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ABSTRACT

Classifiers in a diverse ensemble capture distinct predictive signals, which is
valuable for datasets containing multiple strongly predictive signals. Performing
fast adaptation at test time allows us to generalize to distributions where certain
signals are no longer predictive, or to avoid relying on sensitive or protected
attributes. However, ensemble learning is often expensive, even more so when we
need to enforce diversity constraints between the high-dimensional representations
of the classifiers. Instead, we propose an efficient and fast method for learning
ensemble diversity. We minimize conditional mutual information of the output
distributions between classifiers, a quantity which can be cheaply and exactly
computed from empirical data. The resulting ensemble contains individually strong
predictors that are only dependent because they predict the label. We demonstrate
the efficacy of our method on shortcut learning tasks. Performing fast adaptation
on our ensemble selects shortcut-invariant models that generalize well to test
distributions where the shortcuts are uncorrelated with the label.

1 INTRODUCTION

Some of the strongest scientific theories are supported by multiple sources of evidence, a principle
described by 19th century philosopher William Whewell as “consilience”. Evolution is one such
example, having been firmly corroborated by fields ranging from paleontology to genetics. In many
real-world applications of machine learning, datasets can similarly contain multiple predictive signals
that explain the label well. In these settings, a standard model typically learns from a combination of
predictive features (Ross et al., 2018; Kirichenko et al., 2022). Such a model will fail to generalize to
distribution shifts that break the correlation between certain signals and the label (Hovy & Søgaard,
2015; Hashimoto et al., 2018; Puli et al., 2022).

This shortcoming can be addressed by learning a diverse set or ensemble of classifiers. Such methods
typically exploit some notion of independence to learn multiple classifiers that rely on different
predictive signals. We can then perform fast adaptation, using a small amount of out-of-distribution
(OOD) validation data to select the model that generalizes best. Learning diversity is also beneficial
in and of itself: these classifiers are empirically shown to be more human-interpretable than if we
were to fit a single model (Ross et al., 2018), possibly because they learn disentangled representations
that correspond to natural factors of variation (Shu et al., 2019).

The key challenge is quantifying the right notion of diversity. Existing work has exploited concepts
like input gradient or parameter orthogonality as a proxy for statistical independence (Teney et al.,
2021; Xu et al., 2021). To tackle OOD generalization, which fundamentally requires additional
assumptions or data beyond the observed training data (Bareinboim et al., 2022; Schölkopf et al.,
2021), previous work have also assumed access to unlabelled test data and measured disagreement on
those examples (Lee et al., 2022; Pagliardini et al., 2022). However, these objectives or assumptions
are often prohibitive or unrealistic in real-world settings. For example, group-balanced test data is not
always obtainable, e.g. when deploying a pneumonia model to multiple new hospitals whose patient
profiles may change over time. Another costly example is enforcing input gradient orthogonality on
high-dimensional covariates like images or text, where it can be challenging to avoid learning from
orthogonal covariates of the same underlying feature, such as neighboring pixels.
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To avoid the pitfalls of operating in high-dimensional input or parameter space, a promising line of
work instead adopts the information-theoretic perspective and tackles the problem as representation
learning. These approaches apply the information bottleneck method and minimize mutual informa-
tion between the representations learnt by each classifier. Such an objective forces the classifiers to
rely on distinctly meaningful features for prediction. Most notably, Pace et al. (2020) and Rame &
Cord (2021) minimize mutual information between the classifier representations conditioned on the
label. Since any pair of predictors cannot both be accurate while remaining unconditionally inde-
pendent, the extra conditioning prevents learning weak classifiers. The resulting ensemble contains
accurate classifiers that nevertheless rely on distinct predictive signals. The only core assumption is
that the underlying predictive signals are themselves conditionally independent.

These approaches are conceptually appealing but practically challenging. Mutual information between
high-dimensional representations is intractable and must be approximated, either via variational (e.g.
Fischer, 2020) or contrastive (e.g. Oord et al., 2018) bounds. Furthermore, such approximations are
computationally expensive, a problem that is compounded in the ensemble setting where we wish to
train multiple classifiers speedily.

We seek to learn ensemble diversity fast and effectively. Our key insight is that it suffices to enforce
conditional independence on the output distributions of the classifiers. Our first contribution is
proposing conditional mutual information (CMI) between output distributions as the regulariz-
ing objective. Assuming conditionally independent predictive signals, enforcing CMI between output
distributions also guarantees that the ensemble where separate predictive signals are learnt by separate
classifiers is a minimizing solution. Since the output distribution is categorical, CMI can be cheaply
and exactly computed from empirical data. In addition, our method avoids using additional sources of
data that cannot be found in many real-world domains, such as unlabelled test data or “group” labels
for each predictive signal in the dataset. We only permit a small amount of validation data from the
test distribution for (1) hyperparameter tuning and (2) selecting the final predictor from our ensemble.
We dub our approach as Conditionally Independent Deep Ensembles (CoDE).

