

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 DOUBLY-REGRESSING APPROACH FOR SUBGROUP FAIRNESS

Anonymous authors

Paper under double-blind review

ABSTRACT

Algorithmic fairness is a socially crucial topic in real-world applications of AI. Among many notions of fairness, subgroup fairness is widely studied when multiple sensitive attributes (e.g., gender, race, age) are present. However, as the number of sensitive attributes grows, the number of subgroups increases accordingly, creating heavy computational burdens and data sparsity problem (subgroups with too small sizes). In this paper, we develop a novel learning algorithm for subgroup fairness which resolves these issues by focusing on subgroups with sufficient sample sizes as well as marginal fairness (fairness for each sensitive attribute). To this end, we formalize a notion of subgroup-subset fairness and introduce a corresponding distributional fairness measure called the supremum Integral Probability Metric (supIPM). Building on this formulation, we propose the Doubly Regressing Adversarial learning for subgroup Fairness (DRAF) algorithm, which reduces a surrogate fairness gap for supIPM with much less computation than directly reducing supIPM. Theoretically, we prove that the proposed surrogate fairness gap is an upper bound of supIPM. Empirically, we show that the DRAF algorithm outperforms baseline methods in benchmark datasets, specifically when the number of sensitive attributes is large so that many subgroups are very small.

1 INTRODUCTION

Rapid deployments of AI models in socially consequential domains such as finance, hiring, and criminal justice have amplified the demand for fairness-aware predictions. Early definitions of algorithmic fairness predominantly focused on a single sensitive attribute, such as gender or race, requiring parity across these (marginal) protected groups. However, fairness with respect to a single attribute is not sufficient to protect against discrimination at the intersections of multiple attributes. In particular, the problem of *fairness gerrymandering*, where severe unfairness may remain on their intersections, even if fairness is satisfied on each marginal attribute, has been noticed (Kearns et al., 2018a;b). For instance, while a lending model may equalize approval rates between men and women, the subgroup defined by “female and minority race” may still experience significantly lower approval rates. This illustrates the necessity of *(intersectional) subgroup fairness*.

To state subgroup fairness formally, suppose that the i^{th} individual is specified by its q -dimensional sensitive attribute $s_i \in \{0, 1\}^q$, where each coordinate (sensitive attribute) is binary. Then, there are 2^q subgroups, defined by

$$\mathcal{D}_v = \{i : s_i = v\}, \text{ for } v \in \{0, 1\}^q.$$

Subgroup fairness requires that the distributions of prediction values be similar (i.e., distributional fairness) across all 2^q subgroups. However, when q is large, we may face two major challenges: (i) *data sparsity*, when certain subgroups contain very few samples, model estimation on such subgroups becomes unstable and inaccurate (Molina & Loiseau, 2023); (ii) *computational burden*, the number of fairness constraints scales exponentially in q .

Various learning algorithms for subgroup fairness have been proposed to resolve the aforementioned two problems (Foulds et al., 2019b; Molina & Loiseau, 2023; Foulds et al., 2019a; Shui et al., 2022; Maheshwari et al., 2023; Hu et al., 2024), but there are still several limitations. Existing algorithms either do not guarantee the marginal fairness (i.e., fairness on each sensitive attribute) which may lead to a socially unacceptable prediction model, or would be computationally demanding when an adversarial learning is required to measure fairness.

054 The aim of this paper is to develop a learning algorithm for subgroup fairness which resolves data
 055 sparsity and computational burden simultaneously. To avoid data sparsity, we simply focus on *active*
 056 subgroups, i.e., subgroups whose sample sizes are not too small. Considering only active subgroups
 057 is statistically sound since empirical fairness on non-active subgroups does not guarantee the fairness
 058 on the population level. A novel part of our proposed learning algorithm is to find a prediction
 059 model which achieves (active) subgroup fairness and marginal fairness simultaneously in the context
 060 of distributional fairness, the strongest notion of fairness (see Section 3.1 for definition), without
 061 resorting on heavy computational burden.

062 For this purpose, we define a *subgroup-subset* $W \subseteq \{0, 1\}^q$ as a union of certain subgroups, and
 063 focus on $\mathcal{D}_W = \bigcup_{v \in W} \mathcal{D}_v$. Our approach enforces the distributional fairness over pre-selected
 064 subgroup-subsets whose sizes are not small. Then, we design a novel adversarial training strategy
 065 termed *doubly regressing adversarial learning* which learns a prediction model without heavy com-
 066 putational burden but guarantees the distributional fairness for all pre-selected subgroup-subsets.
 067 The doubly regressing adversarial learning algorithm requires only a single discriminator regard-
 068 less of the number of pre-selected subgroup-subsets and so computational demand is practically
 069 acceptable even when q is large. By including all active subgroups and marginal subgroups (sub-
 070 groups corresponding to each sensitive attribute) into the set of pre-selected subgroup-subsets, we
 071 can effectively achieve subgroup fairness and marginal fairness simultaneously.

072 The main contributions of this work can be summarized as follows:

- 073 1. We formalize *subgroup-subset fairness* and introduce a measure for the distributional subgroup-
 074 subset fairness called the supremum Integral Probability Metric (supIPM).
- 075 2. We propose a surrogate fairness measure for supIPM which requires only a single discriminator
 076 regardless of the number of subgroup-subsets, and develop an adversarial learning algorithm
 077 called *Doubly Regressing Adversarial learning for Fairness* (DRAF) algorithm to learn an ac-
 078 curate and subgroup-subset fair prediction model.
- 079 3. Theoretically, we prove that the proposed surrogate fairness measure becomes an upper bound
 080 of supIPM.
- 081 4. Empirically, we show that the DRAF algorithm outperforms baseline methods in benchmark
 082 datasets, with large margins when q is large so many subgroups are extremely small.

085 2 RELATED WORKS

088 Existing methods such as Kearns et al. (2018b); Agarwal et al. (2018) aim to reduce prediction-based
 089 subgroup disparities. In particular, Agarwal et al. (2018) proposed a reduction-based approach for
 090 marginal fairness by solving a min–max game using Lagrangian multipliers, while Kearns et al.
 091 (2018b) extended this framework to minimize the worst-case subgroup disparity. To mitigate data
 092 sparsity problem of tiny subgroups, Kearns et al. (2018b;a) employed weights proportional to the
 093 sample size of each subgroup.

094 However, as the number of intersectional subgroups grows, these methods can become computa-
 095 tionally expensive. Moreover, they do not explicitly target distributional fairness (e.g., IPM-based
 096 criteria), which is the focus of our work. While other approaches focus on other fairness notions,
 097 for example, Lai & Guan (2025) designed an adversarial learning-based method for equalized odds,
 098 they also differ from our focus on the distributional fairness.

099 A Bayesian method is proposed to borrow information in large-size subgroups when estimating
 100 prediction models for small-sized subgroups (Foulds et al., 2019a). These approaches, however, do
 101 not guarantee the marginal fairness (i.e., fairness on each sensitive attribute) which makes it difficult
 102 to socially interpret the fairness of a prediction model. On the contrary, (Molina & Loiseau, 2023)
 103 consider only the marginal fairness but it could be vulnerable to fairness gerrymandering.

104 To resolve heavy computational burden, weak notions of fairness such as the DP (Demographic Par-
 105 ity) are employed in the fairness constraint (Kearns et al., 2018b;a) or post-processing techniques are
 106 used after learning a prediction model without fairness constraint (Hu et al., 2024). These methods,
 107 however, would yield suboptimal prediction models in view of other stronger fairness notions (e.g.,
 108 distributional fairness) and/or prediction accuracy.

108 **Our approach** We propose an in-processing algorithm for distributional fairness on pre-selected
 109 subgroup-subsets whose sizes are not too small. We formalize *subgroup-subset fairness* and develop
 110 a computationally efficient adversarial algorithm to achieve the distributional fairness.
 111

112 3 SUBGROUP-SUBSET FAIRNESS

113 3.1 PROBLEM SETTING

116 We consider data points (x_i, y_i, s_i) with input vectors $x_i \in \mathcal{X}$, output variables $y_i \in \mathcal{Y}$, and $s_i =$
 117 $(s_{i1}, \dots, s_{iq})^\top \in \{0, 1\}^q$ denoting the q binary sensitive attributes. Let \mathbb{P} be the probability measure
 118 of $(X, Y, S) \in \mathcal{X} \times \mathcal{Y} \times \{0, 1\}^q$ and \mathbb{P}_n be its empirical counterpart. Let \mathcal{F} be the set of prediction
 119 models $f : \mathcal{X} \times \{0, 1\}^q \rightarrow \mathbb{R}^c$ for $c \geq 1$. Here, $c = 1$ for regression problems (i.e., $\mathcal{Y} = \mathbb{R}$), while
 120 c is the number of classes for classification problems (i.e., $\mathcal{Y} = \{1, \dots, c\}$). For a given prediction
 121 model $f \in \mathcal{F}$ and $s \in \{0, 1\}^q$, let $\mathbb{P}_{f,s}$ be the conditional distribution of $f(X)$ given on $S = s$.
 122

123 We say that f is (perfectly) subgroup-fair if $\mathbb{P}_{f,s}, s \in \{0, 1\}^q$ are all the same. To relax the perfect
 124 fairness, we define (ψ -distributional) subgroup fairness gap for a given deviance $\psi(\cdot, \cdot)$ between two
 125 probability measures as $\Delta_\psi(f) = \sup_{s \in \{0, 1\}^q} \psi(\mathbb{P}_{f,s}, \mathbb{P}_{f,\cdot})$, where $\mathbb{P}_{f,\cdot}$ is the marginal distribution
 126 of $f(X)$. Then, we say f is ψ -subgroup fair with level $\delta > 0$ if $\Delta_\psi(f) \leq \delta$. The main goal of
 127 subgroup fair learning is to find an accurate prediction model among ψ -subgroup fair prediction
 128 models with level δ .

129 Various kinds of deviance have been used in fair AI. Examples are (i) the original DP when
 130 $\Delta_{\text{DP}}(f) = |\Pr(f(X, s) \geq \tau | S = s) - \Pr(f(X, \cdot) \geq \tau)|$ for a given threshold τ for binary classifi-
 131 cation (Agarwal et al., 2018), (ii) the mean DP when $\Delta_{\text{DP}}(f) := |\mathbb{E}(f(X, s) | S = s) - \mathbb{E}(f(X, \cdot))|$
 132 (Madras et al., 2018; Donini et al., 2018), (iii) the distributional DP when $\psi(\mathbb{P}_{f,s}, \mathbb{P}_{f,\cdot}) = 0$ im-
 133 plies $\mathbb{P}_{f,s} = \mathbb{P}_{f,\cdot}$ (Jiang et al., 2020a; Chzhen et al., 2020b; Silvia et al., 2020; Barata et al., 2021;
 134 Kim et al., 2025). Popularly used distributional DPs are Wasserstein distance, Maximum Mean Dis-
 135 crepancy (MMD), Kullback-Leibler divergence, and Kolmogorov-Smirnov distance, to name a few.
 136 Among these, distributional DP is the strongest one since it can imply other DPs. In the problem of
 137 subgroup fairness, the distributional DP has not been popularly used partly because its computation
 138 would be demanding when q is large.

139 There are large amounts of literature about subgroup fair learning algorithms (Kearns et al., 2018b;a;
 140 Úrsula Hébert-Johnson et al., 2018; Foulds et al., 2019b;a; Tian et al., 2025), which learn a prediction
 141 model by minimizing the empirical risk (e.g., the residual sum of squares or cross-entropy) subject
 142 to the constraint that empirical subgroup fairness gap $\Delta_{n,\psi}(f)$ is less than or equal to δ . Here,
 143 empirical subgroup fairness gap $\Delta_{n,\psi}(f)$ is the fairness gap on the empirical distributions.

144 Existing subgroup fair learning algorithms, however, are not easily applicable to the case of large
 145 q due to data sparsity and computational burden. Note that the number of subgroups grows expo-
 146 nentially in q and thus certain subgroups have too small amounts of data and so empirical subgroup
 147 fairness gap is not a good estimator of population subgroup fairness gap. With a limited amount
 148 of data, there is no hope to be able to guarantee the fairness of a given prediction model on all of
 149 subgroups. We could ignore subgroups having too small samples but this naive approach does not
 150 ensure the marginal fairness which would not be acceptable. In addition, 2^q many computations
 151 of the deviance ψ is required to calculate subgroup fairness gap, and so easy-to-compute ψ s (e.g.,
 152 mean DP) have been used. Furthermore, a subgroup-fair prediction model may not always satisfy
 153 the marginal fairness and thus would not be socially acceptable (see an example in Section B.7).
 154 Hence, rather than considering all subgroups, we focus only on subgroups whose sizes are suffi-
 155 ciently large and enforce fairness on such large subgroups. To do so, we introduce a new fairness
 156 concept called subgroup-subset fairness, in the next subsection. We also provide a more detailed
 157 discussion regarding the connection between marginal and subgroup fairness in Section B.7.
 158

159 3.2 DEFINITION OF SUBGROUP-SUBSET FAIRNESS

160 To resolve the data sparsity problem, in this paper, we propose a new notion of subgroup fairness
 161 called *subgroup-subset fairness*. The main idea of subgroup-subset fairness is to guarantee fairness
 162 on two disjoint subsets of sensitive attributes. To be more specific, we call any subset W of $\{0, 1\}^q$
 163 as a *subgroup-subset* and let $\mathbb{P}_{f,W}$ be the distribution of $f(X)$ conditional on $S \in W$ and $\mathbb{P}_{f,W}^n$ be

162 its empirical counterpart. For a given collection \mathcal{W} of subgroup-subsets and a deviance ψ , let
 163

$$\Delta_{\psi, \mathcal{W}}(f) = \sup_{W \in \mathcal{W}} \psi(\mathbb{P}_{f, W}, \mathbb{P}_{f, W^c}),$$

165 which we call the subgroup-subset fairness gap (with respect to \mathcal{W}). Then, we say f is *subgroup-
 166 subset fair* with level δ if $\Delta_{\psi, \mathcal{W}}(f) \leq \delta$.
 167

168 **Choice of \mathcal{W}** If \mathcal{W} consists of all subgroups, subgroup-subset fairness is equal to subgroup
 169 fairness. To resolve data sparsity, we should only include large subgroups in \mathcal{W} . In turn, to si-
 170 multaneously achieve the marginal fairness (i.e., fairness on each sensitive attribute), we add the
 171 marginal subgroups (i.e., $W_{j,s} = \{i : s_{ij} = s\}$ for $j \in [q]$ and $s \in \{0, 1\}$) to \mathcal{W} . In general,
 172 we can guarantee fairness for any subgroup-subsets of interest in by adding those subgroup-
 173 subsets to \mathcal{W} . For example, we can guarantee the second-order marginal fairness (i.e., fairness on
 174 $W_{(j,k), (s_1, s_2)} = \{i : (s_{ij}, s_{ik}) = (s_1, s_2)\}$ for $j, k \in [q]$ and $(s_1, s_2) \in \{0, 1\}^2$) by adding the cor-
 175 responding subgroup-subsets. Similarly, we can consider the l^{th} -order marginal fairness for $l \in [q]$.
 176 Figure 17 in Section B.7 illustrates the hierarchical structure of subgroup-subsets (from marginal
 177 groups to intersectional subgroups).
 178

179 However, one may worry that computation becomes difficult when $|\mathcal{W}|$ is too large. In Section 4.2,
 180 we develop a computationally efficient adversarial learning algorithm for subgroup-subset fairness,
 181 where only a single discriminator is used regardless of the size of \mathcal{W} . Furthermore, Table 4 in
 182 Section B.4 empirically supports the computational scalability of our proposed algorithm.
 183

