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Abstract

We present MGE-LDM, a unified latent diffusion framework for simultaneous
music generation, source imputation, and query-driven source separation. Unlike
prior approaches constrained to fixed instrument classes, MGE-LDM learns a joint
distribution over full mixtures, submixtures, and individual stems within a single
compact latent diffusion model. At inference, MGE-LDM enables (1) complete
mixture generation, (2) partial generation (i.e., source imputation), and (3) text-
conditioned extraction of arbitrary sources. By formulating both separation and
imputation as conditional inpainting tasks in the latent space, our approach supports
flexible, class-agnostic manipulation of arbitrary instrument sources. Notably,
MGE-LDM can be trained jointly across heterogeneous multi-track datasets (e.g.,
Slakh2100, MUSDB18, MoisesDB) without relying on predefined instrument
categories. Audio samples are available at our project page .

1 Introduction

Recent advances in generative modeling have significantly accelerated progress in music audio
synthesis, inspired by breakthroughs in the language and vision domains. Early autoregressive models
such as WaveNet [1]] demonstrated the feasibility of end-to-end waveform generation. Since then,
two dominant approaches have emerged: (1) discrete-token models, which compress raw audio into
quantized codes [2H5] for sequence modeling [6H8]]; and (2) diffusion-based models [9H11], which
synthesize audio by reversing a noise corruption process in the waveform domain [[12, [13]. Building
on this foundation, latent diffusion models (LDMs) [[14], which operate in a compressed latent space,
have delivered substantial gains in synthesis quality and have been successfully applied to music
generation tasks [15H18].

Despite this progress, most music generation models produce a single, mixed waveform, lacking
access to the individual instrument stems required for remixing, adaptive arrangement, or downstream
production tasks. To recover these components, audio source separation techniques aim to decompose
a mixture into its constituent tracks. Discriminative approaches [[19H22]] learn to directly regress
each source from the input mixture, achieving strong performance. In contrast, generative separation
models sample individual sources from a learned prior [23-27]]. Recently, diffusion-based methods
have demonstrated strong performance not only in speech separation [28, [29] but also in speech
enhancement tasks [30H33]], highlighting their potential for flexible, high-quality source recovery
across audio domains.

"https://yoongid3.github.io/MGELDM_Samples/

39th Conference on Neural Information Processing Systems (NeurIPS 2025).


https://yoongi43.github.io/MGELDM_Samples/

‘ @
Xmix II |||II|II| Illl\ fo(z,,T) 1 Total , ﬁ% T
} Generation | & Zo > g mix
€
| 5 :o B _ &
=3 I
Xsub =2 Zh | ml|  (Cextl ([
| % S = | € Zg 5
+ = = ,  Partial | =
g = i z¢ * z¥ ﬁ % 54 Xsrc
- ] ; Generation | %0 0 > 2
= ! — =
Gl ) |
LL —m e B E
| : =
Source | g
| Extract : BB =
ct ‘ Extraction 0 s 3
~ | .
! A\ o]
| =1 =0
I
|
I

(a) Training pipeline (b) Inference pipeline

Figure 1: Overview of MGE-LDM. (a) Training pipeline: We train a three-track latent diffusion
model on mixtures, submixtures, and sources. Each track is perturbed independently and conditioned
on its corresponding timestep and CLAP embedding. The model is optimized using the v-objective,
as detailed in Sections[3.2]and [3.4] (b) Inference pipeline: At test time, task-specific latents are either
generated or inpainted based on available context and text prompts. The resulting latents are decoded
into waveforms. See Section@for details.

Recent works have explored modeling the joint distribution of multi-track stems within a unified
diffusion backbone, enabling mixture synthesis, accompaniment generation, and source separation
within a single framework [34-36]]. However, these approaches typically rely on predefined instrument
classes for each track or assume that the mixture waveform is the linear sum of its constituent stems.
While the additive assumption is valid in the waveform domain, it is incompatible with the nonlinear
encoder—decoder structure of latent diffusion models, limiting the applicability of such methods in
compressed latent spaces.

To address these limitations, we introduce MGE-LDM, a class-agnostic latent diffusion framework
that jointly unifies music generation, partial generation, and arbitrary source extraction. Our approach
models three interrelated latent variables: mixture, submixture, and source within a single diffusion
backbone.

Given a waveform mixture (™ and a chosen source z(®), we define the submixture as (W =
x(m) — 2(5) A pretrained encoder E maps each waveform to its latent representation:

L(m) — E(m(m)), L) — E(x(“)), 2(8) — E(x(s)). (1)
We then train a diffusion model fy (z(m), 2, z(s)) over this joint distribution.

At inference time, diffusion-based inpainting, conditioned on a subset of {z("™), z(*), 2(*)} enables
class-agnostic partial generation and text-driven source extraction without relying on fixed instrument
vocabularies or linear mixing assumptions. A detailed formulation appears in Section [3]

Notably, our training paradigm is dataset-agnostic: by removing dependence on instrument labels,
MGE-LDM can leverage all publicly available track-wise datasets in a single training run. For
example, Slakh2100 [37] provides clean, isolated stems; MUSDB18 [38]] and MoisesDB include
loosely labeled tracks such as other that aggregate multiple instruments. Existing frameworks
typically ignore such labels, as they assume a one-to-one correspondence between sources
and tracks, making it difficult to train and perform inference on mixtures containing sources outside
predefined instrument classes.

In contrast, our three-track formulation (mixture, submixture, individual source) treats aggregated
labels as submixtures. This design integrates them into joint training together with fully separated
stems. This dataset flexibility simplifies data collection and enhances model robustness across
heterogeneous source structures.

In summary, our contributions are as follows:
* We propose MGE-LDM, the first latent diffusion model to jointly address music generation,

source imputation, and text-conditioned source extraction without relying on predefined
instrument labels.



* We formulate source extraction as a conditional inpainting problem in the latent space,
jointly modeling mixture, submixture, and source embeddings. This formulation enables
class-agnostic, text-driven extraction of arbitrary stems within a unified latent diffusion
framework.

* We propose a training strategy that assigns distinct diffusion timesteps to each of the mixture,
submixture, and source tracks, allowing the model to learn adaptive score functions for
diverse inpainting contexts.

* By eliminating dependence on fixed stem annotations, our framework ingests heteroge-
neous multi-track datasets (e.g., Slakh2100, MUSDB 18, MoisesDB) in a unified manner,
simplifying data aggregation and improving generalization to unseen instrumentation.

2 Related Work

Audio Source Separation and Extraction. Audio source separation aims to decompose a polyphonic
mixture into its constituent tracks, while source extraction focuses on isolating a particular target
sound, often guided by metadata, text prompts, or reference examples. Two dominant paradigms have
emerged: discriminative models learn a direct mapping from the input mixture to each target stem via
regression losses, either in the waveform domain or in spectrogram representations [[19-22) 141} 42].
In contrast, generative approaches learn probabilistic priors over source distributions and recover
individual stems via sampling [23-26} 43]].

Recently, diffusion-based techniques have emerged as a powerful paradigm for audio decomposition,
achieving strong results in both speech separation [28,29] and enhancement [30-33]]. These methods
iteratively denoise a mixture under a learned score function, offering flexible and high-fidelity source
recovery.

Query-based extraction further extends separation by conditioning the model on external cues such
as class labels [44-46]], visual signals [47, 48], or audio exemplars [49} |50]]. Several studies have
also demonstrated the effectiveness of natural language prompts for flexible, user-driven source
isolation [48}, I51H55]]. In our framework, we employ the pretrained CLAP model [56] to obtain shared
audio-text embeddings, enabling seamless, language-guided extraction of arbitrary stems within a
multi-track latent diffusion architecture.

Audio Generation Models. Early neural audio synthesis methods focused on autoregressive ar-
chitectures that model waveform dependencies sample by sample. WaveNet [ 1] demonstrated the
effectiveness of dilated convolutions for end-to-end generation, while SampleRNN [57]] extended
this with hierarchical recurrence. Subsequent work adopted adversarial objectives to improve fidelity,
using GANSs to generate perceptually sharp outputs [58}59].

Parallel efforts introduced discrete-token models, where audio is encoded into compact code se-
quences using vector quantization (e.g., VQ-VAE [2]). Jukebox [6]] models long-range dependencies
over codes using Transformers [60], while recent systems enhance fidelity through residual quantiza-
tion [345]] and hierarchical token modeling, where coarse-to-fine code representations are generated
across multiple levels [[7,161H63]]. MusicGen [8] improves decoding efficiency with delayed-token
generation, and Instruct-MusicGen [64]] extends it for targeted editing via instruction-tuned prompts.
In parallel, token-based masked generative modeling techniques, originally developed for vision [65],
have been adapted for audio, enabling efficient non-autoregressive synthesis and precise spectrogram
inpainting [66} 67].

