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Abstract

Indirect User Requests (IURs), such as "It’s001
cold in here" instead of "Could you please002
increase the temperature?" are common in003
human-human task-oriented dialogue and re-004
quire world knowledge and pragmatic reason-005
ing from the listener. While large language006
models (LLMs) can handle these requests ef-007
fectively, smaller models deployed on virtual008
assistants often struggle due to resource con-009
straints. Moreover, existing task-oriented di-010
alogue benchmarks lack sufficient examples011
of complex discourse phenomena such as in-012
directness. To address this, we propose a set013
of linguistic criteria along with an LLM-based014
pipeline for generating realistic IURs to test015
Natural Language Understanding (NLU) and016
Dialogue State Tracking (DST) models before017
deployment in a new domain. We also release018
INDIRECTREQUESTS, a dataset of IURs based019
on the Schema Guided Dialog (SGD) corpus,020
as a comparative testbed for evaluating the per-021
formance of smaller models in handling indi-022
rect requests.023

1 Introduction024

Non-literal, indirect utterances are common in025

human-human task-oriented dialogue and require026

pragmatic understanding and world knowledge for027

successful interpretation (e.g., “It’s cold in here”028

instead of “Could you please increase the tem-029

perature?”) (Briggs and Scheutz, 2017). This030

phenomenon is a key area of interest in discourse031

pragmatics (Blum-Kulka and Hamo, 2011; Sche-032

gloff, 1999), supported by theoretical frameworks033

such as Grice’s maxims (Grice, 1975) and RST034

(Mann and Thompson, 1988). Figure 1 illustrates035

two instances of Indirect User Requests (IURs).036

Despite the prevalence of indirect utterances037

in everyday discourse and the human-level Nat-038

ural Language Understanding (NLU) performance039

demonstrated by state-of-the-art large language040

models (LLMs) like GPT-4 (Achiam et al., 2023),041

Figure 1: Two settings are illustrated for IURs:
restaurant-reservation and home-automation.

current virtual assistants struggle to handle such 042

utterances seamlessly (Mavrina et al., 2022). This 043

can be attributed, in part, to the high computational 044

cost associated with using state-of-the-art, large 045

models for inference (Samsi et al., 2023; Sardana 046

and Frankle, 2023). A common workaround is to 047

employ smaller, cost-effective, task-specific mod- 048

els (Hsieh et al., 2023). However, this approach 049

often compromises the generalizability and robust- 050

ness offered by larger models. 051

Over the years, several benchmark datasets 052

for task-oriented dialogue, such as MultiWOZ 053

(Budzianowski et al., 2018), Schema Guided Di- 054

alog (SGD) (Rastogi et al., 2020), and FRAMES 055

(Asri et al., 2017), have been curated by the dia- 056

logue systems community. However, these datasets 057

have two key limitations that hinder their effec- 058

tiveness in training smaller NLU models. First, 059

their static nature and limited domain coverage 060

make it difficult to evaluate NLU or Dialogue State 061

Tracking (DST) models in new domains. Second, 062

the controlled laboratory settings in which these 063

datasets are crowdsourced lead to a distributional 064

mismatch between the benchmark datasets and “in- 065

the-wild” utterances (Zarcone et al., 2021). 066
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2 Schema-Guided Dialogue067

