi, 0). (14)

Finally, we replace the indicator 1[fθ(xi) = yi] in L2 by si, where si = +1 if f(xi) = yi, and si = −1
otherwise, to have the misclassified data-points contribute to the loss. These modifications lead to our final
objective L(θ).

4i.e.,
∫
ε≥0 1[ε ≤ α]dε = α

5∇c min(c1, c2, . . . , cm) = (0, . . . , 0, 1, 0, . . . , 0) = ej? , where ej is the jth standard basis vector, and j? = arg minj cj .
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Improving Initialization. We initialize θ by using a set of boxes defined from the data. This is done by
first drawing a subset T of size M uniformly at random from the training data-points, and then initializing
θ with axis-aligned boxes centered at these data-points, as {(B(x− 0.1, x+ 0.1), y) : (x, y) ∈ T}, where the
scalar is added to, or subtracted from, every co-ordinate of the vector. Having described all the tricks used for
optimizing Box-NN, we now proceed to performing an empirical evaluation in Section 5. For the interested
reader, we also ablate over the training strategies mentioned above in Appendix B.2.

5 Empirical Evaluation

In this section, we will briefly describe existing methods for probabilistic `0 certification, (Levine & Feizi,
2020b) and (Jia et al., 2022) as well as deterministic `0 certification (Hammoudeh & Lowd, 2023), and then
empirically compare our (deterministic) `0 certified defense Box-NN to these approaches.

Levine & Feizi (2020b) and Jia et al. (2022) extend the technique of randomized smoothing (Cohen et al.,
2019) to randomized ablation (RA), where given any classifier f (e.g., a neural network), they produce a
smoothed classifier by zeroing out ρ pixels uniformly at random:

RAρ(x) = arg max
k

P
v∼Unif(Vρ)

(f(x� v) = k) , (15)

where Vρ = {v ∈ {0, 1}n : ‖v‖0 = ρ} is the discrete set of all binary vectors of length n having exactly ρ
ones, and � denotes the Hadamard product. For this construction in (15), a counting argument leads to the
robustness certificate in Levine & Feizi (2020b), which we compare to in Fig. 2. A more complicated analysis
based on the Neyman-Pearson lemma leads to a tighter certificate in Jia et al. (2022), which is also included
in our comparison in Fig. 3 (left), denoted by RAB

ρ . Both these certificates are randomized, i.e., they hold
with a confidence 1− α, where α, ρ are hyper-parameters that trade-off benign accuracy to robustness, and
can be chosen empirically. According to standard practice, we fix α = 0.05 and produce plots for varying ρ.
The interested reader can refer to Appendix B.3 for a description of the certification procedures developed in
Levine & Feizi (2020b); Jia et al. (2022).
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Figure 2: Comparison of Randomized Ablation (Levine & Feizi, 2020b) to our method Box-NN on the
MNIST (left) and FashionMNIST (right) datasets. In each figure, the dotted lines correspond to different
hyperparameter settings ρ. Details in text.

More recently, given any classifier f , Hammoudeh & Lowd (2023) produce a determinstic `0 certified classifier
g by partitioning the set of pixels {1, 2, . . . , n} into disjoint partitions V, and then producing the majority
prediction of f over V:

FPA(x) = Majority{f(xV )}V ∈V , (16)

where f(xV ) is defined as the prediction of f obtained after zeroing out the pixels in x not in V . Hammoudeh
& Lowd (2023) then produce a certificate by counting the difference in the votes of the majority label to the
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Figure 3: Comparison of Jia et al. (2022) (left) and Hammoudeh & Lowd (2023) (right) to our method
Box-NN on the MNIST dataset. The dotted lines correspond to different settings for the hyperparameter ρ.
Details are mentioned in text.

Table 1: Comparison of the median certified radius r̄ obtained by our Box-NN to the best hyperparameter
settings for prior work.

