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ABSTRACT

Algorithmic fairness is a socially crucial topic in real-world applications of AI.
Among many notions of fairness, subgroup fairness is widely studied when multi-
ple sensitive attributes (e.g., gender, race, age) are present. However, as the num-
ber of sensitive attributes grows, the number of subgroups increases accordingly,
creating heavy computational burdens and data sparsity problem (subgroups with
too small sizes). In this paper, we develop a novel learning algorithm for subgroup
fairness which resolves these issues by focusing on subgroups with sufficient sam-
ple sizes as well as marginal fairness (fairness for each sensitive attribute). To this
end, we formalize a notion of subgroup-subset fairness and introduce a corre-
sponding distributional fairness measure called the supremum Integral Probability
Metric (supIPM). Building on this formulation, we propose the Doubly Regress-
ing Adversarial learning for subgroup Fairness (DRAF) algorithm, which reduces
a surrogate fairness gap for supIPM with much less computation than directly re-
ducing supIPM. Theoretically, we prove that the proposed surrogate fairness gap
is an upper bound of supIPM. Empirically, we show that the DRAF algorithm out-
performs baseline methods in benchmark datasets, specifically when the number
of sensitive attributes is large so that many subgroups are very small.

1 INTRODUCTION

Rapid deployments of AI models in socially consequential domains such as finance, hiring, and
criminal justice have amplified the demand for fairness-aware predictions. Early definitions of al-
gorithmic fairness predominantly focused on a single sensitive attribute, such as gender or race,
requiring parity across these (marginal) protected groups. However, fairness with respect to a single
attribute is not sufficient to protect against discrimination at the intersections of multiple attributes.
In particular, the problem of fairness gerrymandering, where severe unfairness may remain on their
intersections, even if fairness is satisfied on each marginal attribute, has been noticed (Kearns et al.,
2018a;b). For instance, while a lending model may equalize approval rates between men and women,
the subgroup defined by “female and minority race” may still experience significantly lower approval
rates. This illustrates the necessity of (intersectional) subgroup fairness.

To state subgroup fairness formally, suppose that the ith individual is specified by its q-dimensional
sensitive attribute si ∈ {0, 1}q , where each coordinate (sensitive attribute) is binary. Then, there are
2q subgroups, defined by

Dv = {i : si = v}, for v ∈ {0, 1}q.
Subgroup fairness requires that the distributions of prediction values be similar (i.e., distributional
fairness) across all 2q subgroups. However, when q is large, we may face two major challenges:
(i) data sparsity, when certain subgroups contain very few samples, model estimation on such sub-
groups becomes unstable and inaccurate (Molina & Loiseau, 2023); (ii) computational burden, the
number of fairness constraints scales exponentially in q.

Various learning algorithms for subgroup fairness have been proposed to resolve the aforementioned
two problems (Foulds et al., 2019b; Molina & Loiseau, 2023; Foulds et al., 2019a; Shui et al., 2022;
Maheshwari et al., 2023; Hu et al., 2024), but there are still several limitations. Existing algorithms
either do not guarantee the marginal fairness (i.e., fairness on each sensitive attribute) which may
lead to a socially unacceptable prediction model, or would be computationally demanding when an
adversarial learning is required to measure fairness.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

The aim of this paper is to develop a learning algorithm for subgroup fairness which resolves data
sparsity and computational burden simultaneously. To avoid data sparsity, we simply focus on active
subgroups, i.e., subgroups whose sample sizes are not too small. Considering only active subgroups
is statistically sound since empirical fairness on non-active subgroups does not guarantee the fairness
on the population level. A novel part of our proposed learning algorithm is to find a prediction
model which achieves (active) subgroup fairness and marginal fairness simultaneously in the context
of distributional fairness, the strongest notion of fairness (see Section 3.1 for definition), without
resorting on heavy computational burden.

For this purpose, we define a subgroup-subset W ⊆ {0, 1}q as a union of certain subgroups, and
focus on DW =

⋃
v∈W Dv. Our approach enforces the distributional fairness over pre-selected

subgroup-subsets whose sizes are not small. Then, we design a novel adversarial training strategy
termed doubly regressing adversarial learning which learns a prediction model without heavy com-
putational burden but guarantees the distributional fairness for all pre-selected subgroup-subsets.
The doubly regressing adversarial learning algorithm requires only a single discriminator regard-
less of the number of pre-selected subgroup-subsets and so computational demand is practically
acceptable even when q is large. By including all active subgroups and marginal subgroups (sub-
groups corresponding to each sensitive attribute) into the set of pre-selected subgroup-subsets, we
can effectively achieve subgroup fairness and marginal fairness simultaneously.

The main contributions of this work can be summarized as follows:

1. We formalize subgroup-subset fairness and introduce a measure for the distributional subgroup-
subset fairness called the supremum Integral Probability Metric (supIPM).

2. We propose a surrogate fairness measure for supIPM which requires only a single discriminator
regardless of the number of subgroup-subsets, and develop an adversarial learning algorithm
called Doubly Regressing Adversarial learning for Fairness (DRAF) algorithm to learn an ac-
curate and subgroup-subset fair prediction model.

3. Theoretically, we prove that the proposed surrogate fairness measure becomes an upper bound
of supIPM.

4. Empirically, we show that the DRAF algorithm outperforms baseline methods in benchmark
datasets, with large margins when q is large so many subgroups are extremely small.

2 RELATED WORKS

To mitigate the data sparsity problem, weights proportional to the sample sizes of each subgroups
are employed to measure subgroup fairness (Kearns et al., 2018b;a). A Bayesian method is proposed
to borrow information in large-size subgroups when estimating a prediction models for small-sized
subgroups (Foulds et al., 2019a). These approaches, however, do not guarantee the marginal fairness
(i.e., fairness on each sensitive attribute) which makes it difficult to socially interpret the fairness of
a prediction model. On the contrary, (Molina & Loiseau, 2023) consider only the marginal fairness
but it could be vulnerable to fairness gerrymandering.

To resolve heavy computational burden, weak notions of fairness such as the DP (Demographic Par-
ity) are employed in the fairness constraint (Kearns et al., 2018b;a) or post-processing techniques are
used after learning a prediction model without fairness constraint (Hu et al., 2024). These methods,
however, would yield suboptimal prediction models in view of other stronger fairness notions (e.g.,
distributional fairness) and/or prediction accuracy.

Our approach We propose an in-processing algorithm for distributional fairness on pre-selected
subgroup-subsets whose sizes are not too small. We formalize subgroup-subset fairness and develop
a computationally efficient adversarial algorithm to achieve the distributional fairness.

3 SUBGROUP-SUBSET FAIRNESS

3.1 PROBLEM SETTING

We consider data points (xi, yi, si) with input vectors xi ∈ X , output variables yi ∈ Y , and si =
(si1, . . . , siq)

⊤ ∈ {0, 1}q denoting the q binary sensitive attributes. Let P be the probability measure
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of (X,Y, S) ∈ X × Y × {0, 1}q and Pn be its empirical counterpart. Let F be the set of prediction
models f : X × {0, 1}q → Rc for c ≥ 1. Here, c = 1 for regression problems (i.e., Y = R), while
c is the number of classes for classification problems (i.e., Y = {1, . . . , c}). For a given prediction
model f ∈ F and s ∈ {0, 1}q, let Pf,s be the conditional distribution of f(X) given on S = s.