To bridge this distributional gap, we present an068

LLM-based data generation pipeline to scalably069

generate IURs for a new task-oriented dialogue do-070

main. Our work makes the following contributions:071

1. We develop a set of linguistic criteria to for-072

malize the concept of what constitutes an in-073

direct user request in a task-oriented dialogue074

setting.075

2. We develop a pipeline to collect gold-labelled076

IURs, using an LLM to generate a noisy, seed077

IUR dataset, followed by crowd-sourced fil-078

tering and correction to increase quality.079

3. We publicly release INDIRECTREQUESTS, a080

dataset of IURs collected through the pro-081

cess above, using the schemas from the SGD082

dataset. We aim for it to serve as a testbed for083

both researchers and practitioners interested084

in evaluating model robustness.085

4. To circumvent the need for collecting expen-086

sive human labels for a new domain, we re-087

port results over various “proxy” models for088

automatically evaluating the quality of IURs089

according to our linguistic criteria.090

5. Finally, we empirically demonstrate the in-091

creased difficulty of the IURs by showing that092

the performance of a T5-based (Roberts et al.,093

2019) DST model significantly degrades when094

applied on INDIRECTREQUESTS utterances095

as compared to their counterparts from SGD.096

Before outlining the linguistic criteria, we first097

describe the paradigm of “schema-guided dialogue”098

since it serves as the basis for the task formulation.099

A long-standing goal in task-oriented dialogue100

research has been zero-shot transfer of critical mod-101

ules such as the NLU and DST to previously unseen102

domains and backend APIs (Mehri et al., 2022). To103

achieve this goal, we need a way to represent new104

domains and APIs in a format that can be fed to a105

machine learning model. In addition, it helps if the106

representation is made as succinct to achieve both107

conceptual simplicity and human readability (Man-108

nekote et al., 2023). A “dialogue schema” is any109

structured format that performs this role of describ-110

ing a domain that a dialogue system will operate111

in.112

Figure 2: The five-stage IUR generation pipeline.

To facilitate shared tasks, Rastogi et al. (2020) 113

formally introduce the paradigm of “schema- 114

guided dialogue” alongside a benchmark corpus: 115

the SGD dataset. Their schemas (shown in Figure 116

3) factor each task-oriented dialogue domain into 117

its constituent intents and slots. 118

Consider a Movie domain consisting of two in- 119

tents: RentMovie and BuyTickets. To sat- 120

isfy each intent, the user needs to fill a set of 121

slots. Slots can be considered analogous to query 122

fields for an API call. For example, to fulfill the 123

BuyTickets intent, the schema can demand that 124

the NumPeople, MovieName, and Date slots 125

be filled. A crucial aspect of SGD’s schemas is 126

their use of one-line natural language descriptions 127

to describe the domain, intents, and slots. This de- 128

sign allows language models to make effective use 129

of the schemas. 130

3 Linguistic Criteria 131

We propose evaluating indirectness using three lin- 132

guistic criteria: APPROPRIATENESS, UNAMBIGU- 133

ITY, and WORLD-UNDERSTANDING. For each 134

criterion, Table 1 shows examples of utterances 135

that fall on the extreme ends of the rating scales. 136

Note that each of the three labels carries a more 137

precise meaning as compared to their freer usage 138

in everyday language. 139

APPROPRIATENESS. The APPROPRIATENESS 140

criterion seeks to ensure that an IUR does not sound 141
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Linguistic Criterion High-Scoring Utterance Low-Scoring Utterance Justification

APPROPRIATENESS I’m looking for tickets that I
can exchange or refund in
case of a change in plan.

I’d like to order a sandwich. The low-scoring example is
nonsensical in the context of
buying a bus ticket.

UNAMBIGUITY I’m looking for tickets that I
can exchange or refund in
case of a change in plan.

I’m looking for tickets that
give me additional benefits.

The term “additional benefits”
is ambiguous as it can refer to
either Flexible or Economy
Extra.

WORLD-
UNDERSTANDING

Do you know of any Michelin
star restaurants in the area
that offer a unique dining
experience?

I’m looking to treat myself to a
luxurious meal with the
highest quality ingredients, so
I’d like to find a restaurant like
that

“Michelin star” demonstrates
more in-depth world
knowledge as opposed to
“luxurious meal.”

Table 1: Criteria to Evaluate IURs are provided with two accompanying example utterances: one that is high-scoring
on that criterion, and another that is low-scoring.

out of place in the real-world context it is being142

uttered in. For instance, the utterance “I’d like to143

order a sandwich” would be completely irrelevant144

in a setting where the user is trying to book bus145

tickets. In contrast, the utterance “I want to go146

somewhere” would be relevant.147

Figure 3: We illustrate a dialogue schema in the mu-
sic service domain, with an intent to play music and a
slot for selecting a playback device (e.g., TV, kitchen
speaker, bedroom speaker). Our approach generates an
indirect utterance based on a specified slot value, such
as ’TV.’