Dataset Method r̄

MNIST

Box-NN 13
RA Levine & Feizi (2020b) 8

RAB Jia et al. (2022) 10
FPAA Hammoudeh & Lowd (2023) 9
FPAB Hammoudeh & Lowd (2023) 12

FMNIST Box-NN 22
RA Levine & Feizi (2020b) 16

runner-up label in (16). In Fig. 3 (right), we compare to the best performing strategy for constructing V in
(Hammoudeh & Lowd, 2023) named “strided” and denoted by FPAA

ρ , where equally spaced pixels are selected
for each partition, i.e., V = {j : j ≡ t− 1 mod ρ}ρ−1

t=0 . Here ρ is a hyper-parameter as earlier, and we vary ρ
to produce the plots in Fig. 36. Note that (Hammoudeh & Lowd, 2023) also obtain an improved certificate by
using an aggregation more complicated than the majority vote (called “FPA with run-off elections”), which is
compared to in Fig. 10, where it is denoted by FPAB

ρ . The interested reader can refer to Appendix B.3 for
more details.

Results Recall from Section 4.2 Eq. (10) that the certified accuracy of a classifier g against ε-bounded
adversarial perturbations, CertAcc(g, ε), can be obtained given a point-wise certificate C for g. For each of
the methods described so far, we plot CertAcc against ε using the corresponding robust classifier g and the
certificate C over samples from the test set of the datasets mentioned.

A commonly used metric for comparing certified accuracy curves adopted in the literature (Levine & Feizi,
2020b; Jia et al., 2022; Hammoudeh & Lowd, 2023) is the median certified radius, which is the largest
perturbation strength under which a classifier is certified to have atleast 50% robust accuracy. As can be
seen in Table 1, our method Box-NN outperforms all existing methods under all hyperparameter settings on
this metric.

The median certified radius captures a small slice of the full certified accuracy curve, which provides a complete
picture. Observe that the dotted curves in Figs. 2 and 3 remain lower than our red curve except at small
attack strengths. This shows that Box-NN is able to produce better certificates at most radii, and trades-off

6We use the results reported in Hammoudeh & Lowd (2023, Table 27) given that no public implementation of the method is
available, to the best of our knowledge.
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robustness at higher radii for benign accuracy at small radii. Without any dedicated hyper-parameter tuning,
Box-NN dominates any single dotted curve for a large range of attack strengths, demonstrating that certified
defenses closely utilizing properties of the data-distribution can outperform complicated ensembling-based
defenses which ignore properties of the data.

6 Conclusion, Limitations and Future Work

In this work, we developed a theoretical to exploit properties of the data distribution for robustness against
sparse adversarial attacks. We showed that data localization – the property that a data distribution p places
most of its mass on very small volume sets in the input space – characterizes the existence of a `0-robust
classifier for p. Following this theory, we developed a defense against sparse adversarial attacks, and derived
a corresponding robustness certificate. We showed that this certificate empirically improves upon existing
state-of-the-art in several broad regimes.

The primary limitation of our work is the difficulty in efficiently learning classifiers that have axis-aligned
decision regions. While we are able to successfully employ several optimization tricks for datasets like MNIST
and Fashion MNIST, the task becomes harder on more complicated datasets, even though the geometry
required for the underlying data-distribution remains the same due to our general theoretical results. These
optimization difficulties mostly stem from the strict requirement of axis-aligned boxes for our distance
computation in Lemma 4.1. In the future, we hope to trade-off efficiency in the distance computation in
favor of richer decision boundaries that can be learnt efficiently and generalize well.
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A Auxilliary Lemmas and Proofs

Lemma A.1 (Properties of expansion and contraction, extending Pal et al. (2023)). For a distance d, set
A ⊆ [0, 1]n, define A+ε = {x ∈ [0, 1]n : distd(x,A) ≤ ε}, and A−ε = {x ∈ [0, 1]n : Bd(x, ε) ⊆ A}. Then, for
N,O ⊆ [0, 1]n, we have

1. (N ∩O)−ε = N−ε ∩O−ε

2. (N c)−ε = (N+ε)c, where c denotes complement in [0, 1]n

3. (N \O)−ε = N−ε \O+ε

4. (N ∪O)+ε = N+ε ∪O+ε

5. (N+ε1)+ε2 ⊆ N+(ε1+ε2)

Proof. The first four assertions of this Lemma are standard results in mathematical morphology, dealing with
the erosion and dilation of sets, and are reproduced here from Pal et al. (2023) for clarity.

1. Let M = N ∩O.

M−ε = {x : x ∈M,Bd(x, ε) ⊆M}
= {x : x ∈ N, x ∈ O,Bd(x, ε) ⊆ N,Bd(x, ε) ⊆ O} = N−ε ∩O−ε.