Our second contribution is evaluating CoDE on benchmark datasets for shortcut learning (Geirhos
et al., 2020). Shortcuts are signals that are (i) highly but spuriously correlated to the label in the
training distribution, possibly due to biases in data collection or other systematic pre-processing errors
(Torralba & Efros, 2011), and (ii) preferentially learnt by a neural network, possibly due to simplicity
biases (Shah et al., 2020) or architectural biases (e.g. convolutional neural networks (CNNs) relying
on texture over shape (Baker et al., 2018)). An empirical risk minimizing (ERM) model will rely on
shortcuts and fail to generalize to test distributions where they are no longer correlated to the label.
This is a natural application for our method as the core assumption of conditional independence
applies to many such datasets — for example, in natural images, the foreground is typically the label
and is thus conditionally independent from the background (shortcut). We show that CoDE effectively
recovers an ensemble where the shortcut features and the true signal are learnt by separate classifiers.

2 PRELIMINARIES: SETUP AND NOTATION

In Section 3, we will fully motivate the assumptions behind our model of the data-generating process
(DGP). However, we describe it here first to establish key terminology and concepts.

Data-Generating Process Let z denote the set of latent factors that generate the set of observed
features x ∈ RP . Let y ∈ {0, 1, . . . ,K − 1} denote the label. The data pe(x, y, z) is generated
from a family of distributions indexed by e, the environment. We only consider: (i) a single
training environment (e = tr), from which we have access to i.i.d. labelled training examples
Dtr = {xi, yi}Ni=1, and (ii) a test environment (e = te), from which we draw unlabelled test
examples that our model should perform well on. We also allow access to a small set of labelled
validation data Dval = {xi, yi}N

′

i=1 from the test environment, which is used only for hyperparameter
tuning and ensembling (i.e. constructing the final model from the set of learnt classifiers).

We make the following assumptions on the DGP:

(i) all label information is encoded by z, i.e. pe(y|x, z) = pe(y|z) for all e

(ii) pe(x|z) = p(x|z) is invariant across all e
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(iii) pe(z) > 0 for all e and z

(iv) pe(y) > 0 for all e and y
(v) [Latent Conditional Independence] zi ⊥⊥ zj | y for all e and i, j

Based on these assumptions, we can factorize pe(x, y, z) as:

pe(z,x, y) = pe(y)

(
L∏
i=1

pe(zi|y)

)
p(x|z) (1)

Example: ColoredMNIST As introduced in Arjovsky et al. (2019), y is a binary label which
determines color (z1 ∈ {red, green}) with probability pc and digit (z2 ∈ {0-4, 5-9}) with probability
pd. pc and pd are independently chosen. In the training distribution, pc = 0.25 and pd = 0.1, as such,
an ERM model will primarily learn from color. pc and pd can be arbitrary in the test distribution.

Example: Waterbirds As introduced in Sagawa et al. (2019), y is a binary label determin-
ing if the image represents a water or land bird. It perfectly determines the foreground
(z1 ∈ {water bird, land bird}) and is highly but spuriously correlated to the background (z2 ∈
{water, land}) in the training distribution. An ERM model will learn from background features.

Group Robustness When z is discrete, each possible value that z can take is known as a group. Due
to the spurious correlations created by ptr(zi|y), groups that are highly represented in the training set
are called “majority groups”, and poorly-represented groups are “minority groups”. Group robustness
refers to the goal of generalizing well on all groups and is one natural way of evaluating if a model
has been learning shortcuts. For example, both ColoredMNIST and Waterbirds admits four
groups formed by the Cartesian product of z1 and z2.

Ensembles and Fast Adaptation A classifier f(x) := pθ(y|x) is parametrized by θ and outputs
class probabilities. We will use ŷ := pθ(y) to denote the unconditional output distribution. We use
the term “ensemble” loosely to refer to a set of M classifiers {fm}Mm=1 that can be learnt jointly
or sequentially. (Section 4 clarifies the relationship to traditional ensemble methods.) After all M
classifiers are learnt, the final model θ∗ is selected using validation data Dval:

θ∗ = arg min
θm,m∈{1,...,M}

1

N ′

N ′∑
i=1

log pθm(yi|xi) (2)

This process is referred to as fast adaptation.

3 CONDITIONALLY INDEPENDENT DEEP ENSEMBLES

To motivate our approach and the assumptions made in (1), we first define what it means to learn a
diverse ensemble and explain why conditional independence is a sound measure of diversity.