Diffusion-based generation emerged with DiffWave [12] and WaveGrad [13]], which learn to iteratively
denoise Gaussian-corrupted waveforms. These techniques have since been adapted for music-specific
generation with structure and style conditioning [68] 69]. Latent diffusion models (LDMs) [14]],
which perform denoising in a compressed embedding space, have further advanced generation fidelity
and scalability. LDM-based audio models such as AudioLDM [70} [71]], MusicLDM [16], and
Stable Audio [17, 118, [72] achieve state-of-the-art performance. Recent frameworks like AUDIT (73],
InstructME [74] explore the use of diffusion for controllable and interactive audio editing.

Multi-Track Music Audio Modeling. Recent studies model multi-track music as a structured com-
position of interdependent stems. StemGen [75] employs an iterative, non-autoregressive transformer
over discrete tokens to generate stems conditioned on text prompts. Jen-1 Composer [[76] applies
latent diffusion to jointly model four canonical stems (bass, drums, instrument, melody), producing



coherent multi-track compositions. MusicGen-Stem [77]] combines per-stem vector quantization
with an autoregressive decoder to synthesize bass, drums, and aggregated ot her components, and
supports mixture-conditioned accompaniment generation. Diff-A-Riff [78] leverages latent diffusion
to co-create stems complementary to given mixtures, later extended with diffusion transformers [[79].
Other studies have similarly explored mixture-conditioned stem generation [80} [81]].

A separate line of work focuses on joint modeling of synthesis and decomposition within a single
diffusion backbone. Multi-Source Diffusion Models (MSDM) [34]] model a fixed set of stems (bass,
drums, guitar, and piano) within a shared diffusion framework, relying on an additive mixture
assumption and a Dirac delta-based posterior sampler, following the EDM formulation for ODE-based
sampling [82]. This line of work has since been extended in GMSDI [35], MSG-LD [36], and others
[40,183]. GMSDI enables variable-stem modeling and text-based conditioning but remains grounded
in waveform-space additive mixing. MSG-LD adapts latent diffusion for four-stem modeling and
classifier-free guidance [84], though it still assumes fixed instrument classes.

In contrast, our approach jointly models mixture, submixture, and source embeddings in latent space
and casts both synthesis and arbitrary-source extraction as text-conditioned inpainting tasks, offering
fully class-agnostic multi-track music processing without reliance on fixed instrument vocabularies
or linear mixing assumptions.

3 Method

Figure[T] presents an overview of the proposed MGE-LDM framework. We train a three-track joint
latent diffusion model that learns the distribution over the joint space of mixture, submixture, and
source representations, as defined in Eq. (T). During inference, the model performs various tasks by
exploiting the inpainting capability of diffusion models. We first describe how training triplets are
constructed, then detail how they are used for joint diffusion-based training and inpainting-based
inference.

3.1 Formulating Joint Latent Representation

Let {x;};cr denote the set of time-domain audio stems, where the number of sources || may vary
across mixtures depending on their instrumentation. The mixture waveform is defined as:

2™ = Z Z;.

i€l

To construct a training example for our three-track model, we uniformly sample an index j € I and

define:
) = zj, (W = Z T,
i€\{j}
yielding the triplet (x(m), (), x(s)). We encode each element of this triplet using a pretrained

variational autoencoder (VAE) [83] encoder F, resulting in latent representations z(™), z(*) 2(s) ¢
RE*L where C' and L denote the latent channel and temporal dimensions, respectively. This
formulation naturally accommodates mixtures with a variable number of stems. Regardless of the
number of instruments present, any publicly available multi-track dataset can be decomposed into
mixture, submixture, and source components for joint latent modeling.

3.2 Latent Diffusion Training with Three-Track Embeddings

We build upon the Stable Audio framework [[72], employing a Diffusion Transformer (DiT) backbone
[86] and training the model under the v-objective [87]]. Below, we summarize the v-objective training
procedure; full derivations and additional details are provided in Appendix [A.T] Let the composite
latent input be defined as:

Z) = (zém),zéu),zés)> € R3xOxL

where z(()k) € RE*L are (clean) track embeddings, with k € K = {m, u, s} denoting the track types

— mixture, submixture, and source, respectively.



We aim to estimate the score V,_log ¢, (z.) across continuous noise levels 7 € [Tin, 1]. To this end,
we perturb the clean latent variable zo with Gaussian noise, following:

Z, = a2y + Bre, €~ N(0,1), 2

where the noise scaling coefficients are parameterized as:
. Y
ar =cos(¢r), Br=sin(¢,), ¢, = 57 3)
Here, 7 ~ U ([Tmin, 1]) is sampled from a truncated uniform distribution with 7, = 0.02 for stability.
A denoising network fy(z,, 7, c) is trained to estimate the score V,_logq,(z,|c) using the v-
objective:

Oz,
99,
The conditioning vector ¢ = (c(™), ¢(¥), ¢(%)) is derived using the audio branch of a pretrained CLAP
encoder [56], applied to each component:

C(k) = CLAPaudio(‘T(k))v for k € K.

E(G) =Kz er Hfé(zﬁ'rv C) 7”‘/’“37 Ur = ar€ — (2. 4

To enable classifier-free guidance (CFG) [84], each ¢(*) is independently dropped out with probability
p during training.

3.3 Inference via Conditional Sampling in Latent Space

In the image domain, inpainting refers to reconstructing missing or corrupted regions of an image by
conditioning on surrounding pixels. Diffusion models have demonstrated strong zero-shot inpainting
capabilities, enabling arbitrary mask completion without retraining [[11,|88]]. We extend this paradigm
to the latent domain of music, operating over a joint distribution of mixture, submixture, and source
embeddings. Downstream tasks are formulated as conditional generation problems, where known
latents are treated as observed and unknown ones are sampled as missing components.

In all inference modes, we condition on natural-language queries using CLAP embeddings. When
text conditioning is required, we use the text branch of CLAP to produce the prompt embedding
k) = CLAPteX[(ct(e’i)t), where ct(ei)t is a free-form natural language description (e.g., "the sound of an
electric guitar").

Total Generation. Let py(z(™), 2(), 2(5)) denote the implicit model distribution whose score we
approximate with fy. To synthesize a complete mixture, we condition only on the mixture prompt
embedding ¢(™ or omit all conditions for unconditional generation. We sample the mixture latent
s(m) ge-
z2m) as:

pm) z(u) 5(s) pe(z(m), 2, Z(S)|c(m)’ o), g(s))’ 5)
where 2(*) and () are auxiliary latents that are discarded. Finally, the synthesized mixture waveform
#(™) is obtained by decoding (™) through the pretrained VAE decoder D:

™ = D(zm).
Hereafter, we use (%) to denote any dummy latent that is not retained during inference.

Partial Generation. Partial generation, also known as source imputation, refers to the task of gener-
ating missing stems given partially observed sources. We approach this iteratively to progressively
reconstruct the full mixture from the partial input.

LetZ = {c1, ..., ¢z} be an (ordered) set of CLAP-derived text embeddings, each corresponding to
a target source description to be imputed. Let J;(()“) denote the waveform mixture of the observed
sources, and let zéu) =F (:céu)) be its latent representation. We initialize the submixture latent with
zéu) and generate each missing source sequentially.

Ateachstep j € {1,..., J}, we sample a new source latent éﬁs) conditioned on the current submixture
and the text embedding c;s):

2 5 (2 2|0 gm0 )y, (6)



We then update the submixture by accumulating the decoded sources:
j—1
AV =F (Z D(él(s))> .
1=0

After J iterations, we obtain the full set of imputed sources {2;8)}3»]21 and reconstruct the final
mixture waveform as:

J
o™ = + 3 D), )
j=1

Source Extraction. Text-driven extraction of an arbitrary stem is performed by conditioning on
a natural-language prompt. Given a prompt embedding ¢(*), we treat the mixture latent z(™) as
observed and inpaint the submixture and source tracks:

200 56) (20, 26 | 5m) gm) () ((3)y) )

where #(*) is an auxiliary prediction that is discarded. Finally, the isolated source waveform is
reconstructed via 2(*) = D(2(%)).

3.4 Track-aware Inpainting Model with Adaptive Timesteps

Conventional diffusion-based inpainting methods apply a uniform noise schedule across both observed
and missing regions, failing to account for their differing uncertainty characteristics [9, [11} [88-90].
In the standard setup, a denoising model fy(z.,7) is trained to approximate the joint score of a
perturbed latent variable.

Following the perturbation rule and v-objective from Section [3.2] the score estimate is expressed as:

or
VZT IOg QT(ZT) N —Zr — ﬂifO(ZTvT)a (9)

where ., and 3 is cosine schedule as defined in Eq. (@), following [87]. For notational simplicity, we
omit the conditioning vectors c in this expression. A detailed derivation is provided in Appendix [A.T]

Recently, region-aware adaptations of diffusion inpainting, including spatially varying noise schedules
[91] and per-pixel timestep conditioning in TD-Paint [92], have demonstrated substantial improve-
ments in semantic consistency by preserving fidelity in observed regions. Inspired by TD-Paint, we
extend this idea to three-track music audio by assigning distinct timestep conditions to each track,
thereby improving inpainting quality in the latent space.