UNAMBIGUITY. The UNAMBIGUITY criterion148

is designed to ensure that a generated IUR entails149

the target slot value, not any of the remaining can-150

didate slot values. For instance, a flight-booking151

scenario includes a “seating class” slot with values152

such as “Economy,” “Premium Economy,” “Busi-153

ness,” and “First Class.” Thus, the utterance “I’m154

looking to book a luxurious seat on the flight” is155

ambiguous, since the user could arguably be refer-156

ring to any of these values.157

WORLD-UNDERSTANDING. The WORLD- 158

UNDERSTANDING criterion is intended to be a 159

measure of the degree of world understanding 160

required by the listener to draw the connection 161

between an IUR and the user’s intended tar- 162

get slot value. For example, when filling the 163

destination-country slot in a trip-booking scenario, 164

the utterance “I’m looking to book a ticket to 165

an African country” can refer to values such as 166

“Nigeria” or “Egypt” but not “India.” 167

4 The INDIRECTREQUESTS Dataset 168

The goal of IUR generation is to take a domain, a 169

domain schema (containing a user intent and a list 170

of possible slot values), and a target slot value as 171

inputs and output an IUR. The IUR, on its part, is 172

expected to adhere to certain “linguistic criteria” to 173

be a 174

Given a set of linguistic criteria for evaluating 175

the quality of text samples, there are two broad 176

approaches to crowdsource a dataset: (1) present 177

real-world scenarios to crowdworkers and ask them 178

to compose corresponding IURs in an open-ended 179

manner, or (2) provide pre-generated IURs and ask 180

crowdworkers to rate the quality of each IUR on 181

a numerical scale reflecting the desired linguistic 182

criteria. While the first approach demands crowd- 183

workers to apply the provided linguistic framework, 184

exhibit creativity, and possess proficient writing 185

skills, rendering it expensive, the second approach 186

involves the simpler task of evaluating existing ut- 187

terances. Therefore, we generate a large number 188

of (potentially noisy) IURs using a combination of 189

GPT-3.5 (Brown et al., 2020) and GPT-4 models 190

from OpenAI, and then ask crowdworkers to rate 191
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Figure 4: The M-Turk crowdsourcing interface for collecting human annotations over the seed dataset contains
two form elements. The first assesses the UNAMBIGUITY in the generated utterance, ensuring that it entails only
the target slot value. The second assesses the WORLD-UNDERSTANDING criterion, leveraging a slider to rate the
likelihood that an average six-year-old could correctly infer the target slot value. The latter is an intuitive proxy to
measure the complexity of world understanding required to interpret the utterance.