We say that f is (perfectly) subgroup-fair if Pf,s, s ∈ {0, 1}q are all the same. To relax the perfect
fairness, we define (ψ-distributional) subgroup fairness gap for a given deviance ψ(·, ·) between two
probability measures as ∆ψ(f) = sups∈{0,1}q ψ(Pf,s,Pf,·), where Pf,· is the marginal distribution
of f(X). Then, we say f is ψ-subgroup fair with level δ > 0 if ∆ψ(f) ≤ δ. The main goal of
subgroup fair learning is to find an accurate prediction model among ψ-subgroup fair prediction
models with level δ.

Various kinds of deviance have been used in fair AI. Examples are (i) the original DP when
∆DP(f) = |Pr(f(X, s) ≥ τ |S = s) − Pr(f(X, ·) ≥ τ)| for a given threshold τ for binary classifi-
cation (Agarwal et al., 2018), (ii) the mean DP when ∆DP(f) := |E(f(X, s)|S = s)− E(f(X, ·))|
(Madras et al., 2018; Donini et al., 2018), (iii) the distributional DP when ψ(Pf,s,Pf,·) = 0 im-
plies Pf,s = Pf,· (Jiang et al., 2020a; Chzhen et al., 2020b; Silvia et al., 2020; Barata et al., 2021;
Kim et al., 2025). Popularly used distributional DPs are Wasserstein distance, Maximum Mean Dis-
crepancy (MMD), Kullback-Leibler divergence, and Kolmogorov-Smirnov distance, to name a few.
Among these, distributional DP is the strongest one since it can imply other DPs. In the problem of
subgroup fairness, the distributional DP has not been popularly used partly because its computation
would be demanding when q is large.

There are large amounts of literature about subgroup fair learning algorithms (Kearns et al., 2018b;a;
Úrsula Hébert-Johnson et al., 2018; Foulds et al., 2019b;a; Tian et al., 2025), which learn a prediction
model by minimizing the empirical risk (e.g., the residual sum of squares or cross-entropy) subject
to the constraint that empirical subgroup fairness gap ∆n,ψ(f) is less than or equal to δ. Here,
empirical subgroup fairness gap ∆n,ψ(f) is the fairness gap on the empirical distributions.

Existing subgroup fair learning algorithms, however, are not easily applicable to the case of large
q due to data sparsity and computational burden. Note that the number of subgroups grows expo-
nentially in q and thus certain subgroups have too small amounts of data and so empirical subgroup
fairness gap is not a good estimator of population subgroup fairness gap. With a limited amount
of data, there is no hope to be able to guarantee the fairness of a given prediction model on all of
subgroups. We could ignore subgroups having too small samples but this naive approach does not
ensure the marginal fairness which would not be acceptable. In addition, 2q many computations
of the deviance ψ is required to calculate subgroup fairness gap, and so easy-to-compute ψs (e.g.,
mean DP) have been used. Furthermore, a subgroup-fair prediction model may not always satisfy the
marginal fairness and thus would not be socially acceptable (see an example in Section B.5). Hence,
rather than considering all subgroups, we focus only on subgroups whose sizes are sufficiently large
and enforce fairness on such large subgroups. To do so, we introduce a new fairness concept called
subgroup-subset fairness, in the next subsection.

3.2 DEFINITION OF SUBGROUP-SUBSET FAIRNESS

To resolve the data sparsity problem, in this paper, we propose a new notion of subgroup fairness
called subgroup-subset fairness. The main idea of subgroup-subset fairness is to guarantee fairness
on two disjoint subsets of sensitive attributes. To be more specific, we call any subset W of {0, 1}q
as a subgroup-subset and let Pf,W be the distribution of f(X) conditional on S ∈ W and Pnf,W be
its empirical counterpart. For a given collectionW of subgroup-subsets and a deviance ψ, let

∆ψ,W(f) = sup
W∈W

ψ(Pf,W ,Pf,W c),

which we call the subgroup-subset fairness gap (with respect to W). Then, we say f is subgroup-
subset fair with level δ if ∆ψ,W(f) ≤ δ.

Choice of W If W consists of all subgroups, subgroup-subset fairness is equal to subgroup
fairness. To resolve data sparsity, we should only include large subgroups in W. In turn, to si-
multaneously achieve the marginal fairness (i.e., fairness on each sensitive attribute), we add the
marginal subgroups (i.e., Wj,s = {i : sij = s} for j ∈ [q] and s ∈ {0, 1}) to W. In gen-
eral, we can guarantee fairness for any subgroup-subsets of interest in by adding those subgroup-
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subsets to W. For example, we can guarantee the second-order marginal fairness (i.e., fairness on
W(j,k),(s1,s2) = {i : (sij , sik) = (s1, s2)} for j, k ∈ [q] and (s1, s2) ∈ {0, 1}2) by adding the cor-
responding subgroup-subsets. Similarly, we can consider the lth-order marginal fairness for l ∈ [q].

However, one may worry that computation becomes difficult when |W| is too large. In Section 4.2,
we develop a computationally efficient adversarial learning algorithm for subgroup-subset fairness,
where only a single discriminator is used regardless of the size ofW.

3.3 SUPREMUM IPM FOR SUBGROUP-SUBSET FAIRNESS GAP

Integral Probability Metric (IPM) In the group fairness problem with a single binary sensitive
attribute (i.e., q = 1), the integral probability metric (IPM) (Müller, 1997; Sriperumbudur et al.,
2009) has been popularly used as the deviation ψ (Chzhen et al., 2020a; Jiang et al., 2020b; Kim
et al., 2022; 2025; Kong et al., 2025) to ensure the distributional fairness. For given two probability
measures P0 and P1, the IPM with a given discriminator class G ⊂ {g : Rc → R} is defined as

IPMG(P0,P1) = sup
g∈G

∣∣∣∣∫ g(x)P0(dx)−
∫
g(x)P1(dx)

∣∣∣∣ .
Various IPMs are obtained by selecting the discriminator class G accordingly. Popular examples
for G are (i) the collection of 1-Lipschitz functions for Wasserstein distance (Villani, 2009); (ii) the
unit ball of an RKHS for MMD (Gretton et al., 2012a); (iii) indicator functions over a VC-bounded
family for Total Variation (Shorack, 2000).

Supremum IPM and its statistical property When ψ is IPMG , we call ∆ψ,W(·) as the supIPM,
and denote the supIPM and its empirical counterpart as ∆W,G(·) and ∆n,W,G(·), respectively. Theo-
rem 3.1, whose proof is deferred to Section A.2, implies that the estimation error of ∆n,W,G(·) does
not depend heavily on the size of W but depends on nW = minW∈W min{nW , n − nW }, where
nW = |{i : si ∈W}|. This result suggests that we can constructW as large as possible until nW is
sufficiently large.

Let Rm(H) denotes the empirical Rademacher complexity of a given function class H with m
samples (see Definition A.1 for its detailed definition).

Theorem 3.1. LetW be a collection of subgroup-subsets and nW := |{i : si ∈ W}| for W ∈ W.
Assume that ∥g∥∞ ≤ B, ∀g ∈ G. Then, we have for all f ∈ F that

∆n,W,G(f)−∆W,G(f) ≤ 4RnW

(
G ◦ F

)
+ 2B

√
2 log

(
2n|W|

)
nW

, (1)

with probability at least 1− 1/n, where nW = min
W∈W

min{nW , n− nW }.