3.3 SUPREMUM IPM FOR SUBGROUP-SUBSET FAIRNESS GAP

184 **Integral Probability Metric (IPM)** In the group fairness problem with a single binary sensitive
 185 attribute (i.e., $q = 1$), the integral probability metric (IPM) (Müller, 1997; Sriperumbudur et al.,
 186 2009) has been popularly used as the deviation ψ (Chzhen et al., 2020a; Jiang et al., 2020b; Kim
 187 et al., 2022; 2025; Kong et al., 2025) to ensure the distributional fairness. For given two probability
 188 measures \mathbb{P}_0 and \mathbb{P}_1 , the IPM with a given discriminator class $\mathcal{G} \subset \{g : \mathbb{R}^c \rightarrow \mathbb{R}\}$ is defined as
 189

$$\text{IPM}_{\mathcal{G}}(\mathbb{P}_0, \mathbb{P}_1) = \sup_{g \in \mathcal{G}} \left| \int g(x) \mathbb{P}_0(dx) - \int g(x) \mathbb{P}_1(dx) \right|.$$

190 Various IPMs are obtained by selecting the discriminator class \mathcal{G} accordingly. Popular examples
 191 for \mathcal{G} are (i) the collection of 1-Lipschitz functions for Wasserstein distance (Villani, 2009); (ii) the
 192 unit ball of an RKHS for MMD (Gretton et al., 2012a); (iii) indicator functions over a VC-bounded
 193 family for Total Variation (Shorack, 2000).
 194

195 **Supremum IPM and its statistical property** When ψ is $\text{IPM}_{\mathcal{G}}$, we call $\Delta_{\psi, \mathcal{W}}(\cdot)$ as the *supIPM*,
 196 and denote the supIPM and its empirical counterpart as $\Delta_{\mathcal{W}, \mathcal{G}}(\cdot)$ and $\Delta_{n, \mathcal{W}, \mathcal{G}}(\cdot)$, respectively. The-
 197 orem 3.1, whose proof is deferred to Section A.2, implies that the estimation error of $\Delta_{n, \mathcal{W}, \mathcal{G}}(\cdot)$ does
 198 not depend heavily on the size of \mathcal{W} but depends on $n_{\mathcal{W}} = \min_{W \in \mathcal{W}} \min\{n_W, n - n_W\}$, where
 199 $n_W = |\{i : s_i \in W\}|$. This result suggests that we can construct \mathcal{W} as large as possible until $n_{\mathcal{W}}$ is
 200 sufficiently large.
 201

202 Let $\mathcal{R}_m(\mathcal{H})$ denotes the empirical Rademacher complexity of a given function class \mathcal{H} with m
 203 samples (see Definition A.1 for its detailed definition).
 204

205 **Theorem 3.1.** *Let \mathcal{W} be a collection of subgroup-subsets and $n_{\mathcal{W}} := |\{i : s_i \in W\}|$ for $W \in \mathcal{W}$.
 206 Assume that $\|g\|_{\infty} \leq B, \forall g \in \mathcal{G}$. Then, we have for all $f \in \mathcal{F}$ that*

$$\Delta_{n, \mathcal{W}, \mathcal{G}}(f) - \Delta_{\mathcal{W}, \mathcal{G}}(f) \leq 4\mathcal{R}_{n_{\mathcal{W}}}(\mathcal{G} \circ \mathcal{F}) + 2B \sqrt{\frac{2 \log(2n|\mathcal{W}|)}{n_{\mathcal{W}}}}, \quad (1)$$

207 with probability at least $1 - 1/n$, where $n_{\mathcal{W}} = \min_{W \in \mathcal{W}} \min\{n_W, n - n_W\}$.
 208

209 In Section A.4, we show that $\mathcal{R}_{n_{\mathcal{W}}}(\mathcal{G} \circ \mathcal{F}) = \mathcal{O}(1/\sqrt{n_{\mathcal{W}}})$ for two cases of \mathcal{G} and \mathcal{F} , which indicates
 210 that the estimation error of $\Delta_{n, \mathcal{W}, \mathcal{G}}(f)$ is $\mathcal{O}(\sqrt{\log(|\mathcal{W}|)/n_{\mathcal{W}}})$ ignoring $\log n$ term. This suggests
 211 that it would be reasonable to add only subgroup-subsets W with $|W| \geq \gamma n$ into \mathcal{W} for some small
 212 $\gamma > 0$. Then, it is guaranteed that the population fairness level locates within the $\mathcal{O}(\sqrt{\log(|\mathcal{W}|)/n})$
 213 range of the empirical fairness level. See Section 5.1 how we choose γ in practice.
 214

216 **Challenges in using supIPM for subgroup-subset fairness** A technical difficulty, however, exists
 217 in using supIPM since computation of supIPM could be very demanding when $|\mathcal{W}|$ is large. To be
 218 more specific, for given f and W , let $\hat{g}_{W,f} = \arg \max_{g \in \mathcal{G}} |\int g(z) \mathbb{P}_{f,W}(dz) - \int g(z) \mathbb{P}_{f,W^c}(dz)|$.
 219 To calculate supIPM, we should find $\hat{g}_{W,f}$ for all $W \in \mathcal{W}$, which is computationally demanding
 220 when $|\mathcal{W}|$ is large. We could avoid this problem by using the IPM which admits a closed-form cal-
 221 culation. An example is the Maximum Mean Discrepancy (MMD) (Gretton et al., 2012b). However,
 222 computational cost of calculating supMMD is $O(|\mathcal{W}|n^2)$, which is still large when $|\mathcal{W}|$ and/or n is
 223 large. In addition, the choice of the kernel would not be easy.

224 In the following section, we propose a novel surrogate subgroup-subset fairness gap of supIPM
 225 which serves as an upper bound of supIPM and requires only a single discriminator to be computed.
 226

227 4 DOUBLY REGRESSING ALGORITHM

229 4.1 A SURROGATE DEVIANCE FOR IPM

231 Fix $W \in \mathcal{W}$, and let $y_{W,i} := 2\mathbb{I}(s_i \in W) - 1$ be the indicator whether i^{th} observation belongs to W
 232 or not. To assess the fairness of a given prediction model f on W , a standard method is to investigate
 233 the error rate of a classifier learned with $f_i := f(x_i, s_i)$ being input and $y_{W,i}$ being the label, which
 234 is used for fair adversarial learning (Edwards & Storkey, 2016; Madras et al., 2018). That is, we
 235 look at $\sup_{g \in \mathcal{G}} \sum_{i=1}^n \mathbb{I}(y_{W,i} \times g(f_i) < 0)$. If f is fair on W , the distribution of f on W and W^c are
 236 similar and thus the misclassification error becomes large.

237 Instead of the misclassification error, we could consider the Residual Sum of Squares (RSS)
 238 $\sup_{g \in \mathcal{G}} \sum_{i=1}^n (y_{W,i} - g(f_i))^2$ as the fairness measure. The RSS is mathematically more tractable
 239 than the misclassification error since the former is differentiable but the latter is not. This
 240 mathematical tractability plays an important role when we extend a surrogate measure of IPM
 241 for supIPM. A larger RSS implies a fairer f . An equivalent measure would be supSSR :=
 242 $\sup_{g \in \mathcal{G}} \left\{ \sum_{i=1}^n (y_{W,i} - \bar{y}_W)^2 - \sum_{i=1}^n (y_{W,i} - g(f_i))^2 \right\}$, which is an analogy of the Sum of Squares
 243 of Regression (SSR) used in the regression analysis. This measure becomes small when f is fair.

244 A related measure of supSSR is $\sup_{g \in \mathcal{G}} R^2(f, W, g)$, where

$$246 R^2(f, W, g) = 1 - \frac{\sum_{i=1}^n (y_{W,i} - g(f_i))^2}{\sum_{i=1}^n (y_{W,i} - \bar{y}_W)^2} = \frac{\sum_{i=1}^n (y_{W,i} - \bar{y}_W)^2 - \sum_{i=1}^n (y_{W,i} - g(f_i))^2}{\sum_{i=1}^n (y_{W,i} - \bar{y}_W)^2}, \quad (2)$$

248 which is an analogy of R^2 in the regression analysis. This measure becomes small when f is fair. A
 249 surprising result is that a slight modification of (2) is equal to IPM, which is stated in the following
 250 theorem. Refer to Section A.2 for its proof.

251 **Theorem 4.1.** *For given $f \in \mathcal{F}$, $W \subseteq \{0, 1\}^q$ and \mathcal{G} , we have*

$$253 \text{IPM}_{\mathcal{G}}(\mathbb{P}_{f,W}, \mathbb{P}_{f,W^c}) = \sup_{g \in \mathcal{G}} |\tilde{R}^2(f, W, g)|,$$

$$256 \text{where } \tilde{R}^2(f, W, g) = R^2(f, W, g) + \frac{\sum_{i=1}^n (g(f_i) - \bar{y}_W)^2}{\sum_{i=1}^n (y_{W,i} - \bar{y}_W)^2}.$$

258 Suppose that $\mathcal{G}_{\text{obs}} = \{(g(x_1), \dots, g(x_n))^{\top} : g \in \mathcal{G}\}$ is a linear space. Then $\hat{g} :=$
 259 $\arg \min_{g \in \mathcal{G}} R^2(f, W, g)$ becomes the projection of $\{y_{W,i}\}$ onto \mathcal{G}_{obs} and thus it can be shown that
 260 $R^2(f, W, \hat{g})$ is the squared correlation of $\{y_{W,i}\}$ and $\{\hat{g}_i\}$ and $\tilde{R}^2(f, W, \hat{g}) = 2R^2(f, W, \hat{g})$. In fact,
 261 the additional term in $\tilde{R}^2(f, W, g)$ is introduced for \mathcal{G}_{obs} not being a linear space. An interesting new
 262 implication of Theorem 4.1 is that IPM is somehow related to the correlation between the class label
 263 and a discriminator.

265 4.2 A SURROGATE DEVIANCE FOR SUPIPM: DOUBLY REGRESSING R^2

267 Theorem 4.1 implies $\Delta_{n,W,\mathcal{G}}(f) = \sup_{W \in \mathcal{W}} \sup_{g \in \mathcal{G}} \tilde{R}^2(f, W, g)$, which is not easy to calculate
 268 since W is not a numerical quantity and so a gradient ascent algorithm cannot be applied. To resolve
 269 this computational problem, we introduce a smoother version of $\tilde{R}^2(f, W, g)$ so-called the *Doubly*
Regressing R^2 (DR 2) as follows.

270 Suppose that $\mathcal{W} = \{W_1, \dots, W_M\}$. For each $i \in [n]$, define $c_i \in \{-1, 1\}^M$ with $c_{im} = 2\mathbb{I}(s_i \in W_m) - 1$. Given a predictor f , discriminator g , and weight vector $\mathbf{v} \in \mathcal{S}^M$, we define
 271
 272

$$273 \quad \text{DR}^2(f, \mathbf{v}, g) := 1 - \frac{\sum_{i=1}^n (\mathbf{v}^\top c_i - g(f_i))^2 - \sum_{i=1}^n (g(f_i) - \mu_{\mathbf{v}})^2}{\sum_{i=1}^n (\mathbf{v}^\top c_i - \mu_{\mathbf{v}})^2},$$

$$274$$

275 where $\mu_{\mathbf{v}} = \frac{1}{n} \sum_{i=1}^n \mathbf{v}^\top c_i$ and \mathcal{S}^M is the unit sphere on \mathbb{R}^M . The name ‘Doubly Regressing’ is
 276 used since we regress input $g(f_i)$ and output $\mathbf{v}^\top c_i$ simultaneously when calculating DR^2 .
 277

278 Note that $\text{DR}^2(f, \mathbf{v}, g)$ is equal to $\tilde{R}^2(f, W_m, g)$ when $\mathbf{v} = \mathbf{e}_k$, where \mathbf{e}_k is the vector whose entries
 279 are all 0 except the k^{th} entry being 1. Thus, it is obvious that the supIPM is bounded as:
 280

$$281 \quad \sup_{W \in \mathcal{W}} \text{IPM}_{\mathcal{G}}(\mathbb{P}_{f, W}^n, \mathbb{P}_{f, W^c}^n) = \Delta_{n, \mathcal{W}, \mathcal{G}}(f) \leq \sup_{g \in \mathcal{G}, \mathbf{v} \in \mathcal{S}^M} |\text{DR}^2(f, \mathbf{v}, g)|. \quad (3)$$

$$282$$

283 Building on this inequality, our proposed surrogate subgroup-subset fairness gap for supIPM is
 284 $\text{DR}_{n, \mathcal{W}, \mathcal{G}}(f) := \sup_{g \in \mathcal{G}, \mathbf{v} \in \mathcal{S}^M} z\text{-DR}^2(f, \mathbf{v}, g)$ where
 285

$$286 \quad z\text{-DR}^2(f, \mathbf{v}, g) = \log \left(\frac{1 + |\text{DR}^2(f, \mathbf{v}, g)|/2}{1 - |\text{DR}^2(f, \mathbf{v}, g)|/2} \right). \quad (4)$$

$$287$$

288 We apply the Fisher’s z -transformation to $|\text{DR}^2|/2$ for numerical stability. We refer to $\text{DR}_{n, \mathcal{W}, \mathcal{G}}(f)$
 289 as the *Doubly Regressing (DR)* subgroup-subset fairness gap. A smaller value of $\text{DR}_{n, \mathcal{W}, \mathcal{G}}(f)$ indicates
 290 a higher level of subgroup-subset fairness of f .
 291

292 4.3 ALGORITHM: DOUBLY REGRESSING ADVERSARIAL LEARNING FOR FAIRNESS (DRAF)

$$293$$

294 Based on the DR gap, we introduce *DRAF* (*Doubly Regressing Adversarial learning for Fairness*)
 295 algorithm, which trains f by minimizing $\frac{1}{n} \sum_{i=1}^n l(y_i, f(x_i, s_i)) + \lambda \text{DR}_{n, \mathcal{W}, \mathcal{G}}(f)$, for a given loss l
 296 (e.g., cross-entropy) and Lagrangian multiplier λ . A key feature is that a single discriminator is used
 297 regardless of \mathcal{W} .
 298

299 In the learning algorithm, we iteratively train the prediction model f and the pair of discriminator
 300 g and weight vector \mathbf{v} iteratively. At each iteration, we (i) update f by applying a gradient descent
 301 algorithm to minimize $\frac{1}{n} \sum_{i=1}^n l(y_i, f(x_i, s_i)) + \lambda z\text{-DR}^2(f, \mathbf{v}, g)$ while g and \mathbf{v} are fixed, and then
 302 (ii) update g and \mathbf{v} by applying a gradient ascent algorithm to maximize $z\text{-DR}^2(f, \mathbf{v}, g)$ while f being
 303 fixed. Algorithm 1 in Section B.2 below provides the outline of our proposed algorithm.
 304

305 5 EXPERIMENTS

$$306$$

307 In this section, we empirically verify that DRAF can successfully achieve both marginal and sub-
 308 group fairness: (i) it shows competitive performance to baseline methods for datasets with less sparse
 309 subgroups; (ii) it outperforms baselines for datasets with extremely sparse subgroups. After that, we
 310 conduct analyses on the effect of managing \mathcal{W} and the choice of discriminator.
 311

312 5.1 SETTINGS

$$313$$

314 **Datasets** We consider the following four benchmark datasets (three tabular datasets and a text
 315 dataset) popularly used in algorithmic fairness research. See Section B.1 for more details.
 316

317 **ADULT** (Tabular) (Becker & Kohavi, 1996): The class label is binary indicating the income above
 318 50k\$. The input features are several demographic census features. For the sensitive attributes, we
 319 consider sex, race, age, and marital-status, so that $q = 4$.
 320

321 **DUTCH** (Tabular) (van der Laan, 2000): The class label is binary indicating occupation level. The
 322 input features are several socio-economic features. For the sensitive attributes, we consider sex and
 323 age, so that $q = 2$.
 324

325 **CIVILCOMMENTS** (Text) (Borkan et al., 2019): The class label is binary, indicating comment
 326 toxicity. The input features are representations extracted from the pre-trained DistilBERT
 327 model (Sanh et al., 2019). For the sensitive attributes, we consider sex (male/female/other), race
 328

(black/white/asian/other), and religion (christian/other), which are non-binary, resulting in 24 subgroups.