2. Let M = N c.

M−ε = {x : x ∈M,Bd(x, ε) ⊆M} = {x : x 6∈ N,Bd(x, ε) ⊆ N c}
= {x : x 6∈ N, ∀x′ ∈ Bd(x, ε) x′ 6∈ N}
= {x : ∀x′ ∈ Bd(x, ε) x′ 6∈ N}

=⇒ (M−ε)c = {x : ∃x′ ∈ Bd(x, ε) x′ ∈ N}
= N+ε.

3. LetM = N \O, we haveM−ε = (N ∩Oc)−ε = N−ε∩(Oc)−ε by Property 1, and then N−ε∩(Oc)−ε =
N−ε ∩ (O+ε)c by Property 2.

4. Let M = N ∪O. We have M c = N c ∩Oc. Taking ε-contractions, and applying the first and second
properties, we get M+ε = N+ε ∪O+ε.

5. For a set M , and any ε1 ≥ 0, ε2 ≥ 0, we have(
M+ε1

)+ε2 ⊆M+(ε1+ε2).

The above property can be derived from the triangle inequality applied to d, as(
M+ε1

)+ε2 = {x : ∃x′ ∈M+ε1 , d(x′, x) ≤ ε2}
= {x : ∃x′ ∈ X , x′′ ∈M, d(x′, x) ≤ ε2, d(x′′, x′) ≤ ε1}
⊆ {x : ∃x′′ ∈M, d(x′′, x) ≤ ε2 + ε1} = M+(ε1+ε2).

Lemma 4.1 (`0 distance to axis-aligned boxes). For an axis aligned box B(a, b) specified as B(a, b) = {x : a ≤
x ≤ b}, where a, b, x ∈ Rn, and all inequalities are element-wise, we have

dist(x,B(a, b)) =
n∑
i=1

1 (xi 6∈ [ai, bi]) ,

which can be computed in O(n) operations.
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Proof. For any given x, recall the definition of dist to be dist(x,B(a, b)) = miny∈B(a,b) ‖x − y‖0. For any
y ∈ B(a, b) we have,

‖x− y‖0 =
n∑
i=1

1(xi 6= yi) ≥
n∑
i=1

1(xi 6∈ [ai, bi])1(yi ∈ [ai, bi]) =
n∑
i=1

1(xi 6∈ [ai, bi]) (17)

The above implies miny∈B(a,b) ‖x− y‖0 ≥
∑n
i=1 1(xi 6∈ [ai, bi]). Then, consider y? ∈ B(a, b) defined as

y?i =
{
ai if xi 6∈ [ai, bi]
xi otherwise

. (18)

We have ‖y? − x‖0 =
∑n
i=1 1(xi 6∈ [ai, bi]), which attains the lower bound on dist(x,B(a, b)). The result

follows.

Theorem 4.2 (Robustness Certificate for Box-NN). Given a set of boxes B and their associated labels
{ym}Mm=1, define

m? = arg min
m

dist(x,Bm), d1 = dist(x,Bm?),

and
d2 = min

m : ym 6=ym∗
dist(x,Bm).

Then, with margin(x) def= d2 − d1, we have Box-NN(x,B) = Box-NN(x′,B) whenever ‖x′ − x‖0 <
margin(x)/2.

Proof. Let x, x′ ∈ X . Define B1 = {Bm : ym = ym?}, and B2 = {Bm : ym 6= ym?}. Further, define d̄1, d̄2 as

d1(x′) = min
B∈B1

dist(x′, B), d2(x′) = min
B∈B2

dist(x′, B),

Our goal would be to demonstrate that as long as ‖x−x′‖0 < margin(x)/2, we have d2(x′) > d1(x′), implying
that the prediction remains the same at x′. Consider any B ∈ B2, and apply the triangle inequality to get

dist(x′, B) + ‖x− x′‖0 ≥ dist(x,B), (19)

where (19) can be seen as

dist(x′, B) + ‖x− x′‖0 = min
y∈B
‖y − x′‖0 + ‖x′ − x‖0 ≥ min

y∈B
‖y − x‖0 = dist(x,B). (20)

Further, taking a minimum on both sides of (19) over all B ∈ B2 leads to

d2(x′) + ‖x− x′‖0 ≥ d2 (21)

