
Under review as a conference paper at ICLR 2024

Memory-Efficient Backpropagation through
Large Linear Layers

Anonymous authors
Paper under double-blind review

Abstract

In modern neural networks like Transformers, linear layers require significant
memory to store activations during backward pass. This study proposes
a memory reduction approach to perform backpropagation through linear
layers. Since the gradients of linear layers are computed by matrix multi-
plications, we consider methods for randomized matrix multiplications and
demonstrate that they require less memory with a moderate decrease of the
test accuracy. Also, we investigate the variance of the gradient estimate
induced by the randomized matrix multiplication. We compare this variance
with the variance coming from gradient estimation based on the batch
of samples. We demonstrate the benefits of the proposed method on the
fine-tuning of the pre-trained RoBERTa model on GLUE tasks.

1 Introduction

The recent advances in solving NLP tasks are based on the Transformer architecture Vaswani
et al. (2017), where the two memory bottlenecks exist in the original formulation. The
first one is the attention layer and the second one is the linear layers with large matrices of
parameters. The issues of operating with the attention layer in practice are solved with help
of a sparsification of the attention matrix Child et al. (2019); Zaheer et al. (2020). A similar
challenge in operating with large dense matrices of parameters in linear layers has not been
discussed, yet.
Since the propagating of gradient through the linear layer is essentially the computation of
matrix by matrix product, we consider the randomization schemes that approximate the
target gradient and simultaneously require less memory. There are well-known techniques
to compute the approximate matrix multiplication in the literature Drineas et al. (2006).
However, typically these techniques are considered from the running time perspective rather
than memory consumption. The paper Adelman et al. (2021) proposes to approximate the
backward pass through linear layers using randomized matrix multiplication and focuses on
the training time and test accuracy of the final model. However, this method has the same
memory requirement as the standard one. In the current work, we propose an algorithmic
and theoretical justification of a memory-efficient linear layer based on randomized matrix
multiplication. The proposed method requires significantly less data to be stored for the
computation of the approximate gradient of the loss function with respect to the weight.
We confirm memory reduction and analyze possible convergence deterioration by performing
experiments on the finetuning of the pretrained RoBERTa model Liu et al. (2019) on the
GLUE tasks Wang et al. (2018). The experimental evaluation of the considered approach
demonstrates that the memory reduction does not lead to a significant test accuracy decrease.
For some datasets, we have observed that even 90% memory reduction leads to moderate test
accuracy decreasing, and sometimes the additional noise is even beneficial for generalization.
The main contributions of this paper are the following.

• Memory-efficient randomized gradient propagation algorithm through large linear
layers.

• Theoretical analysis of the gradient variance induced by auxiliary randomized
computations.

1



Under review as a conference paper at ICLR 2024

FC

Backward

Forward

RMM

Backward

Forward Large SGD
variance

Small SGD 
variance

Figure 1: Left: Computational graphs for training step in the case of default fully-connected
(FC) and randomized linear (RMM) layers. If the standard layer is used we store the whole
tensor X for backward (dashed line on the left), while in the proposed randomized version
we store only Xproj = S⊤X and a random state (solid line on the right). Right: Visual
support for Lemma 2.1. If input vectors and output gradients are divergent, the resulting
variance estimate of SGD is high. Whenever inputs X and output gradients Y are close, the
value of SGD variance is low.

• Empirical analysis of the trade-off between memory efficiency and test accuracy
decrease for a number of datasets.

• Experiments are performed in finetuning of pre-trained RoBERTa model on GLUE
tasks.

2 Method

The main building block of neural networks remains a linear layer. It demands a lot of
memory and computational resources principally because of multiplication of matrices of
considerable sizes. In this section we demonstrate how randomized matrix multiplication
alleviates these issues.
First of all, we present our modification to a fully-connected layer. Then we review a common
approach of training neural networks and specifically estimation of the stochastic gradient.
After that we discuss interplay of different sources of variance and provide some theoretical
guarantees. Finally, we give an estimation of memory and arithmetical complexity.