COMMUNITIES (Tabular) (Redmond & Baveja, 2002): The class label is binary, indicating whether the violent crime rate is above a threshold. The input features are 122 community-level attributes covering demographics and economic indicators. For the sensitive attributes, we consider race, racial per-capita, and language/immigration variables so that $q = 18$.

Table 1 summarizes the basic statistics of the four datasets and Figure 1 presents the distribution of subgroup sizes for the datasets. These statistics highlight the severity of data sparsity: in particular, COMMUNITIES suffers from extreme sparsity with the vast majority of subgroups contain very few samples. We construct a 60/20/20 split for train, validation, and test, respectively for the datasets except COMMUNITIES. Due to the extreme sparsity of certain subgroups in COMMUNITIES dataset, ensuring sufficient samples within the test set would be important, so we use with 50/10/40 ratios. We repeat this procedure five times randomly and report the average performance.

Table 1: Summary of datasets. “# Subgroup” indicates the possible maximum number of subgroups ($= 2^q$). “# Actual Subgroup” indicates the actual number of subgroups in the datasets. “# Sparse subgroup” indicates the number of subgroups whose size is at most 1% of the total sample size n .

Dataset	n	q	# Subgroup	# Actual Subgroup	# Sparse subgroup
ADULT	48,842	4	16	16	2
DUTCH	60,420	2	4	4	0
CIVILCOMMENTS	3,365	3 (non-binary)	24	24	3
COMMUNITIES	1,994	18	262,144	1,180	1,175

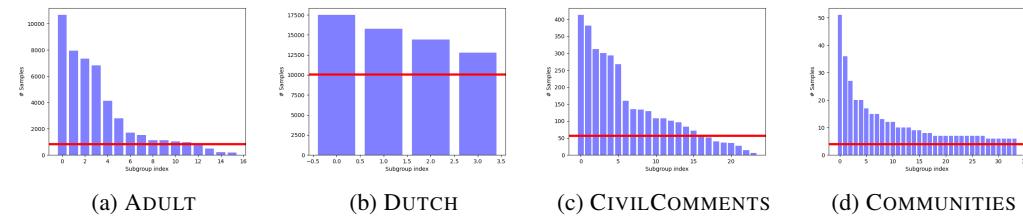


Figure 1: Histograms of subgroup sizes. The red horizontal line indicates γ_n used for the main analysis in Section 5.3. The subgroup indices are assigned by sorting the subgroup sizes.

Model and Performance measures Since the four datasets are for binary classification tasks, we only consider one dimensional prediction model f for which we consider a single-layered MLP and apply the sigmoid activation at the output layer to return the prediction score between $[0, 1]$. Recall that $f_i = f(x_i, s_i)$ and let $\hat{y}_i = 2\mathbb{I}(f_i \geq 1/2) - 1$. We consider the accuracy $\text{Acc}(f) = \frac{1}{n} \sum_{i=1}^n \mathbb{I}(y_i = \hat{y}_i)$ for prediction performance of f .

For fairness performance, we consider the l^{th} -order marginal fairness and subgroup level fairness. For distributional fairness, we use the Wasserstein distance, but only for the first-order marginal subgroup only, as calculating it for higher-orders would be unstable due to the lack of samples. To be more specific, let $\hat{p} := \frac{1}{n} \sum_{i=1}^n \mathbb{I}(\hat{y}_i = 1)$ and $\hat{p}_s := \frac{1}{n_s} \sum_{i:s_i=s} \mathbb{I}(\hat{y}_i = 1)$, $s \in \{0, 1\}^q$ be the overall and subgroup-specific ratios of positive prediction, respectively. For a given order $l \in [q]$, consider $L \subseteq [q]$ such that $|L| = l$. Let $s_i[L] := (s_{ij})_{j \in L} \in \{0, 1\}^l$ be the sensitive attribute subvector of the i^{th} individual. For a given $a \in \{0, 1\}^l$, define $\hat{p}_L^{(a)} := \frac{1}{n_{L,a}} \sum_{i:s_i[L]=a} \mathbb{I}(\hat{y}_i = 1)$, where $n_L^{(a)} := \sum_{i=1}^n \mathbb{I}(s_i[L] = a)$. Let $\hat{\mathbb{P}}_f(\cdot) := \frac{1}{n} \sum_{i=1}^n \delta_{f_i}(\cdot)$. For a given $j \in [q]$, define $\hat{\mathbb{P}}_{f,j|a}(\cdot) := \frac{1}{n_j^{(a)}} \sum_{i:s_{ij}=a} \delta_{f_i}(\cdot)$, where $n_j^{(a)} := \sum_{i=1}^n \mathbb{I}(s_{ij} = a)$ for $a \in \{0, 1\}$. Table 2 describes the fairness performance measures used in the experiments.

Implementation details and Baseline methods We sweep the Lagrangian multiplier λ from 0.01 to 10.0 to control the fairness level. For the discriminator \mathcal{G} , we use the discriminator class used in sIPM (Kim et al., 2022) (i.e., composition of sigmoid and a linear function). For \mathcal{W} , we include

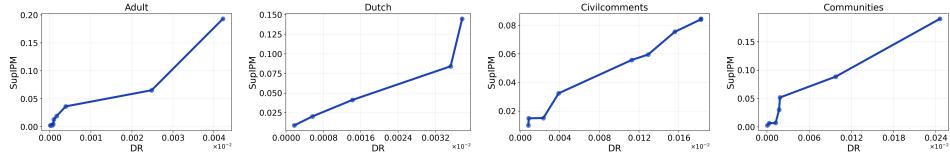
378 Table 2: Fairness performance measures used in our experiments. MP, WMP, and SP are abbreviations of Marginal, Wasserstein Marginal, and Subgroup Parity, respectively. ‘ W_1 ’ indicates the
 379 1-Wasserstein distance between two probability measures on \mathbb{R} .
 380

Name	Meaning	Formula
$MP^{(l)}$	l^{th} -order Marginal fairness	$\max_{L \subseteq [q], L =l} \sum_{a \in \{0,1\}^L} \frac{n_L^{(a)}}{n} \hat{p}_L^{(a)} - \hat{p} $
WMP	Distributional Marginal fairness	$\max_{j \in [q]} \max \left\{ \frac{n_j^{(0)}}{n} W_1(\hat{\mathbb{P}}_{f,j 0}, \hat{\mathbb{P}}_f), \frac{n_j^{(1)}}{n} W_1(\hat{\mathbb{P}}_{f,j 1}, \hat{\mathbb{P}}_f) \right\}$
SP	Subgroup fairness	$\max_{s \in \{0,1\}^q} \frac{n_s}{n} \hat{p}_s - \hat{p} $

381
 382 the first and second-order marginal subgroups as well as subgroups whose sizes are larger than γn .
 383 To find an optimal value of γ , we plot Pareto-front lines (for many γ s) between Acc and SP using
 384 validation data, compute the area under the lines, and then choose the one with the largest area.
 385 As a result, we set γ to 0.01, 0.001, 0.3, and 0.01 for ADULT, CIVILCOMMENTS, DUTCH, and
 386 COMMUNITIES, respectively. We consider four representative approaches as baselines: (i) Regularization
 387 (REG): this approach reduces the marginal disparities for q -many sensitive attributes; (ii) GerryFair (GF) (Kearns et al., 2018a;b): this approach reduces the (weighted) worst-case disparity
 388 $\max_{s \in \{0,1\}^q} \frac{n_s}{n} |\hat{p}_s - \hat{p}|$; (iii) Sequential (SEQ) (Hu et al., 2024): this approach sequentially maps
 389 the scores of a pre-trained fairness-agnostic model in each subgroup to a common barycenter; See
 390 Section B.2 for more details.
 391

392 5.2 RELATIONSHIP BETWEEN DR GAP AND SUPIPM

401 As theoretically shown in Theorem 4.1 and Eq. (3), the DR gap (i.e., $DR_{n,\mathcal{W},\mathcal{G}}(f)$) and the supIPM
 402 (i.e., $\Delta_{n,\mathcal{W},\mathcal{G}}(f)$) are closely related, i.e., small DR gap \implies small supIPM. To numerically confirm
 403 this, we provide plots between the DR gap and the supIPM in Figure 2, indicating that the DR gap
 404 is also a numerically valid surrogate quantity for supIPM (i.e., reducing DR results in reducing
 405 supIPM). Note that we use the Wasserstein distance for supIPM.



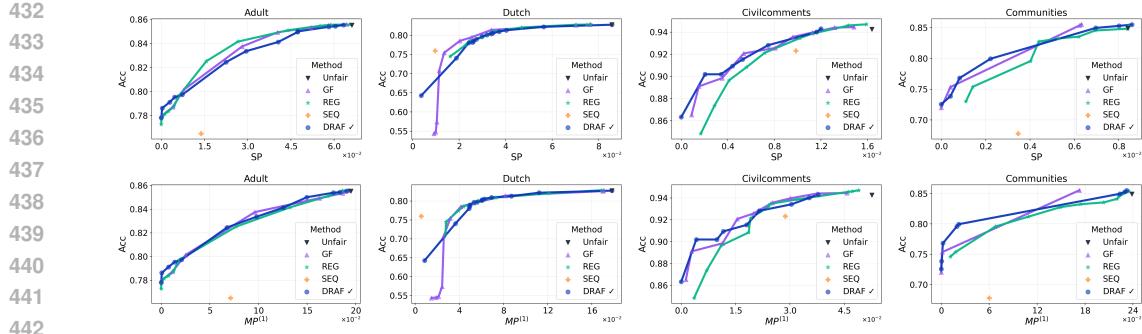
406 Figure 2: Empirical relationship between the DR gap and supIPM on ADULT, DUTCH, CIVILCOM-
 407 MENTS, and COMMUNITIES datasets.
 408

409 Moreover, Figure 5 in Section B.3 empirically shows that the DR gap and the supIPM are
 410 almost identical: after learning, the weight vector \mathbf{v} becomes nearly a vertex of the simplex, so that
 411 $DR^2(f, \mathbf{v}, g) \approx \tilde{R}^2(f, W_m, g)$ in practice. This finding empirically supports the claim that the DR
 412 gap is a valid surrogate for the supIPM.
 413

414 5.3 PERFORMANCE COMPARISON

415 **Trade-off between accuracy and fairness** Figure 3 compares the trade-off between fairness lev-
 416 els (SP and $MP^{(1)}$) and accuracies of the five methods - DRAF, three baselines and unfair prediction
 417 model. Since the fairness level is not controllable for SEQ and unfair prediction model, their results
 418 are given as points instead of lines. Figure 6 in Section B.4 presents similar results for other fairness
 419 measures (WMP and $MP^{(2)}$). The main findings can be summarized as follows.
 420

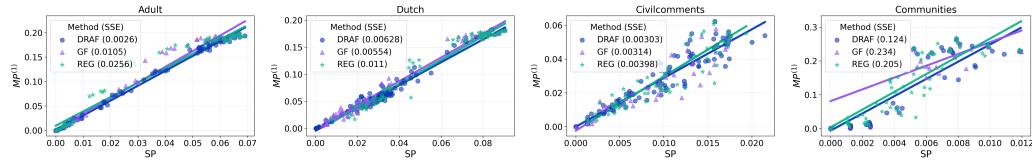
421 • Datasets with less sparse subgroups (ADULT, DUTCH and CIVILCOMMENTS): For ADULT and
 422 DUTCH, the three methods REG, GF, and DRAF perform similarly on both first-order marginal
 423 and subgroup fairness. Note that the slight better performance of REG on ADULT is due to a
 424 training-test data discrepancy: we observe that the three methods perform nearly the same on
 425 the training data. Specifically for CIVILCOMMENTS, REG underperforms GF and DRAF for SP,
 426 while GF slightly underperforms DRAF at small $MP^{(1)}$. These results recommend using DRAF
 427

Figure 3: Trade-off between fairness level (top: SP, bottom: $MP^{(1)}$) and accuracy.

for achieving both subgroup and first-order marginal fairness, even on datasets with less sparse subgroups. Similar results on an additional dataset (**ACSincome** (Ding et al., 2022)) are shown in Figure 8 in Section B.4.

- Datasets with sparse subgroups (**COMMUNITIES**): DRAF outperforms REG on both first-order marginal and subgroup fairness, and GF on first-order marginal fairness. These results suggest that reducing only first-order marginal fairness (REG) or only subgroup fairness (GF) would be suboptimal, and so DRAF is particularly effective when subgroups are sparse. See Table 3 in Section B.4 for similar results on a subsampled **ADULT** dataset with sparse subgroups.

Correlation between subgroup fairness and first-order marginal fairness We analyze the correlation between subgroup fairness and first-order marginal fairness, to investigate how a given algorithm can simultaneously control the both well. Figure 4 plots subgroup fairness (SP) versus first-order marginal fairness ($MP^{(1)}$) for DRAF, GF, and REG. To quantify their correlation, we fit a linear regression and calculate the SSE (Sum of Squared Errors). The results show that the SSE for GF and REG is larger than that for DRAF in most cases, with a large margin for **COMMUNITIES**. It suggests that focusing solely on subgroup fairness (GF) or first-order marginal fairness (REG) does not guarantee the other, whereas DRAF can achieve both regardless of the sparsity. This highlights the benefit of DRAF: subgroup and first-order marginal fairness tend to behave together, so we can control both with a single λ without unexpected unfairness.

Figure 4: Scatter plots between SP and $MP^{(1)}$ with linear regression lines, and SSE on **ADULT**, **DUTCH**, **CIVILCOMMENTS**, and **COMMUNITIES** datasets.

5.4 EXTENSIONS OF DRAF

Multi-class classification We empirically discuss that DRAF is not limited to binary classification but can be extended to multi-class classification problem. Following Denis et al. (2024), we use **COMMUNITIES** dataset with five label classes and apply DRAF to the dataset. As shown in Table 5 in Section B.5, DRAF achieves competitive performance compared to the baseline method of Denis et al. (2024).

Equalized Odds (EO) We also show that DRAF can be extended to EO, by a slight modification in $DR^2(f, v, g)$. We compare this modified DRAF for EO (DRAF-EO) with FairICP (Lai & Guan, 2025), which is an adversarial learning-based method for EO. Tables 7 and 8 in Section B.5 suggest that the DRAF-EO performs competitive to FairICP, in terms of both marginal and subgroup fairness.