In Section A.4, we show thatRnW (G◦F) = O(1/√nW) for two cases of G and F , which indicates
that the estimation error of ∆n,W,G(f) is O(

√
log(|W|)/nW) ignoring logn term. This suggests

that it would be reasonable to add only subgroup-subsets W with |W | ≥ γn intoW for some small
γ > 0. Then, it is guaranteed that the population fairness level locates within the O(

√
log(|W|)/n)

range of the empirical fairness level. See Section 5.1 how we choose γ in practice.

Challenges in using supIPM for subgroup-subset fairness A technical difficulty, however, exists
in using supIPM since computation of supIPM could be very demanding when |W| is large. To be
more specific, for given f and W, let ĝW,f = argmaxg∈G |

∫
g(z)Pf,W (dz) −

∫
g(z)Pf,W c(dz)|.

To calculate supIPM, we should find ĝW,f for all W ∈ W, which is computationally demanding
when |W| is large. We could avoid this problem by using the IPM which admits a closed-form cal-
culation. An example is the Maximum Mean Discrepancy (MMD) (Gretton et al., 2012b). However,
computational cost of calculating supMMD is O(|W|n2), which is still large when |W| and/or n is
large. In addition, the choice of the kernel would not be easy.

In the following section, we propose a novel surrogate subgroup-subset fairness gap of supIPM
which serves as an upper bound of supIPM and requires only a single discriminator to be computed.
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4 DOUBLY REGRESSING ALGORITHM

4.1 A SURROGATE DEVIANCE FOR IPM

Fix W ∈ W, and let yW,i := 2I(si ∈W )− 1 be the indicator whether ith observation belongs to W
or not. To assess the fairness of a given prediction model f onW, a standard method is to investigate
the error rate of a classifier learned with fi := f(xi, si) being input and yW,i being the label, which
is used for fair adversarial learning (Edwards & Storkey, 2016; Madras et al., 2018). That is, we
look at supg∈G

∑n
i=1 I(yW,i × g(fi) < 0). If f is fair on W, the distribution of f on W and W c are

similar and thus the misclassification error becomes large.

Instead of the misclassfication error, we could consider the Residual Sum of Squares (RSS)
supg∈G

∑n
i=1(yW,i − g(fi))2 as the fairness measure. The RSS is mathematically more tractable

than the misclassification error since the former is differentiable but the latter is not. This
mathematical tractability plays an important role when we extend a surrogate measure of IPM
for supIPM. A larger RSS implies a fairer f. An equivalent measure would be supSSR :=
supg∈G

{∑n
i=1(yW,i − ȳW )2 −

∑n
i=1(yW,i − g(fi))2

}
,which is an analogy of the Sum of Squares

of Regression (SSR) used in the regression analysis. This measure becomes small when f is fair.

A related measure of supSSR is supg∈G R
2(f,W, g), where

R2(f,W, g) = 1−
∑n
i=1(yW,i − g(fi))2∑n
i=1(yW,i − ȳW )2

=

∑n
i=1(yW,i − ȳW )2 −

∑n
i=1(yW,i − g(fi))2∑n

i=1(yW,i − ȳW )2
, (2)

which is an analogy of R2 in the regression analysis. This measure becomes small when f is fair. A
surprising result is that a slight modification of (2) is equal to IPM, which is stated in the following
theorem. Refer to Section A.2 for its proof.
Theorem 4.1. For given f ∈ F ,W ⊆ {0, 1}q and G, we have

IPMG(Pf,W ,Pf,W c) = sup
g∈G
|R̃2(f,W, g)|,

where R̃2(f,W, g) = R2(f,W, g) +
∑n

i=1(g(fi)−ȳW )2∑n
i=1(yW,i−ȳW )2 .

Suppose that Gobs = {(g(x1), . . . , g(xn))⊤ : g ∈ G} is a linear space. Then ĝ :=
argming∈G R

2(f,W, g) becomes the projection of {yW,i} onto Gobs and thus it can be shown that
R2(f,W, ĝ) is the squared correlation of {yW,i} and {ĝi} and R̃2(f,W, ĝ) = 2R2(f,W, ĝ). In fact,
the additional term in R̃2(f,W, g) is introduced for Gobs not being a linear space. An interesting new
implication of Theorem 4.1 is that IPM is somehow related to the correlation between the class label
and a discriminator.

4.2 A SURROGATE DEVIANCE FOR SUPIPM: DOUBLY REGRESSING R2

Theorem 4.1 implies ∆n,W,G(f) = supW∈W supg∈G R̃
2(f,W, g), which is not easy to calculate

sinceW is not a numerical quantity and so a gradient ascent algorithm cannot be applied. To resolve
this computational problem, we introduce a smoother version of R̃2(f,W, g) so-called the Doubly
Regressing R2 (DR2) as follows.

Suppose thatW = {W1, . . . ,WM}. For each i ∈ [n], define ci ∈ {−1, 1}M with cim = 2I(si ∈
Wm)− 1. Given a predictor f , discriminator g, and weight vector v ∈ SM , we define

DR2(f,v, g) := 1−
{∑n

i=1(v
⊤ci − g(fi))2 −

∑n
i=1(g(fi)− µv)

2
}∑n

i=1(v
⊤ci − µv)2

,

where µv = 1
n

∑n
i=1 v

⊤ci and SM is the unit sphere on RM . The name ‘Doubly Regressing’ is
used since we regress input g(fi) and output v⊤ci simultaneously when calculating DR2.

Note that DR2(f,v, g) is equal to R̃2(f,Wm, g) when v = ek, where ek is the vector whose entries
are all 0 except the kth entry being 1. Thus, it is obvious that the supIPM is bounded as:

sup
W∈W

IPMG(Pnf,W ,Pnf,W c) = ∆n,W,G(f) ≤ sup
g∈G,v∈SM

|DR2(f,v, g)|. (3)
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Building on this inequality, our proposed surrogate subgroup-subset fairness gap for supIPM is
DRn,W,G(f) := supg∈G,v∈SM z-DR2(f,v, g) where

z-DR2(f,v, g) = log

(
1 + |DR2(f,v, g)|/2
1− |DR2(f,v, g)|/2

)
. (4)

We apply the Fisher’s z-transformation to |DR2|/2 for numerical stability. We refer to DRn,W,G(f)
as the Doubly Regressing (DR) subgroup-subset fairness gap. A smaller value of DRn,W,G(f) indi-
cates a higher level of subgroup-subset fairness of f.

4.3 ALGORITHM: DOUBLY REGRESSING ADVERSARIAL LEARNING FOR FAIRNESS (DRAF)

Based on the DR gap, we introduce DRAF (Doubly Regressing Adversarial learning for Fairness)
algorithm, which trains f by minimizing 1

n

∑n
i=1 l(yi, f(xi, si))+λDRn,W,G(f), for a given loss l

(e.g., cross-entropy) and Lagrangian multiplier λ. A key feature is that a single discriminator is used
regardless ofW.

In the learning algorithm, we iteratively train the prediction model f and the pair of discriminator
g and weight vector v iteratively. At each iteration, we (i) update f by applying a gradient descent
algorithm to minimize 1

n

∑n
i=1 l(yi, f(xi, si)) + λz-DR2(f,v, g) while g and v are fixed, and then

(ii) update g and v by applying a gradient ascent algorithm to maximize z-DR2(f,v, g) while f
being fixed. Algorithm 1 in Section B.2 below provides the outline of our proposed algorithm.