their quality based on our linguistic criteria.192

4.1 Generating the Seed Dataset193

In order to prompt an LLM for a task, we need194

a prompting strategy (operationalized using what195

is commonly referred to as a “prompt template”).196

While prompt engineering is an open-ended pro-197

cess, we follow guiding principles such as making198

instructions specific and detailed, including high-199

quality in-context examples, and exploiting strate-200

gies like Chain-of-Thought (CoT) (Wei et al., 2022)201

to improve output quality. We use CoT prompting202

(Wei et al., 2022) to generate IURs, as it has been203

shown to improve performance on NLP tasks in-204

volving reasoning, such as ours. This technique205

breaks down a problem into intermediate steps. For206

our task, we first generated a set of “interesting207

facts” about the target slot value in the given sit-208

uation context, and then generated the final IURs209

conditioned on those facts. Therefore, this strategy210

was employed to scale up and generate a compre-211

hensive seed dataset consisting of 453 IURs.212

4.2 Crowdsourcing Human Labels213

Manual inspection of the IURs in the seed dataset214

reveals considerable variation in quality, suggest-215

ing a need for refinement before utilizing them as216

gold-labeled data for evaluation. To address this,217

we set up a crowdsourcing pipeline using Amazon218

Mechanical Turk (M-Turk) to have crowdworkers219

rate the quality of the candidate IURs in accordance220

with our linguistic criteria.221

There are two key considerations for develop-222

ing the crowdsourcing interface: 1) to optimize223

annotator efficiency (reducing the time and effort224

required per evaluated sample) and 2) to maximize 225

inter-annotator agreement. We observe that the 226

variation in the unannotated seed dataset is pre- 227

dominantly along the criteria of UNAMBIGUITY 228

and WORLD-UNDERSTANDING. Only a negligible 229

number of instances were deemed irrelevant based 230

on the APPROPRIATENESS criteria. Consequently, 231

we streamline the interface to include two primary 232

components, one each for evaluating UNAMBIGU- 233

ITY and WORLD-UNDERSTANDING. 234

UNAMBIGUITY Annotation. To collect labels 235

for the UNAMBIGUITY criterion, we instruct the 236

annotators to select all the slot values (zero or more) 237

that they think are entailed by the utterance using a 238

multiple choice checkbox (the annotator can check 239

one or more boxes). We design this form element 240

as a binary yes/no question to avoid posing the 241

question in a leading way. Multiple selections by 242

an annotator imply the utterance fails to meet the 243

UNAMBIGUITY criterion. 244

WORLD-UNDERSTANDING Annotation. For 245

the WORLD-UNDERSTANDING criterion, we ask 246

annotators to engage in a thought experiment where 247

they adopt the perspective of a six-year-old child. 248

This approach aims to assess whether a connec- 249

tion between the utterance and selected slot values 250

would be discernible to a child of that age. We ar- 251

rived at this unique framing after several iterations 252

of refining the question. Initially, we asked anno- 253

tators directly to rate the “complexity” involved in 254

making the connection. However, we recognized 255

that the concept of “complexity” is highly subjec- 256

tive and can vary significantly among individuals. 257

To standardize the perception of complexity and 258
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reduce variability among annotators, we anchor259

our assessment to a child’s level of understand-260

ing. This approach aims to provide a consistent261

benchmark, despite the diverse cognitive abilities262

typically present at that age range.263

4.3 Dataset Splits264

Based on the crowdsourced labels for both UN-265

AMBIGUITY and WORLD-UNDERSTANDING, we266

curate the INDIRECTREQUESTS dataset and re-267

lease it for public use.1 In going from the “raw”268

crowdsourced samples to the dataset, we split269

the dataset and systematically create labels for270

each sample for both UNAMBIGUITY and WORLD-271

UNDERSTANDING criteria. While splitting INDI-272

RECTREQUESTS into train, validation, and test sets,273

we split our samples based on same lines on which274

the services are split across the SGD dataset. This275

alignment with the SGD dataset splits is intended276

to aid future work that might need to compare our277

results with previous work reporting on SGD.278

Train Validation Test

123 136 194

Table 2: Number of samples in each split of INDIREC-
TREQUESTS

5 Proxy Evaluation of Linguistic Criteria279

We perform an automated, proxy evaluation of the280

IURs generations due to the impracticality of man-281

ually evaluating the large number of samples and282

models. In this section, we define the proxy eval-283

uation task formulations and present baseline re-284

sults using zero-shot and few-shot prompting strate-285

gies. We define two proxy evaluation tasks, cor-286

responding to the UNAMBIGUITY and WORLD-287

UNDERSTANDING criteria, respectively.288

UNAMBIGUITY. We frame proxy evaluation of289

UNAMBIGUITY as a multi-class classification prob-290

lem with Ni + 1 classes, where Ni is the number291

of possible slot values for the given slot i. We292

add an extra class corresponding to the case where293

the ground truth (from the crowdsourcing step) is294

ambiguous. For model comparison, we report the295

accuracy over all samples in the test split.296

WORLD-UNDERSTANDING. We define the297

proxy evaluation of WORLD-UNDERSTANDING as298

1URL hidden for peer review.