3.1 DIVERSITY AS CONDITIONAL INDEPENDENCE

Diverse classifiers utilize separate predictive signals, intuitively, they predict the “same things for
different reasons” (Rame & Cord, 2021). Our setup in Section 2 formalizes this notion of “different
reasons” by explicitly defining the latent variable z, which models the total underlying set of predictive
signals that relate x to y. A classifier that learns a mapping from x to y can then be interpreted as
implicitly inferring z from x and learning a mapping from z to y. We can thus define diverse classifiers
that rely on separate predictive signals as learning from separate dimensions or subspaces of z.

To formalize the idea that a classifier f learns using only a subspace of z, one naive approach
might be to define f as relying only on the subspace z[a] if and only if (some distribution computed
from) f is independent of its complement z\z[a]. This definition is convenient as it suggests that
the appropriate objective to learn a diverse ensemble is simply to enforce statistical independence
between the classifiers. This follows because two classifiers that rely on overlapping subspaces of z
will necessarily be dependent.
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However, the definition above assumes that distinct predictive signals (i.e. subspaces of z) are
themselves unconditionally independent. This is not always true when a dataset contains multiple
strongly predictive signals. Dimensions of z can be dependent by virtue of their correlation to y.
Classifiers that learn from such signals will similarly be dependent. Shortcut learning is precisely a
problem because meaningful and spurious features are highly correlated in the training environment.

This conundrum can be resolved by establishing independence of the latent factors with conditioning
on y. Doing so is equivalent to assuming that upon knowing the true label, observing one set of
features yields no additional information about other features. This is usually a realistic assumption
to make. As the Waterbirds example in Section 2 shows, backgrounds and foregrounds are often
conditionally independent in the test distributions we care about. This motivates our assumption (v)
of latent conditional independence in Section 2, where the individual factors zi are conditionally
independent given y. We formalize this notion of “diversity as conditional independence” below.

Definition 3.1. Let z[a] := (za1 , . . . , zal) denote some subspace of z. Let ĥ(f) denote some
distribution computed from f . We say f is invariant to z[a] if ĥ ⊥⊥ (za1 , . . . , zal)|y. Let z[i] be the
maximal subset of z that f is invariant to. Then f is said to rely on z−[i] := z\z[i] for prediction.

Definition 3.2. Let f and f ′ be a pair of classifiers that rely on z[i] and z[i′] respectively. f and f ′

are said to be diverse if z[i] ∩ z[i′] = ∅. An ensemble {fm}Mm=1 is diverse if every pair of classifiers
fj , fk in the ensemble are diverse.

It follows immediately from Definition 3.2 that diverse classifiers must themselves be conditionally
independent, i.e. ĥi ⊥⊥ ĥj |y. Our training objective for learning a diverse ensemble should therefore
enforce conditional independence on all pairs of classifiers:

arg max
θ1,...,θM

N∑
i=1

M∑
m=1

log pθm(yi|xi) (3)

subject to ĥs ⊥⊥ ĥt | y ∀s, t

We can interpret (3) as follows: the main objective guarantees that the learnt ensemble contains indi-
vidually strong predictors, whereas the constraint guarantees that each predictor is uninformative of
the others when conditioned on the label. Put together, (3) learns classifiers that rely on conditionally
independent subspaces of z and thus provide no additional information about each other. As is typical
in machine learning (Krogh & Hertz, 1991; Deb, 2014), we optimize an unconstrained analogue of
(3) by expressing the constraint as a regularization term.

3.2 ENFORCING CONDITIONAL INDEPENDENCE VIA OUTPUT DISTRIBUTIONS

It remains for us to decide on the distribution ĥ that we constrain, as well as the (unconstrained)
regularization objective from (3). These choices are crucial in many ways. Since independence with
respect to ĥ underpins the notions of invariance and diversity in Definitions 3.1 and 3.2, it must be
informative about the underlying predictive signals that a classifier is relying on. Furthermore, ĥ and
the regularization objective must be tractable.

Earlier work such as Pace et al. (2020) and Rame & Cord (2021) choose ĥ to be the representations
learnt by the classifiers, e.g. by constructing f = fl ◦ fe as a deep encoder network fe that
is attached to a linear classifier fl and letting ĥ = fe(x). As the regularization objective for
conditional independence, Rame & Cord (2021) compute pairwise conditional mutual information
CMI(fe,s, fe,t) whereas Pace et al. (2020) compute total correlation T C(fe,1, . . . , fe,M ). Since the
encoder representations are high-dimensional, these terms must be approximated.