5 EXPERIMENTS

In this section, we empirically verify that DRAF can successfully achieve both marginal and sub-
group fairness: (i) it shows competitive performance to baseline methods for datasets with less sparse
subgroups; (ii) it outperforms baselines for datasets with extremely sparse subgroups. After that, we
conduct analyses on the effect of managingW and the choice of discriminator.

5.1 SETTINGS

Datasets We consider the following four benchmark datasets (three tabular datasets and a text
dataset) popularly used in algorithmic fairness research. See Section B.1 for more details.

ADULT (Tabular) (Becker & Kohavi, 1996): The class label is binary indicating the income above
50k$. The input features are several demographic census features. For the sensitive attributes, we
consider sex, race, age, and marital-status, so that q = 4.

DUTCH (Tabular) (van der Laan, 2000): The class label is binary indicating occupation level. The
input features are several socio-economic features. For the sensitive attributes, we consider sex and
age, so that q = 2.

CIVILCOMMENTS (Text) (Borkan et al., 2019): The class label is binary, indicating comment toxi-
city. The input features are representations extracted from the pre-trained DistilBERT model (Sanh
et al., 2019). For the sensitive attributes, we consider sex, race, and religion so that q = 3.

COMMUNITIES (Tabular) (Redmond & Baveja, 2002): The class label is binary, indicating whether
the violent crime rate is above a threshold. The input features are 122 community-level attributes
covering demographics and economic indicators. For the sensitive attributes, we consider race, racial
per-capita, and language/immigration variables so that q = 18.

Table 1 summarizes the basic statistics of the four datasets and Figure 1 presents the distribution of
subgroup sizes for the datasets. These statistics highlight the severity of data sparsity: in particular,
COMMUNITIES suffers from extreme sparsity with the vast majority of subgroups contain very few
samples. We construct a 60/20/20 split for train, validation, and test, respectively for the datasets
except COMMUNITIES. Due to the extreme sparsity of certain subgroups in COMMUNITIES dataset,
ensuring sufficient samples within the test set would be important, so we use with 50/10/40 ratios.
We repeat this procedure five times randomly and report the average performance.
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Table 1: Summary of datasets. “# Subgroup” indicates the possible maximum number of subgroups
(= 2q). “# Actual Subgroup” indicates the actual number of subgroups in the datasets. “# Sparse
subgroup” indicates the number of subgroups whose size is at most 1% of the total sample size n.

Dataset n q # Subgroup # Actual Subgroup # Sparse subgroup

ADULT 48,842 4 16 16 2
DUTCH 60,420 2 4 4 0
CIVILCOMMENTS 3,365 3 24 24 3
COMMUNITIES 1,994 18 262,144 1,180 1,175

(a) ADULT (b) DUTCH (c) CIVILCOMMENTS (d) COMMUNITIES

Figure 1: Histograms of subgroup sizes. The red horizontal line indicates γn used for the main
analysis in Section 5.3. The subgroup indices are assigned by sorting the subgroup sizes.

Model and Performance measures Since the four datasets are for binary classification tasks, we
only consider one dimensional prediction model f for which we consider a single-layered MLP
and apply the sigmoid activation at the output layer to return the prediction score between [0, 1].
Recall that fi = f(xi, si) and let ŷi = 2I(fi ≥ 1/2) − 1. We consider the accuracy Acc(f) =
1
n

∑n
i=1 I(yi = ŷi) for prediction performance of f.

For fairness performance, we consider the lth-order marginal fairness and subgroup level fairness.
For distributional fairness, we use the Wasserstein distance, but only for the first-order marginal
subgroup only, as calculating it for higher-orders would be unstable due to the lack of samples. To
be more specific, let p̂ := 1

n

∑n
i=1 I(ŷi = 1) and p̂s := 1

ns

∑
i:si=s

I(ŷi = 1), s ∈ {0, 1}q be the
overall and subgroup-specific ratios of positive prediction, respectively. For a given order l ∈ [q],
consider L ⊆ [q] such that |L| = l. Let si[L] := (sij)j∈L ∈ {0, 1}l be the sensitive attribute
subvector of the ith individual. For a given a ∈ {0, 1}l, define p̂(a)L := 1

nL,a

∑
i:si[L]=a

I(ŷi =

1), where n(a)
L :=

∑n
i=1 I(si[L] = a). Let P̂f (·) := 1

n

∑n
i=1 δfi(·). For a given j ∈ [q], define

P̂f,j|a(·) := 1

n
(a)
j

∑
i:sij=a

δfi(·), where n(a)
j :=

∑n
i=1 I(sij = a) for a ∈ {0, 1}. Table 2 describes

the fairness performance measures used in the experiments.

Table 2: Fairness performance measures used in our experiments. MP, WMP, and SP are abbre-
viations of Marginal, Wasserstein Marginal, and Subgroup Parity, respectively. ‘W1’ indicates the
1-Wasserstein distance between two probability measures on R.

Name Meaning Formula

MP(l) lth-order Marginal fairness maxL⊆[q],|L|=l

∑
a∈{0,1}l

n
(a)
L
n

∣∣p̂(a)L − p̂
∣∣

WMP Distributional Marginal fairness maxj∈[q] max

{
n
(0)
j

n
W1(P̂f,j|0, P̂f ),

n
(1)
j

n
W1(P̂f,j|1, P̂f )

}
SP Subgroup fairness maxs∈{0,1}q

ns
n

∣∣p̂s − p̂
∣∣

Implementation details and Baseline methods We sweep the Lagrangian multiplier λ from 0.01
to 10.0 to control the fairness level. For the discriminator G, we use the discriminator class used
in sIPM (Kim et al., 2022) (i.e., composition of sigmoid and a linear function). ForW, we include
the first and second-order marginal subgroups as well as subgroups whose sizes are larger than γn.
To find an optimal value of γ, we plot Pareto-front lines (for many γs) between Acc and SP using
validation data, compute the area under the lines, and then choose the one with the largest area.
As a result, we set γ to 0.01, 0.001, 0.3, and 0.01 for ADULT, CIVILCOMMENTS, DUTCH, and
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COMMUNITIES, respectively. We consider four representative approaches as baselines: (i) Regular-
ization (REG): this approach reduces the marginal disparities for q-many sensitive attributes; (ii)
GerryFair (GF) (Kearns et al., 2018a;b): this approach reduces the (weighted) worst-case disparity
maxs∈{0,1}q

ns

n

∣∣p̂s − p̂∣∣; (iii) Sequential (SEQ) (Hu et al., 2024): this approach sequentially maps
the scores of a pre-trained fairness-agnostic model in each subgroup to a common barycenter. See
Section B.2 for more details.

5.2 RELATIONSHIP BETWEEN DR GAP AND SUPIPM

As theoretically shown in Theorem 4.1 and Eq. (3), the DR gap (i.e., DRn,W,G(f)) and the supIPM
(i.e., ∆n,W,G(f)) are closely related, i.e., small DR gap =⇒ small supIPM. To numerically confirm
this, we provide plots between the DR gap and the supIPM in Figure 2, indicating that the DR gap
is also a numerically valid surrogate quantity for supIPM (i.e., reducing DR results in reducing
supIPM). Note that we use the Wasserstein distance for supIPM.

Figure 2: Empirical relationship between the DR gap and supIPM on ADULT, DUTCH, CIVILCOM-
MENTS, and COMMUNITIES datasets.