486
487

5.5 ADDITIONAL STUDIES

488
489
490
491
492
493
494
495
496

Excluding the marginal subgroups from \mathcal{W} We investigate how the marginal fairness is affected when \mathcal{W} excludes the marginal subgroups. First, Figure 9 in Section B.6 shows that excluding first-order marginal subgroups could harm first-order marginal fairness even if subgroup fairness is satisfied. This result emphasizes the need to include the marginal subgroups in \mathcal{W} , to obtain socially acceptable subgroup fair models (i.e., as well as marginally fair). Similarly, we consider \mathcal{W} without the second-order marginal subgroups. Figure 11 in Section B.6 shows that the second-order marginal fairness can be slightly worsen under such exclusion. Hence, we recommend including the second-order marginal subgroups in \mathcal{W} as well, unless the optimization is numerical unstable.

497
498
499
500
501
502
503

Impact of γ Another simple way to manage \mathcal{W} is to control the minimum sample size of $W \in \mathcal{W}$ (i.e., γ). As γ increases, the sizes of subgroup-subsets become larger, hence \mathcal{W} excludes higher-order marginal subgroups as well as more subgroups. Suppose that we choose γ to be larger than the sizes of higher-order marginal subgroups but smaller than those of first-order marginal subgroups. Such a choice would achieve marginal fairness, but it may hamper higher-order marginal fairness. Section B.6 empirically supports the claim by comparing performance with various γ s: Figures 12 and 13 show that a too large γ could degrade second-order marginal as well as subgroup fairness.

504
505
506
507
508

We further analyze the effect of γ by categorizing subgroups into large, medium, and small scales (using quantiles 0.3 and 0.6). Figure 14 in Section B.6 implies that (i) while large subgroups remain consistently fair, (ii) medium subgroups require a moderate γ to maintain fairness, (iii) and the fairness of small subgroups is not guaranteed even γ is small. Note that these results also support the implications of Theorem 3.1.

509
510
511
512

In conclusion, since guaranteeing fairness on tiny subgroups is difficult, and we advise selecting a moderate γ . This allows the model to focus on enforcing fairness for subgroups capable of generalization (i.e., those where fairness on the training data implies fairness on the test data).

513
514
515
516
517
518

Choice of \mathcal{G} In the experiments, we consider the discriminator used in sIPM, which is used for fair representation learning (Kim et al., 2022). We also consider sIPM with ReLU IPM (RIPM, Park et al. (2025)) where discriminator functions are a composition of ReLU and linear functions, and Hölder IPM (HIPM, Wang et al. (2023)) which uses DNN discriminators. Figure 15 in Section B.6 shows that sIPM is generally the best and most stable.

519
520
521
522
523
524
525
526
527
528
529
530
531
532

Robustness under noisy sensitive attributes To investigate the robustness of DRAF under noisy sensitive attribute information, we conduct a controlled experiment on the ADULT dataset by synthetically introducing missing values into the sensitive attribute at a certain rate (e.g., 1%). Existing methods (e.g., GF) typically require complete subgroup information and therefore discard samples with missing sensitive attributes. In contrast, DRAF can still be applied partially to such samples: for instances with missing sensitive attributes, we impose fairness constraints only on subgroup-subsets that can be formed using the observed attributes, and ignore subgroup-subsets that involve any missing attributes.

The results in Figure 16 in Section B.6 show that this partial DRAF approach is more robust than the baseline: it attains a better fairness-accuracy trade-off than GF, demonstrating the robustness of DRAF in the presence of noisy (missing) sensitive attributes.

6 CONCLUDING REMARKS

533
534
535
536

In this paper, we introduced a new notion of fairness called subgroup-subset fairness, and proposed a new adversarial learning algorithm for subgroup fairness. We empirically showed that the proposed algorithm works well in scenarios where the data contain sparse subgroups.

537
538
539

A possible future work is to decompose subgroup fairness into low-order marginal fairness (similar to ANOVA decomposition) and control fairness via these components. This approach would improve stability under sparse subgroups and interpretability. One could theoretically derive an upper bound of subgroup fairness in terms of low-order marginal fairness.

540 **Ethics Statement** We do not collect new human-subject datasets; all the datasets used in this
 541 paper are publicly available. The fairness notions we employ in this paper (i.e., subgroup fairness
 542 and marginal group fairness) are widely and popularly investigated in recent literature. Through
 543 these efforts, we believe this research helps mitigate potential discriminatory impacts, rather than
 544 introduce new ones, and can positively influence the responsible use of AI in practice.

545 **Reproducibility Statement** We made efforts to ensure the reproducibility of our main findings:
 546 (i) We provide full proofs and mathematical definitions used in the theorems in Appendix. (ii) We
 547 include implementation details throughout the paper (the main body and Appendix), and add source
 548 code in the supplementary materials.

550 **REFERENCES**

551 Alekh Agarwal, Alina Beygelzimer, Miroslav Dudík, John Langford, and Hanna Wallach. A reduc-
 552 tions approach to fair classification. In *International conference on machine learning*, pp. 60–69.
 553 PMLR, 2018.

554 António Pereira Barata, Frank W. Takes, H. Jaap van den Herik, and Cor J. Veenman. Fair tree
 555 classifier using strong demographic parity, 2021.

556 Peter L. Bartlett, Dylan J. Foster, and Matus J. Telgarsky. Spectrally-normalized margin bounds for
 557 neural networks. In *Advances in Neural Information Processing Systems (NeurIPS)*, 2017.

558 Barry Becker and Ronny Kohavi. Adult. UCI Machine Learning Repository, 1996. DOI:
 559 <https://doi.org/10.24432/C5XW20>.

560 Daniel Borkan, Lucas Dixon, Jeffrey Sorensen, Nithum Thain, and Lucy Vasserman. Nuanced
 561 metrics for measuring unintended bias with real data for text classification. In *Companion Pro-
 562 ceedings of The 2019 World Wide Web Conference*, 2019.

563 Evgenii Chzhen, Christophe Denis, Mohamed Hebiri, Luca Oneto, and Massimiliano Pontil. Fair
 564 regression with wasserstein barycenters. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Bal-
 565 can, and H. Lin (eds.), *Advances in Neural Information Processing Systems*, volume 33, pp.
 566 7321–7331. Curran Associates, Inc., 2020a. URL <https://proceedings.neurips.cc/paper/2020/file/51cdbd2611e844ece5d80878eb770436-Paper.pdf>.

567 Evgenii Chzhen, Christophe Denis, Mohamed Hebiri, Luca Oneto, and Massimiliano Pontil. Fair
 568 regression with wasserstein barycenters. *Advances in Neural Information Processing Systems*, 33:
 569 7321–7331, 2020b.

570 Christophe Denis, Romuald Elie, Mohamed Hebiri, and François Hu. Fairness guarantees in multi-
 571 class classification with demographic parity. *J. Mach. Learn. Res.*, 25(1), January 2024. ISSN
 572 1532-4435.

573 Frances Ding, Moritz Hardt, John Miller, and Ludwig Schmidt. Retiring adult: New datasets for fair
 574 machine learning, 2022. URL <https://arxiv.org/abs/2108.04884>.

575 Michele Donini, Luca Oneto, Shai Ben-David, John S Shawe-Taylor, and Massimiliano Pontil. Em-
 576 pirical risk minimization under fairness constraints. *Advances in neural information processing
 577 systems*, 31, 2018.

578 Harrison Edwards and Amos Storkey. Censoring representations with an adversary. In *International
 579 Conference in Learning Representations (ICLR2016)*, pp. 1–14, May 2016. URL <https://iclr.cc/archive/www/doku.php%3Fid=iclr2016:main.html>. 4th International
 580 Conference on Learning Representations, ICLR 2016 ; Conference date: 02-05-2016 Through
 581 04-05-2016.

582 James Foulds, Rashidul Islam, Kamrun Keya, and Shimei Pan. Bayesian modeling of intersectional
 583 fairness: The variance of bias, 2019a. URL <https://arxiv.org/abs/1811.07255>.

584 James Foulds, Rashidul Islam, Kamrun Naher Keya, and Shimei Pan. An intersectional definition
 585 of fairness, 2019b. URL <https://arxiv.org/abs/1807.08362>.

594 Arthur Gretton, Karsten M. Borgwardt, Malte J. Rasch, Bernhard Schölkopf, and Alexander Smola.
 595 A kernel two-sample test. *Journal of Machine Learning Research*, 13(25):723–773, 2012a. URL
 596 <http://jmlr.org/papers/v13/gretton12a.html>.
 597

598 Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard Schölkopf, and Alexander Smola.
 599 A kernel two-sample test. *The Journal of Machine Learning Research*, 13(1):723–773, 2012b.

600 Francois Hu, Philipp Ratz, and Arthur Charpentier. A sequentially fair mechanism for mul-
 601 tiple sensitive attributes. *Proceedings of the AAAI Conference on Artificial Intelligence*, 38
 602 (11):12502–12510, March 2024. ISSN 2159-5399. doi: 10.1609/aaai.v38i11.29143. URL
 603 <http://dx.doi.org/10.1609/aaai.v38i11.29143>.

604 Ray Jiang, Aldo Pacchiano, Tom Stepleton, Heinrich Jiang, and Silvia Chiappa. Wasserstein fair
 605 classification. In *Uncertainty in artificial intelligence*, pp. 862–872. PMLR, 2020a.

606

607 Ray Jiang, Aldo Pacchiano, Tom Stepleton, Heinrich Jiang, and Silvia Chiappa. Wasserstein fair
 608 classification. In Ryan P. Adams and Vibhav Gogate (eds.), *Proceedings of The 35th Uncer-
 609 tainty in Artificial Intelligence Conference*, volume 115 of *Proceedings of Machine Learning
 610 Research*, pp. 862–872. PMLR, 22–25 Jul 2020b. URL <https://proceedings.mlr.press/v115/jiang20a.html>.

611

612 Michael Kearns, Seth Neel, Aaron Roth, and Zhiwei Steven Wu. An empirical study of rich subgroup
 613 fairness for machine learning, 2018a. URL <https://arxiv.org/abs/1808.08166>.

614

615 Michael Kearns, Seth Neel, Aaron Roth, and Zhiwei Steven Wu. Preventing fairness gerryman-
 616 dering: Auditing and learning for subgroup fairness. In *International conference on machine
 617 learning*, pp. 2564–2572. PMLR, 2018b.

618

619 Dongha Kim, Kunwoong Kim, Insung Kong, Ilsang Ohn, and Yongdai Kim. Learning fair repre-
 620 sentation with a parametric integral probability metric. In Kamalika Chaudhuri, Stefanie Jegelka,
 621 Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.), *Proceedings of the 39th Inter-
 622 national Conference on Machine Learning*, volume 162 of *Proceedings of Machine Learning
 623 Research*, pp. 11074–11101. PMLR, 17–23 Jul 2022. URL <https://proceedings.mlr.press/v162/kim22b.html>.

624

625 Kunwoong Kim, Insung Kong, Jongjin Lee, Minwoo Chae, Sangchul Park, and Yongdai Kim. Fair-
 626 ness through matching. *Transactions on Machine Learning Research*, 2025. ISSN 2835-8856.
 627 URL <https://openreview.net/forum?id=dH1jjaNHH1>.

628

629 Insung Kong, Kunwoong Kim, and Yongdai Kim. Fair representation learning for continuous sen-
 630 sitive attributes using expectation of integral probability metrics. *IEEE Transactions on Pattern
 631 Analysis and Machine Intelligence*, 2025.

632

633 Yuheng Lai and Leying Guan. FairICP: Encouraging equalized odds via inverse conditional permuta-
 634 tion. In Aarti Singh, Maryam Fazel, Daniel Hsu, Simon Lacoste-Julien, Felix Berkenkamp,
 635 Tegan Maharaj, Kiri Wagstaff, and Jerry Zhu (eds.), *Proceedings of the 42nd International
 636 Conference on Machine Learning*, volume 267 of *Proceedings of Machine Learning Research*,
 637 pp. 32228–32245. PMLR, 13–19 Jul 2025. URL <https://proceedings.mlr.press/v267/lai25b.html>.

638

639 David Madras, Elliot Creager, Toniann Pitassi, and Richard Zemel. Learning adversarially fair and
 640 transferable representations. In *International Conference on Machine Learning*, pp. 3384–3393.
 641 PMLR, 2018.

642

643 Gaurav Maheshwari, Aurélien Bellet, Pascal Denis, and Mikaela Keller. Fair without leveling
 644 down: A new intersectional fairness definition. In *The 2023 Conference on Empirical Meth-
 645 ods in Natural Language Processing*, 2023. URL <https://openreview.net/forum?id=RubWYFBZbG>.

646

647 Mathieu Molina and Patrick Loiseau. Bounding and approximating intersectional fairness through
 648 marginal fairness, 2023. URL <https://arxiv.org/abs/2206.05828>.

649

650 Alfred Müller. Integral probability metrics and their generating classes of functions. *Advances in
 651 Applied Probability*, 29(2):429–443, 1997. doi: 10.2307/1428011.

648 Yuha Park, Kunwoong Kim, Insung Kong, and Yongdai Kim. Relu integral probability metric and
 649 its applications, 2025. URL <https://arxiv.org/abs/2504.18897>.

650

651 Michael Redmond and Alok Baveja. A data-driven software tool for enabling cooperative infor-
 652 mation sharing among police departments. *European Journal of Operational Research*, 141(3):
 653 660–678, 2002.

654

655 Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version
 656 of BERT: smaller, faster, cheaper and lighter. *CoRR*, abs/1910.01108, 2019. URL [http://
 657 arxiv.org/abs/1910.01108](http://arxiv.org/abs/1910.01108).

658

659 Galen R. Shorack. *Probability for Statisticians*. Springer-Verlag, New York, 2000. ISBN 978-0-
 387-98945-6. doi: 10.1007/b98945.

660

661 Changjian Shui, Gezheng Xu, Qi CHEN, Jiaqi Li, Charles Ling, Tal Arbel, Boyu Wang, and Chris-
 662 tian Gagné. On learning fairness and accuracy on multiple subgroups. In Alice H. Oh, Alekh
 663 Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), *Advances in Neural Information Pro-
 664 cessing Systems*, 2022. URL <https://openreview.net/forum?id=YsRH6uVcx21>.

665

666 Chiappa Silvia, Jiang Ray, Stepleton Tom, Pacchiano Aldo, Jiang Heinrich, and Aslanides John. A
 667 general approach to fairness with optimal transport. In *Proceedings of the AAAI Conference on
 668 Artificial Intelligence*, volume 34, pp. 3633–3640, 2020.

669

670 Bharath K. Sriperumbudur, Kenji Fukumizu, Arthur Gretton, Bernhard Schölkopf, and Gert R. G.
 671 Lanckriet. On integral probability metrics, ϕ -divergences and binary classification, 2009. URL
 672 <https://arxiv.org/abs/0901.2698>.

673

674 Huan Tian, Bo Liu, Tianqing Zhu, Wanlei Zhou, and Philip S. Yu. Multifair: Model fairness with
 675 multiple sensitive attributes. *IEEE Transactions on Neural Networks and Learning Systems*, 36
 676 (3):5654–5667, 2025. doi: 10.1109/TNNLS.2024.3384181.

677

678 Paul van der Laan. Integrating administrative registers and household surveys. *Netherlands Official
 679 Statistics*, 15(2):7–15, 2000.

680

681 Cédric Villani. *Optimal Transport: Old and New*, volume 338 of *Grundlehren der mathematischen
 682 Wissenschaften*. Springer, Berlin, Heidelberg, 2009. ISBN 978-3-540-71049-3. doi: 10.1007/
 683 978-3-540-71050-9.

684

685 Jie Wang, Minshuo Chen, Tuo Zhao, Wenjing Liao, and Yao Xie. A manifold two-sample test
 686 study: integral probability metric with neural networks. *Information and Inference: A Journal
 687 of the IMA*, 12(3):1867–1897, 06 2023. ISSN 2049-8772. doi: 10.1093/imaiai/iaad018. URL
 688 <https://doi.org/10.1093/imaiai/iaad018>.