We propose a far simpler and more efficient method. Instead of network representations, we choose ĥ
to simply be the output distribution ĥ = f(x) = pθ(y|x) of the classifier. Accordingly, our regular-
ization objective is conditional mutual information (CMI) between the output distributions of
the classifiers. For any pair of classifiers fj , fk, we have:

CMI(fs, ft) = Ey
[
DKL

(
p(fs, ft|y) || p(fs|y)p(ft|y)

)]
(4)
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CMI is zero iff fs ⊥⊥ ft|y for all values of y. Enforcing conditional independence on the classifiers’
predicted output probabilities rather than underlying representations trades off granularity of the
independence constraint for computational efficiency. We believe that this is a valuable trade-off.
Since ŷ has categorical support, (4) can be cheaply and exactly estimated from training data. As our
experiments in Section 5 show, even on a noisier signal like output distributions, enforcing conditional
independence is sufficient to learn a diverse ensemble.

Even though a diverse ensemble implies pairwise conditionally independent classifiers, the converse
is not necessarily true. Mutual information is also zero if one of the classifiers outputs random or
constant class probabilities. In particular, optimizing a weighted sum of the cross-entropy term and
the CMI term can be challenging — overly weak regularization produces an ensemble that is not
diverse, whereas overly strong regularization tends towards solutions containing close-to-random
classifiers. Instead, we propose adding another term to regularize for confident predictions:

R(f) =
K∑
k=1

∥∥p(ŷ|y = k)− Ik
∥∥ (5)

where Ik is the indicator function at k. Put together, the overall loss objective is:

L({θm}Mm=1) =

N∑
i=1

M∑
m=1

log pθm(yi|xi) + λ1 ·
M∑
s=1

s−1∑
t=1

CMI(fs, ft) + λ2 ·
M∑
m=1

R(fm) (6)

where λ1 and λ2 are hyperparameters controlling the strength of regularization. A solution that
minimizes (6) contains an ensemble where: (i) each classifier is accurate (first term) and confident
(third term), and (ii) different classifiers rely on different subspaces of z for prediction (second term).
We name such an ensemble a Conditionally Independent Deep Ensemble (CoDE).

3.3 CODE: COMPUTATIONAL DETAILS

The hyperparameters of the method are M , λ1, and λ2. Unlike traditional ensembles, M (ensemble
size) will typically be small (M = 2 for all our experiments) since M cannot be larger than the
number of conditionally independent predictive signals inherent in the dataset. As is typical for OOD
problems, we assume access to validation data from the test environment for hyperparameter tuning.

Objective (6) describes the situation where all M classifiers are jointly optimized. Since M is
typically small, doing so is not difficult or computationally expensive (as might be with traditional
ensembles). An alternative to joint optimization is to learn the classifiers in a sequential fashion. The
analogue to (6) becomes:

L(θm) =

N∑
i=1

log pθm(yi|xi) + λ1 ·
m−1∑
s=1

CMI(ŷs, ŷm) + λ2 · R(fm) (7)

Sequential optimization presents a natural way to determine M , as we can terminate the training
process when no more predictive classifiers can be learnt. However, it will fail if earlier classifiers in
the sequence learn multiple predictive signals. We discuss this further in Section 5.

4 RELATED WORK

Ensemble Methods In statistics, ensembling traditionally refers to combining multiple predictors
into a single model that outperforms the individual learners, typically by bagging (Breiman, 1996)
or boosting (Schapire, 1990). Diversity in this context refers to minimizing correlation between
individual learners, which reduces variance and improve generalization (Kuncheva & Whitaker,
2003). Deep ensembling (Lakshminarayanan et al., 2017) is an analogous approach in deep learning
where multiple randomly-initialized networks are trained in parallel, however, they are generally used
for the purpose of uncertainty estimation. Unlike these works, we consider diversity specifically in
the context of datasets with multiple predictive signals, and learning a diverse ensemble as recovering
all such signals for the purpose of OOD generalization.
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Various Approaches For Learning Diversity As an unsupervised task, diversity refers to learning
disentangled representations where natural factors of variation in the dataset are encoded into distinct
latent dimensions (Bengio et al., 2013; Higgins et al., 2018); however, recent work has proposed
incorporating weak supervision in this process (Locatello et al., 2019; Shu et al., 2019; Brehmer
et al., 2022). As a supervised problem without OOD shifts, diversity refers to learning functions that
disagree outside training points. Methods in this space have generally made use of input gradients
(Ross et al., 2017; 2018) and orthogonality (Mashhadi et al., 2021; Xu et al., 2021). Finally, diversity
is considered in the context of distribution shifts — either to improve robustness against adversarial
attacks (Pang et al., 2019), to disambiguate between perfectly correlated signals (Lee et al., 2022), or
to evade the simplicity bias by learning more complex functions (Pagliardini et al., 2022; Teney et al.,
2021). Our work is most closely aligned with this last category. Unlike the approaches above, we
exploit information-theoretic measures as our objective.