5.3 PERFORMANCE COMPARISON

Trade-off between accuracy and fairness Figure 3 compares the trade-off between fairness lev-
els (SP and MP(1)) and accuracies of the five methods - DRAF, three baselines and unfair prediction
model. Since the fairness level is not controllable for SEQ and unfair prediction model, their results
are given as points instead of lines. Figure 5 in Section B.3 presents similar results for other fairness
measures (WMP and MP(2)). The main findings can be summarized as follows.

Figure 3: Trade-off between fairness level (top: SP, bottom: MP(1)) and accuracy.

• Datasets with less sparse subgroups (ADULT, DUTCH and CIVILCOMMENTS): For ADULT and
DUTCH, the three methods REG, GF, and DRAF perform similarly on both first-order marginal
and subgroup fairness. Note that the slight better performance of REG on ADULT is due to a
training-test data discrepancy: we observe that the three methods perform nearly the same on
the training data. Specifically for CIVILCOMMENTS, REG underperforms GF and DRAF for SP,
while GF slightly underperforms DRAF at small MP(1). These results recommend using DRAF
for achieving both subgroup and first-order marginal fairness, even on datasets with less sparse
subgroups.

• Datasets with sparse subgroups (COMMUNITIES): DRAF outperforms REG on both first-order
marginal and subgroup fairness, and GF on first-order marginal fairness. These results suggest
that reducing only first-order marginal fairness (REG) or only subgroup fairness (GF) would be

8
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suboptimal, and so DRAF is particularly effective when subgroups are sparse. See Table 3 in
Section B.3 for similar results on a subsampled ADULT dataset with sparse subgroups.

Correlation between subgroup fairness and first-order marginal fairness We analyze the cor-
relation between subgroup fairness and first-order marginal fairness, to investigate how a given al-
gorithm can simultaneously control the both well. Figure 4 plots subgroup fairness (SP) versus
first-order marginal fairness (MP(1)) for DRAF, GF, and REG. To quantify their correlation, we fit a
linear regression and calculate the SSE (Sum of Squared Errors). The results show that the SSE for
GF and REG is larger than that for DRAF in most cases, with a large margin for COMMUNITIES. It
suggests that focusing solely on subgroup fairness (GF) or first-order marginal fairness (REG) does
not guarantee the other, whereas DRAF can achieve both regardless of the sparsity. This highlights
the benefit of DRAF: subgroup and first-order marginal fairness tend to behave together, so we can
control both with a single λ without unexpected unfairness.

Figure 4: Scatter plots between SP and MP(1) with linear regression lines, and SSE on ADULT,
DUTCH, CIVILCOMMENTS, and COMMUNITIES datasets.

5.4 ABLATION STUDIES

Excluding the marginal subgroups fromW We investigate how the marginal fairness is affected
whenW excludes the marginal subgroups. First, Figure 7 in Section B.4 shows that excluding first-
order marginal subgroups could harm first-order marginal fairness even if subgroup fairness is sat-
isfied. This result emphasizes the need to include the marginal subgroups in W, to obtain socially
acceptable subgroup fair models (i.e., as well as marginally fair). Similarly, we considerW without
the second-order marginal subgroups. Figure 9 in Section B.4 shows that the second-order marginal
fairness can be slightly worsen under such exclusion. Hence, we recommend including the second-
order marginal subgroups inW as well, unless the optimization is numerical unstable.

Impact of γ Another simple way to manageW is to control the minimum sample size of W ∈ W
(i.e., γ). As γ increases, the sizes of subgroup-subsets become larger, henceW excludes higher-order
marginal subgroups as well as more subgroups. For example, we may choose γ to be larger than the
sizes of higher-order marginal subgroups but smaller than those of first-order marginal subgroups.
Such a choice would achieve marginal fairness, but it may hamper higher-order marginal fairness.
Section B.4 empirically supports the claim by comparing performance with various γs: Figures 10
and 11 show that a too large γ could degrade second-order marginal as well as subgroup fairness.

Choice of G In the experiments, we consider the discriminator used in sIPM, which is used for
fair representation learning (Kim et al., 2022). We also consider sIPM with ReLU IPM (RIPM, Park
et al. (2025)) where discriminator functions are a composition of ReLU and linear functions, and
Hölder IPM (HIPM, Wang et al. (2023)) which uses DNN discriminators. Figure 12 in Section B.4
shows that sIPM is generally the best and most stable.

6 CONCLUDING REMARKS

In this paper, we introduced a new notion of fairness called subgroup-subset fairness, and proposed a
new adversarial learning algorithm for subgroup fairness. We empirically showed that the proposed
algorithm works well in scenarios where the data contain sparse subgroups.

A possible future work is to decompose subgroup fairness into low-order marginal fairness (similar
to ANOVA decomposition) and control fairness via these components. This approach would improve
stability under sparse subgroups and interpretability. One could theoretically derive an upper bound
of subgroup fairness in terms of low-order marginal fairnesses.

9
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APPENDIX

A THEORETICAL STUDIES

A.1 OMITTED DEFINITIONS AND NOTATIONS

Definition A.1. Let (σi)mi=1 be the Rademacher random variables such that P(σi = +1) = P(σi =
−1) = 1/2, independently. Let H be a class of real-valued functions on a domain Z , and let S =
(z1, . . . , zm) ∈ Zm be a fixed sample. The empirical Rademacher complexity ofH on S is

R̂S(H) := Eσ

[
sup
h∈H

1

m

m∑
i=1

σi h(zi)

]
, (5)

where the expectation is with respect to the Rademacher variables (σi)mi=1.

Given a distribution P on Z , the Rademacher complexity ofH with sample size m is

Rm(H) := ES∼Pm

[
R̂S(H)

]
= Ez1,...,zm∼P Eσ

[
sup
h∈H

1

m

m∑
i=1

σi h(zi)

]
. (6)

A.2 PROOFS

Proof of Theorem 3.1. Fix f ∈ F . By the definition of the supremum and the triangle inequality of
IPMs,

∆ψ,W(f)−∆n,ψ,W(f) ≤ sup
W∈W

ψ(Pf,W ,Pnf,W )− sup
W∈W

ψ(Pf,W c ,Pnf,W c)

≤ sup
W∈W

{
ψ(Pf,W ,Pnf,W ) + ψ(Pf,W c ,Pnf,W c)

}
.

(7)

The first term in the right-hand-side can be re-written as

ψ(Pf,W ,Pnf,W ) = sup
g∈G

(
EPf,W

[g]− EPn
f,W

[g]
)

= sup
g∈G

(
E [g ◦ f(X,S)|S ∈W ]− 1

nW

∑
i:si∈W

g ◦ f(xi, si)

)
,

(8)

where nW = |{i : si ∈ W}|. Taking the supremum over f ∈ F and by Hoeffding’s inequality
combined with Rademacher symmetrization, we have with probability at least 1− δW ,

sup
f∈F

ψ(Pf,W ,Pnf,W ) ≤ 2RnW

(
G ◦ F

)
+B

√
2 log(1/δW )

nW

for any δW > 0. An exactly same bound holds for W c with nW c in place of nW . Applying
the union bound over all pairs {W,W c} with δW = δ/(2|W|) and using nW , nW c ≥ nW =
minW∈W{nW , nW c} = minW∈W{nW , n− nW }, we have

sup
f∈F

{
ψ(Pf,W ,Pnf,W ) + ψ(Pf,W c ,Pnf,W c)

}
≤ 4RnW

(
G ◦ F

)
+ 2B

√
2 log

(
2|W|/δ

)
nW

for all W ∈ W. Taking δ = 1/n concludes the proof.

