
LAVa: Layer-wise KV Cache Eviction with Dynamic Budget Allocation

Anonymous ACL submission

Abstract

KV cache is commonly used to accelerate001
LLM inference with long contexts, yet its high002
memory demand drives the need for cache003
compression. Existing compression methods,004
however, are largely heuristic and lack dy-005
namic budget allocation. To address this lim-006
itation, we introduce a principled framework007
for cache compression by minimizing infor-008
mation loss in Transformer residual streams.009
Building on it, we analyze the layer attention010
output loss and derive a new metric for compar-011
ing cache entries across heads, enabling layer-012
wise compression with dynamic head budgets.013
Additionally, by contrasting cross-layer infor-014
mation, we also achieve dynamic layer bud-015
gets. Our method (named LAVa) is theoret-016
ically grounded and simple, requiring no pa-017
rameter tuning. Experiments on LongBench018
and Needle-in-a-Haystack benchmarks demon-019
strate its superiority over strong baselines. No-020
tably, we find that dynamic layer budgets are021
crucial for generation tasks (e.g. code com-022
pletion), whereas dynamic head budgets are023
important for extraction tasks (e.g. extractive024
QA). As a fully dynamic compression method,025
LAVa consistently maintains top performance026
across task types and LLM architectures.027

1 Introduction028

Large language models (LLMs) have shown re-029

markable capability in handling long-text scenarios,030

enabling advancements in tasks such as question031

answering (Kamalloo et al., 2023), code genera-032

tion (Guo et al., 2023), and multi-turn dialogues033

(Chiang et al., 2023). To further enhance external034

knowledge integration, state-of-the-art models like035

Claude 3.5 (Anthropic and et al.), GPT-4 (OpenAI036

and et al., 2024), and Qwen2.5 Max (Qwen and037

et al., 2025) have extended their context lengths038

beyond 128K tokens. However, supporting such039

long contexts comes with increased computational040

challenges. One common approach to accelerating041

LLM inference is caching Key and Value vectors 042

(KV cache), but its high memory demand necessi- 043

tates efficient cache compression techniques. 044

While existing compression methods have 045

shown promise, they are largely heuristic, rely- 046

ing on statistical measures such as accumulated 047

attention scores (Zhang et al., 2023; Oren et al., 048

2024; Li et al., 2024). These metrics are derived 049

from empirical observations rather than a theoret- 050

ical foundation. Additionally, although dynamic 051

head allocation (Feng et al., 2024) and dynamic 052

layer allocation (Qin et al., 2025) have been ex- 053

plored, no method, to our knowledge, fully adapts 054

head and layer budgets. 055

To address this gap, we propose a unified frame- 056

work for cache compression and budget allocation, 057

which is formulated through the lens of minimizing 058

information loss in Transformer residual streams 059

(see Figure 1, and Sec. 3). We draw the connection 060

between context compression and KV cache com- 061

pression, showing that many existing methods for 062

these two tasks can be formulated within our frame- 063

work. Specifically, context compression methods 064

(Qin et al., 2024a,b) aim to minimize global in- 065

formation loss at the logits layer. In contrast, KV 066

cache compression methods (Zhang et al., 2023; 067

Cai et al., 2024; Qin et al., 2025) primarily focus 068

on local information loss at the head or layer levels. 069

Our framework provides a principled approach 070

to designing new algorithms. This paper introduces 071

a novel method based on Layer Attention Output 072

Loss, which measures the impact of compression 073

on the information retained in each layer after 074

multi-head attention. The layer-wise loss function 075

provides a balanced perspective on both local infor- 076

mation within layers and global information flow 077

across layers. Within each layer, the loss function 078

guides the design of a scoring mechanism to assess 079

token importance across heads, allowing for simul- 080

taneous head budget allocation and cache eviction. 081

Across layers, it enables dynamic layer budget al- 082

1

Current Step
(the -th Residual Stream)

Expected Last Step
(Last Residual Stream)

Unembedding
Layer

Next Token

H
ea

d1

H
ea

d2

H
ea

d3

MHA

Logit Loss

Layer Attention
Output Loss

Head Attention
Output Loss

Head Attention
 Loss

FFN

Layer Output
Loss

Layer L

Layer 1

Layer 2

Figure 1: Information flow in decoder-only LLMs. The decoding process can be seen as operating on the current
residual stream. Each residual stream (red lines) corresponds to one token, and is considered as a communication
channel. Attention heads copy information from past residual streams to the current one (green lines) .