Shortcut Learning and Spurious Correlations Shortcut learning (Geirhos et al., 2020) involves
distribution shifts arising from spurious correlations (Buolamwini & Gebru, 2018; Xiao et al., 2020;
Moayeri et al., 2022) and neural network biases (architectural or simplicity biases) (Geirhos et al.,
2018; Shah et al., 2020; Teney et al., 2021). Methods that tackle distribution shifts must use additional
data and/or assumptions. Examples of additional data include having multiple training environments
(Arjovsky et al., 2019), counterfactual examples (Teney et al., 2020), access to enough validation
data to fine-tune the model (Kirichenko et al., 2022), or group labels (Sagawa et al., 2019; Puli et al.,
2022). Examples of additional assumptions include exploiting the lottery ticket hypothesis (Zhang
et al., 2021) or treating misclassified training examples by an initial model as a proxy for minority
groups (Liu et al., 2021; Zhang et al., 2022). Unlike these methods, we aim to learn all predictive
signals in the dataset, rather than performing well on a single test distribution. Furthermore, we use
validation data for hyperparameter tuning only, without additional sources of data (e.g. group labels).

Information Bottleneck and Conditional Independence The line of work most similar to ours
also exploits the information bottleneck method to learn diversity. Sinha et al. (2020) minimizes the
mutual information I(ẑs, ẑt) between learnt representations ẑm, however, this term is unconditional
and will simply learn weak (biased) predictors, as noted in Section 3. Rame & Cord (2021) introduce
DICE, which minimizes the conditional term CMI(ẑs, ẑt). Pace et al. (2020) considers total
correlation T C(ẑ1, . . . , ẑM ) instead of pairwise terms. Unlike CoDE, both of these approaches
compute mutual information terms on the high-dimensional representations ẑm. Their objectives are
intractable and must be approximated. For example, DICE requires both variational approximations
and a jointly trained adversarial discriminator that learns to distinguish pairwise classifiers. Compared
to these approaches, CoDE is by far computationally advantageous as mutual information for
categorical output distributions can be computed faster and exactly.

5 EXPERIMENTS

Section 5.1 presents experiments on ColoredMNIST, which is used both to demonstrate the viability
of our approach and to highlight pivotal observations and ablations. Section 5.2 then evaluates CoDE
on larger benchmark datasets for shortcut learning to show that it scales effectively.

5.1 COLOREDMNIST

Setup As described in Section 2, the original MNIST (LeCun et al., 1998) labels are binarized
(0-4, 5-9) and used to generate true labels y with noise pd. y then generates binary color labels with
noise pc, used to color the image (red or green). As per Arjovsky et al. (2019), we consider two
test environments: the training distribution where pd = 0.25 and pc = 0.1, and the adversarial
distribution where pd = 0.25 but pc = 0.9 (hence the shortcut-label correlation is reversed).

Evaluation Baselines and Metrics As is standard in existing work, we evaluate predictive accuracy
on the training and adversarial distributions. In choosing baselines, we considered the following
desiderata for fairness and comprehensiveness: (i) comparing to both ensembling and non-ensembling
methods, (ii) amongst ensembling methods, comparing to both conditional independence-based
methods and those that do not, and (iii) comparing only to methods that do not require additional
sources of data besides validation data for hyperparameter tuning. We chose the following baselines:
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Results on ColoredMNIST
Training Adversarial Random-Color Random-Color + Perfect-Digit

(pd, pc) (0.25, 0.1) (0.25, 0.9) (0.25, 0.5) (0.0, 0.5)

Invariant 75 75 75 100
ERM 88.6 15.3 52.5 53.4
JTT 17.8 87.9 52.5 56.6

Ortho-Ensemble 89.8 11.1 50.3 49.2
TC-Ensemble 89.1 69.8* - -

CoDE 70.7 70.0 70.8 91.2

Table 1: Results on ColoredMNIST. A theoretically ideal classifier relying only on digit (denoted
as “Invariant”) will be upper-bounded by the digit-label noise pd (75%), hence any result above 75%
is relying on the color shortcut. CoDE has the strongest performance on the adversarial distribution.
*We were unable to reproduce TC-Ensemble on ColoredMNIST, and are citing their results in lieu.

1. ERM classifier (ERM): single, standard classifier trained with ERM

2. Just Train Twice (Liu et al., 2021) (JTT): an initial classifier is trained for a limited number
of epochs; mis-classified examples are upweighted to train the final classifier

3. Ensembles using input gradient orthogonality (Teney et al., 2021) (Ortho-Ensemble): an
ensemble where the regularizing term is the dot product of the two models’ input gradients

4. Ensembles using conditional total correlation (CTC) (Pace et al., 2020) (TC-Ensemble):
an ensemble learnt by minimizing CTC over the encoder network’s representation

Table 1 shows all results on ColoredMNIST. We discuss the most important findings below.