Proof of Theorem 4.1. Let fi := f(xi, si). Recall that yW,i = 2I(si ∈ W )− 1 ∈ {−1, 1}, i ∈ [n].
Then, we can rewrite

IPMG(Pf,W ,Pf,W c) := sup
g∈G

∣∣∣∣∣∣ 1

|W |
∑

i:yW,i=1

g(fi)−
1

|W c|
∑

i:yW,i=−1

g(fi)

∣∣∣∣∣∣
and Lemma A.2 in the next subsection concludes

IPMG(Pf,W ,Pf,W c) = sup
g∈G

∣∣∣∣∑n
i=1(yW,i − ȳW )g(fi)∑n
i=1(yW,i − ȳW )2

∣∣∣∣ = sup
g∈G
|R̃2(f,W, g)|.
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A.3 TECHNICAL LEMMAS

Lemma A.2. Fix G ⊂ {g : R→ R}. LetW be a given subset of {0, 1}q and fi = f(xi, si), i ∈ [n].
For a binary indicator yW,i = 2I(si ∈W )− 1 ∈ {−1, 1}, i ∈ [n], we have

1

|W |
∑

i:yW,i=1

g(fi)−
1

|W c|
∑

i:yW,i=−1

g(fi) =

∑n
i=1(yW,i − ȳW )g(fi)∑n
i=1(yW,i − ȳW )2

, (9)

for any g ∈ G, where ȳW := 1
n

∑n
i=1 yW,i and ḡ := 1

n

∑n
i=1 g(fi).

Proof. We begin by rewriting ḡ = 1+ȳW
2

(
1

|W |
∑
i:yW,i=1 g(fi)

)
+ 1−ȳW

2

(
1

|W c|
∑
i:yW,i=−1 g(fi)

)
since |W | =

∑
i:yW,i=1 1 =

n+
∑n

i=1 yW,i

2 = n(1+ȳW )
2 and |W c| =

∑
i:yW,i=−1 1 =

n−
∑n

i=1 yW,i

2 =
n(1−ȳW )

2 . Note that
n∑
i=1

(
yW,i − ȳW

)2
=

n∑
i=1

y2W,i − 2ȳW

n∑
i=1

yW,i + nȳ 2
W

= n− 2ȳW (|W | − |W c|) + nȳ 2
W

(
∵ y2W,i = 1,

∑
i

yW,i = |W | − |W c|
)

= n− (|W | − |W c|)2

n

(
∵ ȳW =

|W | − |W c|
n

)
=

4 |W | |W c|
n

(
∵ 1 + ȳW =

2|W |
n

, 1− ȳW =
2|W c|
n

)
.

(10)

Then, we expand
n∑
i=1

(yW,i − ȳW )
(
g(fi)− ḡ

)
=

n∑
i=1

yW,ig(fi)− ḡ
n∑
i=1

yW,i − ȳW
n∑
i=1

g(fi) + nȳW ḡ

=
∑

i: yW,i=1

g(fi)−
∑

i: yW,i=−1

g(fi)− ḡ (|W | − |W c|)− ȳW (nḡ) + nȳW ḡ

=
∑

i: yW,i=1

g(fi)−
∑

i: yW,i=−1

g(fi)− ḡ (|W | − |W c|)

=
∑

i: yW,i=1

g(fi)−
∑

i: yW,i=−1

g(fi)

− (|W | − |W c|)

 |W |
n
· 1

|W |
∑

i:yW,i=1

g(fi) +
|W c|
n
· 1

|W c|
∑

i:yW,i=−1

g(fi)


=

(
1− |W | − |W

c|
n

) ∑
i: yW,i=1

g(fi)−
(
1 +
|W | − |W c|

n

) ∑
i:yW,i=−1

g(fi)

=
2|W c|
n

∑
i:yW,i=1

g(fi)−
2|W |
n

∑
i:yW,i=−1

g(fi)

=
2 |W | |W c|

n

 1

|W |
∑

i:yW,i=1

g(fi)−
1

|W c|
∑

i: yW,i=−1

g(fi)


=

1

2

n∑
i=1

(
yW,i − ȳW

)2 1

|W |
∑

i:yW,i=1

g(fi)−
1

|W c|
∑

i:yW,i=−1

g(fi)

 ,

(11)

where the last equality holds by Eq. (10). Dividing by
∑
i(yW,i − ȳW )2, we get∑n

i=1(yW,i − ȳW ) (g(fi)− ḡ)∑
i(yW,i − ȳW )2

=
1

2

 1

|W |
∑

i:yW,i=1

g(fi)−
1

|W c|
∑

i:yW,i=−1

g(fi)

 . (12)
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Using the fact that ∑n
i=1(yW,i − ȳW ) (g(fi)− ḡ)∑

i(yW,i − ȳW )2
=

∑n
i=1(yW,i − ȳW )g(fi)∑

i(yW,i − ȳW )2
,

we conclude the proof.

A.4 EXAMPLES OF F AND G IN THEOREM 3.1

We introduce two examples that yields small Rademacher complexitiesRnW (G◦F) = O(1/√nW)
so the uniform population–empirical gap in Theorem 3.1 shrinks at a rate O(1/√nW) up to a loga-
rithm factor of n.
Example A.3 (Linear functions). Let G = {gu(z) = ⟨u, z⟩ : ∥u∥2 ≤ 1} and F = {fW (x, s) =
Wz(x, s) : ∥W∥2 ≤M},where z(x, s) ∈ Rd are fixed features with ∥z(x, s)∥2 ≤ Bz for all (x, s).
Then for all fW ∈ F and gu ∈ G, |(gu ◦ fW )(x, s)| = |⟨u,Wz(x, s)⟩| ≤ ∥u∥2∥W∥2∥z(x, s)∥2 ≤
MBz, so the class is uniformly bounded by R :=MBz . Moreover,

RnW (G ◦ F) = 1

nW
Eσ sup

∥u∥≤1,∥W∥≤M

nW∑
i=1

σi⟨u,Wzi⟩ =
1

nW
Eσ sup

∥W∥≤M

∥∥∥ nW∑
i=1

σiWzi

∥∥∥
2

≤ 1

nW
Eσ sup

∥W∥≤M
∥W∥2

∥∥∥ nW∑
i=1

σizi

∥∥∥
2
≤ M

nW
Eσ
∥∥∥ nW∑
i=1

σizi

∥∥∥
2
≤ MBz√

nW
,

since ∥zi∥2 ≤ Bz. Consequently, for all f ∈ F ,

∆ψ,W(f)−∆n,ψ,W(f) ≲
1
√
nW

{
4MBz + 2MBz

√
2 log(2n|W|)

}
.