location by comparing information between layers.083

Our method is theoretically grounded, fully dy-084

namic, and significantly simpler than CAKE, the085

only existing method with dynamic layer budgets.086

Extensive experiments were conducted using var-087

ious LLM series on the LongBench and Needle in088

a Haystack benchmarks. The results consistently089

demonstrate LAVa’s strong ability to preserve the090

model’s long-text comprehension under various091

memory constraints. Additionally, compared to092

a full cache implementation of FlashAttention-2,093

LAVa significantly reduces memory consumption094

while simultaneously reducing latency (9× faster095

decoding for 128K-token sequences). Our empiri-096

cal findings highlight that dynamic layer budgets097

are essential for generation tasks, while dynamic098

head budgets are crucial for text extraction tasks.099

Achieving dynamic budget allocation at both the100

head and layer levels is key to optimizing perfor-101

mance across different tasks.102

Our Contributions: 1) We introduce a principled103

framework for KV cache eviction by analyzing104

the information flow through Transformer residual105

streams, accounting for information loss at various106

points in the residual streams during decoding. 2)107

Building on this framework and the information108

loss at the layer attention output, we propose a109

novel, unified method (LAVa) for dynamically110

allocating budgets for both heads and layers, as111

well as for KV cache eviction. 3) Evaluations on112

LongBench and Needle in a Haystack demonstrate 113

that our simple method outperforms strong base- 114

lines which require multiple strategies for budget 115

allocation and KV cache eviction. 116

2 The Information Flow of LLM 117

Decoding Process with KV Cache 118

KV cache is initialized at prefilling stage, which 119

basically computes the Key and Value for tokens 120

in the initial prompts in the standard way (Vaswani, 121

2017). In the following, we assume that there ex- 122

ists a KV cache of (N − 1) previous tokens and 123

demonstrate how decoding is performed at step-N . 124

Notations The LLM has L layers, each has H 125

heads. The model and head dimensions are d and 126

dh = d/H; Kl, Vl are the KV cache for the l-th 127

layer up to the current time step (the N -th token), 128

which are of [H, (N − 1), dh] sizes. The full nota- 129

tion Table 3 is in Appendix A. 130

Decoding Process According to (Ferrando and 131

Voita, 2024), LLM decoding can be viewed as op- 132

erating on the current (N -th) residual stream, as 133

illustrated in Figure 1. In each layer, information 134

is read from the residual stream, updated, and then 135

written back. Specifically, suppose that xNl is the 136

current input for layer l, we first calculate the cor- 137

responding QN
l ,KN

l , V N
l as follows: 138

QN
l = xNl WQ

l ;KN
l = xNl WK

l ;V N
l = xNl W V

l 139

2

where QN
l ,KN

l , V N
l are of size (H × 1× dh), con-140

taining H head-wise caches. The layer-wise KV141

cache is then updated as follows:142

Kl = Cat[Kl,K
N
l], Vl = Cat[Vl, V

N
l]143

where Kl, Vl are tensors of size (H×N ×dh), and144

Cat indicates the concatenation operation.We then145

calculate the attention scores of step-N for layer-l:146

AN
l = Cath∈[H]

(
AN

l,h

)
147

where AN
l,h = Softmax(

QN
l,h(Kl,h)

T

√
dh

). Here,148

AN
l,h[i] indicates how much the token at step-N149

attends to the token-i (i ≤ N). Layer-l attention150

output is calculated as follows:151

yNl = Cath∈[H](A
N
l,hVl,h)W

O
l ∈ R1×d152

The layer output xNl+1 is calculated as xNl+1 =153

yNl +FFN(yNl), which is then passed as the input154

the next layer l + 1. In the last layer, we exploit155

an un-embedding layer (WM ∈ Rd×|V|) to get the156

probability vector p for next token sampling:157

pN =
(
yNL + FFN(yNL)

)
WM (1)158

3 A Principled Framework for KV Cache159

Eviction based on Information Loss160

Given the KV cache, compression can be seen as161

masking entries in the KV tensors so that the at-162

tention heads cannot copy masked information to163

the later residual streams. Formally, one can define164

the attention mask Il,h for layer-l and head-h:165

Il,h[i] =

{
1 if Kl,h[i] and Vl,h[i] are retained
0 evict Kl,h[i] and Vl,h[i]

166

The goal is to find a KV cache eviction policy167

so that the decoding output is similar to or compa-168

rable to the original (Zhang et al., 2023).This is169

equivalent to minimizing the information loss for170

the logits at the last layer (Eq. 1) for all subsequent171

residual streams (from N to Ne; see Figure 1). Let172

P denote this logit loss, and B be the memory con-173

straint. The unified problem for budget allocation174

and cache eviction can be defined as follows:175

min
I,B
P(x1...N1 , I,B) (2)176

st.
∑
i∈[N]

Il,h[i] = Bl,h;177

∑
h∈[H]

Bl,h = Bl;
∑
l∈[L]