predicting the level of world knowledge required 299

to infer the intended slot value from an utterance as 300

a continuous value ranging from 1 to 10. This 301

approach aligns with the methodology used in 302

our crowdsourcing stage, where judgments about 303

knowledge depth were made using a 1-100 scale 304

slider. Performance is quantified by calculating the 305

sum of squared errors between predicted and actual 306

values (after normalizing both sets of values). 307

5.1 Proxy Evaluation Results 308

We split the proxy evaluation models into three cat- 309

egories: small language models (fewer than 1B pa- 310

rameters), proprietary large language models from 311

OpenAI (gpt-3.5-turbo and gpt-4-0125-preview), 312

and open-source Llama 2 language models (7B, 313

13B, and 70B). Table 3 shows the performance of 314

the proxy evaluators on the test split against the 315

ground truth obtained through crowdsourcing. 316

Small LMs. For the small LM category, we em- 317

ploy BERT-based models in a zero-shot setup. For 318

the UNAMBIGUITY criterion, we frame the evalua- 319

tion as k Natural Language Inference (NLI) prob- 320

lems, where k is the number of possible slot val- 321

ues. Each problem considers the candidate IUR 322

as the premise and a possible slot value as the 323

hypothesis. We use a BERT-based NLI model2 324

to obtain entailment scores and return the argmax 325

score. If the maximum score is below 0.3, we deem 326

the IUR ambiguous for that slot. For WORLD- 327

UNDERSTANDING, we use ms-marco-MiniLM-L- 328

6-v23, fine-tuned on MS MARCO for passage rank- 329

ing. We concatenate the IUR with the knowledge 330

context, score the sequence using the model, and 331

assign a WORLD-UNDERSTANDING rating of 10 332

if the the score exceeds 0.5 and 0 otherwise. 333

Proprietary LLMs. For the proprietary LLMs 334

from OpenAI, we use the models in a few-shot 335

setup, providing a few examples of IURs labeled 336

as either ambiguous or unambiguous (for UNAM- 337

BIGUITY), or knowledgeable or not knowledgeable 338

(for WORLD-UNDERSTANDING). We then query 339

the model with the test IUR and knowledge context 340

(if applicable) and take the model’s output as the 341

prediction. 342

Open-Source LLMs. For the open-source Llama 343

2 models (7B, 13B, and 70B), we use a similar few- 344

2nli-deberta-v3-small
3https://huggingface.co/microsoft/ms-marco-MiniLM-L-

6-v2
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Criterion
Model

Small
LM (<1B)

GPT (3-shot) Llama 2 (3-shot)
GPT-3.5 GPT-4 7B 13B 70B

UNAMBIGUITY

(Accuracy)
0.35∗

(nli-deberta)
0.73 0.84† 0.5 0.69‡ 0.22

WORLD-UNDERSTANDING

(Pearson correlation)
0.22∗

(ms-marco)
0.15 0.34† 0.16 0.19‡ 0.18

Table 3: Evaluation results are computed from a single run with proxy evaluators against crowdworker annotations on
the combined validation and test splits of INDIRECTREQUESTS, which contain a total of 330 samples. Performance
symbols indicate the best-performing models within specific categories. ⋆ denotes the best performance in the
zero-shot (small LM) category, † marks the best performance in the proprietary OpenAI LLM category, and ‡

signifies the top performer among the Llama 2 models (Touvron et al., 2023).