Example A.4 (Deep Neural Networks). Suppose G ◦ F is a ReLU Deep Neural Network (e.g.,
G and F are both ReLU DNNs) with L-many layers and weight matrices Aℓ of spectral norms
sℓ = ∥Aℓ∥2 and Frobenius norms ∥Aℓ∥F for ℓ ∈ [L]. Then, we have RnW (G ◦ F) ≲

1√
nW

(
∏L
ℓ=1 sℓ)(

∑L
ℓ=1 ∥Aℓ∥2F /s2ℓ)1/2 (Bartlett et al., 2017). Further, if g ◦ f is uniformly bounded,

then we have
∆ψ,W(f)−∆n,ψ,W(f) ≲

C
√
nW

+
1
√
nW

2R
√
2 log(2n|W|)

for all f ∈ F and a constant C depending on the network parameters L and Aℓ.
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B EXPERIMENTS

B.1 DATASETS

• ADULT (Tabular) (Becker & Kohavi, 1996): We predict income (≥50K) from census fea-
tures. For the sensitive attributes, we consider sex, race, age, and marital-status, so that
q = 4.

• COMMUNITIES (Tabular) (Redmond & Baveja, 2002): The class label is binary, indicating
whether the violent crime rate is above a threshold. For the sensitive attributes, we con-
sider 4 variables regarding race (racepctwhite, racepctblack, racepctasian, racepcthisp), 6
racial per-capita variables (whitepercap, blackpercap, indianpercap, asianpercap, otherper-
cap, hisppercap), 8 language/immigration related-variables (pctnotspeakenglwell, pctfor-
eignborn, pctimmigrecent, pctimmigrec5, pctimmigrec8, pctimmigrec10, pctrecentimmig,
pctrecimmig5) so that q = 18.

• DUTCH (Tabular) (van der Laan, 2000): We predict occupation from socio-economic fea-
tures. For the sensitive attributes, we consider sex and age, so that q = 2.

• CIVILCOMMENTS (Text) (Borkan et al., 2019): We predict toxicity from user-generated
comments. For the sensitive attributes, we consider sex (male/female/other), race
(black/white/asian/other), and religion (christian/other) so that q = 3.

B.2 IMPLEMENTATION DETAILS

We run all algorithms over five random seeds and report the average performance.

DRAF algorithm To control the fairness level, the Lagrangian multiplier λ is swept over
{0.00, 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90, 1.00, 2.00, 3.00, 4.00, 5.00, 10.00, 20.00}.
The candidate set of γ is {0.001, 0.005, 0.01, 0.05, 0.10, 0.20, 0.30}, and we choose an optimal one
using the Pareto-front lines, as mentioned in the main body. We run DRAF with a maximum of 200
epochs, and select the best model whose validation accuracy is the highest among the 200 epochs.
Algorithm 1 outlines the the DRAF algorithm.

Algorithm 1: DRAF algorithm
Input : Training data {(xi, si, yi)}ni=1, Learning rates (ηcls, ηg, ηv), Number of iterations T ,

and Fairness Lagrangian multiplier λ
Output: Classifier parameters θ of f = fθ, Discriminator parameters ϕ of g = gϕ, and Weight

vector v
1 Initialize: θ ← θ0, ϕ← ϕ0, v← v0
2 do
3 for i = 1, . . . , n do
4 ŷi ← fθ(xi, si)
5 end
6 Compute the classification loss: Lcls =

1
n

∑n
i=1 CE(ŷi, yi)

7 Compute the fairness loss:

D̂R = DRn,W,G(f) := sup
g∈G,v∈SM

z-DR2(f,v, g) = sup
g∈G,v∈SM

log

(
1 + |DR2(f,v, g)|/2
1− |DR2(f,v, g)|/2

)
8 Update the discriminator and the subgroup weight by gradient ascending:

ϕ← ϕ+ ηg∇ϕD̂R, ṽ← v+ ηv∇vD̂R, v← ProjSM (ṽ), (ProjSM = unit sphere projection)

9 Update the classifier:
θ ← θ − ηcls∇θLcls − ληcls∇θD̂R

10 until convergence or T iterations;
11 Return θ, ϕ, v
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Baselines The fairness penalty of REG is the sum of group disparities: DPmarg(f) :=∑
l∈[q] |

1
n

∑n
i=1 fi −

1
nl

∑
i:si,l=1 fi|, where si,l denotes the lth component of si and nl =∑n

i=1 I(si,l = 1) for l ∈ [q]. The final objective is defined as 1
n

∑n
i=1 l(yi, f(xi, si)) +

CREGDPmarg(f) for some CREG ≥ 0. We sweep the regularization parameter CREG over
{0.001, 0.002, 0.005, 0.01, 0.05, 0.1, 0.2, 0.3, 0.5, 0.7, 1.0, 2.0, 5.0, 10.0, 20.0, 50.0, 100.0} to con-
trol the fairness level. Similar to DRAF, we run REG with a maximum of 200 epochs, and select the
best model whose validation accuracy is the highest among the epochs.

For GF, since the official code and the released AIF360 package1 support only FP and FN (false
positives and false negatives), we re-implement GF for the demographic parity setting targeted in
this paper. For stable and fast optimization, we use a gradient-descent–based approach. The fair-
ness penalty of GF is the (weighted) worst-group disparity: DPmax(f) := maxs∈{0,1}q

ns

n DPs(f),
where DPs(f) :=

∣∣p̂s − p̂∣∣, p̂ := 1
n

∑n
i=1 I{ŷi = 1}, and p̂s := 1

ns

∑
i: si=s

I{ŷi = 1}. The final
objective is then defined as 1

n

∑n
i=1 l(yi, f(xi, si)) + CGFDPmax(f). Here, we sweep the regular-

ization parameter CGF over {0.1, 0.5, 1.0, 5.0, 20.0, 50.0, 200.0, 500.0, 1000.0, 5000.0} to control
the fairness level. Note that, rather than taking maximum over s, we apply the softmax function to
{ns

n DPs(f)}s∈{0,1}q to make the optimization stable. Similar to DRAF, we run GF with a maximum
of 200 epochs, and select the best model whose validation accuracy is the highest among the epochs.

For SEQ, we re-implement the algorithm in the original paper (Hu et al., 2024). That is, we first
learn a classifier without fairness constraints, then sequentially post-process the prediction scores
from each subgroups to a common barycenter. The learning rate used to learn the classifier is swept
over {0.001, 0.005, 0.01, 0.05, 0.10}.

1https://aif360.readthedocs.io/en/v0.4.0/modules/generated/aif360.
algorithms.inprocessing.GerryFairClassifier.html
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B.3 COMPARISON OF SUBGROUP / MARGINAL FAIRNESS

Figure 5 compares the trade-off between the distributional first-order marginal and the second-order
marginal fairness levels (i.e., WMP and MP(2)) and accuracy. The results give the similar impli-
cations that we observe from Figure 3 in Section 5.3 of the main body. That is, compared to the
baseline methods (GF, REG, and SEQ), DRAF performs comparable on ADULT, DUTCH, shows a
slightly better performance on CIVILCOMMENTS, and outperforms on COMMUNITIES.

(a) ADULT (b) DUTCH (c) CIVILCOMMENTS (d) COMMUNITIES

Figure 5: Trade-off between fairness level and accuracy. (Top, Bottom) = WMP vs. Acc, MP(2) vs.
Acc. We set γ to 0.2 for ADULT, 0.001 for COMMUNITIES, 0.2 for DUTCH, and 0.05 for CIVIL-
COMMENTS, reflecting the sparsity of each dataset to determine the optimal value.