2.1 Randomized Backward Pass for a Linear Layer

A linear layer is defined by weights W ∈ RNout×Nin and biases b ∈ RNin . It does nothing but
an affine transformation of an input batch X ∈ RB×Nin :

X̂ = XW ⊤ + 1Bb⊤. (1)

Gradients of the loss function with respect to the layer input can be expressed as follows
∂L
∂X

= ∂L
∂X̂

W, (2)

and gradients of the loss function with respect to layer weights are

∂L
∂W

=
(

∂L
∂X̂

)⊤

X,
∂L
∂b

=
(

∂L
∂X̂

)⊤

1B . (3)

Analysis of memory consumption. In standard implementation the input tensor X is
stored entirely until the gradient over W is calculated. As in Adelman et al. (2021) we suggest
to replace the matrix multiplication in equation 3 with its randomly sampled counterpart,
but with a key difference: our goal is not to speedup the computation, but to save

2



Under review as a conference paper at ICLR 2024

Algorithm 1 Forward and backward pass through a linear layer with a randomized matrix
multiplication.

function Forward(X, W , b)
X̂ ← XW ⊤ + 1Bb⊤

Generate pseudo random number generator (PRNG) state and random matrix S
Xproj ← S⊤X
Save Xproj and PRNG state for the backward pass.
return Y

end function

function Backward(∂X̂L, W , b, Xproj)
∂XL ← ∂X̂L ·W

⊤

Rematerialize matrix S from the PRNG state saved in the forward pass.
∂WL ←

(
∂X̂L

⊤ · S
)
·Xproj

∂bL ← ∂X̂L
⊤1B

return ∂XL, ∂WL, ∂bL
end function

the memory during the training stage. Namely (see, i.e., Drineas et al. (2006)) we have

∂L
∂W

= ES

[(
∂L
∂X̂

)⊤

SS⊤X

]
= ES

[(
∂L
∂X̂

)⊤

SXproj

]
, (4)

where Xproj = S⊤X ∈ RBproj×Nin is calculated during the forward pass and stored instead
of X (see Algorithm 1). In order for this to be possible, matrix S has to be independent
from Y = ∂L

∂X̂
. In Adelman et al. (2021) the construction of S requires the knowledge of the

norms of the rows of Y , so we can not precompute XS.

The only requirement for the random matrix S ∈ RB×Bproj is that it has to satisfy
E SS⊤ = IB×B ,

where IB×B is B ×B identity matrix. Note, although S is needed in the backward pass (it
should be the same as in the forward pass), it is not stored explicitly but rematerialized from
the stored random seed. We will refer to the approximate matrix multiplication algorithm
used in equation 4 as Randomized Matrix Multiplication (RMM).
Different random distributions can be used to generate matrix S. In this work, we consider
a Gaussian random matrix,

S = 1√
Bproj

P, (5)

where the elements of P are i.i.d Gaussian random variables with zero mean and unit variance.
We also tested other variants such as Subsampled Orthonormal with Random Signs (SORS)
matrices Iwen et al. (2021). They come with fast matrix-by-vector product but the accuracy
drop is higher, so we leave this for future studies and do not report it here.

2.2 Stochastic Gradient Estimation

We have a randomized computation of the gradient; how accurate this should be? In
standard tasks, the approximation should approximate the target really accurate, i.e. with
high relative accuracy. Randomized matrix multiplication error decays like O(B−0.5

proj ) (the
exact estimates will be described in Section 2.3), so it may seem it is not a good idea. However,
in the framework of stochastic gradient descent (SGD) we already have a noisy estimation
of the gradient which is induced by sampling of the dataset, i.e. this approximation has
some variance. Thus, it is natural to require that the variance induced by the randomized
approximation is of the same order, as the variance induced by the stochastic estimation of
the gradient. Moreover, higher total variance of the gradient estimate does not necessary

3



Under review as a conference paper at ICLR 2024

mean that the convergence of the overall optimization may be worse, since the noise can
be beneficial. In order to estimate the effect of RMM on the variance, we need to have a
certain estimate of the variance of the gradient estimation.
Suppose, we have the following optimization problem in a form of finite sample average
minimization:

f(θ) = 1
N

N∑
i=1

fi(θ)→ min
θ∈Rp

. (6)

Usual approach to deal with such problem involves stochastic first order methods, where

instead of full gradient computation ∇f(θ) = 1
N

N∑
i=1
∇fi(θ) one can use stochastic approxi-

mation of this vector

g(θ) = 1
n

n∑
j=1
∇fij

(θ)→ min
θ∈Rp

, (7)

where I = {i1, . . . , ij , . . . , in} is sampled uniformly from original set of indices {1, . . . , N}.
The number n is the batch size. For convenience, we can deal with this randomness
considering a stochastic gradient vector g(θ) = gξ as follows.

gξ = 1
n

N∑
i=1
∇fi(θ)ξi, where ξi =

{
1, if i ∈ I
0, otherwise. (8)

The estimate in equation 8 can be viewed as an empirical mean of the vector random variable.
Thus, we can also build an empirical estimator of the variance of this random variable, and
use it as a guidance for the variance of the RMM model. We will do it specifically for the
linear layer, since in this case very simple and intuitive formulas can be obtained.