Similarly, consider any B ∈ B1, and apply the triangle inequality to get

dist(x,B) + ‖x− x′‖0 ≥ dist(x′, B), . (22)

Taking a minimum over both sides of (22) over all B ∈ B1 leads to

d1 + ‖x− x′‖0 ≥ d1(x′). (23)

Adding (21) and (23), we have

d2(x′)− d1(x′) + 2‖x− x′‖0 ≥ d2 − d1 (24)
=⇒ d2(x′)− d1(x′) ≥ margin(x)− 2‖x− x′‖0, (25)

from where we can see that d2(x′)− d1(x′) > 0 whenever ‖x− x′‖0 < margin(x)/2, as required.
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B Additional Experiments

B.1 Additional Details for Figures

We provide fine-grained numerical details for Figs. 2, 3 and 10. We sample the x-axis at equally spaced
intervals of size 4 and report the certified accuracies at certified radii of {0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40} in
Tables 2 and 3.

Table 2: Certified Accuracy on MNIST corresponding to plots in Fig. 2 (left), Fig. 3, and Fig. 10.

Method Certified Radius
0 4 8 12 16 20 24 28 32 36 40

Box-NN 89.74 80.68 68.61 55.63 43.95 33.34 24.71 16.54 8.26 3.57 1.48

RA10 76.62 20.81 16.36 13.1 10.8 8.39 5.99 3.72 1.47 0.09 0
RA20 91.33 47.19 33.69 23.49 15.15 7.3 0.49 0 0 0 0
RA40 96.51 76.08 50.76 16.03 0 0 0 0 0 0 0
RA60 97.96 83.84 34.45 0 0 0 0 0 0 0 0

RAB
10 98.75 86.1 0 0 0 0 0 0 0 0 0

RAB
20 97.78 88.45 39.75 0 0 0 0 0 0 0 0

RAB
40 96 85 62 21 0 0 0 0 0 0 0

RAB
60 90 76 58 39 24 12.98 2.7 0 0 0 0

FPAA
10 98 87 0 0 0 0 0 0 0 0 0

FPAA
25 95 86 66 20 0 0 0 0 0 0 0

FPAA
35 91 79 59 35 13 0 0 0 0 0 0

FPAA
60 83 70 54 39 26 16 7 1 0 0 0

FPAA
75 74.99 61 47 34.97 25 17.9 12.43 8.11 3.89 0.42 0

FPAB
10 99 87 0 0 0 0 0 0 0 0 0

FPAB
25 96 88 71 20 0 0 0 0 0 0 0

FPAB
35 93 83 67 44 14 0 0 0 0 0 0

FPAB
65 87 76 63 50 37 23 12.14 2.97 0 0 0

FPAB
75 81 68 56.44 44.65 34.68 25 17.82 11.09 5.28 0.45 0

Table 3: Certified Accuracy on Fashion-MNIST corresponding to plots in Fig. 2 (right).

Method Certified Radius
0 4 8 12 16 20 24 28 32 36 40

Box-NN 78.43 73.84 69.31 64.44 59.26 53.86 48.39 43.43 38.73 34.05 29.97

RA10 78.96 64.28 59.15 53.86 48.32 42.32 36.07 30 24.08 17.69 11.31
RA20 84.05 73.65 67.54 60.05 50.35 37.17 18.03 0 0 0 0
RA40 87.7 77.1 65.4 39.9 0 0 0 0 0 0 0
RA60 89.22 76.54 48.89 0 0 0 0 0 0 0 0
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B.2 Ablation Study

We provide an ablation study on the various strategies used to effectively train BoxNN developed in
Section 4.2. For each of the following certified accuracy plots in our ablation study, we fix all the other
parameters at the values specified in Table 4 (these values correspond to those reported in the main text, and
are explained in the following description), and vary the parameter specified. The red curve is the same in all
the plots, and corresponds to the BoxNN plots in the main text.