Additional analysis on synthetic ADULT dataset In addition to COMMUNITIES dataset, we con-
duct an additional study using a synthetic variant of ADULT dataset with sparse subgroups. We con-
struct SPARSEADULT by selecting the five smallest subgroups (whose sizes are at least 192) from
ADULT and randomly down-sampling them to smaller samples with sizes in [40, 60] (see Table 3).
We then evaluate five algorithms on SPARSEADULT and report the trade-off results in Figure 6. Sim-
ilar to the case for COMMUNITIES, it shows that DRAF preserves superior subgroup and marginal
fairness performance, specifically for higher fairness range (e.g., small MP(1), WMP, and MP(2)),
on SPARSEADULT.

Figure 6: Trade-off between fairness level and accuracy on synthetic ADULT dataset. (Left to Right)
{SP,MP(1),WMP,MP(2)} vs. Acc on SPARSEADULT dataset. We set γ to 0.001.

Table 3: Subgroup sample counts of the original ADULT and SPARSEADULT datasets. Subgroup
index starts at 1 with the smallest subgroup. The sizes for subgroup index over 6 are the same so we
omit.

Subgroup index ADULT SPARSEADULT

1 192 46
2 233 54
3 500 57
4 789 59
5 964 60
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B.4 ABLATION STUDIES

Excluding the marginal subgroups from W Let DRAF-m denotes the DRAF variant whose
W does not include the first-order marginal subgroups. Figure 7 shows that, excluding first-order
marginal subgroups from W (i.e., DRAF-m) can harm first-order marginal fairness, even subgroup
fairness is satisfied. Moreover, on CIVILCOMMENTS dataset, DRAF-m and DRAF perform compa-
rable in terms of MP(1), when MP(1) is not small, but DRAF significantly outperforms DRAF-m in
view of WMP. This observation suggests that achieving prediction-based fairness (e.g., MP(1)) does
not necessarily guarantee distributional fairness (e.g., WMP), and it highlights the need to control
distributional fairness as well, which DRAF aims at.

Figure 7: Comparison of DRAF-m and DRAF in terms of SP (top), MP(1) (center), and WMP (bot-
tom). We set γ to 0.2, 0.001, 0.2, and 0.05 for ADULT, DUTCH, CIVILCOMMENTS, and COMMU-
NITIES dataset, respectively.

Figure 8: A plot between λ

and MP(1) for DRAF-m on
COMMUNITIES dataset. We
vary λ ∈ [0.0, 0.1, . . . , 1.0].

Note that, on COMMUNITIES dataset, DRAF-m and DRAF may ap-
pear similar in terms of MP(1), however, it is because DRAF-m fails
to achieve moderate fairness levels (e.g., [0.02, 0.2]), leaving no
point on the Pareto-front line. See Figure 8 for evidence that con-
trolling MP(1) is not numerically easy for DRAF-m. That is, a large
drop in MP(1) is occurred at λ = 0.2 and we observe that using
λ ∈ [0.2, 0.3] does not provide intermediate fairness levels.

Similarly, we also consider W that excludes the second-order
marginal subgroups. Let DRAF-m2 denotes the DRAF algorithm
whose W does not include the second-order marginal subgroups.
Figure 9 shows that the second-order marginal fairness can be
slightly harmed when excluding the second-order marginal sub-
groups in W. On the other hand, including the second-order
marginal subgroups in W does not sacrifice first-order marginal or subgroup fairness, while can
contribute to improving the second-order marginal fairness. Hence, we basically recommend build-
ingW to include all the first-order, the second-order, and subgroups.

Figure 9: Comparison of DRAF-m2 and DRAF in terms of subgroup fairness (left: SP), first-order
marginal fairness (center: MP(1)), and the second-order marginal fairness (right: MP(2)) on ADULT
dataset.
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Impact of γ To support the claim in Section 5.4, we vary γ ∈ {0.001, 0.01, 0.1, 0.2, 0.3} and
compare the performance. The results in Figure 10 show that a larger γ (e.g., 0.3) degrades subgroup
fairness performance compared to a small γ (e.g., 0.01). Conversely, since DRAF minimizes the
worst disparity over subgroup-subsets inW, a small γ may lead to slightly worse first-order marginal
fairness than a large γ (e.g., 0.001 for CIVILCOMMENTS dataset), as it could focus on higher-order
or subgroups rather than first-order marginal fairness for some cases.

Figure 10: Impact of γ for DRAF in terms of subgroup fairness SP (top) and first-order marginal
fairness MP(1) (bottom).

Figure 11 provides similar results for (i) the distributional first-order marginal fairness WMP and
(ii) the second-order marginal fairness MP(2). Similar to Figure 10, a too small γ (e.g., 0.001) may
lead to slightly worse first-order marginal fairness than a larger γ, while a too large γ (e.g., 0.2 in
COMMUNITIES dataset) would harm the second-order marginal fairness.

Figure 11: Impact of γ for DRAF in terms of distributional first-order marginal fairness WMP (top)
and second-order marginal fairness MP(2) (bottom).
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Choice of G In this ablation study, we compare sIPM, RIPM, and HIPM for IPMG , in terms of
the trade-off performance. See Figure 12 for the results on the four datasets. The key findings are:
(i) sIPM (our default in the main analysis) performs best in most cases, though RIPM slightly out-
performs sIPM on COMMUNITIES; (ii) RIPM performs similarly to sIPM overall except for ADULT
dataset; (iii) HIPM underperforms both sIPM and RIPM in most cases.

Accordingly, we recommend using the more stable IPMs such as sIPM and RIPM rather than HIPM,
whose more complex discriminator architecture often leads to less stable training and suboptimal
models.

(a) ADULT (b) DUTCH (c) CIVILCOMMENTS (d) COMMUNITIES

(e) ADULT (f) DUTCH (g) CIVILCOMMENTS (h) COMMUNITIES

Figure 12: Trade-off between fairness level and accuracy with three IPMs (sIPM, RIPM, and HIPM)
for G. (Top, Bottom) = SP vs. Acc, MP(1) vs. Acc.
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B.5 EXAMPLE: SUBGROUP FAIRNESS DOES NOT ALWAYS IMPLY MARGINAL FAIRNESS

Suppose q = 2. Assume that we are given the following configuration of dataset and predictions for
a given f. We write the two sensitive attributes as a ∈ {0, 1} and b ∈ {0, 1}, for simplicity.

Subgroup # samples # positive predictions Positive rate
(a, b) n(a, b) npos(a, b) by f p̂(a, b) = npos(a, b)/n

(0, 0) 10 9 0.9
(0, 1) 10 9 0.9
(1, 0) 10 1 0.1
(1, 1) 10 1 0.1

The total sample size and positives are n =
∑
a,b n(a, b) = 40 and npos =

∑
a,b n(a, b) = 20,

hence the overall rate of positive prediction is

p̂ =
npos
n

=
20

40
= 0.5.

Subgroup fairness measure of Kearns et al. (2018a) over the four intersectional subgroups is calcu-
lated as

SP(f) = max
(a,b)∈{0,1}2

n(a, b)

N

∣∣p̂(a, b)− p̂∣∣ = 0.25× |0.9− 0.5| = 0.1.

On the other hand, we have n(0, 0) + n(0, 1) = 20, npos(0, 0) + npos(0, 1) = 18 so that
npos(0,0)+npos(0,1)

n(0,0)+n(0,1) = 0.9. Similarly, n(1, 0) + n(1, 1) = 20, npos(1, 0) + npos(1, 1) = 2 so that
npos(1,0)+npos(1,1)

n(1,0)+n(1,1) = 0.1. Thus, the first-order marginal disparity for the sensitive attribute a is 0.4,
which is relatively large.
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