shot setup as we did with the proprietary LLMs.345

Table 3, summarizes these results.346

While achieving high inter-annotator agree-347

ment (IAA) for subjective measures like WORLD-348

UNDERSTANDING and UNAMBIGUITY is inher-349

ently challenging, as evidenced by prior work show-350

ing human annotators struggling to exceed 30%351

IAA for related subjective criteria in NLG tasks352

(Karpinska et al., 2021), we find that LLM-based353

proxy evaluation models, particularly GPT-3.5 and354

GPT-4, demonstrate considerable agreement with355

human raters for our task. Nonetheless, there356

remains scope for further boosting performance357

through additional prompt engineering and exper-358

imentation with adaptive strategies for selecting359

in-context examples. The prompts used for train-360

ing both proprietary and open-source LLM proxy361

evaluator models are provided in Appendix B.362

6 Automated IUR Generation363

Under ideal conditions, we would use as small an364

LLM as possible to generate high-quality IURs.365

We report the quality of the generated IURs gener-366

ated using smaller, open-source LLMs (Llama 2)367

in Table 5. The prompt used to generate the IURs368

is given in Appendix C.369

6.1 Indirection Strategies370

Along with reporting quantitative metrics from our371

proxy evaluators, we also perform a bottom-up con-372

tent analysis to develop a richer understanding of373

the specific “indirection strategies” that the LLMs374

employ to transform the slot schema into IURs.375

During analysis, one of the authors excluded those376

samples for which the IUR either very evidently377

does not entail the target slot value or the slot value378

is mentioned verbatim, violating the UNAMBIGU-379

ITY criterion.380

We identify five main indirection strategies from 381

our content analysis (see Table 4). Simple Elabo- 382

ration performs a simple replacement of the slot 383

value with a longer phrase meaning the same thing. 384

Simple Elaborations do not leverage non-trivial 385

world knowledge. Justification offers a real-world 386

reason for choosing a particular slot value. A Hy- 387

ponym Swap involves replacing the slot value with 388

its hyponym (the replacement is a more specific in- 389

stance or subtype of the original term). Similarly, 390

a Synonym Swap replaces the slot value with a 391

synonym. The final strategy, Small Talk, involves 392

padding the utterance with information that is not 393

strictly informational to the task. While this is not 394

strictly an indirection strategy, it can serve to com- 395

plement another indirection strategy by making it 396

sounds more realistic. 397

7 Extrinsic Evaluation 398

While intrinsic, automated evaluations provide 399

valuable insights, we further assess the practical im- 400

plications of INDIRECTREQUESTS through extrin- 401

sic evaluation, measuring the performance degrada- 402

tion of a widely-adopted DST model on our dataset 403

compared to its performance on the canonical SGD 404

corpus. This approach aligns with established prac- 405

tices in the dialogue systems literature, where NLU 406

model performance is extensively evaluated in iso- 407

lation, as it critically impacts downstream dialogue 408

policy learning and response generation in modular 409

architectures. 410

Our objective is not to conduct an end-to-end 411

evaluation of dialogue systems, but to specifically 412

evaluate NLU performance. By providing a rela- 413

tive comparison against the commonly referenced 414

SGD corpus, we aim to highlight the increased 415

parsing difficulty posed by INDIRECTREQUESTS 416

utterances, rather than claiming they present chal- 417
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Indirection
Strategy

Intent-Slot-Value Sample IUR

Simple Elaboration RentMovie
(subtitles = None)

“I prefer watching films in their native language without any language
barriers.”

Justification GetRide
(shared_ride = True)

“I usually like sharing the ride with someone else to reduce carbon
footprint...”

Hyponym Swap SearchEvents
(type = Music)

“Is there a festival happening around with pop, country or hip-hop
artists performing?”

Synonym Swap RentMovie
(subtitles = Mandarin)

“I’ve got a bunch of friends coming over who are more comfortable with
Simplified Chinese. Can you find me movies...”

Small Talk FindApartment
(pets_allowed = True)

“I’m looking for a place where my dog is allowed to come along. He’s
so cute and he doesn’t shed as much as you think!”

Table 4: From the generated IURs, we identify five main indirection strategies (Simple Elaboration, Justification,
Hyponym Swap, Synonym Swap, and Small Talk).

lenges to state-of-the-art models, including LLM-418

based ones. This targeted evaluation allows us419

to isolate and characterize the unique aspects of420

our dataset, contributing to a more comprehensive421

understanding of NLU model capabilities and limi-422

tations.423

Since the DST model we use is trained on con-424

text window lengths of 3, the dialogue contexts425

in all samples are also set to 3. Table 5 shows a426

comparison between the model performance over427

the original samples and the samples using the gen-428

erated IURs based on a total of 330 samples.429

To fairly compare the results of any NLU model430

over SGD and INDIRECTREQUESTS during extrin-431

sic evaluation, we only use a subset of SGD that432

satisfies the following conditions:433

1. user request must be about a categorical slot434

2. speaker of the latest utterance in the dialogue435

context must be the user and not the system436

3. dialogue act of the latest utterance should be437

“inform” (as opposed to “request” utterances,438

which is out of scope for our work)439

4. user utterance includes only a single slot-value440

pair (since our IUR generation method does441

not accommodate more than one slot-value442

pair per IUR)443

Base Model SGD INDIRECTREQUESTS

T5 0.512 0.133

Table 5: Slot accuracies are computed for a T5-based
state-of-the-art dialogue state tracking model on sam-
ples from both the original SGD dataset and the IN-
DIRECTREQUESTS. The DST model performance on
INDIRECTREQUESTS shows a significant degradation.