689

690

691

692

693

694

695

696

697

698

699

700

701

APPENDIX

A THEORETICAL STUDIES

A.1 OMITTED DEFINITIONS AND NOTATIONS

Definition A.1. Let $(\sigma_i)_{i=1}^m$ be the Rademacher random variables such that $\mathbb{P}(\sigma_i = +1) = \mathbb{P}(\sigma_i = -1) = 1/2$, independently. Let \mathcal{H} be a class of real-valued functions on a domain \mathcal{Z} , and let $S = (z_1, \dots, z_m) \in \mathcal{Z}^m$ be a fixed sample. The empirical Rademacher complexity of \mathcal{H} on S is

$$\widehat{\mathcal{R}}_S(\mathcal{H}) := \mathbb{E}_\sigma \left[\sup_{h \in \mathcal{H}} \frac{1}{m} \sum_{i=1}^m \sigma_i h(z_i) \right], \quad (5)$$

where the expectation is with respect to the Rademacher variables $(\sigma_i)_{i=1}^m$.

Given a distribution P on \mathcal{Z} , the *Rademacher complexity* of \mathcal{H} with sample size m is

$$\mathcal{R}_m(\mathcal{H}) := \mathbb{E}_{S \sim P^m} \left[\widehat{\mathcal{R}}_S(\mathcal{H}) \right] = \mathbb{E}_{z_1, \dots, z_m \sim P} \mathbb{E}_\sigma \left[\sup_{h \in \mathcal{H}} \frac{1}{m} \sum_{i=1}^m \sigma_i h(z_i) \right]. \quad (6)$$

A.2 PROOFS

Proof of Theorem 3.1. Fix $f \in \mathcal{F}$. By the definition of the supremum and the triangle inequality of IPMs,

$$\begin{aligned} \Delta_{\psi, \mathcal{W}}(f) - \Delta_{n, \psi, \mathcal{W}}(f) &\leq \sup_{W \in \mathcal{W}} \psi(\mathbb{P}_{f, W}, \mathbb{P}_{f, W}^n) - \sup_{W \in \mathcal{W}} \psi(\mathbb{P}_{f, W^c}, \mathbb{P}_{f, W^c}^n) \\ &\leq \sup_{W \in \mathcal{W}} \left\{ \psi(\mathbb{P}_{f, W}, \mathbb{P}_{f, W}^n) + \psi(\mathbb{P}_{f, W^c}, \mathbb{P}_{f, W^c}^n) \right\}. \end{aligned} \quad (7)$$

The first term in the right-hand-side can be re-written as

$$\begin{aligned} \psi(\mathbb{P}_{f, W}, \mathbb{P}_{f, W}^n) &= \sup_{g \in \mathcal{G}} \left(\mathbb{E}_{\mathbb{P}_{f, W}}[g] - \mathbb{E}_{\mathbb{P}_{f, W}^n}[g] \right) \\ &= \sup_{g \in \mathcal{G}} \left(\mathbb{E}[g \circ f(X, S) | S \in W] - \frac{1}{n_W} \sum_{i: s_i \in W} g \circ f(x_i, s_i) \right), \end{aligned} \quad (8)$$

where $n_W = |\{i : s_i \in W\}|$. Taking the supremum over $f \in \mathcal{F}$ and by Hoeffding's inequality combined with Rademacher symmetrization, we have with probability at least $1 - \delta_W$,

$$\sup_{f \in \mathcal{F}} \psi(\mathbb{P}_{f, W}, \mathbb{P}_{f, W}^n) \leq 2\mathcal{R}_{n_W}(\mathcal{G} \circ \mathcal{F}) + B\sqrt{\frac{2\log(1/\delta_W)}{n_W}}$$

for any $\delta_W > 0$. An exactly same bound holds for W^c with n_{W^c} in place of n_W . Applying the union bound over all pairs $\{W, W^c\}$ with $\delta_W = \delta/(2|\mathcal{W}|)$ and using $n_W, n_{W^c} \geq n_W = \min_{W \in \mathcal{W}}\{n_W, n_{W^c}\} = \min_{W \in \mathcal{W}}\{n_W, n - n_W\}$, we have

$$\sup_{f \in \mathcal{F}} \left\{ \psi(\mathbb{P}_{f, W}, \mathbb{P}_{f, W}^n) + \psi(\mathbb{P}_{f, W^c}, \mathbb{P}_{f, W^c}^n) \right\} \leq 4\mathcal{R}_{n_W}(\mathcal{G} \circ \mathcal{F}) + 2B\sqrt{\frac{2\log(2|\mathcal{W}|/\delta)}{n_W}}$$

for all $W \in \mathcal{W}$. Taking $\delta = 1/n$ concludes the proof. \square

Proof of Theorem 4.1. Let $f_i := f(x_i, s_i)$. Recall that $y_{W,i} = 2\mathbb{I}(s_i \in W) - 1 \in \{-1, 1\}$, $i \in [n]$. Then, we can rewrite

$$\text{IPM}_{\mathcal{G}}(\mathbb{P}_{f, W}, \mathbb{P}_{f, W^c}) := \sup_{g \in \mathcal{G}} \left| \frac{1}{|W|} \sum_{i: y_{W,i}=1} g(f_i) - \frac{1}{|W^c|} \sum_{i: y_{W,i}=-1} g(f_i) \right|$$

and Lemma A.2 in the next subsection concludes

$$\text{IPM}_{\mathcal{G}}(\mathbb{P}_{f, W}, \mathbb{P}_{f, W^c}) = \sup_{g \in \mathcal{G}} \left| \frac{\sum_{i=1}^n (y_{W,i} - \bar{y}_W) g(f_i)}{\sum_{i=1}^n (y_{W,i} - \bar{y}_W)^2} \right| = \sup_{g \in \mathcal{G}} |\tilde{R}^2(f, W, g)|.$$

\square

756 A.3 TECHNICAL LEMMAS
757758 **Lemma A.2.** Fix $\mathcal{G} \subset \{g : \mathbb{R} \rightarrow \mathbb{R}\}$. Let W be a given subset of $\{0, 1\}^q$ and $f_i = f(x_i, s_i), i \in [n]$.
759 For a binary indicator $y_{W,i} = 2\mathbb{I}(s_i \in W) - 1 \in \{-1, 1\}, i \in [n]$, we have

760
$$\frac{1}{|W|} \sum_{i:y_{W,i}=1} g(f_i) - \frac{1}{|W^c|} \sum_{i:y_{W,i}=-1} g(f_i) = \frac{\sum_{i=1}^n (y_{W,i} - \bar{y}_W)g(f_i)}{\sum_{i=1}^n (y_{W,i} - \bar{y}_W)^2}, \quad (9)$$

761

762 for any $g \in \mathcal{G}$, where $\bar{y}_W := \frac{1}{n} \sum_{i=1}^n y_{W,i}$ and $\bar{g} := \frac{1}{n} \sum_{i=1}^n g(f_i)$.
763764 *Proof.* We begin by rewriting $\bar{g} = \frac{1+\bar{y}_W}{2} \left(\frac{1}{|W|} \sum_{i:y_{W,i}=1} g(f_i) \right) + \frac{1-\bar{y}_W}{2} \left(\frac{1}{|W^c|} \sum_{i:y_{W,i}=-1} g(f_i) \right)$
765 since $|W| = \sum_{i:y_{W,i}=1} 1 = \frac{n+\sum_{i=1}^n y_{W,i}}{2} = \frac{n(1+\bar{y}_W)}{2}$ and $|W^c| = \sum_{i:y_{W,i}=-1} 1 = \frac{n-\sum_{i=1}^n y_{W,i}}{2} =$
766 $\frac{n(1-\bar{y}_W)}{2}$. Note that
767

768
$$\begin{aligned} \sum_{i=1}^n (y_{W,i} - \bar{y}_W)^2 &= \sum_{i=1}^n y_{W,i}^2 - 2\bar{y}_W \sum_{i=1}^n y_{W,i} + n\bar{y}_W^2 \\ 769 &= n - 2\bar{y}_W (|W| - |W^c|) + n\bar{y}_W^2 \quad (\because y_{W,i}^2 = 1, \sum_i y_{W,i} = |W| - |W^c|) \\ 770 &= n - \frac{(|W| - |W^c|)^2}{n} \quad (\because \bar{y}_W = \frac{|W| - |W^c|}{n}) \\ 771 &= \frac{4|W||W^c|}{n} \quad (\because 1 + \bar{y}_W = \frac{2|W|}{n}, 1 - \bar{y}_W = \frac{2|W^c|}{n}). \end{aligned} \quad (10)$$

772

773 Then, we expand
774

775
$$\begin{aligned} \sum_{i=1}^n (y_{W,i} - \bar{y}_W)(g(f_i) - \bar{g}) &= \sum_{i=1}^n y_{W,i}g(f_i) - \bar{g} \sum_{i=1}^n y_{W,i} - \bar{y}_W \sum_{i=1}^n g(f_i) + n\bar{y}_W\bar{g} \\ 776 &= \sum_{i:y_{W,i}=1} g(f_i) - \sum_{i:y_{W,i}=-1} g(f_i) - \bar{g}(|W| - |W^c|) - \bar{y}_W(n\bar{g}) + n\bar{y}_W\bar{g} \\ 777 &= \sum_{i:y_{W,i}=1} g(f_i) - \sum_{i:y_{W,i}=-1} g(f_i) - \bar{g}(|W| - |W^c|) \\ 778 &= \sum_{i:y_{W,i}=1} g(f_i) - \sum_{i:y_{W,i}=-1} g(f_i) \\ 779 &\quad - (|W| - |W^c|) \left(\frac{|W|}{n} \cdot \frac{1}{|W|} \sum_{i:y_{W,i}=1} g(f_i) + \frac{|W^c|}{n} \cdot \frac{1}{|W^c|} \sum_{i:y_{W,i}=-1} g(f_i) \right) \\ 780 &= \left(1 - \frac{|W| - |W^c|}{n} \right) \sum_{i:y_{W,i}=1} g(f_i) - \left(1 + \frac{|W| - |W^c|}{n} \right) \sum_{i:y_{W,i}=-1} g(f_i) \\ 781 &= \frac{2|W^c|}{n} \sum_{i:y_{W,i}=1} g(f_i) - \frac{2|W|}{n} \sum_{i:y_{W,i}=-1} g(f_i) \\ 782 &= \frac{2|W||W^c|}{n} \left(\frac{1}{|W|} \sum_{i:y_{W,i}=1} g(f_i) - \frac{1}{|W^c|} \sum_{i:y_{W,i}=-1} g(f_i) \right) \\ 783 &= \frac{1}{2} \sum_{i=1}^n (y_{W,i} - \bar{y}_W)^2 \left(\frac{1}{|W|} \sum_{i:y_{W,i}=1} g(f_i) - \frac{1}{|W^c|} \sum_{i:y_{W,i}=-1} g(f_i) \right), \end{aligned} \quad (11)$$

807 where the last equality holds by Eq. (10). Dividing by $\sum_i (y_{W,i} - \bar{y}_W)^2$, we get
808

809
$$\frac{\sum_{i=1}^n (y_{W,i} - \bar{y}_W)(g(f_i) - \bar{g})}{\sum_i (y_{W,i} - \bar{y}_W)^2} = \frac{1}{2} \left(\frac{1}{|W|} \sum_{i:y_{W,i}=1} g(f_i) - \frac{1}{|W^c|} \sum_{i:y_{W,i}=-1} g(f_i) \right). \quad (12)$$

810 Using the fact that

$$812 \quad \frac{\sum_{i=1}^n (y_{W,i} - \bar{y}_W) (g(f_i) - \bar{g})}{\sum_i (y_{W,i} - \bar{y}_W)^2} = \frac{\sum_{i=1}^n (y_{W,i} - \bar{y}_W) g(f_i)}{\sum_i (y_{W,i} - \bar{y}_W)^2},$$

814 we conclude the proof. \square

816 A.4 EXAMPLES OF \mathcal{F} AND \mathcal{G} IN THEOREM 3.1

818 We introduce two examples that yields small Rademacher complexities $\mathcal{R}_{n_W}(\mathcal{G} \circ \mathcal{F}) = \mathcal{O}(1/\sqrt{n_W})$
819 so the uniform population–empirical gap in Theorem 3.1 shrinks at a rate $\mathcal{O}(1/\sqrt{n_W})$ up to a loga-
820 rithm factor of n .

821 *Example A.3 (Linear functions).* Let $\mathcal{G} = \{g_u(z) = \langle u, z \rangle : \|u\|_2 \leq 1\}$ and $\mathcal{F} = \{f_W(x, s) =$
822 $Wz(x, s) : \|W\|_2 \leq M\}$, where $z(x, s) \in \mathbb{R}^d$ are fixed features with $\|z(x, s)\|_2 \leq B_z$ for all (x, s) .
823 Then for all $f_W \in \mathcal{F}$ and $g_u \in \mathcal{G}$, $|(g_u \circ f_W)(x, s)| = |\langle u, Wz(x, s) \rangle| \leq \|u\|_2 \|W\|_2 \|z(x, s)\|_2 \leq$
824 MB_z , so the class is uniformly bounded by $R := MB_z$. Moreover,

$$826 \quad \mathcal{R}_{n_W}(\mathcal{G} \circ \mathcal{F}) = \frac{1}{n_W} \mathbb{E}_\sigma \sup_{\|u\|_2 \leq 1, \|W\|_2 \leq M} \sum_{i=1}^{n_W} \sigma_i \langle u, Wz_i \rangle = \frac{1}{n_W} \mathbb{E}_\sigma \sup_{\|W\|_2 \leq M} \left\| \sum_{i=1}^{n_W} \sigma_i Wz_i \right\|_2 \\ 827 \\ 828 \leq \frac{1}{n_W} \mathbb{E}_\sigma \sup_{\|W\|_2 \leq M} \|W\|_2 \left\| \sum_{i=1}^{n_W} \sigma_i z_i \right\|_2 \leq \frac{M}{n_W} \mathbb{E}_\sigma \left\| \sum_{i=1}^{n_W} \sigma_i z_i \right\|_2 \leq \frac{MB_z}{\sqrt{n_W}},$$

831 since $\|z_i\|_2 \leq B_z$. Consequently, for all $f \in \mathcal{F}$,

$$833 \quad \Delta_{\psi, \mathcal{W}}(f) - \Delta_{n, \psi, \mathcal{W}}(f) \lesssim \frac{1}{\sqrt{n_W}} \left\{ 4MB_z + 2MB_z \sqrt{2 \log(2n|\mathcal{W}|)} \right\}.$$

835 *Example A.4 (Deep Neural Networks).* Suppose $\mathcal{G} \circ \mathcal{F}$ is a ReLU Deep Neural Network (e.g.,
836 \mathcal{G} and \mathcal{F} are both ReLU DNNs) with L -many layers and weight matrices A_ℓ of spectral norms
837 $s_\ell = \|A_\ell\|_2$ and Frobenius norms $\|A_\ell\|_F$ for $\ell \in [L]$. Then, we have $\mathcal{R}_{n_W}(\mathcal{G} \circ \mathcal{F}) \lesssim$
838 $\frac{1}{\sqrt{n_W}} (\prod_{\ell=1}^L s_\ell) (\sum_{\ell=1}^L \|A_\ell\|_F^2 / s_\ell^2)^{1/2}$ (Bartlett et al., 2017). Further, if $g \circ f$ is uniformly bounded,
839 then we have

$$840 \quad \Delta_{\psi, \mathcal{W}}(f) - \Delta_{n, \psi, \mathcal{W}}(f) \lesssim \frac{C}{\sqrt{n_W}} + \frac{1}{\sqrt{n_W}} 2R \sqrt{2 \log(2n|\mathcal{W}|)}$$

842 for all $f \in \mathcal{F}$ and a constant C depending on the network parameters L and A_ℓ .