We describe our track-wise adaptive timestep conditioned model using general notation. Let K be
a set of tracks, and let N = |K| be the number of tracks. Define the clean latent tensor and the
corresponding noise levels as:

(k)

Zo = (ZO )keK c RNXCXL

, T = (T)ker € [Tmin, 1]V,

where each 7, is either zero (for observed tracks) or equal to a shared sample 7 ~ U ([T, 1)),
depending on the inpainting configuration.

We define the track-wise product between a vector z- € R and a latent tensor z € RVXEXL ag:
Ty OZ:= (x.rkz(k))keK,
and extend this notation to the cosine noise schedule terms as follows:
ar = (ar)kex, Br = (Br)rek-
We perturb the joint latent using track-wise noise:

ZT:aTQZO+/BT®€7 GNN(07I)’ (10)

where each track is independently scaled by its corresponding noise factor.



The denoiser fp(z,, T) is trained to regress the velocity target under the v-objective:
Vr =0y ©€— Br Oz, (11)
resulting in the following training loss:
L(0) = Euer || fo(2r, 7) = v |[3. (12)

In our setup, we use N = 3 with K = {m, u, s}, corresponding to the mixture, submixture, and
source tracks, respectively. In practice, the loss is computed only over the unknown tracks.

During training, we first sample a noise level T ~ U ([Tmin, 1]) and set the per-track timestep vector
7 € R? according to one of the following four patterns:

T e {(r,7,7),0,7,7),(r,0,7), (7,7,0)},
where each configuration is selected randomly for each training step.

Under this conditioning strategy, the full-noise setting 7 = (7,7, 7) corresponds to learning the
standard joint score, as described in Eq. (9). In contrast, a "single-zero" pattern allows the model
to learn conditional score functions for the unobserved tracks while treating the others as fixed
observations.

For example, when (7,,,, 7w, 7s) = (0, 7, 7), the model is trained to approximate the gradient:
Vo L) log gr (2, 249 [25™), (13)

which the joint-score formulation in Eq. (9) cannot compute in closed form. At inference time, we
clamp the observed tracks by setting their noise levels to zero and apply standard reverse diffusion
updates to the remaining (missing) tracks. Pseudocode and a detailed theoretical comparison with
conventional inpainting methods are provided in Appendix B}

4 Experimental Setup

In this section, we outline our experimental protocol, including baseline models, datasets, and key
implementation details. A comprehensive description of hyperparameters and training procedures is
provided in Appendix [D] All baseline results are re-evaluated using our test sets to ensure consistency
with our experimental setup.

Baselines. We use two recent multi-track diffusion models — MSDM [34] and MSG-LD [36] — as
baselines, both of which operate on a fixed set of stems: bass, drums, guitar, and piano. In
addition to generative and inpainting performance, we assess source extraction capabilities against
Hybrid Demucs (HDemucs) [20], which separates the mixture into bass, drums, other, and
vocals stems, and AudioSep [53]], which performs text-conditioned separation based on natural
language queries.

Datasets. We train and evaluate on three multi-track music datasets: Slakh2100 [37], MUSDB18
[38] (denoted M,,), and MoisesDB [39] (denoted M,)). For Slakh2100, we define two subsets: S 4,
containing only bass, drums, guitar, and piano stems to match the MSDM and MSG-LD
setup; and S g, which includes all remaining stems. Each dataset follows its predefined train/test split.
We train our models on various dataset combinations to evaluate robustness under different source
distributions and stem configurations.

Implementation Details. Our models use the Stable Audio backbone [72]], which comprises an
autoencoder and a DiT-based diffusion model. To better accommodate per-track variability in the
joint latent space, we replace LayerNorm [93]] with GroupNorm [94]], using three groups to reflect
the number of tracks.

To bridge the audio-text modality gap, we adopt stochastic linear interpolation between audio and
text embeddings on the source track, following prior work on multimodal fusion [54,935]]. Concretely,
we generate the prompt "The sound of the { Labe1}" and compute the source conditioning vector
¢(®) as a convex combination of the CLAP text embedding and its corresponding audio embedding,
where the interpolation weight « ~ U([0, 1]) is sampled randomly for each training example.

All of our models, except the one trained on the full dataset combination (S4, Sp, M,, M,), are
trained for 200K iterations with a batch size of 64, using 16 kHz audio segments of 10.24 seconds.



Table 1: Total generation results. Reported scores are FAD |, computed against mixture references
from each test set. Values in parentheses indicate generation results conditioned on the prompt
"The sound of the bass, drums, guitar, and piano", as detailed in Section@ Among our models,
71 provides a fair comparison with baseline methods, as it is trained on the same dataset, while
T2—T4 illustrate the effects of progressive dataset scaling. Bold values indicate the best results in each
column, and underlined values denote the best results among models trained on the same S 4 set.

Train Set Test Set

Model
SA SB Mu Mo SA SFull Mu Mo
MSDM VX x X 421 6.04 792 7.41

_MSG-LD v/ x _x x__ 138 155 461 426

TV X x x 041357 179 634 590
MGE =77/ < 3.14(224) 0.63 546 473
(ours) 72« % v / 880(396) 656 287 1.59
T, v V / / 683(505 422 278 147

The full combination model is trained for 320K iterations with a batch size of 128. During sampling
and inpainting, we apply classifier-free guidance (CFG) with a guidance scale of 2.0 and a per-track
dropout probability of p = 0.1. All diffusion-based samples — including those from baseline models —
are generated using 250 inference steps. We adopt DDIM sampling [96] for all our models, while
each baseline uses its originally proposed sampling method.

5 Results

We evaluate MGE-LDM on three tasks: total generation, partial generation, and source extraction.
Each result table indicates the training dataset(s) used and reports performance across multiple test
sets. Unless otherwise specified, partial generation and source extraction are performed using text
prompts of the form “The sound of the { Label}.” Abbreviations for all stem labels are listed in
Appendix Table[d] and additional ablation results are provided in Appendix [E]

5.1 Music Generation

Table [T] presents FAD (Fréchet Audio Distance) [97] scores computed using VGGish embeddings
[98], a widely adopted metric for evaluating music generation quality. Note that the S 4 test set
contains only mixtures of bass, drums, guitar, and piano, while Sgy; corresponds to the full
Slakh2100 test set, which includes a broader and more diverse set of instruments.

We first compare our model 77 against MSDM and MSG-LD, where all models are trained on S 4.
Our model achieves the lowest FAD on the S 4 test set, demonstrating superior fidelity in generating
standard four-stem mixtures. However, its generalization to other test sets is more limited. On Sgy,
which includes a broader range of instruments, MSG-LD performs slightly better than 77, suggesting
mild overfitting to the constrained training distribution. That said, 7; still outperforms MSDM across
most test conditions.

To assess the effect of dataset extension, we next train on the full Slakh2100 dataset (S 4+S ), result-
ing in model 73. This broader training improves performance on Sgy; and enhances generalization
compared to 7;. However, 75 still lags behind MSG-LD on other subsets, and its performance on
S 4 degrades, likely due to increased variability in the training distribution.

The T3 model, trained on MUSDB18 (M,,) and MoisesDB (M,,), both containing real recordings
rather than synthesized audio, achieves strong performance on their respective test sets. Despite
the domain shift, it also performs competitively on Slakh2100, with results comparable to MSDM,
highlighting the model’s robustness to cross-domain generalization. Finally, our model trained on the
combined dataset comprising Slakh2100, MUSDB18, and MoisesDB (denoted as 73), achieves the
best overall results on both M, and M,,. It also outperforms 73 on Sgy, benefiting from the broader
training distribution.

We also report results in parentheses, which correspond to mixture generation conditioned on the text
prompt “The sound of the bass, drums, guitar, and piano.” For models trained on datasets beyond S 4,



Table 2: Partial generation results. Scores are reported using sub-FAD |, which measures the distance between
the reference mixture and the sum of given and generated sources. Each column header (e.g., B, D, G) indicates
the target source being generated, conditioned on the remaining stems. Bold and underlined values follow the
same convention as in Table[T]

Train Set Sa Ss
SaSsM,M, B D G P BD BG BP DG DP GP BDG BDP BGP DGP Brs. C.P. Org. Pipe Reed Str. S.Lead S.Pad

MSDM v x x x 0.56 1.06 0.49 0.70 2.23 1.56 1.95 1.64 1.83 2.31 3.09 3.53 572 386 - - - - - - - -
MSG-LD v x x x 0.33 0.34 0.49 0.48 0.70 1.08 1.05 0.86 0.83 1.47 1.43 1.42 231 176 - - - - - -

Model

Ti v/ X X X 1()2]4]Il71191]5129]25169165m]8()]84&184145068023348558138 447 1.08
EVIGFE) To v/ vV X X 211299 1.99 2.74 4.07 2.32 4.18 3.54 3.90 3.18 493 5.69 4.25 4.66 5.96 0.41 1.03 3.66 3.52 2.79 0.88 232
OUS) T3 % x v v 143 1.29 334 230 1.85 3.64 2.83 2.95 2.36 4.39 330 3.57 6.03 3.86 3.58 0.58 0.15 0.22 0.56 0.61 0.54 0.48