1. Enforcing conditional independence on output distributions achieves diversity effectively.

Since ColoredMNIST is an artificially-created dataset whose DGP we know satisfy latent
conditional independence (pc and pd are independently determined), it is the ideal dataset to
evaluate our key claim. Indeed, the strong performance of CoDE shows that it is sufficient to
enforce conditional independence on output distributions. The final predictor selected via fast adap-
tation achieves near-invariant results, suggesting that it has correctly learnt from digit rather than color.

2. CoDE generalizes to multiple OOD test distributions, without overfitting on any one specific
distribution.

In Table 1, JTT achieved about 90% on the adversarial distribution, implying that it overfitted to
the adversarial distribution — by learning the opposite shortcut (color) correlation rather than the
true signal (digit). This is further confirmed with additional results on two other test environments
(Random-Color and Random-Color + Perfect-Digit) where pc = 0.5. JTT is close to random on these
two environments, suggesting that it is still relying on color as the predictive feature. In contrast,
CoDE achieves 91% when pd = 0.0, suggesting that it has learnt to predict using digit.

While concerning, these results are not entirely surprising. A method like JTT did exactly what it was
designed to do, which is to minimize classification errors on the adversarial test distribution. Since
pc = 0.1, the opposite color correlation is precisely this loss-minimizing function. In contrast, CoDE
will not find such a solution because two classifiers that return opposite predictions using the same
feature (color) are perfectly correlated, even when conditioned on y.

These results highlight the shortcomings of single classifier methods like JTT. Such methods are
designed to generalize to a specific test distribution, in general, this does not imply that they have
learnt the desired predictive signal — merely that they have learnt an arbitrary function that does well
on the test distribution. In contrast, methods that enforce diversity, such as CoDE, explicitly recover
meaningful predictive signals that can generalize to any test distribution where p(z|y) changes.
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ColoredMNIST CelebA
Training Adversarial Ave Worst

CoDE (sequential f1) 90.0 10.2 95.2 31.1
CoDE (sequential f2) 70.1 70.0 95.0 33.3
CoDE (sequential f3) 63.2 49.0
CoDE (sequential f5) 64.4 42.2
CoDE (joint M = 2) 73.4 60.2 89.2 83.3
CoDE (joint M = 3) 74.6 44.3
CoDE (joint M = 5) 71.9 43.1

Table 2: Additional results on ColoredMNIST and CelebA.

3. Joint and sequential optimization are suited to different datasets.

From our experiments, we found that there is no clear preference between either choice in terms of
generalization ability. Table 2 shows both joint and sequential results on the ColoredMNIST and
CelebA datasets. For ColoredMNIST, we found that sequential training performed better than
joint training. For CelebA, joint training yielded a stronger classifier.

This might be explained by the biases of the ERM model. In ColoredMNIST, as both latent factors
(color and digit) are noisy predictors and as color presents a particularly simple shortcut, the ERM
model solely learns from color. As such, a second classifier model that is trained sequentially can
learn to predict solely from the digit feature. In contrast, the ERM model in CelebA has likely
picked up some combination of the spurious (gender) and true (hair color) features, possibly because
gender gives rise to complex features that are not ncessarily simpler to learn. This corroborates
previous findings indicating that ERM models can learn an arbitrary combination of all predictive
signals (Zhang et al., 2021; Kirichenko et al., 2022). As such, when trained sequentially, the second
model fails to learn from hair color alone.

The advantages of sequential optimization are: (i) cheaper computational costs as M increases,
and (ii) providing a natural stopping point for training. The latter comes from the fact that we
can select for M by terminating the training process when the subsequent classifier is no longer
predictive, which indicates that there are no further predictive factors to be learnt. In contrast, joint
optimization is advantageous as it allows us to avoid the pathological sitation where earlier models
learn combinations of predictive factors. As small values of M work well for CoDEs, we note that
the computational cost of CoDEs are not prohibitive.

5.2 BENCHMARK DATASETS

Setup We consider the following benchmark datasets:

• CelebA Liu et al. (2018); Sagawa et al. (2019): A dataset of celebrity faces with various
labelled attributes. We consider the benchmark task in (Sagawa et al., 2019) of predicting
the binary hair color attribute (blond or not), with gender (female or male) as the spurious
attribute. There are therefore four groups.

• Waterbirds (Wah et al., 2011; Sagawa et al., 2019): Setup described in Section 2. There
are also four groups as both latent factors (background and foreground) are binary.