844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

864 **B EXPERIMENTS**
865866 **B.1 DATASETS**
867

- 868 • **ADULT** (Tabular) (Becker & Kohavi, 1996): We predict income ($\geq 50K$) from census fea-
869 tures. For the sensitive attributes, we consider sex, race, age, and marital-status, so that
870 $q = 4$.
- 871 • **COMMUNITIES** (Tabular) (Redmond & Baveja, 2002): The class label is binary, indicating
872 whether the violent crime rate is above a threshold. For the sensitive attributes, we con-
873 sider 4 variables regarding race (racepctwhite, racepctblack, racepctasian, racepcthis), 6
874 racial per-capita variables (whitepercap, blackpercap, indianpercap, asianpercap, otherper-
875 cap, hisppercap), 8 language/immigration related-variables (pctnotspeakengwell, pctfor-
876 eignborn, pctimmigrecent, pctimmigrec5, pctimmigrec8, pctimmigrec10, pctrecentimmig,
877 pctrecimmig5) so that $q = 18$.
- 878 • **DUTCH** (Tabular) (van der Laan, 2000): We predict occupation from socio-economic fea-
879 tures. For the sensitive attributes, we consider sex and age, so that $q = 2$.
- 880 • **CIVILCOMMENTS** (Text) (Borkan et al., 2019): We predict toxicity from user-generated
881 comments. For the sensitive attributes, we consider sex (male/female/other), race
882 (black/white/asian/other), and religion (christian/other) so that $q = 3$.
- 883 • **ACSinCOME** (Tabular) (Ding et al., 2022): We predict income level using nationwide
884 census features. Sensitive attributes include sex, race (White, Black, Asian, Other), and
885 marital-status, yielding $q = 3$.

886 **B.2 IMPLEMENTATION DETAILS**
887

888 We run all algorithms over five random seeds and report the average performance.
889

890 **DRAF algorithm** To control the fairness level, the Lagrangian multiplier λ is swept over
891 $\{0.00, 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90, 1.00, 2.00, 3.00, 4.00, 5.00, 10.00, 20.00\}$.
892 The candidate set of γ is $\{0.001, 0.005, 0.01, 0.05, 0.10, 0.20, 0.30\}$, and we choose an optimal one
893 using the Pareto-front lines, as mentioned in the main body. We run DRAF with a maximum of 200
894 epochs, and select the best model whose validation accuracy is the highest among the 200 epochs.
895 Algorithm 1 outlines the the DRAF algorithm.
896

897 **Baselines** The fairness penalty of REG is the sum of group disparities: $DP_{\text{marg}}(f) :=$
898 $\sum_{l \in [q]} \left| \frac{1}{n} \sum_{i=1}^n f_i - \frac{1}{n_l} \sum_{i:s_{i,l}=1} f_i \right|$, where $s_{i,l}$ denotes the l^{th} component of s_i and $n_l =$
899 $\sum_{i=1}^n \mathbb{I}(s_{i,l} = 1)$ for $l \in [q]$. The final objective is defined as $\frac{1}{n} \sum_{i=1}^n l(y_i, f(x_i, s_i)) +$
900 $C_{\text{REG}} DP_{\text{marg}}(f)$ for some $C_{\text{REG}} \geq 0$. We sweep the regularization parameter C_{REG} over
901 $\{0.001, 0.002, 0.005, 0.01, 0.05, 0.1, 0.2, 0.3, 0.5, 0.7, 1.0, 2.0, 5.0, 10.0, 20.0, 50.0, 100.0\}$ to con-
902 trol the fairness level. Similar to DRAF, we run REG with a maximum of 200 epochs, and select the
903 best model whose validation accuracy is the highest among the epochs.
904

905 For GF, since the official code and the released AIF360 package¹ support only FP and FN (false
906 positives and false negatives), we re-implement GF for the demographic parity setting targeted in
907 this paper. For stable and fast optimization, we use a gradient-descent-based approach. The fair-
908 ness penalty of GF is the (weighted) worst-group disparity: $DP_{\text{max}}(f) := \max_{s \in \{0,1\}^q} \frac{n_s}{n} DP_s(f)$,
909 where $DP_s(f) := |\hat{p}_s - \hat{p}|$, $\hat{p} := \frac{1}{n} \sum_{i=1}^n \mathbb{I}\{\hat{y}_i = 1\}$, and $\hat{p}_s := \frac{1}{n_s} \sum_{i:s_i=s} \mathbb{I}\{\hat{y}_i = 1\}$. The final
910 objective is then defined as $\frac{1}{n} \sum_{i=1}^n l(y_i, f(x_i, s_i)) + C_{\text{GF}} DP_{\text{max}}(f)$. Here, we sweep the regular-
911 ization parameter C_{GF} over $\{0.1, 0.5, 1.0, 5.0, 20.0, 50.0, 200.0, 500.0, 1000.0, 5000.0\}$ to control
912 the fairness level. Note that, rather than taking maximum over s , we apply the softmax function to
913 $\{\frac{n_s}{n} DP_s(f)\}_{s \in \{0,1\}^q}$ to make the optimization stable. Similar to DRAF, we run GF with a maximum
914 of 200 epochs, and select the best model whose validation accuracy is the highest among the epochs.
915

916 For SEQ, we re-implement the algorithm in the original paper (Hu et al., 2024). That is, we first
917 learn a classifier without fairness constraints, then sequentially post-process the prediction scores

918 ¹<https://aif360.readthedocs.io/en/v0.4.0/modules/generated/aif360.algorithms.inprocessing.GerryFairClassifier.html>

918
919 **Algorithm 1:** DRAF algorithm
920 **Input** : Training data $\{(x_i, s_i, y_i)\}_{i=1}^n$, Learning rates $(\eta_{\text{cls}}, \eta_g, \eta_v)$, Number of iterations T ,
921 and Fairness Lagrangian multiplier λ
922 **Output:** Classifier parameters θ of $f = f_\theta$, Discriminator parameters ϕ of $g = g_\phi$, and Weight
923 vector \mathbf{v}

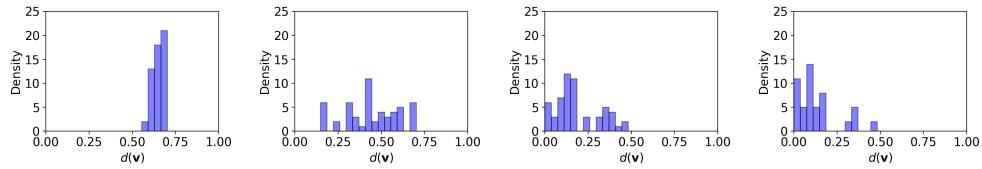
924 1 **Initialize:** $\theta \leftarrow \theta_0$, $\phi \leftarrow \phi_0$, $\mathbf{v} \leftarrow \mathbf{v}_0$
925 2 **do**
926 3 **for** $i = 1, \dots, n$ **do**
927 4 | $\hat{y}_i \leftarrow f_\theta(x_i, s_i)$
928 5 **end**
929 6 Compute the classification loss: $L_{\text{cls}} = \frac{1}{n} \sum_{i=1}^n \text{CE}(\hat{y}_i, y_i)$
930 7 Compute the fairness loss:
931 8 $\widehat{\text{DR}} = \text{DR}_{n, \mathcal{W}, \mathcal{G}}(f) := \sup_{g \in \mathcal{G}, \mathbf{v} \in \mathcal{S}^M} z\text{-DR}^2(f, \mathbf{v}, g) = \sup_{g \in \mathcal{G}, \mathbf{v} \in \mathcal{S}^M} \log \left(\frac{1 + |\text{DR}^2(f, \mathbf{v}, g)|/2}{1 - |\text{DR}^2(f, \mathbf{v}, g)|/2} \right)$
932 9 Update the discriminator and the subgroup weight by gradient ascending:
933 10 $\phi \leftarrow \phi + \eta_g \nabla_\phi \widehat{\text{DR}}$, $\tilde{\mathbf{v}} \leftarrow \mathbf{v} + \eta_v \nabla_{\mathbf{v}} \widehat{\text{DR}}$, $\mathbf{v} \leftarrow \text{Proj}_{\mathcal{S}^M}(\tilde{\mathbf{v}})$, ($\text{Proj}_{\mathcal{S}^M}$ = unit sphere projection)
934 11 Update the classifier:
935 12 $\theta \leftarrow \theta - \eta_{\text{cls}} \nabla_\theta L_{\text{cls}} - \lambda \eta_{\text{cls}} \nabla_\theta \widehat{\text{DR}}$
936 13 **until** convergence or T iterations;
937 14 **Return** θ, ϕ, \mathbf{v}

942
943 from each subgroups to a common barycenter. The learning rate used to learn the classifier is swept
944 over $\{0.001, 0.005, 0.01, 0.05, 0.10\}$.
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

972 **B.3 RELATIONSHIP BETWEEN DR GAP AND supIPM**
973

974 As Eq. (3) shows that the supIPM is upper bounded by DR^2 , and that DR^2 coincides with supIPM
975 when the vector \mathbf{v} lies on a vertex of the simplex (i.e., $\mathbf{v} = e_k$ for some k). Thus, minimizing DR^2
976 reduces the upper bound on supIPM and recovers the supIPM when \mathbf{v} is (approximately) a vertex
977 (Theorem 4.1).

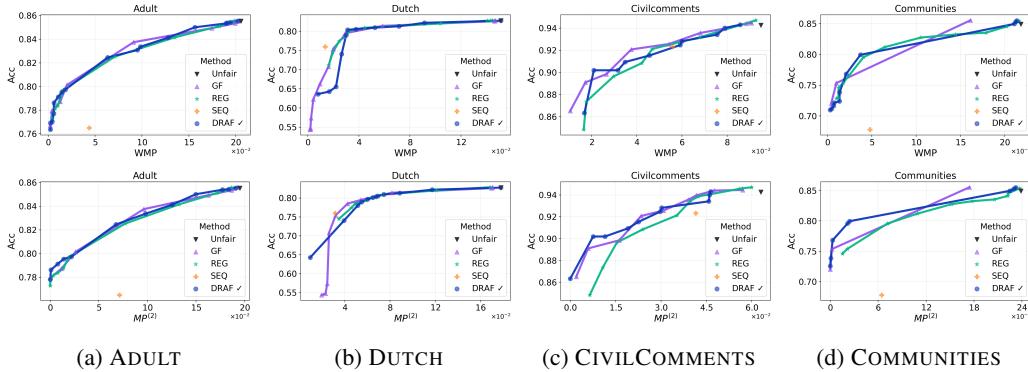
978 Furthermore, we empirically show that DR is almost equal to supIPM, by checking whether the
979 learned \mathbf{v} is near vertex. To quantify how close the learned weight vector \mathbf{v} is to a simplex vertex,
980 we compute the Euclidean distance $d(\mathbf{v}) := \min_{1 \leq k \leq m} \|\mathbf{v} - e_k\|_2$, where e_k denotes the k -th
981 vertex of the m -dimensional probability simplex. We collect $\{d(\mathbf{v})\}$ over all runs and models, and
982 plot their empirical distribution as a histogram. The resulting plots in Figure 5 show that $d(\mathbf{v})$ is
983 highly concentrated near zero as training proceeds, indicating that \mathbf{v} empirically converges to (or
984 very close to) a simplex vertex well.



991 Figure 5: Histogram of $d(\mathbf{v})$ on CIVILCOMMENTS dataset for four time steps (left to right: 1st
992 epoch, 5th epoch, 20th epoch, and 200th epoch), where the distribution becomes concentrated near
993 0 as training proceeds.

994 **B.4 PERFORMANCE COMPARISON**
995

996 **Trade-off between accuracy and fairness** Figure 6 compares the trade-off between the distributional
997 first-order marginal and the second-order marginal fairness levels (i.e., WMP and $MP^{(2)}$) and
998 accuracy. The results give the similar implications that we observe from Figure 3 in Section 5.3 of
999 the main body. That is, compared to the baseline methods (GF, REG, and SEQ), DRAF performs
1000 comparable on ADULT, DUTCH, shows a slightly better performance on CIVILCOMMENTS, and
1001 outperforms on COMMUNITIES.



1002 Figure 6: Trade-off between fairness level and accuracy. (Top, Bottom) = WMP vs. ACC, $MP^{(2)}$ vs.
1003 ACC. We set γ to 0.2 for ADULT, 0.001 for COMMUNITIES, 0.2 for DUTCH, and 0.05 for CIVIL-
1004 COMMENTS, reflecting the sparsity of each dataset to determine the optimal value.

1005 **Analysis on additional datasets**

1006 1. **Synthetic ADULT dataset:** In addition to COMMUNITIES dataset, we conduct an additional study
1007 using a synthetic variant of ADULT dataset with sparse subgroups. We construct SPARSEADULT
1008 by selecting the five smallest subgroups (whose sizes are at least 192) from ADULT and randomly
1009 down-sampling them to smaller samples with sizes in [40, 60] (see Table 3). We then evaluate
1010 five algorithms on SPARSEADULT and report the trade-off results in Figure 7. Similar to the

case for COMMUNITIES, it shows that DRAF preserves superior subgroup and marginal fairness performance, specifically for higher fairness range (e.g., small $MP^{(1)}$, WMP, and $MP^{(2)}$), on SPARSEADULT.

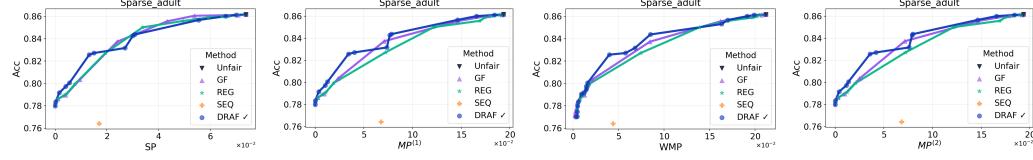


Figure 7: Trade-off between fairness level and accuracy on synthetic ADULT dataset. (Left to Right) $\{SP, MP^{(1)}, WMP, MP^{(2)}\}$ vs. Acc on SPARSEADULT dataset. We set γ to 0.001.

Table 3: Subgroup sample counts of the original ADULT and SPARSEADULT datasets. Subgroup index starts at 1 with the smallest subgroup. The sizes for subgroups of index over 6 are the same.

Subgroup index	ADULT	SPARSEADULT
1	192	46
2	233	54
3	500	57
4	789	59
5	964	60

2. **ACSincome dataset:** We also conduct experiments on an additional tabular dataset (ACS INCOME, see Section B.1 for the details of this dataset). The results reported in Figure 8 show that DRAF exhibits similar behavior on these datasets as on the four datasets currently used, which further supports the empirical outperformance of DRAF.

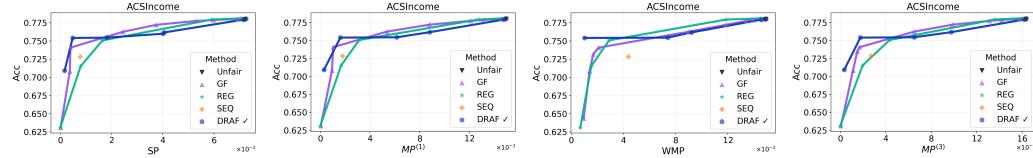


Figure 8: Trade-off between fairness level and accuracy on ACSINCOME dataset. (Left to Right) $\{SP, MP^{(1)}, WMP, MP^{(2)}\}$ vs. Acc on ACSINCOME dataset. We set γ to 0.001.