Ta v v v V/ 114 1.50 375 2.47 2.06 4.06 2.82 3.37 2.74 4.55 3.94 4.05 5.66 4.06 5.09 0.42 0.56 0.20 3.14 395 0.31 0.40

Table 3: Source extraction results. Metrics are reported as Log-Mel L1 distance |. For baseline models,
scores are shown only for stems included in their fixed output set. Bold and underlined values follow the same
convention as in Table[T]

Model Train Set Sa Se M, M,

SASBM,M, B D G P Brs. CP Org. Pipe Reed Str. SLead SPad V. B D V B D G P B.Str Perc
HDemucs X x v x 1.49 0.90 - - 150 1.99 1.53 0.83 1.71 1.10 - - -
AudioSep X X X X 236 1.67 341 242 313 284 326 304 3. 15 257 2.8 2.06 2.66 4.07 1.89 1.54 3.37 1.87 1.31 1.42 1.70 2.36
MSDM v x x x 190 1.51 332270 - - - - - - - - - 256 1.69 - 215131 1.28 1.51 - -
MSG-LD v x X x 120124224185 - - - - - 1.96 1.60 - 1.72 1.49 2.36 2.06 -

Ti v x x x 128 0.66 1.27 1.07 3.22 3.07 3.13 3.11 3.30 2.77 2.68 2.30 3.80 1.91 1.33 5.15 1.61 1.10 2.86 2.68 2.03 2.94
MGETZ vV v/ X x 1.68 271 2.69 2.16 3.43 2.16 1.84 2.33 3.07 244 231 1.93 3.55 2.14 2.15 4.66 1.86 2.11 2.28 2.18 1.93 2.36
(ours) Tz X x v v 180 0.99 2.89 2.01 3.17 2.51 3.61 2.13 2.86 2.22 2.78 222 1.85 1.56 1.17 0.98 1.10 0.90 1.04 1.58 1.62 2.49

Ta v vV V v 167 0.83 261 1.77 3.15 2.29 2.22 1.95 2.61 1.85 2.71 3.68 1.76 1.56 1.13 1.01 1.07 0.86 1.02 1.40 2.25 2.69

including 73, 73, and 74, the generated mixtures generally contain a wider variety of instruments.
This can result in a distributional mismatch with the S 4test set, which contains only bass, drums,
guitar, and piano, thereby increasing the FAD due to reference-target discrepancy. To mitigate
this, we apply text conditioning at inference time using the above prompt to constrain the generated
mixture to match the reference instrument set. As shown in the results, this conditioning significantly
improves FAD for 75, 73, and 7y, yielding performance comparable to the MSDM baseline.

Table [2] presents results for partial generation, evaluated using the sub-FAD metric. This metric
computes the FAD between the original mixture and a reconstruction formed by combining the given
submixture with the generated stems. This evaluation protocol was introduced in prior work on music
stem completion [34, (36} 163]].

On S 4, our model 77 performs worse than MSG-LD for single-source imputation but shows com-
petitive or better performance as the number of generated stems increases. Among our models,
71 performs best on S 4 due to domain alignment. However, for imputation tasks involving broader
instrument classes in Sp, models trained on more diverse datasets perform better. Notably, the
T3 model, trained solely on M,, and M,, achieves strong results on Sp despite not being exposed
to Slakh2100 during training. In particular, it performs well on instruments such as organ, pipe,
and strings. The fully trained model 7 further improves performance across several Sg stems,
including synth lead, synth pad, and pipe.

5.2 Source Extraction

We evaluate text-queried source extraction using the Log Mel L1 distance, following MSG-LD [36]],
due to the inherent phase mismatch in latent-domain models that complicates waveform-domain
evaluation. Table presents results for a variety of stems across the S4, Sp, M,,, and M, test sets.
Alongside MSDM and MSG-LD, we compare with two additional baselines: HDemucs [20], a strong
waveform- and spectrogram-domain separation model trained on fixed stems; and AudioSep [53], a
recent system that enables natural language-driven extraction. For fixed-stem baselines (e.g., MSDM,
MSG-LD, HDemucs), we report both in-distribution results and out-of-distribution generalization
where possible (e.g., bass in M,,).

Our model 77, trained solely on S 4, performs strongly on the canonical Slakh stems (bass, drums,
guitar, piano), outperforming MSG-LD on all but bass. However, it generalizes poorly to
less common stems and real-world recordings. By expanding the training set to encompass the full



Slakh2100 dataset, model 73 achieves improved performance in categories such as chromatic
percussion,organ, synth lead,and synth pad, demonstrating the importance of broader
intra-domain coverage.

Interestingly, model 73 generalizes competitively with 75 to synthetic stems, even outperforming some
stems such as drums. This indicates cross-domain robustness in our latent inpainting formulation.
Finally, model 7y, trained on the combined dataset, exhibits robust performance across both synthetic
and real-world domains. It maintains strong results on Slakh2100, while achieving the lowest Log
Mel L1 scores across most stems in M,, and M,,. This highlights that incorporating synthetic data
such as Slakh2100 alongside real recordings can enhance generalization and improve separation
quality on real-world audio.

Overall, MGE-LDM delivers robust, class-agnostic extraction with strong performance across a wide
range of instrument types and recording domains, highlighting its effectiveness for text-driven music
source extraction in both synthetic and real-world settings.

6 Limitations

While MGE-LDM provides a flexible, class-agnostic framework for multi-track audio modeling,
several limitations remain. First, all experiments are conducted using 16 kHz monaural audio, which
constrains upper-frequency resolution and omits spatial cues, thereby limiting realism for high-fidelity
or stereo music applications. Second, the model relies on CLAP-based semantic conditioning, which
introduces a modality gap between text and audio [99]. This can occasionally lead to semantic drift
during extraction, resulting in irrelevant or hallucinated sources, particularly for stems with limited
training data.

Third, although MGE-LDM reduces dependence on fixed instrument classes, it still requires multi-
stem supervision during training. This dependency restricts applicability to fully unlabeled or
large-scale web audio collections. Fourth, training on MUSDB 18 alone with the same number of
iterations as other configurations leads to overfitting, likely due to the limited duration (approximately
10 hours) of its training split. This highlights the challenge of achieving robust performance in
low-resource multi-track settings.

Finally, our model is trained using triplets (mix, submix, source) that satisfy mix = submix + source
in waveform space; however, the latent diffusion process does not enforce an explicit additivity
constraint for generated triplets. We believe this omission contributes directly to hallucination
phenomena, where the model extracts sources absent from the mixture. Postolache et al. [27]
addresses a related issue by enforcing additivity in a discrete VQ-VAE latent space, estimating
the joint likelihood of two sources by counting codebook co-occurrences — effectively modeling
D(Zmix|Zsrey s Zsre, )» Where z, are quantized latent codes. Our current pipeline, however, operates in
a continuous latent space, which precludes the direct use of such discrete bin-counting methods.
Adapting this latent-domain likelihood formulation to continuous spaces, for example, by designing
suitable regularizers or adopting a VQ-VAE-based encoder with discrete diffusion [100H102] or
MaskGiT [65]-style generation, represents a promising direction for future work.

7 Conclusion

We have presented MGE-LDM, a unified class-agnostic latent diffusion framework that jointly models
mixtures, submixtures, and individual sources for music generation, stem completion, and text-driven
extraction. By formulating stem completion and source extraction as conditional inpainting in a shared
latent space and by introducing track-dependent timestep conditioning, we overcome the limitations
of fixed-class, additive mixing assumptions and achieve flexible manipulation of arbitrary instrument
tracks. Empirically, MGE-LDM matches or exceeds specialized baselines on Slakh2100 generation
and separation benchmarks, while uniquely supporting zero-shot, language-guided extraction across
heterogeneous multi-track datasets.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to
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Answer: [Yes]
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the results. See the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy)) for more details.

* The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

¢ The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

¢ At submission time, to preserve anonymity, the authors should release anonymized versions (if
applicable).

* Providing as much information as possible in supplemental material (appended to the paper) is
recommended, but including URLs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]
Justification: See Section[dand Appendix [D}
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* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail that is
necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate informa-
tion about the statistical significance of the experiments?

Answer: [NA]

Justification: We did not perform repeated runs due to limited computational resources. While we do
not report error bars or confidence intervals, the paper includes extensive evaluation across datasets,
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provide empirical support for the reliability of our findings. Detailed results are included in the
Section[5]and Appendix
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» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confidence
intervals, or statistical significance tests, at least for the experiments that support the main claims
of the paper.

» The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

* The method for calculating the error bars should be explained (closed form formula, call to a
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¢ The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error of the
mean.

* Itis OK to report 1-sigma error bars, but one should state it. The authors should preferably report
a 2-sigma error bar than state that they have a 96% Cl, if the hypothesis of Normality of errors is
not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how they were
calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]
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Justification: We report our computational setup in Appendix [D] However, we do not report execution
time due to variability across models and hardware conditions.

Guidelines:

* The answer NA means that the paper does not include experiments.

» The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud
provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual experimental
runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute than the
experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it into
the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code
of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: The authors have carefully reviewed the NeurIPS Code of Ethics and confirm that the
research complies with its guidelines.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

« If the authors answer No, they should explain the special circumstances that require a deviation
from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consideration due
to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts
of the work performed?