Table 4: Default Parameters (red curve) for Ablation Study of BoxNN.

min
Approximation

Indicator
Approximation

α
Initialization Boxes M Clipping β Optimizer

min1 conical 0.1 2500 50 Vanilla SGD (0.2)

1. Indicator Relaxation. Recall that we relax the indicator function using the conical approximation
(14) (both applied element-wise to vectors). We ablate with approximations, which we call l1, defined
as

l1(x, α, β) = ‖x− α‖1 + ‖x− β‖1, (26)

and l2, defined as,
l2(x, α, β) = ‖x− α‖2

2 + ‖x− β‖2
2. (27)

Notice that without any approximation, the indicator function has a zero gradient wherever it is
differentiable, and hence gradient based optimization does not make any progress. Hence, we omit
the option of no approximation from our ablation in Fig. 4.
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Figure 4: Ablation over the choice of the relaxation for the indicator function.

2. Initialization. For each box, we choose the location and size at initialization. For location, we find
that centering boxes initially on training data points is always much better than random initialization,
and hence we omit this from our ablation. We ablate on the size of the box α, such that the boxes
at initialization are defined as {(B(x − α, x + α), y) : (x, y) ∈ T}, for a subset T of size M chosen
uniformly at random from the training data, as mentioned in Section 4.2. The resultant ablation is
shown in Fig. 5.
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Figure 5: Ablation over the size of the inital boxes α. Note that the initial α guides the optimization process
to trade off benign accuracy (radius = 0) with certified accuracy at higher radii.

3. Number of Boxes M . The number of boxes M above controls the expressive power of BoxNN.
In order to maintain balance across classes, we assign an equal number of boxes for each of the 10
classes, and ablate on the number of boxes per class M/10 in Fig. 6.
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Figure 6: Ablation over the number of boxes M .

4. Clipping Certificates Recall that in (13), we clipped the robustness certificates in the optimization
objective to β = 50 pixels to prevent a few boxes from dominating the loss. We ablate over this
clipping value β in Fig. 7.

5. Optimizer. We ablate over a few choices of the gradient-based optimizer for our problem: (a) vanilla
SGD with a learning rate of 0.02, (b) SGD with a learning rate of 0.02, a momentum of 0.9, and a
weight decay of 0.0005, and (c) Adam with a learning rate of 0.001, and standard decay factors, in
Fig. 8.

6. Approximation of min. Recall that we replace the function min by an approximation to obtain
non-sparse gradients to aid the optimization process. We describe the approximation minτ in Eq. (12),
and we ablate over τ ∈ {0, 0.5, 1,∞}, where recall that min0 is same as the average function, and
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Figure 7: Ablation over certificate clipping value β. Note that the β = 100 line is almost the same as the
β = 50 line, as there is no further effect due to clipping after 50.
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Figure 8: Ablation over the choice of the
optimizer.
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Figure 9: Ablation over Approximation of
min.

that min∞ is same as the standard min function. We also compare to an approximation by using
the logsumexp function, as

min(c1, c2, . . . , cM ) ≈ −logsumexp(−c1,−c2, . . . ,−cM ) def= − log
M∑
m=1

exp(−cm). (28)

The resulting ablation is presented in Fig. 9.
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B.3 Additional Details and Certification Procedures

In this section, for the sake of completeness, we will briefly summarize the certification procedures developed
in Levine & Feizi (2020a); Jia et al. (2022); Hammoudeh & Lowd (2023), which form our baselines for
comparison in Section 5.

Certification procedure for RA (Levine & Feizi, 2020a). Recall from Eq. (15) that given a base
classifier f , Levine & Feizi (2020a) produce a smoothed classifier g as

RAρ(x) = arg max
k

P
v∼Unif(Vρ)

(f(x� v) = k) , ((15) revisited)

where Vρ = {v ∈ {0, 1}n : ‖v‖0 = ρ} is the discrete set of all binary vectors of length n having exactly
ρ ones, and � denotes the Hadamard product. The method to produce a certificate of `0 robustness in
Levine & Feizi (2020a) follows the technique developed in Cohen et al. (2019), which is to bound the
change in the probability assigned to the top class k? in (15) when x is perturbed. In other words, letting
pk(x) = Pv∼Unif(Vρ) (f(x� v) = k) for k ∈ {1, 2, . . . ,K}, and k? = arg maxk pk(x), Levine & Feizi (2020a)
show that

if pk?(x) > 1.5−
(
n−rRAρ

ρ

)(
n
ρ

) , then RAρ(x) = k? ∀x′ such that ‖x′ − x‖0 ≤ rRAρ . (29)

Thus, the greatest quantity rRAρ that satisfies the if condition in (29) becomes the `0 robustness certificate
for the classfier RAρ at the input point x.