Scalability To assess the scalability of DRAF with respect to the number of subgroups ($|\mathcal{S}| = 2^q$), we measure its running time as $|\mathcal{S}|$ increases. To do so, we construct a toy dataset with $n = 2^{16}$ and randomly assign sensitive attributes to the data. As shown in Table 4, the runtime of DRAF increases only moderately even though the number of subgroup-subsets grows exponentially (by 27% when $|\mathcal{S}|$ grows from 2^4 to 2^{14}). This suggests that DRAF remains scalable in terms of computation time.

Table 4: Comparison of runtime of DRAF for various cases of $|\mathcal{S}|$ (100% for $q = 4$).

$ \mathcal{S} = 2^q$	2^4	2^6	2^8	2^{10}	2^{12}	2^{14}
Runtime	100%	101%	106%	105%	105%	127%

1080 B.5 EXTENSIONS OF DRAF
1081

1082 **Extension to multi-class classification** Here, we show that DRAF is not limited to binary clas-
1083 sification but can be extended to multi-class classification problem. We define the fairness measure
1084 in this setting as the maximum of the parity gaps across all classes, following Denis et al. (2024),
1085 and compare DRAF with the existing baseline method of Denis et al. (2024). Following Denis et al.
1086 (2024), we use COMMUNITIES dataset with five classes and binary sensitive attribute (percent of not
1087 speaking english well).

1088 Table 5: Comparison of performance for multi-class classification problem.
1089

	Acc	Max. of MP ⁽¹⁾ over classes
Unfair	0.457	0.108
(Denis et al., 2024)	0.365	0.056
DRAF ✓	0.380	0.054

1095 As shown in results in Table 5, DRAF achieves a competitive fairness level compared to the baseline,
1096 while attaining a higher accuracy.
1097

1098 **Extension to equalized odds** In addition to demographic parity notion, we further verify that
1099 DRAF can be extended to other group fairness notions, e.g., equalized odds (EO). We modify
1100 the DR penalty for EO as: $DR_{TPR}^2(f, \mathbf{v}, g) := 1 - \frac{\{\sum_{i=1}^n (\mathbf{v}^\top c_i - g(f_i))^2 - \sum_{i=1}^n (g(f_i) - \mu_v)^2\}}{\sum_{i=1}^n (\mathbf{v}^\top c_i - \mu_v)^2}$, $c_{im} =$
1101 $2\mathbb{I}(s_i \in W_m, y_i = 1) - 1$ and $DR_{FPR}^2(f, \mathbf{v}, g) := 1 - \frac{\{\sum_{i=1}^n (\mathbf{v}^\top c_i - g(f_i))^2 - \sum_{i=1}^n (g(f_i) - \mu_v)^2\}}{\sum_{i=1}^n (\mathbf{v}^\top c_i - \mu_v)^2}$, $c_{im} =$
1102 $2\mathbb{I}(s_i \in W_m, y_i = 0) - 1$, where the former is for TPR (True Positive Rate) and
1103 the latter is for FPR (False Positive Rate). Then, we minimize $\frac{1}{n} \sum_{i=1}^n l(y_i, f(x_i, s_i)) +$
1104 $\frac{\lambda}{2} (z-DR_{TPR}^2(f, \mathbf{v}, g) + z-DR_{FPR}^2(f, \mathbf{v}, g))$, where $z-DR_{TPR}^2$ and $z-DR_{FPR}^2$ are the corresponding z -
1105 transformations of $DR_{TPR}^2(f, \mathbf{v}, g)$ and $DR_{FPR}^2(f, \mathbf{v}, g)$, respectively. We call this modified DRAF
1106 algorithm specially tailored for EO as DRAF-EO.
1107

1108 For fairness performance, we consider marginal fairness and subgroup fairness measures, similar
1109 to the main analysis on demographic parity. Let $n_+ = \sum_{i=1}^n \mathbb{I}(y_i = 1)$, $n_- = \sum_{i=1}^n \mathbb{I}(y_i =$
1110 $0)$, $n_{+,s} = \sum_{i=1}^n \mathbb{I}(y_i = 1, s_i = s)$, and $n_{-,s} = \sum_{i=1}^n \mathbb{I}(y_i = 0, s_i = s)$. We also define
1111 the positive prediction ratios as $\hat{p}_+ := \frac{1}{n_+} \sum_{i:y_i=1} \mathbb{I}(\hat{y}_i = 1)$, $\hat{p}_{+,s} := \frac{1}{n_{+,s}} \sum_{i:y_i=1, s_i=s} \mathbb{I}(\hat{y}_i =$
1112 $1)$, $\hat{p}_- := \frac{1}{n_-} \sum_{i:y_i=0} \mathbb{I}(\hat{y}_i = 1)$, and $\hat{p}_{-,s} := \frac{1}{n_{-,s}} \sum_{i:y_i=0, s_i=s} \mathbb{I}(\hat{y}_i = 1)$. Furthermore,
1113 $n_{+,L}^{(a)}, \hat{p}_{+,L}^{(a)}, n_{-,L}^{(a)}, \hat{p}_{-,L}^{(a)}$ and $\hat{\mathbb{P}}_{+,f}, \hat{\mathbb{P}}_{-,f}, \hat{\mathbb{P}}_{+,f,j|a}, \hat{\mathbb{P}}_{-,f,j|a}$ are defined similarly. Table 6 describes
1114 the fairness performance measures used in the experiments for EO.
1115

1116 Table 6: Fairness performance measures for EO.
1117

Name	Meaning	Formula
TPR ^(l)	l^{th} -order TPR	$\max_{L \subseteq [q], L =l} \sum_{a \in \{0,1\}^l} \frac{n_{+,L}^{(a)}}{n_+^{(a)}} \hat{p}_{+,L}^{(a)} - \hat{p}_+ $
FPR ^(l)	l^{th} -order FPR	$\max_{L \subseteq [q], L =l} \sum_{a \in \{0,1\}^l} \frac{n_{-,L}^{(a)}}{n_-^{(a)}} \hat{p}_{-,L}^{(a)} - \hat{p}_- $
WTPR	Distributional TPR	$\max_{j \in [q]} \max \left\{ \frac{n_{+,j}^{(0)}}{n_+} W_1(\hat{\mathbb{P}}_{+,f,j 0}, \hat{\mathbb{P}}_{+,f}), \frac{n_{+,j}^{(1)}}{n_+} W_1(\hat{\mathbb{P}}_{+,f,j 1}, \hat{\mathbb{P}}_{+,f}) \right\}$
WFPR	Distributional FPR	$\max_{j \in [q]} \max \left\{ \frac{n_{-,j}^{(0)}}{n_-} W_1(\hat{\mathbb{P}}_{-,f,j 0}, \hat{\mathbb{P}}_{-,f}), \frac{n_{-,j}^{(1)}}{n_-} W_1(\hat{\mathbb{P}}_{-,f,j 1}, \hat{\mathbb{P}}_{-,f}) \right\}$
STPR	Subgroup TPR	$\max_{s \in \{0,1\}^q} \frac{n_{+,s}}{n_+} \hat{p}_{+,s} - \hat{p}_+ $
SFPR	Subgroup FPR	$\max_{s \in \{0,1\}^q} \frac{n_{-,s}}{n_-} \hat{p}_{-,s} - \hat{p}_- $

1130 For a baseline method, we consider FairICP (Lai & Guan, 2025), which is a specially designed
1131 adversarial learning algorithm for EO in presence of subgroups. The results are given in Tables 7
1132 and 8, which show that DRAF-EO performs competitive to FairICP, enhancing the empirical su-
1133 periority and flexibility of our proposed doubly regressing approach.

1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143

1144
 1145

Table 7: Comparison of marginal fairness on ADULT dataset.

Method	Acc	Prediction-based			Distribution-based		
		TPR ⁽¹⁾	FPR ⁽¹⁾	$\frac{\text{TPR}^{(1)} + \text{FPR}^{(1)}}{2}$	WTPR	WFPR	$\frac{\text{WTPR} + \text{WFPR}}{2}$
Unfair	0.855	0.0993	0.0886	0.0940	0.0687	0.1183	0.0928
FairICP	0.804	0.0342	0.0150	0.0238	0.0216	0.0214	0.0207
DRAF-EO ✓	0.804	0.0155	0.0010	0.0082	0.0113	0.0087	0.0100

1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171

Table 8: Comparison of subgroup fairness on ADULT dataset.

Method	Acc	STPR	SFPR	$\frac{\text{STPR} + \text{SFPR}}{2}$
Unfair	0.855	0.0565	0.0284	0.0422
FairICP	0.804	0.0154	0.0043	0.0091
DRAF-EO ✓	0.804	0.0056	0.0004	0.0030

1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187

1188
1189

B.6 ADDITIONAL STUDIES

1190
1191
1192
1193
1194
1195
1196
1197

Excluding the marginal subgroups from \mathcal{W} Let DRAF_{-m} denotes the DRAF variant whose \mathcal{W} does not include the first-order marginal subgroups. Figure 9 shows that, excluding first-order marginal subgroups from \mathcal{W} (i.e., DRAF_{-m}) can harm first-order marginal fairness, even subgroup fairness is satisfied. Moreover, on CIVILCOMMENTS dataset, DRAF_{-m} and DRAF perform comparable in terms of $\text{MP}^{(1)}$, when $\text{MP}^{(1)}$ is not small, but DRAF significantly outperforms DRAF_{-m} in view of WMP. This observation suggests that achieving prediction-based fairness (e.g., $\text{MP}^{(1)}$) does not necessarily guarantee distributional fairness (e.g., WMP), and it highlights the need to control distributional fairness as well, which DRAF aims at.

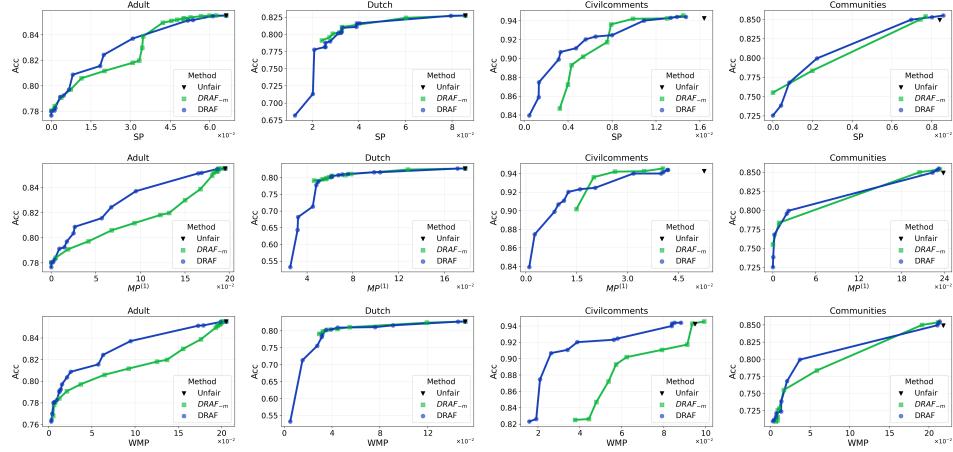
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
12121213
1214
1215

Figure 9: Comparison of DRAF_{-m} and DRAF in terms of SP (top), $\text{MP}^{(1)}$ (center), and WMP (bottom). We set γ to 0.2, 0.001, 0.2, and 0.05 for ADULT, DUTCH, CIVILCOMMENTS, and COMMUNITIES dataset, respectively.

1216
1217
1218
1219
1220
1221
1222
1223

Note that, on COMMUNITIES dataset, DRAF_{-m} and DRAF may appear similar in terms of $\text{MP}^{(1)}$, however, it is because DRAF_{-m} fails to achieve moderate fairness levels (e.g., $[0.02, 0.2]$), leaving no point on the Pareto-front line. See Figure 10 for evidence that controlling $\text{MP}^{(1)}$ is not numerically easy for DRAF_{-m} . That is, a large drop in $\text{MP}^{(1)}$ is occurred at $\lambda = 0.2$ and we observe that using $\lambda \in [0.2, 0.3]$ does not provide intermediate fairness levels.

1224
1225
1226
1227
1228
1229
1230
1231
1232

Similarly, we also consider \mathcal{W} that excludes the second-order marginal subgroups. Let DRAF_{-m^2} denotes the DRAF algorithm whose \mathcal{W} does not include the second-order marginal subgroups. Figure 11 shows that the second-order marginal fairness can be slightly harmed when excluding the second-order marginal subgroups in \mathcal{W} . On the other hand, including the second-order marginal subgroups in \mathcal{W} does not sacrifice first-order marginal or subgroup fairness, while can contribute to improving the second-order marginal fairness. Hence, we basically recommend building \mathcal{W} to include all the first-order, the second-order, and subgroups.

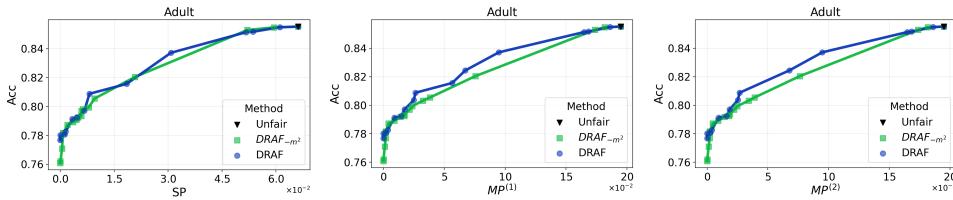
1233
1234
1235
1236
1237
12381239
1240
1241

Figure 11: Comparison of DRAF_{-m^2} and DRAF in terms of subgroup fairness (left: SP), first-order marginal fairness (center: $\text{MP}^{(1)}$), and the second-order marginal fairness (right: $\text{MP}^{(2)}$) on ADULT dataset.

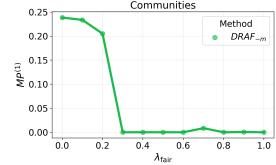
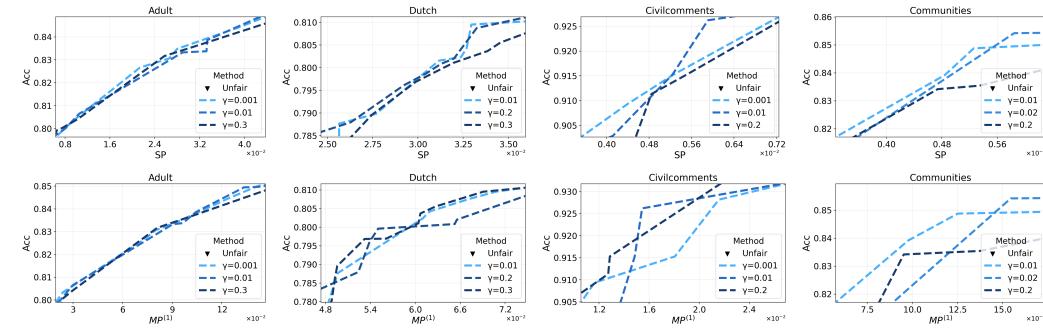


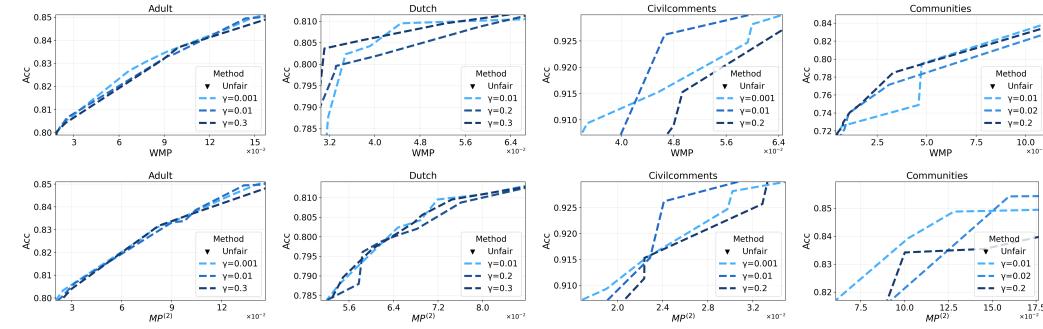
Figure 10: A plot between λ and $\text{MP}^{(1)}$ for DRAF_{-m} on COMMUNITIES dataset. We vary $\lambda \in [0.0, 0.1, \dots, 1.0]$.