Answer: [Yes]

Justification: As the proposed method involves generative modeling of music, we address potential
broader impacts in Appendix

Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal impact or
why the paper does not address societal impact.

« Examples of negative societal impacts include potential malicious or unintended uses (e.g.,
disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.
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applications, let alone deployments. However, if there is a direct path to any negative applications,
the authors should point it out. For example, it is legitimate to point out that an improvement in
the quality of generative models could be used to generate deepfakes for disinformation. On the
other hand, it is not needed to point out that a generic algorithm for optimizing neural networks
could enable people to train models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation strategies
(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitor-
ing misuse, mechanisms to monitor how a system learns from feedback over time, improving the
efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or
scraped datasets)?

Answer: [NA]
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Justification: Our models are trained on a relatively small, open-source multi-track dataset, which
limits the potential for misuse.

Guidelines:

¢ The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with necessary
safeguards to allow for controlled use of the model, for example by requiring that users adhere to
usage guidelines or restrictions to access the model or implementing safety filters.

¢ Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

¢ We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.
Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,
properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: All third-party codebases and datasets used in this work are open-source and publicly
available.

Guidelines:

* The answer NA means that the paper does not use existing assets.

¢ The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a URL.
¢ The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of service of
that source should be provided.

« If assets are released, the license, copyright information, and terms of use in the package should
be provided. For popular datasets, paperswithcode.com/dataset s has curated licenses
for some datasets. Their licensing guide can help determine the license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of the derived
asset (if it has changed) should be provided.

e If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided
alongside the assets?

Answer: [Yes]

Justification: We released all code, training checkpoints, and inference scripts, accompanied by
well-structured documentation detailing installation, usage, and reproduction steps.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their sub-
missions via structured templates. This includes details about training, license, limitations,
etc.

* The paper should discuss whether and how consent was obtained from people whose asset is
used.

* At submission time, remember to anonymize your assets (if applicable). You can either create an
anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include
the full text of instructions given to participants and screenshots, if applicable, as well as details about
compensation (if any)?

Answer: [NA]

Justification: The study does not include any crowdsourced data collection or experiments involving
human participants..

Guidelines:
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* The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

¢ Including this information in the supplemental material is fine, but if the main contribution of the
paper involves human subjects, then as much detail as possible should be included in the main
paper.
* According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other
labor should be paid at least the minimum wage in the country of the data collector.
Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an
equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]
Justification: This paper do not contain any crowdsourcing nor research with human subjects.
Guidelines:
¢ The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent) may be
required for any human subjects research. If you obtained IRB approval, you should clearly state
this in the paper.

¢ We recognize that the procedures for this may vary significantly between institutions and

locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for
their institution.

¢ For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.
Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard
component of the core methods in this research? Note that if the LLM is used only for writing,

editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or
originality of the research, declaration is not required.

Answer: [NA]
Justification: We did not involve any large language models in the development of the core methods.
Guidelines:

* The answer NA means that the core method development in this research does not involve LLMs
as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for
what should or should not be described.
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A Background

In this section, we review three foundational components that support our method: (1) the v-objective score-
matching formulation for diffusion models [87], which underpins our latent modeling, and (2) the canonical
inpainting algorithm introduced by Song et al. [11] and (3) further refined by Lugmayr et al. [89].

A.1 v-Objective Diffusion

We adopt the continuous-time diffusion framework proposed by Salimans et al. [87], which has been widely
applied in recent music generation models [15} 17,18} [72].

The forward perturbation kernel is defined as:

q(2r|20) = N (27 arz0, B7T) (14)
where: x
Qr = COS(¢7)5 /87‘ = Sin(¢7)a ¢‘F = 57—7 T E [07 1}

Instead of predicting the noise € as in DDPMs [10], the v-objective formulation introduces a velocity target:

0z, _ Ocos(¢r) Osin(¢-)
P T %

and trains the denoiser fy(z-, 7) to directly regress this velocity.

€ = —sin(¢-)zo + cos(dr)e = ar€ — Brzo, (15)

v =

Recovering zo and e. Using the definition of v, and recalling the perturbation process defined in Eq. (2)),
Zr = a-Zo + fre (16)
we can rearrange the terms to recover the clean latent by:
sin(¢-)zo = cos(pr)e — v,
= Z)j((j;:)) (zr — cos(¢-)zo) — v,
sin2(¢7)zo = cos(¢r)zr — cosQ(gZ)T)zo — sin(¢r)vr,

(sin2(¢7) + c052(¢7))z0 = zo = cos(¢-)z, — sin(p-)v,,

thus we get
Zo = QrZr — /BTvT' (17)
Similarly, the noise vector can be expressed as:
€ = /BTZT + arvr (18)

Score function approximation. The marginal score V, log q,, (z,) at timestep (or noise level) T is approxi-
mated as:

or29(2r) — 2r
B?
a72'z7' —a-Brfo(z-,7) — 2,
B?
_ﬂEZT — a-Br fo(zr,T)
B2

(%
—Zr — ifﬂ(zTyT)v
T

Q

V. logg-(zr)

where Z¢(z-) = ar2z- — B fo(z+, T), from the Eq. (T7).
DDIM sampling. We adopt the DDIM sampling [96] to generate samples in a non-stochastic, deterministic
manner. Given a latent z,, each reverse step is computed as:
O = fo(z-,7)
ZO = QrZr — ﬁTi’T
& = ﬂTZT + artr
Z;r = aﬂ"iD + BT’ é‘m

where 7' < 7 is taken from a linearly spaced decreasing schedule from 1 to 0. We use 250 inference steps in all
experiments.

24



A.2 Canonical Inpainting in Score-Based Models

The core idea behind inpainting in score-based generative models is to estimate the score of the unknown region
conditioned on the known region [[11}|34].

Let K denote the set of all tracks. Suppose a subset 2 C K is observed (i.e., known), and let I' = K \ 2 denote

the complement, i.e., the unobserved tracks we aim to inpaint. Define z** := {z(®)},cq and 2" := {2} cr.
The goal is to approximate the conditional score:

V,r log g- (27 ]25). (19)

This conditional gradient is generally intractable for a score model trained only on joint marginals. However,
following Song et al. [[11], we can approximate it via:

¢ (25 |2) = / ¢ (&5, 22 120) e

- / 4r (25122, 28)qr (2228 d?

= ]EqT (z$|zf)2) |:q7' (ZE\Z?, Zg)]
~ ]Eq7<z§:2|zg> [(I-r (ZE‘Z?)] (20)
~ q-(z0|2), 1)

where 2 ~ ¢ (29]zf)) = N (2% a2, B21) is a noised sample of the known region. Accordingly, the
conditional score can be approximated as:

V. Tog gr (225 ~ V. log g (2 )
= V,r log ¢-([z7; 27)),

where [z1; i?] denotes a composite latent vector, such that the known region is replaced by 25, while the
unknown region remains as zL, adopting the same notation as Song et al. [I1]].

This approximation enables zero-shot inpainting without requiring retraining: at each diffusion timestep, a
noised version of the known latents is sampled, concatenated with the current estimate of the unknown latents,
and passed to the score model. The resulting gradient is then applied to update only the unknown region. This
process is repeated throughout the reverse diffusion trajectory.

A.3 RePaint

Lugmayr et al. proposed RePaint [89], a resampling-based mechanism that improves score-based inpainting by
repeating the diffusion process across multiple forward-reverse cycles. Their key insight is that, in conventional
inpainting (as described in Eq. (Z1)), the sampled noise for the known region is independent of the generated
(inpainted) region. This lack of synchronization can lead to semantic inconsistencies and disharmony between
the known and unknown parts of the sample.

To address this, RePaint introduces a resampling mechanism during generation. At each denoising timestep,
the algorithm alternates between one reverse diffusion step and one forward diffusion step, repeating this cycle
U times. These micro-steps refine the sampling distribution and can have the effect of partially marginalizing
over the known region at noise level 7 in Equation 2T), thereby reducing the approximation error inherent
in conditional score estimation. This iterative resampling procedure improves consistency but incurs a higher
computational cost, as each denoising step requires multiple forward-reverse passes, making RePaint significantly
more expensive than standard inpainting methods.

While originally proposed for DDPM-based models, RePaint can be adapted to velocity-based objectives as used
in our framework. We apply this adaptation in the sampling procedure described in Algorithm[T] Setting the
resampling count U = 1 recovers the canonical single-sample inpainting method described in Appendix[A.2]

B Adaptive Timestep Conditioning and Score Approximation

Conventional inpainting approaches approximate the conditional score in Eq. (I9) using a single sampled
estimate of the known latents. This corresponds to a high-variance Monte Carlo estimate of the expectation over
¢-(25]28), which may lead to instability — especially at high noise levels.

By contrast, the adaptive timestep model proposed in Section[3.4] inspired by TD-Paint [92]], circumvents this
marginalization by training the model to directly approximate the conditional score.
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Algorithm 1 Inpainting using the RePaint approach.