2.3 Variance of Stochastic Gradient Estimate

With background given in Section 2.2 we are able to discuss our main theoretical contribution.
One can follow detailed derivations in Appendix A. The first observation that we make is that
the exact gradient computed for a given batch can be viewed as an empirical mean estimate
of a random variable, i.e. it has a certain amount of noise. The randomized approximation
introduces additional noise into the picture, which can be either smaller, than the noise from
the finite sample size (in this case we expect the convergence to stay the same) or larger. In
the latter case, the effect of the additional noise can sometimes play the role of regularizer.
Theory of SGD convergence and generalization is rapidly developing, see for example Keskar
et al. (2019); Jastrzebski et al. (2017); Hoffer et al. (2017); Cheng et al. (2020); Li et al.
(2021). In some settings, generalization can be even improved by injecting additional noise
Hoffer et al. (2017); Cheng et al. (2020); Li et al. (2021).
The benefits of the noise in SGD are quite well understood, however we are not aware of any
practical estimators of this noise. The following Lemma shows how it can be done using a
very standard statistical estimator of the variance.
Lemma 2.1 (Aposteriori variance of SGD). Let X ∈ RB×N and Y ∈ RB×M be the input to
the linear layer in the forward pass and the input to it in the backward pass (B here is the
batch size). Then, we can estimate the variance of the noise induced by a random selection
of the samples as

D2
SGD(X, Y ) = B

B − 1

B∑
k=1
∥xk∥2∥yk∥2 − ∥X

⊤Y ∥2
F

B − 1 , (9)

where xk = X⊤ek, yk = Y ⊤ek, k = 1, . . . , B, i.e., xk and yk are the columns of X⊤ and Y ⊤,
respectively.

4



Under review as a conference paper at ICLR 2024

The meaning of the estimate equation 9 is very simple. In the first term we have the norms
of the per-example gradients, and the last term is the scaled norm of the gradient for the
entire batch. If the latter is small, but the norms of per-example gradients are large, then we
have high variance of the SGD (see Section 1). Intuitively, the Lemma 2.1 can be viewed as
a generalization of a sample variance in the stochastic gradient estimation (for full derivation
see Appendix A.1).
Lemma 2.2 (Apriori variance of RMM). Let X ∈ RB×N and Y ∈ RB×M , then the variance
of a randomized matrix multiplication through a matrix S ∈ RB×Bproj with i.i.d. elements
following the normal distribution N (0, B−0.5

proj ) defined as

D2(X, Y ) = ES ∥X⊤SS⊤Y −X⊤Y ∥2
F (10)

can be evaluated as follows

D2
RMM(X, Y ) = ∥X∥

2
F ∥Y ∥2

F − ∥X⊤Y ∥2
F

Bproj
. (11)

The proof can be found in the Appendix A.2.
Theorem 2.3 (Upper bound of variance). In the conditions of Lemma 2.1 and Lemma 2.2
the in-sample variance DSGD and the variance DRMM induced by a randomized subsampling
are tied with the following inequality

Bproj

B − 1
D2

RMM(X, Y )
D2

SGD(X, Y ) ≤
α + 1

α
, (12)

where
α = ∥X⊤Y ∥2

F

∥X∥2
F ∥Y ∥2

F

∈ [0, 1]. (13)

The proof can be found in the Appendix A.3. It is worth noting, that the parameter α can
actually be zero in the case X⊤Y = 0 leading to a non-bounded variation. Let assume the
following simple example with B = 2:

X =
[

1 0
−ε 0

]
, Y =

[
1 0

ε−1 0

]
, X⊤Y = 0, (14)

with some parameter ε > 0. So, the estimated variations are:
(B − 1)D2

SGD(X, Y ) = 4, (15)
and

Bproj D2
RMM(X, Y ) = 2 + ε2 + ε−2. (16)

Therefore, their ratio can be any arbitrary large number, and “sample” variance of SGD
can be much smaller than the one introduced by the RMM. In practice, however, we did
not observe such cases. A natural explanation is that for the minima of the loss function
that generalizes well the norm of Y will be also small (the norm of X can be made bounded
by, i.e., batch normalization) since the gradient with respect to almost every sample will be
small.