1242 **Impact of γ** To support the claim in Section 5.5, we vary $\gamma \in \{0.001, 0.01, 0.1, 0.2, 0.3\}$ and
 1243 compare the performance. The results in Figure 12 show that a larger γ (e.g., 0.3) degrades subgroup
 1244 fairness performance compared to a small γ (e.g., 0.01). Conversely, since DRAF minimizes the
 1245 worst disparity over subgroup-subsets in \mathcal{W} , a small γ may lead to slightly worse first-order marginal
 1246 fairness than a large γ (e.g., 0.001 for CIVILCOMMENTS dataset), as it could focus on higher-order
 1247 or subgroups rather than first-order marginal fairness for some cases.



1260 Figure 12: Impact of γ for DRAF in terms of subgroup fairness SP (top)
 1261 fairness $MP^{(1)}$ (bottom).

1262 Figure 13 provides similar results for (i) the distributional first-order marginal fairness WMP and
 1263 (ii) the second-order marginal fairness $MP^{(2)}$. Similar to Figure 12, a too small γ (e.g., 0.001) may
 1264 lead to slightly worse first-order marginal fairness than a larger γ , while a too large γ (e.g., 0.2 in
 1265 COMMUNITIES dataset) would harm the second-order marginal fairness.



1279 Figure 13: Impact of γ for DRAF in terms of distributional first-order marginal fairness WMP (top)
 1280 fairness $MP^{(2)}$ (bottom).

1281 To analyze the effect of γ in more detail, we categorize subgroups by size (large, medium, and
 1282 small) using quantiles 0.3, 0.6 and evaluate how their fairness on the test data changes as γ varies.
 1283 This subgroup-wise analysis provides a clearer view of how γ influences fairness across different
 1284 group scales. To this end, we train an unfair model (learning without any fairness constraint) and a
 1285 fair model learned by DRAF for various values of γ . For every subgroup, we compute the disparity
 1286 of the unfair model and that of the fair model, and then take their difference (unfair model - fair
 1287 model). A positive difference means that the subgroup is treated more fairly by DRAF than by
 1288 the unfair model, whereas a negative difference suggests the opposite. We then summarize these
 1289 differences using boxplots, grouping subgroups into small, medium, and large categories by size.

1290 The results in Figure 14 show that: (i) for large subgroups, the differences are consistently positive
 1291 across all values of γ , indicating that DRAF reliably improves fairness for these subgroups; (ii) for
 1292 medium-sized subgroups, the differences tend to be close to zero or negative when γ is large (e.g.,
 1293 $\gamma = 0.4$), but become positive as γ decreases, suggesting that a too large γ is undesirable for these
 1294 groups; (iii) in contrast, for small subgroups, the differences are concentrated around zero or negative
 1295 with large variations for all γ , indicating that we cannot reliably regard these tiny subgroups as being



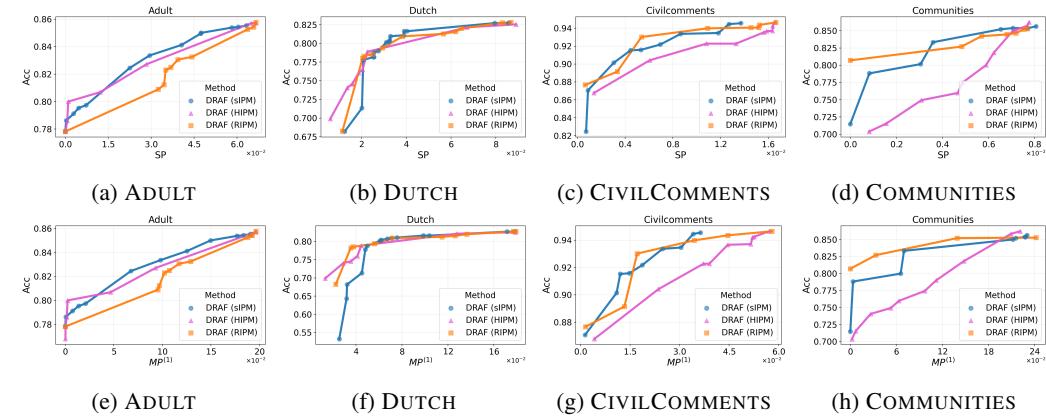
1305
1306
1307
1308
1309
1310
1311
1312
1313

Figure 14: Comparison of differences in subgroup disparities (Diff. in Subgroup Disparities) between the unfair model and the fair model trained by DRAF, categorized by subgroup size (small, medium, and large).

treated fairly. This empirical result supports our theoretical finding in Theorem 3.1 that enforcing fairness on very small subgroups in the training data does not guarantee fairness for those subgroups on the test data.

Choice of \mathcal{G} In this ablation study, we compare sIPM, RIPM, and HIPM for $\text{IPM}_{\mathcal{G}}$, in terms of the trade-off performance. See Figure 15 for the results on the four datasets. The key findings are: (i) sIPM (our default in the main analysis) performs best in most cases, though RIPM slightly outperforms sIPM on COMMUNITIES; (ii) RIPM performs similarly to sIPM overall except for ADULT dataset; (iii) HIPM underperforms both sIPM and RIPM in most cases.

Accordingly, we recommend using the more stable IPMs such as sIPM and RIPM rather than HIPM, whose more complex discriminator architecture often leads to less stable training and suboptimal models.



1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Figure 15: Trade-off between fairness level and accuracy with three IPMs (sIPM, RIPM, and HIPM) for \mathcal{G} . (Top, Bottom) = SP vs. Acc, MP⁽¹⁾ vs. Acc.

1350
 1351 **Robustness under noisy sensitive attributes** To investigate the robustness of DRAF under the
 1352 noisy sensitive attribute, we construct a controlled experiment on the ADULT dataset. We randomly
 1353 introduce missing values into the sensitive attribute at rate 0.01. For the baseline GF, any column
 1354 with at least one missing sensitive attribute is discarded, since GF requires complete subgroup to
 1355 define its fair constraint. In contrast, DRAF can still be applied partially to samples with miss-
 1356 ing values: for samples with missing sensitive attributes, we impose fairness constraints only on
 1357 subgroup-subsets that can be formed using the observed attributes, and ignore subgroup-subsets that
 1358 involve any missing attributes.

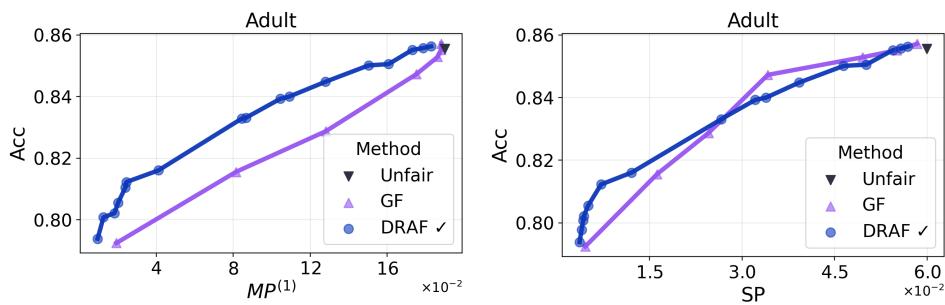
1359 For a sample with sensitive attribute vector $s_i = (s_{i1}, \dots, s_{iq}) \in \{0, 1, \text{NA}\}^q$, the indicator for a
 1360 subgroup-subset $W \in \mathcal{W}$ is

$$c_{i,W} = \begin{cases} 1, & \text{if } s_i \in W \text{ and } s_{ij} \neq \text{NA}, \\ -1, & \text{if } s_i \notin W \text{ and } s_{ij} \neq \text{NA}, \\ 0, & \text{otherwise.} \end{cases}$$

1364 Thus the full vector c is

$$c_i = (c_{i,W})_{W \in \mathcal{W}},$$

1365 where missing attributes selectively zero out only the corresponding components of c , and all
 1366 subgroup-subsets built from observed sensitive attributes remain active in the c -vector. The results
 1367 are shown in Figure 16, suggesting that this partial DRAF approach is more robust than the base-
 1368 line: it achieves a better fairness-accuracy trade-off than GF, suggesting the robustness of DRAF in
 1369 presence of noisy (missing) sensitive attributes.



1372
 1373 Figure 16: Trade-off between fairness level and accuracy when 1% of the sensitive attributes ‘Mar-
 1374 rried’ in the ADULT dataset are randomly set to missing. (Left, Right) = $MP^{(1)}$ vs. Acc, SP vs. Acc.

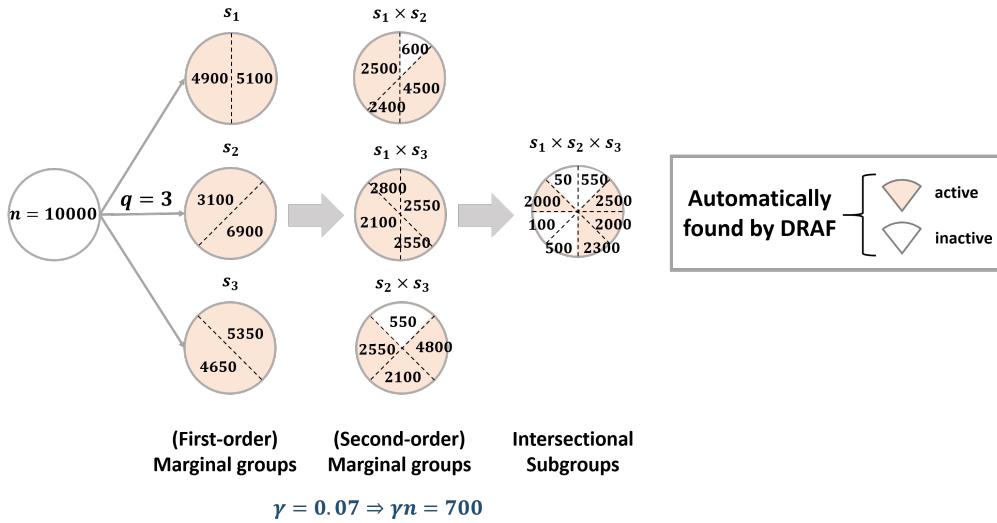
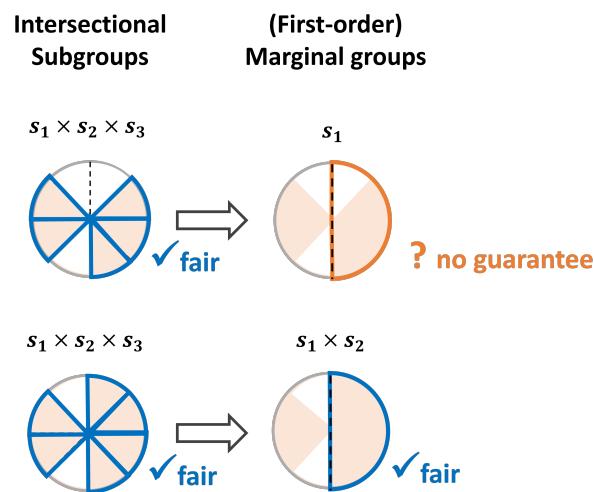
1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403

1404
1405 B.7 DISCUSSION ON THE RELATIONSHIP BETWEEN MARGINAL AND SUBGROUP FAIRNESS

1406 Achieving marginal fairness alone does not guarantee subgroup fairness: even if each marginal group
 1407 is treated fairly, certain intersections or unions of sensitive groups may still suffer from unfairness
 1408 (fairness gerrymandering; (Kearns et al., 2018b)). Conversely, even if most subgroups are fairly
 1409 treated, marginal fairness can still be violated when some groups are very sparse so that the fairness
 1410 on the test data is not guaranteed (Theorem 3.1).

1411 This observation motivates our choice to simultaneously monitor both marginal fairness and sub-
 1412 group fairness. Furthermore, we believe that, from an ethical and policy perspective, a situation
 1413 where most subgroups are fairly treated but a marginal group (e.g., ‘all women’) would be difficult
 1414 to justify socially.

1415 Figure 17 presents the overall hierarchy of subgroup-subsets, including marginal groups and sub-
 1416 groups, and highlights the subgroup-subsets that DRAF focuses on. We additionally illustrate that
 1417 even if all subgroups are fairly treated, marginal fairness can still be violated when some subgroups
 1418 are sparse.



1454 Figure 17: (Top) Hierarchy of marginal groups and intersectional subgroups, with active subgroups
 1455 (whose sample sizes exceed a threshold) highlighted. Our proposed algorithm, DRAF, automatically
 1456 identifies such active sets and enforces fairness on them. (Bottom) An visual illustration on the
 1457 relationship between fairness guarantees from the intersectional subgroups to marginal groups.

1458
 1459 **Example: subgroup fairness does not always imply marginal fairness** Suppose $q = 2$. Assume
 1460 that we are given the following configuration of dataset and predictions for a given f . We write the
 1461 two sensitive attributes as $a \in \{0, 1\}$ and $b \in \{0, 1\}$, for simplicity.

Subgroup (a, b)	# samples $n(a, b)$	# positive predictions $n_{pos}(a, b)$ by f	Positive rate $\hat{p}(a, b) = n_{pos}(a, b)/n$
(0, 0)	10	9	0.9
(0, 1)	10	9	0.9
(1, 0)	10	1	0.1
(1, 1)	10	1	0.1

1462
 1463 The total sample size and positives are $n = \sum_{a,b} n(a, b) = 40$ and $n_{pos} = \sum_{a,b} n_{pos}(a, b) = 20$,
 1464 hence the overall rate of positive prediction is

$$1465 \quad \hat{p} = \frac{n_{pos}}{n} = \frac{20}{40} = 0.5.$$

1466 Subgroup fairness measure of Kearns et al. (2018a) over the four intersectional subgroups is calcu-
 1467 lated as

$$1468 \quad \text{SP}(f) = \max_{(a,b) \in \{0,1\}^2} \frac{n(a, b)}{N} |\hat{p}(a, b) - \hat{p}| = 0.25 \times |0.9 - 0.5| = 0.1.$$

1469 On the other hand, we have $n(0, 0) + n(0, 1) = 20, n_{pos}(0, 0) + n_{pos}(0, 1) = 18$ so that
 1470 $\frac{n_{pos}(0,0)+n_{pos}(0,1)}{n(0,0)+n(0,1)} = 0.9$. Similarly, $n(1, 0) + n(1, 1) = 20, n_{pos}(1, 0) + n_{pos}(1, 1) = 2$ so that
 1471 $\frac{n_{pos}(1,0)+n_{pos}(1,1)}{n(1,0)+n(1,1)} = 0.1$. Thus, the first-order marginal disparity for the sensitive attribute a is 0.4,
 1472 which is relatively large.