Input:
Number of timesteps 7'
Re-denoising steps per reverse step U;
Noise schedule {Ti}lT:O with a7, Br;
Binary mask m (1 for known, O for unknown);
Known clean (masked) latents z5™%";
Denoiser network fp
I: zr, ~N(0,I)
2: forie=1T,...,1do

3 foru=1,...,U do
4 > DDIM sampling step
5: ’i)Ti <— fg(ZT“Ti)
6: 20 4 Qr;Zr, — Br, U,
7: €4 Br.2r;, + 0,V
8 i"lr];kfg’wn A O“"z‘7120 +/87'i—1é
9: > Sample the known regions
10: e~N(0,1)ifi > 1,else 0
11: Zl::(:wln «— 057_7"_1Z1(<]nuwn + B‘rq,_le
12: > Combine known and generated regions
13: Zr, < MOZE™ 4+ (1-m) O i';‘zkfi’w"
14: > Reapply forward process
15: ifu < U andt > 1 then )
16: Z, ~ N (aari Zr_ ., (1 _ ajri )I)
Ti—1 Ti—1
17: end if
18: end for
19: end for

20: return zr,

Following the notation in Sectionand Appendix we assume zo = [Zy; z(?] is a clean sample from the
dataset. Then, using an alternative factorization:

g (2 |28)) = / 4o (2, x5 1281

- / g (25 8, 28 (x5 |27

= ]Eq(xg|zf)2) |:q‘l' (Z£|Xga Zg)] (22)
~ q- (27|20, 20) = q- (2-|20) (23)
= N(zr; orzp, B21), (24)

where the approximation assumes that z5 ~ q(xg |z8) is available from the dataset. Unlike the marginalization-
based approximation in Eq. (Z1), this expression introduces no sampling noise during inference, thereby reducing
variance.

From this, the conditional score can be written as:

r r
oarZy — Z,
Vg log g (aF]af) = 2222 @)
A T .Q _T r
orZe(Zr,20,T ) —Zr
~ ( 602 )z (26)
_ r Qr r Q T
= —Zr — ﬁ fe(zfazDvT )Fa (27)

where fo(-)r denotes the output corresponding to the unknown region. The per-track timestep vector 7" is
defined as:

r_ {T’ kel freachke K, (28)

TE =0, ifkeQ
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Algorithm 2 Inpainting using adaptive timestep approach

Input:

Number of timesteps 7'

Re-denoising steps per reverse step U;

Noise schedule {Ti}lT:O with a7, Br;

Binary mask m (1 for known, O for unknown);

Known clean (masked) latents z5™%";

Denoiser network fp
: e~ N(0,1)
1 1r(1—m)
Zrp = mzg™ + (1 —m)e
cfori=1T,...,1do
> Partial DDIM sampling over unknown region

’i}‘"i — fO(ZTwTi)
20 — QrZr; — ﬁTi{)"'q,
€+ ﬂriz‘ri + Qr; f)‘ri
9: BN B0+ Br,_ g€
10: Ti—1 (—T/L'f1(1 —m)
11 ze < mzg™ 4 (1 — m)zmo
12: end for
13: return z-

PRAINRERN

as in Section [3.4] The model is trained using the velocity objective in Eq. (T2)), restricted to the unknown
region. This allows the denoiser to explicitly learn the conditional score on z~, avoiding the need for stochastic
marginalization and improving accuracy in conditional inpainting tasks. The full sampling procedure is detailed
in Algorithm 2]

C Iterative Generation

In addition to the one-stage mixture generation described in Section[3.3] MGE-LDM also supports an iterative,
stem-by-stem synthesis procedure. This approach constructs a full mixture by sequentially generating individual
sources, leveraging the partial generation mechanism at each step.

LetZ = {cgs) }: be an (ordered) set of CLAP embeddings corresponding to the desired instrument description.
At the first iteration (¢ = 1), we generate an initial source latent éf) by sampling with the model conditioned
only on the prompt c(ls):

Fm) ) 256) ~ pg(z('"), z(u)’ z(s)|®, 2, C1S>)7
and set zi“) = 2%5) as the initial submixture latent. For each subsequent iteration ¢ = 2, ..., |Z|, we follow the
iterative imputation strategy of partial generation, treating the current submixture as the accumulated sum of
decoded sources from the previous steps.

Finally, the full mixture waveform is constructed by decoding and summing the generated source latents:
1Z|

2 =3"D(E).
i=1

A preliminary evaluation of this iterative procedure is presented in Appendix [E]

D Experimental Details

This appendix provides a comprehensive description of datasets, baseline implementations, model architecture,
and training settings used throughout our experiments.

D.1 Datasets
We train and evaluate on three multi-track music datasets: Slakh2100 [37]], MUSDB18 [38]}, and MoisesDB [39].

All datasets consist of mixture tracks paired with isolated stem recordings. A summary of stem abbreviations is
provided in Table [d]
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Table 4: Abbreviations of instrument stems. The table lists all abbreviations used throughout the
paper along side their corresponding full instrument labels, grouped by dataset.

Common Slakh2100 MoisesDB
D G P v Brs. C.P Org. Pipe Reed Str. S.Lead S.Pad B.str Perc.

Abbr.

chromatic synth synth bowed

percussion 0F9an pipe reed strings [ _ g pad strings Percussion

Inst. bass drums guitar piano vocals brass

Slakh2100 is derived from the Lakh MIDI Dataset v0.1 [103]] and contains synthesized tracks rendered with
sample-based virtual instruments. It comprises 2100 songs divided into training (1500), validation (375), and
test (225) splits, totaling approximately 145 hours of audio. It includes a wide variety of instrument classes (e.g.,
bass, drums, guitar, piano, strings, synth pad, etc.). We adopt the naming S 4 to denote a subset
containing only bass, drums, guitar, and piano, the four classes used by MSDM and MSG-LD, and
Sp to denote the complementary subset of the remaining stems. We follow the official dataset splits provided by
Slakh2100 for training, validation, and testing.

MUSDBI18 consists of 150 real-world music recordings with four stems: drums, bass, other, and vocals.
We use all 100 tracks from the official training split for training and the 50-track test split for evaluation. The
total dataset length is approximately 10 hours.

MoisesDB comprises 240 songs (14 hours total) contributed by 47 artists across 12 genres. Each stem in the
song is annotated with a two-tier stem taxonomy. Each track is decomposed into its constituent sources and
annotated using a two-level hierarchical taxonomy of stem classes. We aggregate all second-level tracks into
their corresponding top-level classes. Among the 11 stem classes, we evaluate only the 7 unambiguous stems
(e.g., bass, percussion, vocals, etc.). For evaluation, we randomly sample 24 tracks (10%) as the test set
and use the remaining tracks for training.

Data Construction. We train our model using randomly constructed 3-track tuples (mix, sub, src). A source
stem is randomly selected from the available stems, and the remaining stems are aggregated into a submixture.
We select non-silent segments from the source track whenever possible, allowing up to 10 random resampling
attempts per instance. The same temporal offset is applied across all stems to ensure alignment. For generation
evaluation, we sample 300 random segments per test set. For source extraction, we sample between 150 and 700
non-silent segments per instrument class. All audio is downsampled to 16 kHz.

D.2 Baseline Implementations
All baseline metrics are recomputed on our test splits for a fair comparison. The following models are used:

* MSDM [34]: We use the official implementation and pretrained checkpointﬂ Since MSDM operates
at 22 kHz, we upsample our 16 kHz test audio for inference and downsample the output back to 16
kHz.

MSG-LD [36]: As no checkpoint is publicly released, we reproduce the model by retraining it from
the official codebase

HDemucs [20]: We train a 16 kHz version of Hybrid Demucs using the demucs_lightning
implementation

* AudioSep [53]: We evaluate using the publicly available implementation and checkpoint provided by
the authorsﬂ Since AudioSep operates at a sampling rate of 32 kHz, we upsample all test audio from
16 kHz to 32 kHz before inference and subsequently downsample the separated outputs back to 16
kHz for evaluation consistency.

D.3 Model Architecture and Training

Autoencoder. We adopt the VAE-based architecture from Stable Audio [72], with a downsampling ratio of 2048,
yielding a 7.8125 Hz latent resolution and 64 latent channels. We train the autoencoder on all training subsets
from Slakh2100, MUSDB18, and MoisesDB using 16 kHz mono audio for 600K steps with a batch size of 16.

Diffusion Model. In practice, the three latent representations are concatenated along the channel dimension,

such that the input to the diffusion model becomes Cancat[z(m), 2w, z“)] € R3“*L We use a DiT backbone
[86] with 24 transformer blocks with 48 heads, and a projected latent dimension of 1536 (3 tracks x 512

1https ://github.com/gladia-research—-group/multi-source—-diffusion-models
Zhttps://github.com/karchkha/MSG-LD
*https://github.com/KinWaiCheuk/demucs_lightning
*nttps://github.com/Audio-AGI/AudioSep
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Table 5: Source extraction performance of RePaint-based methods vs. MGE-LDM. Metrics are
reported as Log-Mel L1 distance |. T indicates the number of reverse timesteps, and U specifies the
number of denoising operations per reverse step (i.e., U —1 intermediate resampling steps). The case
U = 1 corresponds to the canonical single-sample conditional score approximation [11]], as described
in Appendix[A.2] MGE-LDM uses adaptive timestep conditioning without resampling.