2.4 Memory Footprint and Arithmetic Complexity

Computational Complexity General matrix multiplication (matmul) AB takes O(nml)
floating-point operations for A ∈ Rn×m and B ∈ Rm×l. No extra space is required except
for storing resulting matrix. Costs estimations are summarized in Table 1.

Memory Requirements Default implementation of a fully-connected layer stores input
tensor X, which is used both for the forward and the backward passes. It requires O(BNin)
extra memory in addition to a weight tensor. Our modification of a fully-connected layer
stores a compressed input tensor instead which requires O(BprojNin) memory. Please note,
that random matrices are rematerialized when needed from a certain pseudorandom number
generator, i.e., the random seed with O(1) memory consumption. In other words our approach
reduces memory footprint by ρ−1 = B/Bproj ≥ 1 times for input tensors of all the linear
layers.

5



Under review as a conference paper at ICLR 2024

Table 1: Summary table for Section 2.4 and Appendix C.1.1. Comparison of memory usage
required to store input activations between baseline and randomized FC-layers. Columns
Forward and Backward show how the costs of the compared approaches are split between
forward and backward passes.

Memory Forward Backward
No RMM BNin 1 BNinNout
RMM BprojNin BBprojNin BprojNout(B + Nin)

Table 2: Performance in fine-tuning on GLUE benchmark for different compression rates ρ
(number of dimensions of projection space) in percents. The top row (No RMM) corresponds
to a baseline implementation without compression.

COLA MNLI MRPC QNLI QQP RTE SST2 STSB Avg
No RMM 60.51 87.56 89.30 92.60 91.69 78.52 94.09 90.37 85.58
90% 59.75 87.58 88.64 92.75 91.47 77.50 94.72 90.39 85.35
50% 59.45 87.58 88.73 92.56 91.41 77.18 94.61 90.32 85.23
20% 57.46 87.59 87.99 92.62 91.16 76.26 94.43 90.06 84.70
10% 57.53 87.51 88.30 92.55 90.93 75.45 94.27 89.90 84.56

3 Experiments

In this section, we evaluate the performance of the proposed modification of linear layers
by comparing it with default implementation. All randomized matrix multiplications are
implemented with PyTorch (Paszke et al., 2019) in Python (see supplementary materials for
reference implementation). We use pretrained RoBERTa-base model from HuggingFace’s
Transformers Wolf et al. (2020). Model fine-tuning on GLUE tasks is conducted in a single
GPU setting with NVIDIA Tesla V100 SXM2 16 GB. We use the same training setting and
model hyperparameters for RoBERTa model which are in Fairseq Ott et al. (2019).
Despite that our primal interest lies in the area of Transformer-based models in NLP domain,
we carried out some auxiliary experiment in order to demonstrate universality of RMM and
its applicability to different domains and diffrent tasks (see Appendix B).
We rewrite implementation of fully-connected layer in PyTorch with modification to forward
pass and backward pass caching compressed input S⊤X and PRNG state G between passes.
Our implementation allows to control compression rate ρ (dimension of random projection
proportional to batch size) or to fix a number of dimensions Bproj. In both regimes we are
able to clamp Bproj in some desired interval. For a sake of clarity, we stick to specifying ρ
instead of fixing exact value of Bproj in order to compress uniformly across all layers in a
model.

3.1 Performance on GLUE Benchmark

In these experiments we measure performance degradation in fine-tuning of base RoBERTa
model on GLUE benchmark depending on compression rate ρ (see Table 2). Randomized
dense layer demonstrates moderate degradation of evaluation metrics. Compression in 5–10
times results in insignificant drop of performance for almost all GLUE tasks.

3.2 Memory Efficiency

Although fully-connected layer is a common for Transformer architecture and it holds a major
share of total memory usage in training time, there is other solid memory consumers. So, we
measure actual memory footprint reduction in relation to compression rate ρ (see Table 3).
In this experiment setting we train RoBERTa on GLUE tasks with varying compression rate
ρ and batch size B. Important observation is that compression in 5–10 times cuts overall
runtime memory by 10–20%.