8 Related Work 444

Brittleness of DST Models. The initiative to de- 445

velop the IUR generation task springs from a need 446

to reduce the brittleness of smaller NLU and DST 447

models. Cho et al. (2022) empirically demonstrate 448

the brittleness of commonly-used, small LM-based 449

DST models by showing that their performance 450

degrades in the face of various types of perturba- 451

tions involving linguistic variations, coreferences, 452

named entity references, paraphrases, and speech 453

disfluencies. More generally, Zarcone et al. (2021) 454

critique the academic community’s prevailing focus 455

on incremental advancements on synthetic bench- 456

marks for tasks such as DST, referred to as “play- 457

ing the SNIPS game,” which often overlooks deeper 458

issues regarding dataset realism. 459

Relationship of IUR Generation to Other NLP 460

Tasks. IUR generation is similar to paraphrase 461

generation (Zhou and Bhat, 2021) in that both tasks 462

are form of semantically-preserving text transfor- 463

mations. In fact, IUR generation can be viewed 464

as the task of generating a highly specific form of 465

paraphrase (that adheres to our three linguistic crite- 466

ria). It can also be viewed as the inverse of the NLI 467

task, where the objective is to generate a premise 468

entailing a given hypothesis, rather than inferring 469

entailment from a premise-hypothesis pair, albeit 470

in a different context from Shen et al. (2018). Most 471

closely related to our work, Ge et al. (2022) pro- 472

pose linguistic criteria based on Gricean Maxims 473

(Grice, 1975) for the task of generating follow-up 474

questions for interactive surveys. While both tasks 475

prioritize relevance and coherence, they differ in 476

their objectives: the former aims to elicit infor- 477

mation from the user, while the latter focuses on 478

clarity and unambiguity in conveying requests, of- 479
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Figure 5: We report the qualities of the IURs generated using smaller, open-source Llama 2 models of three different
sizes (7B, 13B, 70B). All the evaluation results are obtained using the best-performing GPT-4 proxy evaluation
model (as described in Section 5).

ten serving as the initial turn or an independent480

subdialogue thread.481

Text Generation using Small LLMs. Our re-482

search also investigates the impact of model size483

on the quality of the generated IURs. Eldan and484

Li (2023) dispute the notion that smaller Language485

Models (LMs) inherently lack the capacity for in-486

tricate text generation tasks like storytelling. They487

attribute shortcomings to the prevalence of irrele-488

vant information rather than model constraints. By489

assembling a targeted dataset of children’s stories,490

they show that smaller LMs can produce narra-491

tives comparable to those by larger counterparts492

like GPT-3.5 and GPT-4. Our work is aligned with493

this broader spirit, aiming to match the output of a494

larger LLMs through fine-tuning a smaller model.495

9 Limitations and Future Work496

We have limited ourselves to supervised fine-tuning497

of LLMs. However, there is a rich literature on the498

use of reinforcement learning to guide language499

models towards specific text styles and content500

types, especially for abstract concepts of the likes501

of indirectness, which can be explored as future502

work (Kaufmann et al., 2023).503

As Bowman and Dahl (2021) suggest, the ulti-504

mate evaluation measure for any NLP task should505

be grounded in in carefully annotated real user506

data. While modeling specific phenomena such507

as indirectness moves the needle on specific dia-508

logue paradigms such as task-oriented dialogues,509

the community needs to evolve novel evaluation510

paradigms in the long run for wider forms of dia-511

logue (Mannekote, 2023).512

Finally, the linguistic criteria we have estab- 513

lished for generating indirect requests in INDIREC- 514

TREQUESTS are not only effective for the current 515

dataset, but also serve as a robust and generalizable 516

framework that can be leveraged in future work to 517

create even more challenging and diverse datasets. 518

For instance, by expanding the number of possible 519

slot values per sample to tens or even hundreds, re- 520

searchers can construct more complex and realistic 521

datasets that push the boundaries of current NLU 522

models. 523

10 Conclusion 524

In conclusion, our study addresses the gap be- 525

tween benchmark corpora and real-world utter- 526

ances in task-oriented dialogue systems by focus- 527

ing on the phenomenon of indirectness. We present 528

a multi-stage LLM-based pipeline to generate IN- 529

DIRECTREQUESTS, a dataset of IURs based on 530

the schemas from the SGD dataset. INDIREC- 531

TREQUESTS complements existing benchmarks, 532

enabling the evaluation of NLU and DST models 533

on realistic, indirect user requests that lack explicit 534

slot values. Experiments with a state-of-the-art 535

DST model confirm the challenging nature of IN- 536

DIRECTREQUESTS. Furthermore, our data gen- 537

eration pipeline provides a versatile and efficient 538

method for creating evaluation datasets for various 539

task-oriented dialogue tasks on-the-fly, potentially 540

driving significant improvements in the usability 541

and performance of virtual assistants for the benefit 542

of end users. 543
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A Instructions shown to Human685