S A SB
B D G P Avg. Brs. CP. Org. Pipe Reed Str. S.Lead S.Pad Avg.

Model T U

RePaint 125 g 1.89 275 291 268 255 433 237 667 384 427 282 3.64 258 381

-based
1891 250

each). Timestep embeddings are prepended to the input vector of the transformer. CLAP embeddings for
each track are processed by independent projection layers (without weight sharing) to produce scale and shift
parameters for AdaIN-style conditioning [[104]]. These are applied group-wise via GroupNorm within each DiT
layer to modulate the corresponding track-specific activations. Text embeddings are obtained from CLAP [56]
using the checkpoint music_audioset_epoch_15_esc_90.14.pt viathe laion-clap libraryE] Our
implementation builds upon the official stable-audio-tools repository from Stability A]E] and the training
framework from friendly-stable-audio-tools E] All models were trained on a single NVIDIA RTX
6000 GPU (48 GB of memory).

E Ablation Study

This section presents ablation experiments designed to further analyze the key components of our framework.
Unless otherwise specified, all models are trained on the combined S4+Sp dataset. Each of our models is
evaluated with the same configuration as in Section[5] using 7' = 250 denoising steps during sampling.

E.1 Comparison with Canonical Inpainting Methods

We assess the effectiveness of our adaptive timestep conditioning strategy by comparing it against two prior
approaches: the canonical one-sample conditional score approximation (Appendix and the RePaint
method [89] (Appendix [A.3). Table[5|reports the results of the source extraction task.

In RePaint, U denotes the number of denoising steps performed per reverse timestep: one denoising step followed
by U—1 forward (resampling) steps. As a result, the total number of denoising steps becomes 7" x U during the
full inpainting process. Note that setting U = 1 recovers the canonical single-sample estimator in Eq. (21)).

We observe that, for a fixed number of denoising steps, using fewer timesteps 7" with more resampling cycles U
generally improves performance, confirming observations in the original RePaint paper. We hypothesize that
repeated resampling helps stabilize conditional generation by mitigating the noise mismatch between observed
and unobserved regions, particularly at high noise levels, where observed latents contain little informative
content and single-sample approximations of Eq. (ZI) become highly unreliable. While this approach does not
yield a precise marginal score estimate, it heuristically improves inpainting quality through localized refinement.

Interestingly, we also observe that RePaint configurations with larger total denoising steps — such as T' =
250,U =2 and T' = 250, U = 4 — consistently underperform compared to 7' = 25, U = 10, across all stems
in both S 4 and Sg. This suggests that, for inpainting tasks, accurately modeling the conditional score at each
timestep is more critical than simply increasing the number of reverse steps. As RePaint approximates the
conditional score by marginalizing over perturbed conditions via resampling, performance benefits are observed
primarily through increased resampling (U), not longer trajectories (7).

Nevertheless, our adaptive timestep model outperforms all RePaint variants across both datasets, with the sole
exception of drums in S 4. By directly learning track-specific conditional scores during training, our method
eliminates the need for inference-time marginalization, resulting in lower variance and improved reconstruction
quality.

Shttps://github.com/LAION-AI/CLAP
®https://github.com/Stability-AI/stable—audio-tools
"nttps://github.com/yukara-ikemiya/friendly-stable-audio-tools
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Table 6: Total generation performance across modeling variants. Metrics are reported as FAD |.
All models are trained on S 4+ Sp. The baseline model uses uniform (non-adaptive) timesteps across
all tracks. MGE variants apply adaptive timestep conditioning and test the impact of normalizations
and CFG dropout rates. Values in parentheses indicate generation conditioned on the text prompt
"The sound of the bass, drums, guitar, and piano".

Model Testset
SA SFull Mu Mo
_Non-adaptive =~ 3.26(2.00) 0.79 5.12 4.51
MGE (adaptive) 3.14(2.24) 0.63 546 4.73

- w/o GroupNorm 348 (2.44) 0.76 5.61 4.88
- CFG dropout p=0.5 3.12 (2.67) 0.58 5.43 432

Table 7: Source extraction performance under different architectural and CFG settings. Metrics
are reported as Log-Mel L1 distance |. All models are trained on S4+ Sp. GN and LN denote
GroupNorm and LayerNorm, respectively. p indicates the classifier-free guidance (CFG) dropout rate
applied to each track’s conditioning vector, and s refers to the CFG guidance scale.

Norm. p s | Sa S5
vg. Brs. CP. Org. Pipe Ree tr. S.Lea Pa vg.
B D G P A B CP. O Pi Reed S S.Lead S.Pad A

LN 1.67 422 265 2.15 267 342 235 197 240 345 251 232 203 255
0.5 1.78 1.96 2.62 1.96 2.08 337 222 197 236 289 244 2.07 189 240

1.0 | 1.67 279 270 2.05 230 3.24 223 1.85 225 2.88 228 227 187 235

40 | 1.77 249 279 227 233 364 217 191 242 320 266 231 206 254

8.0 | 1.93 249 293 241 244 435 228 201 257 347 327 242 230 283

A potential concern is whether optimizing for adaptive timestep-conditional inference might degrade generation
quality when using uniform timestep schedules across tracks. To assess this, we evaluate our adaptive timestep
model with a uniform timestep vector 7 = (7, 7, 7), which corresponds to the total generation task, and compare
it to a baseline trained with non-adaptive, shared timesteps.

As shown in Table[f] comparing the non-adaptive uniform timestep baseline model and our model, both models
achieve comparable FAD scores, indicating that timestep adaptation preserves generation performance under
uniform scheduling while providing significant advantages for inpainting tasks.

E.2 Additional Design Ablations

We additionally investigate the impact of various modeling and training choices, including normalization
strategies and classifier-free guidance (CFG) dropout rates.

Table [§ includes results from models trained with LayerNorm instead of GroupNorm, following the original
DiT architecture, as well as a variant using a higher CFG dropout rate of p = 0.5. We observe that GroupNorm
slightly outperforms LayerNorm across all test sets, supporting the use of track-wise normalization in our
multi-track setting. Regarding CFG dropout, increasing the dropout rate improves unconditional generation
performance, particularly on S4 and Sgp. However, when conditioned on the text prompt (values in parentheses),
the model trained with p = 0.5 performs worse, suggesting that overly aggressive dropout may impair semantic
conditioning for total mixture generation.

We further examine how modeling and training design choices, such as normalization layers, classifier-free
guidance (CFG) dropout probability, and CFG scale, affect extraction performance and report the results in
Table[7]] When comparing normalization strategies, GroupNorm consistently matches or outperforms LayerNorm
across most stems, demonstrating the advantage of modeling track-wise statistics in our multi-track architecture.
This observation aligns with the trends seen in mixture generation results. For CFG dropout, a higher dropout
probability (p = 0.5) leads to improved performance compared to the default p = 0.1, suggesting that stronger
stochastic conditioning is beneficial during source extraction. While this differs from the trend observed in
mixture generation (Table[6), the discrepancy may be explained by the fact that, in extraction, non-target tracks
are effectively treated as unconditioned. This makes overall performance more sensitive to the model’s ability
to generalize in the presence of dropout. We also evaluate various CFG scales (1, 2, 4, 8). A scale of 1 yields
the best performance overall, although scales 2 and 4 remain competitive. Performance degrades at scale 8,
indicating that overly strong guidance can impair extraction quality.
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Table 8: Preliminary results for iterative stem-wise generation. Metrics are reported as FAD |.
Evaluation is conducted using a model trained exclusively on S 4. Each column header indicates the
generation order of stems (e.g., BDGP denotes bass— drums— guitar— piano).

Sa
Total Gen. BDGP BDPG DBGP DBPG DGBP DPGB GPBD GPDB PDGB PGBD
MGE 047 0.60 0.66 0.78 0.75 0.70 0.77 0.61 0.66 0.63 0.60

Table 9: Partial generation results evaluated with COCOLA [105] score 1. Higher values indicate stronger
coherence between the given mixture and the generated stems, complementing sub-FAD by emphasizing musical
consistency. "Ground truth" values correspond to the COCOLA scores computed between the given mixture
and the ground-truth accompaniment from the dataset. Bold values indicate the best results in each column
(excluding Ground truth), and underlined values denote the best results among models trained on the same
S set.