6



Under review as a conference paper at ICLR 2024

Table 3: Left: Maximal memory usage during training on GLUE tasks and memory
economy for different compression rates ρ and a baseline implementation (No RMM).
Right: Comparison of different randomized matmul variants. All alternatives are trained
on CoLA task. Lower compression rate ρ means lower memory usage.

Task Batch Rate Mem, GiB Save, %
MRPC 128 — 11.3 0.0

50% 10.6 6.3
20% 9.2 19.3
10% 8.7 23.3

QNLI 16 — 11.7 0.0
50% 11.2 4.2
20% 10.4 11.6
10% 10.1 13.8

SST2 256 — 13.3 0.0
50% 12.5 6.1
20% 10.5 20.8
10% 9.9 25.5

MatMul Rate Score Time
No RMM — 60.90 08:44
DCT 50% 59.17 16:26

20% 58.81 16:37
10% 53.38 17:24

DFT 50% 59.05 12:20
20% 60.60 11:42
10% 47.62 12:25

Gauss 50% 58.60 10:36
20% 57.79 10:02
10% 56.52 10:03

Radem. 50% 62.38 15:27
20% 59.11 15:38
10% 55.50 15:43

0 50 100 150 200 250
Batch Size

2.5

5.0

7.5

10.0

12.5

15.0

M
em

or
y

U
sa

ge
,G

iB Limit
No RMM
50%
20%
10%

0 10 20 30 40 50 60 70 80 90 100
Compression rate

0.4

0.6

0.8

1.0

1.2
R

el
at

iv
e

T
hr

ou
gh

pu
t COLA

MNLI
MRPC
WNLI

Figure 2: Left: Peak memory usage depending on batch size during training of RoBERTa
model for one epoch on CoLA task. Right: Relative throughput of randomized FC layers
depending on the compression rate in training time (throughput is a number of samples per
second). Relative throughput value above 1 means that a model shows better performance
than reference model without randomization.

Also, we carry out experiments to validate memory usage in our implementation with varying
of batch size B. According to Section 2.4 we save only O(BprojNin) memory for the backward
pass. So, near-linear scaling of memory usage for different compression rates ρ as batch size
growth confirms correctness of the implementation (see Figure 2).

3.3 Empirical Variance Estimation

In this section we explore empirically variance estimation behaviour (see Section 2.3). We use
our common experimental settings where linear layers with randomized backward pass were
used. We pick a fully-connected layer and estimate variations equation 9 and equation 11
during training (see Figure 3).
The behaviour of the variance estimators is interesting on its own: the variance slowly
increases with the number of steps, whereas as we have seen, the norm of the gradient (X⊤Y
term) is very small. This means, that the whole dynamics is governed by the noise terms, i.e.
the parameters undergo a diffusion process. The relative behaviour of D2

SGD and D2
RMM is

also similar and converges to a certain constant. For other layers the picture is very similar.
One can find additional experiments in Appendix B.1.

7



Under review as a conference paper at ICLR 2024

0 2 4 6 8 10
Epoch

1.2

1.4

1.6
Va

ria
nc

e
R

at
io

0 2 4 6 8 10
Epoch

0

1

2

3

Va
ria

tio
n,

D
2

D
2
SGD

D
2
RMM

Figure 3: Evolution of variance ratio from the left-hand side of inequality equation 12 (top)
and variances estimates equation 9 and equation 11 (bottom) during fine-tuning on CoLA
for batch size B = 64 and compression rate ρ = 0.5.

1 2 3 4 5 6 7 8 9 10

Epoch

0.0

0.2

0.4

0.6

0.8

C
ro

ss
-e

nt
ro

py

10%
20%
50%
90%
No RMM

1 2 3 4 5 6 7 8 9 10

Epoch

10%
20%
50%
90%
No RMM

Figure 4: Fine-tuning RoBERTa on MNLI task from GLUE. Cross-entropy loss on training
set (left) and evaluation set (right).

3.4 Learning Curves

In this subsection we empirically study influence of randomized fully-connected layer on
training. Namely, we discover behaviour of cross-entropy loss on training set and evaluation
set depending on compression rate ρ. We found that loss curve changes smoothly as
compression rate declines (see Figure 4). Decreasing of compression rate results in increasing
training loss and flattening evaluation loss. However, overfitting point is nearly the same.