• MF-Dominoes (MNIST-FashionMNIST) (LeCun et al., 1998; Xiao et al., 2017; Shah
et al., 2020; Pagliardini et al., 2022): Each input image concatenates an MNIST digit (0 or
1) with a FashionMNIST object (coat or dress). The true label is the FashionMNIST object;
the simpler MNIST feature is the shortcut. The minority groups represent 5% of the data.

Table 3 shows all results on the benchmark datasets.

4. CoDE scales well to large datasets and retains effectiveness at preventing shortcut learning.
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CelebA Waterbirds MF-Dominoes
Method Ave Worst Ave Worst Ave Worst

ERM 94.8 46.7 90.4 78.3 88.9 76.9
JTT 88.0∗ 81.1∗ 93.3∗ 86.7∗ 89.5 76.1

CoDE 89.2 83.3 91.5 79.4 92.1 91.4

Table 3: Main results on all datasets. CoDE achieves better adversarial or wrost-group accuracy than
the other methods on all datasets except Waterbirds.
∗ Results from the JTT paper. We share the same model and training environment as their paper.

On CelebA and MF-Dominoes, CoDE achieves the best worst-group accuracy. Unlike the earlier
ColoredMNIST dataset, we have no guarantees that the core assumption of latent conditional
independence holds. However, the strong performance of CoDE on these datasets shows that such an
assumption is generally valid and useful when scaled to more realistic datasets.

We note that CoDE performs poorly on Waterbirds. In our experiments, we selected M = 2
as the ensemble size. Even though there are no guarantees what will be the two conditionally
independent classifiers that CoDE learns, in the other datasets, the results show that they do each
correspond to the shortcut and true signal. This implies that in these datasets: (a) there are no features
conditionally independent to both the shortcut and true signals and yet also strongly predictive of
the label, and (b) the shortcut or true signal cannot be decomposed themselves into conditionally
independent signals. Our hypothesis is that (b) is not true for Waterbirds. As the dataset is varied
and contains a range of land and water backgrounds, there could be multiple spurious signals in the
background that are somehow conditionally independent, resulting in these signals being learnt.
Another possibility is that the ensemble could have learnt an imperfect or partial foreground signal.

5. Computational effectiveness is crucial to learn diverse ensembles at scale.

Beyond ColoredMNIST, we found that it was computationally prohibitive to run Ortho-Ensemble,
as the size of ensembles required to work well (48 or 96) was too high. We also noted that we
could not implement TC-Ensembles successfully on larger datasets, noting that the original authors
do not test on datasets besides ColoredMNIST either. We believe that this further highlights the
importance of computational efficiency in diverse ensembling.

6 DISCUSSION AND CONCLUSION

Appendix B discusses potential failure modes of our method.

We introduce CoDE, a method for learning an ensemble of diverse classifiers that rely on different
predictive signals in the dataset. The key assumption made by CoDE conditional independence
between predictive signals, which it enforces on classifiers’ output distributions. We find that CoDE
works well in practice when applied to shortcut learning tasks. Future work includes: (a) evaluating
CoDEs on other applications where multiple predictive signals exist, such as fairness-related tasks
where we might want to learn classifiers that do not rely on sensitive attributes, and (b) considering
other metrics for conditional independence that might provide more fine-grained signals than output
distributions (e.g. minimizing mutual information between latent representations).

ETHICS STATEMENT

Positive Impact Being robust to distribution shifts, CoDE will have a positive impact when de-
ployed to high-stakes domains, where learning shortcut signals can have harmful social consequences.
One such notable example is pneumonia prediction — models trained on pneumonia labels from
chest X-ray scans have been shown to learn machine-specific artifacts in the background, which is a
shortcut as hospitals have differing positivity rates and use different machines (Zech et al., 2018).

9



Under review as a conference paper at ICLR 2023

Negative Impact There are no notable negative impacts of using CoDE specifically, besides the
general potential for all machine learning models to be abused in the wrong hands.

REPRODUCIBILITY STATEMENT

We intend to release public code with a camera-ready version of the paper.
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A EXPERIMENTAL DETAILS

Architecture and Training Details For ColoredMNIST, we use a CNN as the classifier, con-
taining two convolutional layers and two fully-connected layers. Adam (Kingma & Ba, 2014) is used
for optimization, with a learning rate of 0.001. For CelebA, Waterbirds, and MF-Dominoes,
we use a ResNet-50 (He et al., 2016). SGD is used for optimization, with a learning rate of 0.001,
momentum decay of 0.9, and weight decay of 0.001. Additionally, following previous work (e.g.
Sagawa et al., 2019; Liu et al., 2021), the Waterbirds model is pre-trained on ImageNet (Deng
et al., 2009) and includes data augmentation in the form of random horizontal flips and random
resized cropping. For CelebA and Waterbirds, class reweighting is performed to ensure that
there are roughly equal positive and negative labels. The random seed used for all experiments is 13.