Train Set Sa Si
SaSsM,M, B D G P BD BG BP DG DP GP BDG BDP BGP DGP Brs. CP. Org. Pipe Reed Str. S.Lead S.Pad

Model

MSDM v X X x 57.74 51.87 57.76 56.10 45.96 57.64 54.48 50.67 49.40 55.75 43.25 40.46 52.82 47.09 - - - -

MSG-LD v X x x 5818 50.58 58.55 5830 46.12 57.63 56.29 49.11 47.51 57.94 43.70 41.33 54.19 4498 - - - - - . -
T T VX X X 6093 5371 58.09 59.78 49.77 60.43 59.16 52.95 51.90 60.03 46.28 43.46 56.77 49.73 6320 56.44 59.52 60.59 6235 61.11 63.74 58.66
(MGE> To / / X X 6129 51.43 62.61 61.35 48.79 60.94 59.12 50.82 49.39 60.21 46.06 42.81 56.73 47.01 64.32 65.21 65.46 62.31 64.31 6233 64.52 61.10
OUS) To X X v v 5540 44.76 57.29 59.34 43.90 55.18 56.09 45.68 45.42 55.91 44.10 43.35 51.44 43.53 60.23 54.74 56.70 60.18 56.50 60.66 62.03 61.00
Ta v V/ / v 5673 49.65 60.58 61.06 46.92 57.88 57.82 50.66 49.93 58.32 46.53 45.39 54.02 46.86 65.94 64.10 64.47 63.77 59.49 6239 65.02 58.52
Ground truth 60.11 53.55 56.33 57.16 50.42 59.74 58.59 53.11 52.29 57.80 47.06 44.32 56.07 50.18 64.58 64.34 64.85 63.38 64.75 63.20 6529 62.16

E.3 Iterative Generation Variants

Table [§] presents preliminary results for the iterative generation procedure described in Appendix [C applied
to a model trained on S 4. The task involves sequentially generating the four canonical stems (bass, drums,
guitar, and piano) in various orders.

Across all tested permutations, iterative generation produced higher FAD scores compared to one-stage mixture
generation, indicating a degradation in perceptual quality. Nonetheless, iterative generation may offer utility in
settings that require fine-grained, source-specific control.

An interesting trend observed: generation sequences that began with drumsconsistently resulted in poorer
performance relative to other orderings. This suggests that the model may be more effective at first establishing
harmonic or melodic content before aligning rhythmic elements. While this observation is speculative, it
highlights a potential inductive bias in the model that warrants further investigation, particularly in scenarios
beyond the four-instrument configuration.

F Extended Evaluation with Alternative Metrics

To complement the quantitative results presented in Section[5] we provide additional evaluations using alternative
metrics that better capture musical coherence and perceptual quality. While sub-FAD is widely adopted in
accompaniment generation research [34436, 163} [76| [81]], it is considered suboptimal for evaluating musical
coherence, since it primarily measures global timbral similarity rather than the harmonic and rhythmic interplay
between stems [[L05]]. To address this limitation, Ciranni et al. [L05] introduced the COCOLA metric, which
quantifies harmonic and rhythmic coherence through contrastive learning of musical audio representations.

We report the COCOLA results in Table[9]to complement our main findings. The metric is computed between the
given mixture and the generated stems, and we additionally report the “Ground truth” values computed between
the same mixture and the corresponding reference accompaniment from the dataset. Among models trained
on S4, our 77 variant outperforms the baselines on most instrument categories, except for guitar generation.
Larger-scale models (72—74) show similarly strong or even superior coherence, in several cases approaching or
surpassing ground-truth levels. Since COCOLA emphasizes musical coherence rather than timbral accuracy
with respect to reference stems, it provides a meaningful complement to sub-FAD, offering a more balanced
view of partial generation quality.

Because the VGGish-based FAD has been shown to correlate poorly with human perception in recent studies
[106H108], we further report FADcap.ma and sub-FADcrap-ma, computed using CLAP embeddings from the
music_audioset_epoch_15_esc_90.14.pt checkpoint, which achieves the highest correlation with
subjective ratings according to Grétschla et al. [106]. Table[I0]presents total generation results evaluated with
FADcrap-ma, where 71 achieves the best overall performance among models trained on S 4. For the combined
S 4+S 5 reference set, 7z yields the lowest FAD scores, while 73 performs best on M,, and M,, aligning with
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Table 10: Total generation results evaluated with FAD¢z4p.p14 J-

Train Set Test Set

Model
SA SB Mu Mo SA SFull Mu Mo
MSDM /X x  x 329 290 767 744

MSGLD v/ x _x __x___.191 312 658 .697

i VX X x 110 (450) .285 .637 .627
MGE =770/ < 368(359) .099 578 .621
(ours) 72« x v v/ 731(669) .632 222 .165
T, v  / 7/ 563(712) 426 235 .186

Table 11: Partial generation results evaluated with sub-FADcrap-ma -
Train Set Sa Sp
SASeM,M, B D G P BD BG BP DG DP GP BDG BDP BGP DGP Brs. C.P. Org. Pipe Reed Str. S.Lead S.Pad

X X x .103 .100 066 .096 227 .189 252 .135 .191 302 275 357 555 403 - - - -
MSG-LD v x x x .071.070 .076 .077 .130 .135 .143 .117 .121 .157 .185 .188 241 190 - - - -

Ti v x x x .140 .170 .153 .154 .184 .175 .181 .200 .189 .184 221 218 .190 .214 .278 .086 .069 .327 .462 201 .335 .118
(MGE) T2 v vV X X 259 .329 251 264 420 .302 .362 .380 .361 .337 .500 .517 .422 .460 .425 .071 .129 .327 .330 296 .123 313
OUS) 7o % x v/ .178 .202 356 253 .307 .402 340 .368 320 .477 445 469 .632 .484 361 .087 .062 .045 .090 .087 .079 .060

Ta v v v v 170 187 367 251 .253 405 .308 .350 .289 .455 450 436 .571 .486 .312 .072 .107 .057 .340 .208 .085 .063

their respective training domains. The sub-FADcrap.ua results for partial-generation, presented in Table@
exhibit trends consistent with Table 2] with MSG-LD achieving the best scores on most stem combinations.
Together, these additional metrics provide a more comprehensive and reliable assessment of both perceptual
quality and cross-domain generalization in partial and total music generation.

G Future Work

Future extensions of MGE-LDM include scaling to higher-resolution formats such as 44.1 kHz stereo audio,
enabling richer timbral detail and spatial fidelity. In particular, this can be achieved by leveraging high-quality
latent representations recently developed for the music domain [[109} [110]]. To reduce the modality gap in text-
conditioned extraction, fine-tuning on curated audio—text datasets like MusicCaps [7] is a promising direction.
Given its minimal reliance on precise stem boundaries, MGE-LDM is naturally suited for incorporating weakly
or noisily labeled multi-track data [39,|111]], which may expand training diversity.

Another promising avenue is to pre-train MGE-LDM on large-scale mixture-only corpora such as MTG-Jamendo
[[112]] or the Free Music Archive [113] to learn general audio priors for mixture tracks, followed by fine-tuning
on multi-track datasets for source-aware generation. This two-stage training strategy is expected to enhance
generative quality and improve generalization.

We also plan to extend MGE-LDM to text-based music editing tasks, drawing inspiration from recent instruction-
guided frameworks such as AUDIT [73], InstructME [74], and Instruct-MusicGen [64]. Leveraging MGE-LDM’s
latent inpainting capabilities and language-conditioned generation, this extension could enable user-directed
operations such as instrument replacement and style transformation via natural language prompts, building upon
the model’s unified training scheme and class-agnostic design.

H Spectrogram Examples of Generated Samples

We present Mel-spectrogram visualizations of generated audio samples across the three primary tasks: total
generation, partial generation (imputation), and source extraction. All examples are produced by MGE-LDM
trained on the combined Slakh2100 (S4+Sz), MUSDB18 (M,,), and MoisesDB (M,,) datasets.

We note that the model is capable of generating vocals in the unconditional setting, as vocalsstems are
present in the training data. Although MGE-LDM does not currently support fine-grained control over vocal
generation, this points to a promising direction for future work, such as incorporating explicit vocal prompts or
segment-level control for more expressive and structured multi-track modeling.
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Figure 2: Total generation examples. Each sample displays Mel-spectrograms of the mixture,
submixture, and source tracks, all generated simultaneously by MGE-LDM. The mixture track is
used to evaluate the total generation output.
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Figure 3: Source imputation examples. Each row illustrates source inpainting results by MGE-LDM,
conditioned on the text prompt "The sound of the { Labe1}". The middle column shows the provided
context mixture (submix), the rightmost column is the generated source, and the leftmost column
is the recombined mixture of the submix and generated source. While some stems are imputed
accurately, others fail due to data imbalance during training.
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Figure 4: Source extraction examples. Source extraction results produced by MGE-LDM, condi-
tioned on the text query "The sound of the {1abel}". The leftmost column shows the input mixture,
the middle column is the extracted source predicted by the model, and the rightmost column is the
ground-truth source. We observe that extraction quality may degrade for underrepresented classes
such as strings, and in some cases, the model hallucinates unrelated instruments or incorrect timbres.
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I Ethics Statement

This work introduces a class-agnostic generative framework for multi-track music modeling, trained exclusively
on publicly available datasets (Slakh2100, MUSDB18, and MoisesDB). While the model enables flexible
music generation, source imputation, and source extraction, it also carries potential risks, such as unauthorized
manipulation, misuse in derivative content, or generation of audio resembling copyrighted material. To mitigate
these concerns, we commit to releasing the model and code under a license with clear usage guidelines,
emphasizing responsible research and ethical creative applications.
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