However, obtaining of the probability pk(x) exactly is computationally infeasible, due to the exponentially
large size of Vρ, and hence evaluation of the classifier RAρ and the certified radius rRAρ is computationally
infeasible. Nevertheless, the technique to produce such randomized smoothing certificates in practice is
to obtain a high confidence lower bound on pk? using several samples from Unif(Vρ) following standard
statistical estimation literature, and use this lower bound for computing rRAρ (Cohen et al., 2019, Sec 3.2.2).

Certification procedure for RAB (Jia et al., 2022). Jia et al. (2022) produce a tighter analysis of the
certificate of robustness for the classifier defined in (15). Their primary contribution is to develop techniques
that can provide `0 robustness certificates for the top-k predictions where k can be greater than 1. For the
purposes of comparison to our work, we are only concerned for the special case of k = 1 in their certificate
(Jia et al., 2022, Theorem 1). As Jia et al. (2022) remark, in this case, the form of the certificate is identical
to Levine & Feizi (2020a), with the important difference that Jia et al. (2022) utilize the fact that each of
the probabilities pk(x) are integer multiples of 1

(nρ)
, by incrementing the empirically computed lower bounds

on these probabilities to the nearest integer multiple of 1
(nρ)

. As these modified probabilities p′k(x) satisfy

p′k(x) ≥ pk(x), the largest radius rRAB
ρ
that satisfies the condition p′k(x) > 1.5 −

(n−rRAB
ρ

ρ
)

(nρ)
is equal to or

greater than rRAρ , resulting in a higher certified accuracy curve.

Certification procedures for FPA (Hammoudeh & Lowd, 2023). As opposed to the randomized
defenses above, Hammoudeh & Lowd (2023) build a classifier that is simply a majority vote among several
sub-classifiers, each looking at a subset of the pixels of the full input image. More formally, partitioning the
set of pixels {1, 2, . . . , n} into disjoint partitions V , recall that the classifier certified in Hammoudeh & Lowd
(2023) is

FPAA(x) = arg max
k

|{V ∈ V : f(xV ) = k}| , , ((16) rewritten)

where f(xV ) is the prediction obtained from a classifier that zeroes out the pixels of x not in V . Defining
the number of votes for class k as nk = |{V ∈ V : f(xV ) = k}| for k ∈ {1, 2, . . . ,K}, the winning class as
k? = arg maxk nk, and the runner-up class as kru = arg maxk 6=k? nk, Hammoudeh & Lowd (2023) present the
robustness certificate by a simple counting:

FPAA(x′) = k? ∀x′ such that ‖x′ − x‖0 ≤ rFPAA
def= nk? − nkru

2 . (30)
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For evaluating the above certificate rFPAA for any input x, one needs to compute nk for all the classes. This
is easily done by counting the votes for each class from each classifier f(xV ), V ∈ V.

Hammoudeh & Lowd (2023) then note that the above certificate discards the information from all the
classifiers which did not predict k? or kru, and remedy this in their improved certificate rFPAB . For this, the
idea is to first determine k? and kru, and then get all the classifiers f(xV ) to vote for one of these two classes.
The predicted label is the majority winner of this vote, i.e.,

FPAB(x) = Majority{votef(xV )(k?, kru)}V ∈V . (31)

While the above description of a two-round voting is quite general, the actual voting scheme in Hammoudeh
& Lowd (2023) is implemented by setting f to be a neural network classifier, and the vote decided by which
class among {k?, kru} is assigned a large probability by the network. Evaluation of the certificate rFPAB now
becomes much more complicated due to the complicated relationship between the label predicted and nk.
Nevertheless, rFPAB is typically larger than rFPAA , and we produce a comparison to our method BoxNN.
Specifically, in Fig. 10, we compare BoxNN against the numbers reported in Hammoudeh & Lowd (2023,
Table 27) (“FPA with run-off elections”). We observe that BoxNN improves upon the median certified
robustness against FPAB, and more generally mirrors the observations in Section 5 with respect to other
baselines.
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Figure 10: Comparison of Hammoudeh & Lowd (2023) (dotted lines) to our method Box-NN (red line) on
the MNIST dataset. The dotted lines correspond to different settings for the hyperparameter ρ. Details are
mentioned in Section 5.
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