Hyperparameters for CoDE and Baselines CoDE. For all four datasets, we used M = 2 as the
ensemble size, besides ablations for M as detailed in Appendix B. The results in Table 3 were
achieved with sequential training for ColoredMNIST and with joint training for the other three
datasets. For ColoredMNIST, λ1 = 1200 and λ2 = 10. For CelebA, λ1 = 500 and λ2 = 0.1.
For Waterbirds, λ1 = 500 and λ2 = 0.1. For MF-Dominoes, λ1 = 300 and λ2 = 0.1. JTT. We
performed a hyperparameter sweep with T ∈ {1, 5, 10} (number of epochs for initial model training)
and α ∈ {2, 10, 100} (upweighting factor for mis-classified examples). Orthogonal Ensembles.
All classifiers share the same feature extractor (i.e. convolutional output for ColoredMNIST and
ResNet-50 feature representation for the other three datasets). We experimented with different values
of M , however, values of M above 16 (for ColoredMNIST) and above 4 (for the other three
datasets) were prohitibively expensive. As such, we did not try M = 48 or M = 96 as used by Teney
et al. (2021). For these smaller values of M that we tried, we did not notice an improvement from the
ERM model. Besides ColoredMNIST, we did not report these results.

B MODEL MIS-SPECIFICATION: POTENTIAL FAILURE MODES

The success of any method tackling distribution shifts depends on how well the assumptions made
have been upheld. We discuss the potential implications when the model is mis-specified and these
assumptions are no longer valid.

Conditional Dependence CoDE relies on the assumption that predictive signals are conditionally
independent. We using the synthetic ColoredMNIST dataset to generate a DGP where such an
assumption does not hold true. Instead of the standard setup where color labels are generated from
the true labels, we generate color labels from the original (binarized) MNIST labels instead, at the
same noise level pc = 0.1. This means that the color and digit signals are now highly correlated.
Both are still predictive since the true labels themselves were generated from MNIST labels.

Table 4 shows the results of this experiment. As we expect, conditionally dependent features cannot
be recovered by minimizing conditional mutual information. The ensemble either recovers one of
the two features (when trained sequentially) or neither. This confirms our intuition that conditional
independence must be correctly specified for CoDE to work. While these results demonstrate a failure
mode of CoDE, conditional independence between predictive factors of interest does hold well in
many natural image datasets, as shown in Table 3.

Latent Mis-specification The size of the ensemble M specifies how many predictive latent factors
we believe generated the dataset. We can consider the mis-specification of M in either direction: (i)
if the true dimension of z is smaller than M , and (ii) if the true dimension of z is larger than M .

In case (i), since the number of conditional independent components has been over-specified, whether
the ensemble has been jointly or sequentially trained makes a difference. Consider the results on the
ColoredMNIST dataset in Table 2 again. In the sequential regime, the first two classifiers f1 and
f2 correspond to the color and digit classifiers respectively, however, the subsequent few classifiers
(f3 and f5) do not learn anything meaningful and perform poorly on both training and adversarial
distributions. However, as noted in Section 5, this does not pose a serious problem since we can use
validation data to naturally determine the stopping point. On the other hand, over-specification of M
is more worrying in the joint regime, as there is no guarantee that any of the true latent factors are
learnt at all. As Table 2 shows, for M = 3 or 5, the best-performing classifier does not generalize.
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Training Adversarial Random-Color Perfect-Digit
(pd, pc) (0.25, 0.1) (0.25, 0.9) (0.25, 0.5) (0.0, 0.5)

CoDE (sequential f1) 77.1 63.2 70.6 90.5
CoDE (sequential f2) 53.6 50.1 51.5 54.5

CoDE (joint f1) 84.9 25.8 56.0 60.4
CoDE (joint f2) 54.3 73.0 64.4 77.5

Table 4: Results on ColoredMNIST with color-digit conditional dependence, on both joint and
sequential training with M = 2 classifiers. When trained sequentially, the first classifier f1 learns
the digit correlation since digit is most predictive in this setup. However, as color is no longer
conditionally independent of digit, there is no predictive feature that can be learnt by the second
classifier f2, resulting in a close-to-random predictor. When trained jointly, neither of the classifiers
correspond to the color or digit feature.

In case (ii), where the number of conditional independent components is under-specified, the learnt
ensemble may correspond to any subset of the true latent factors and individual classifiers could
also learn arbitrary combinations of the latent factors. For example, the trivial case where M = 1
is underspecified simply returns the ERM model. In general, since M is a hyperparameter, latent
mis-specification does not pose a serious problem as we can tune its value using the validation data.
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