Annotators686

For each task (sample), the annotators were re-687

quired to fill in a form with two input fields. We688

provided examples along with brief instructions on689

how to fill in these fields (see Figure 4) as shown690

below.691

To get a feel for the task, please go through these692

examples.693

In all the examples below, the customer is try-694

ing to search for restaurants and indicating their695

preference for “Italian cuisine.”696

1. Check all entailing slot values: For the first697

question, you will need to check all the values698

that can be implied by the customer’s utter-699

ance. This could mean selecting zero, one, or700

more checkboxes. [examples]701

2. Use the slider to indicate the difficulty of702

the utterance. [examples]703

B Prompts for Proxy Evaluators 704

Below, we list the LLM prompts used for 705

proxy evaluation of UNAMBIGUITY and WORLD- 706

UNDERSTANDING criteria. 707

B.1 UNAMBIGUITY 708

You are an expert at 709

↪→ evaluating which slot 710

↪→ value(s) could be 711

↪→ implied by an utterance 712

↪→ among a set of 713

↪→ candidate values in a 714

↪→ task-oriented dialogue. 715

↪→ If no values can be 716

↪→ eliminated, list all 717

↪→ possible values 718

↪→ separated by commas. 719

Examples: 720

Situation: User wants to make 721

↪→ a trip 722

Slot: Destination country 723

Possible Values: India, 724

↪→ Namibia, Nigeria 725

Utterance: I’m looking to 726

↪→ book a ticket to an 727

↪→ African country 728

Slot Values Implied: Namibia, 729

↪→ Nigeria 730

731

<more in-context examples> 732

B.2 WORLD-UNDERSTANDING 733

On a scale of 1-10, how 734

↪→ likely is it that an 735

↪→ average six-year-old 736

↪→ would be able to link 737

↪→ the user utterance to 738

↪→ the target slot value? 739

Examples: 740

Situation: User wants to find 741

↪→ concerts and games 742

↪→ happening in your area 743

Slot: Destination country 744

Possible Values: India, 745

↪→ Namibia, Nigeria 746

Utterance: I’m looking to 747

↪→ book a ticket to an 748

↪→ African country 749

World Knowledge Level: 10 750

751
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<more in-context examples>752

C Prompt for Generating IURs753

Below is the prompt used to generate IURs.754

Generate a customer utterance755

↪→ containing an indirect and756

↪→ unique reason for wanting757

↪→ to choose a target slot758

↪→ value. Make sure that 1)759

↪→ the utterance entails ONLY760

↪→ the target slot value and761

↪→ that it DOES NOT mention762

↪→ the target slot value.763

764

Situation: User wants to765

↪→ transfer money from one766

↪→ bank account to another767

↪→ user’s account768

Slot Description: The account769

↪→ type of the recipient whom770

↪→ the user is transfering771

↪→ money to772

Possible Slot Values: checking,773

↪→ savings774

Target Slot Value: checking775

Do Not Mention: checking776

Indirect User Request Keywords777

↪→ In: I need to transfer778

↪→ some money to my friend’s779

↪→ account. He usually uses780

↪→ it for his direct deposits.781

782

Situation: User wants to find a783

↪→ restaurant of a particular784

↪→ cuisine in a city785

Slot Description: Price range786

↪→ for the restaurant787

Possible Slot Values:788

↪→ inexpensive, moderate,789

↪→ expensive790

Target Slot Value: moderate791

Do Not Mention Keywords In:792

↪→ moderate793

Indirect User Request: Looking794

↪→ to have a decent meal795

↪→ without burning a hole in796

↪→ my pocket797

798

Now, generate ONE indirect user799

↪→ request for this input800

↪→ based on the above 801

↪→ examples. 802

Situation: {situation} 803

Slot Description: 804

↪→ {slot_description} 805

Possible Slot Values: 806

↪→ {possible_slot_values} 807

Target Slot Value: 808

↪→ {target_slot_value} 809

Do Not Mention Keywords In: 810

↪→ {target_slot_value} 811

D Generation Parameters 812

OpenAI Models. We use the default settings 813

from the OpenAI for our experiments with GPT-3.5 814

and GPT-4 models. 815

Llama 2 Models. For all generation experiments 816

with Llama 2, we use the following parameters. 817

Top-k: 50 818

Top-p: 0.9 819

Temperature: 0.5 820

Max New Tokens: 128 821

Min New Tokens: -1 822

Stop Sequences: \n 823
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