3.5 Comparison of Randomized MatMuls

In order to reduce computation cost we examine a variety of randomized matrix multiplication
implementations. Among matmul implementations we considered, there are sampling of
random matrix S from either Gaussian or Rademacher distribution and applying discrete
Fourier Transform (DFT) or Discrete Cosine Transform (DCT). In comparison to other
approaches, DCT and DFT have theoretically computational advantage because of their
regular structure. DFT- and DCT-based matmuls allow to perform multiplication by random
matrix S in O(BN log B) operations instead of O(B2N). All alternatives requires the same
memory space.
In the case of Gaussian randomized matmul we sample i.i.d. elements of matrix S from
normal distribution N (0, B−0.5

proj ). The same remains true for the instance of Rademacher

distribution which has the following probability mass function P(n) = 1
2, n = ±1. The

only difference is that we should force unbiasedness condition E SST = I with proper
normalization.
We found that different matmul variants demonstrate consistent performance degradation
of a moderate level as compression rates ρ decreases (see Table 3). Nevertheless, varying

8



Under review as a conference paper at ICLR 2024

training time across alternatives indicates that naive high-level implementation in PyTorch
is not good enough and low-level optimizations are needed.

3.6 Computational Time

In order to make experimental study as comprehensive as possible, we investigate compu-
tational efficiency empirically although it is not our primary target. We use the standard
experimental settings and measure a number of samples processed per second (throughput)
in training time (see Figure 2). As it was mentioned in Appendix C.1.1 randomization of
linear layer has worse computational complexity in terms of batch size B. However, there is
small enough compression rate ρ such that randomized dense layer becomes computationally
efficient. Moreover, we empirically found that our randomization is faster if ρ ≤ 0.1.

4 Related Works

A close work to ours is Adelman et al. (2021), where another variant of randomized multiplica-
tion is used to speedup the backward pass. Our goal is to reduce memory and we also provide
theoretical analysis of the variance, which sheds light on effect of approximate gradient
computations. In Oktay et al. (2020) the concept of randomized automatic differentiation
has been proposed.
Randomized matrix multiplication has a long history, which goes back to Freivalds (1977)
where probabilistic verification of matrix multiplication has been proposed. In Drineas et al.
(2006) the score-based randomized algorithm has been proposed and analyzed. Improved
algorithms for matrix multiplication have been proposed in Boutsidis & Gittens (2013),
where different fast algorithms have been studied for the sampling matrix based on the
results of Tropp (2011) for subsampled orthogonal transforms.
Another line of research focuses on other algorithms for approximation of matrix multiplica-
tions, to name a few relevant papers Pagh (2013) where the hashing functions have been
used and in Blalock & Guttag (2021) hashing functions are learned from the data. Excellent
review for the probabilistic linear algebra can be found in Martinsson & Tropp (2020).

5 Conclusion and Future Work

We propose a drop-in replacement for a linear layer in deep neural network with randomized
backward operation that reduces the amount of memory, required to be stored during
backpropagation. The algorithm is based on a randomized matrix multiplication. We provide
theoretical bounds on the additional variance introduced by randomization compared to
the inherent noise in the SGD, provide bounds on this noise and computable estimates. In
fine-tuning of a Transformer-based model on different GLUE tasks we show that we get
reduction in the peak memory while maintaining the accuracy of the model.
There are several directions we would like to study in future work. First of all, we would like
to get stable and robust implementations of randomized matrix multiplication with matrices
S that allow fast matrix-by-vector product. The Subsampled Orthogonal with Random Signs
seems to be a good option, but the variance of such estimators in our experiments was quite
large, so the Bproj has to be selected larger. Thus, we would like to study other options. For
Transformer-based models the number of rows in X is actually the product of the batch size
and sequence length, i.e. it is quite large; however, we do not use this structure. One option
is to use tensor-product sampling matrices to reduce complexity of multiplication by S.
Second direction is the deeper study of the variance estimator and its connection to the
learning rate schedule. Given a good estimate of the variance, one can try to theoretically
justify a specific learning rate schedule to maintain a certain level of noise in training.

9



Under review as a conference paper at ICLR 2024

References
Menachem Adelman, Kfir Y. Levy, Ido Hakimi, and Mark Silberstein. Faster Neural Network

Training with Approximate Tensor Operations. arXiv preprint arXiv:1805.08079, 2021.

Davis Blalock and John Guttag. Multiplying Matrices Without Multiplying. arXiv preprint
arXiv:2106.10860, 2021.

Christos Boutsidis and Alex Gittens. Improved Matrix Algorithms via the Subsampled
Randomized Hadamard Transform. SIAM Journal on Matrix Analysis and Applications,
34(3):1301–1340, 2013.

Xiang Cheng, Dong Yin, Peter Bartlett, and Michael Jordan. Stochastic Gradient and
Langevin Processes. In International Conference on Machine Learning, pp. 1810–1819.
PMLR, 2020.

Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating Long Sequences
with Sparse Transformers. arXiv preprint arXiv:1904.10509, 2019.

Petros Drineas, Ravi Kannan, and Michael W Mahoney. Fast Monte Carlo Algorithms for
Matrices I: Approximating Matrix Multiplication. SIAM Journal on Computing, 36(1):
132–157, 2006.

Rusins Freivalds. Probabilistic Machines Can Use Less Running Time. In IFIP congress,
volume 839, pp. 842, 1977.

Elad Hoffer, Itay Hubara, and Daniel Soudry. Train Longer, Generalize Better: Closing the
Generalization Gap in Large Batch Training of Neural Networks. In Advances in Neural
Information Processing Systems, pp. 1731–1741, 2017.

Mark A Iwen, Benjamin Schmidt, and Arman Tavakoli. On Fast Johnson-Lindernstrauss Em-
beddings of Compact Submanifolds of RN with Boundary. arXiv preprint arXiv:2110.04193,
2021.

Stanislaw Jastrzebski, Zachary Kenton, Devansh Arpit, Nicolas Ballas, Asja Fischer, Yoshua
Bengio, and Amos Storkey. Three Factors Influencing Minima in SGD. arXiv preprint
arXiv:1711.04623, 2017.

Nitish Shirish Keskar, Jorge Nocedal, Ping Tak Peter Tang, Dheevatsa Mudigere, and Mikhail
Smelyanskiy. On Large-Batch Training for Deep Learning: Generalization Gap and Sharp
Minima. In 5th International Conference on Learning Representations, ICLR 2017, 2019.

Zhiyuan Li, Sadhika Malladi, and Sanjeev Arora. On the Validity of Modeling SGD with
Stochastic Differential Equations (SDEs). arXiv preprint arXiv:2102.12470, 2021.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy,
Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. RoBERTa: A Robustly Optimized
BERT Pretraining Approach. arXiv preprint arXiv:1907.11692, 2019.

Zirui Liu, Kaixiong Zhou, Fan Yang, Li Li, Rui Chen, and Xia Hu. EXACT: Scalable
graph neural networks training via extreme activation compression. In Proceedings of
International Conference on Learning Representations, 2021. URL https://openreview.
net/forum?id=vkaMaq95_rX.

Per-Gunnar Martinsson and Joel A Tropp. Randomized Numerical Linear Algebra: Founda-
tions and Algorithms. Acta Numerica, 29:403–572, 2020.

Deniz Oktay, Nick McGreivy, Joshua Aduol, Alex Beatson, and Ryan P Adams. Randomized
Automatic Differentiation. In International Conference on Learning Representations, 2020.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David
Grangier, and Michael Auli. fairseq: A Fast, Extensible Toolkit for Sequence Modeling. In
Proceedings of NAACL-HLT 2019: Demonstrations, 2019.

10

https://openreview.net/forum?id=vkaMaq95_rX
https://openreview.net/forum?id=vkaMaq95_rX


Under review as a conference paper at ICLR 2024

Rasmus Pagh. Compressed Matrix Multiplication. ACM Transactions on Computation
Theory (TOCT), 5(3):1–17, 2013.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, An-
dreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank
Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An
Imperative Style, High-Performance Deep Learning Library. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.), Advances in Neural
Information Processing Systems 32, pp. 8024–8035. Curran Associates, Inc., 2019.

Joel A Tropp. Improved Analysis of the Subsampled Randomized Hadamard Transform.
Advances in Adaptive Data Analysis, 3(01n02):115–126, 2011.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 Lukasz Kaiser, and Illia Polosukhin. Attention is All You Need. In Advances in Neural
Information Processing Systems, pp. 5998–6008, 2017.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R
Bowman. GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language
Understanding. In International Conference on Learning Representations, 2018.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony
Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer,
Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao,
Sylvain Gugger, Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Transformers:
State-of-the-art natural language processing. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing: System Demonstrations, pp. 38–45,
Online, October 2020. Association for Computational Linguistics.

Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris Alberti,
Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, et al. Big Bird:
Transformers for Longer Sequences. In NeurIPS, 2020.

11