Bl = B178

Il,h[k] = 1 , ∀l, h; and ∀k ∈ [N − w,N]179

Here, Bl,h represents the budget for layer-l and 180

head-h, Bl denotes the total budget for layer-l. The 181

final constraint ensures that the most recent tokens 182

within a window of size w are retained for all heads, 183

aligning with the common practice in the literature. 184

The problem in Eq. 2 is infeasible: First, com- 185

puting the loss over future, unseen tokens is im- 186

practical. To address this, we approximate the loss 187

by considering only residual streams up to the cur- 188

rent step N . Considering the current step-N , one 189

can define P as the cross-entropy loss between pN 190

(Eq. 1) and p̂N , which is the logit obtained with 191

the attention mask (Qin et al., 2024a). Second, the 192

search space for the mask matrix is combinatorial, 193

rendering the problem intractable. To mitigate this, 194

we instead search for a scoring function s, where 195

sl,h[i] assigns an importance score to token i at 196

layer l and head h. This scoring function allows us 197

to greedily choose the least important entries to be 198

masked I = Select(s,B). All in all, we have the 199

following (surrogate) optimization problem: 200

min
B,s∈F

P(x1...N1 , s,B) (3) 201

where F denotes the space of all scoring functions. 202

The scoring function can be parameterized by a 203

network ϕ, which is then found through offline 204

training. This is the common approach employed in 205

context compression methods (Qin et al., 2024a,b). 206

The aforementioned approach to minimizing 207

Global Logit Loss can be impractical for online 208

inference when the scoring function is computa- 209

tionally expensive. A more feasible alternative is 210

to focus on local information and apply localized 211

KV cache eviction. For instance, Head Attention 212

Loss can be used for head-wise eviction, a strategy 213

adopted by most existing methods (Zhang et al., 214

2023; Li et al., 2024; Qin et al., 2025). In this case, 215

the scoring functions are lightweight, relying on 216

simple statistical features, like head-wise attention 217

weights. Table 1 summarizes how existing meth- 218

ods can be formalized within our framework, with 219

further details provided in Appendix B. 220

4 LAVa: Layer-wise Cache Eviction with 221

Dynamic Budget Allocation 222

4.1 Layer Attention Output Loss and the 223

Scoring Function 224

The aforementioned framework provides a prin- 225

cipled approach to designing new algorithms for 226

KV cache eviction. This section demonstrates the 227

3

Methods Budgets Scoring Function Loss
Bl,h Bl

SnapKV (Li et al., 2024) Bl/H B/L Recent attention scores

Head Attention
sl,h[i] =

1
w

∑N
j=N−w Aj

l,h[i], ∀i < N−w
CAKE (Qin et al., 2025) Bl/H Dynamic Recent attention scores + attention shifts

sl,h[i] = γVARN
j=N−w([A

j
l,h[i]))

+ 1
w

∑N
j=N−w Aj

l,h[i], ∀i < N − w

AdaKV (Feng et al., 2024) Dynamic Fixed Recent attention scores (like SnapKV) Layer Attention
OutputLAVa (Ours) Dynamic Dynamic Recent attention scores × value norm

sl,h[i] =
maxk∥Vl,h[k]∥1

w

∑N
j=N−w Aj

l,h[i]

Table 1: Summary of representative methods for KV Cache compression. AdaKV is a compression method
with dynamic head-wise budget allocation, its layer budgets are fixed, either following uniform allocation (as in
Ada-SnapKV) or pyramid allocation (as in Ada-PyramidKV). For the full Table, please refer to Appendix B.

design of our novel algorithm based on Layer At-228

tention Output Loss (see Figure 1). Specifically, we229

show how our scoring function is designed based230

on analyzing the upper bound of the loss and how231

we can exploit the scoring function for layer-wise232

cache eviction with dynamic budget allocation.233

Lemma 1. Based on the Lp norm, the layer at-234

tention output loss due to the attention mask I is235

measured for layer-l at the current (N -th) residual236

stream as follows:237

P(x1...N1 , I,B) = ∥yNl − ŷNl ∥p (4)238

=

∥∥∥∥∥Cath

[(
AN

l,h −
AN

l,h ⊙ Il,h
∥AN

l,h ⊙ Il,h∥1

)
Vl,h

]
WO

l

∥∥∥∥∥
p

239

where ⊙ indicates element-wise multiplication and240

ŷNl indicates the layer attention output obtained by241

masking the KV cache with I (equivalently, after242

KV cache eviction).243

The proof of Lemma 1 is straightforward and244

provided in the Appendix C. We then develop a245

new upper bound for the L1 norm and provide the246

result in Theorem 1, for which the proof is also247

provided in Appendix C.248

Theorem 1. The L1 norm of the layer attention
output loss can be bounded by:

(5)
∥yNl − ŷNl ∥1
≤ 2Ĉ

∑
h∈[H]

∑
i∈[N]

AN
l,h[i]V̄l,h (1−Il,h[i])

where Ĉ = ∥WO
l

T ∥1 is a constant indepen-249

dent of any head or token within layer-l; V̄l,h =250

maxk∈[N]∥Vl,h[k]∥1 is a head-dependent value.251

Given a fixed budget Bl, we consider a greedy252

algorithm that iteratively evicts one cache entry at253

a time until the cache budget is met. Apparently, 254

selecting a single entry that minimizes the upper 255

bound in Eq. 5 is equivalent to choosing the entry 256

with the smallest score, given by the scoring func- 257

tion sl,h[i] = AN
l,h[i]V̄l,h. Notably, this function 258

incorporates a head-dependent value V̄l,h, which 259

should not be ignored when comparing KV cache 260

entries across different heads. This is different from 261

AdaKV (Feng et al., 2024), which considers the 262

layer attention output loss yet does not take into 263

account the values. This also provides a theoretical 264

justification for the introduction of values into the 265

scoring, which has been exploited heuristically for 266

head-based eviction in (Guo et al., 2024). 267

The scoring function sl,h[i] = AN
l,h[i]V̄l,h de- 268

scribed earlier is based solely on analyzing the 269

current residual stream (the N -th decoding step). 270

To improve the performance for KV cache eviction, 271

we can incorporate information from all past resid- 272

ual streams similarly to H2O (Zhang et al., 2023). 273

However, doing so introduces more computational 274

overhead. Inspired by SnapKV (Li et al., 2024), 275

we instead incorporate information from recent w 276

residual streams, yielding a new scoring function. 277

Definition 1. Layer-wise Attention and Value 278

(LAVa) score for the token-i at layer-l, head-h is 279

defined as follows: 280

sl,h[i] =
maxk∈[N]∥Vl,h[k]∥1

w

N∑
j=N−w

Aj
l,h[i] (6) 281

Based on this scoring function, we develop the 282

layer-wise KV cache eviction as outlined in Algo- 283

rithm 1. Notably, we only evict entries outside the 284

recent window [N − w,N], effectively retaining 285

the most recent tokens as specified by the final con- 286

straint in the optimization problem (Eq. 2). Our 287

4

Algorithm 1 LayerEvict: Layer-wise KV Cache
Eviction based on LAVa Score

1: Input: Budget Bl, KV Cache Kl, Vl

2: Output: Compressed KV Cache K̂l, V̂l

3: sl = []
4: for h = 1 to H do
5: Calculate sl,h[i], ∀i /∈ [N − w,N] based

on Eq. 6
6: sl.extend(sl,h)
7: end for
8: function EVICT(Bl, sl,Kl, Vl)
9: Sl ← Bl smallest entries based on sl

10: Il,h[k] = 0, ∀(h, k) ∈ Sl
11: for h = 1 to H do
12: K̂l,h = Kl,h ⊙ Il,h
13: V̂l,h = Vl,h ⊙ Il,h
14: end for
15: Return K̂l, V̂l

16: end function
17: Return EVICT(Bl, sl,Kl, Vl)

eviction method operates across heads within layer-288

l, enabling dynamic budget allocation for all heads289

while simultaneously performing cache eviction.290

4.2 Layer Budget Allocation291

Recently, CAKE (Qin et al., 2025) and PyramidKV292

(Cai et al., 2024) have demonstrated the potential293

of allocating different budgets across layers. Pyra-294

midKV, however, is suboptimal as it assigns a fixed295

allocation pattern regardless of the input prompt296

being considered. In contrast, CAKE is prompt-297

dependent allocation (dynamic) but combines dif-298

ferent scores for cache eviction and budget allo-299

cation. As a result, CAKE requires tuning three300

hyperparameters, hindering its practical applica-301

tion. Below, we describe our hyperparameter-free302

Algorithm based on the LaVa score.303

Our key idea is that layers with greater uncer-304

tainty in determining which cache entry to evict305

should be allocated a larger budget. Specifically,306

based on the LAVa score, the probability of evict-307

ing token-k at layer-l and head-h is obtained by308

normalizing the LAVa scoring values:309

ŝl,h[i] =
sl,h[i]∑
k,h sl,h[k]

(7)310

The uncertainty for layer-l is then measured by the311

normalized entropy as follows:312

el =
−
∑

h,i(ŝl,h[i] log ŝl,h[i])

H ×N
(8)313

Algorithm 2 LAVa: Dynamic Budget Allocation
and Cache Eviction based on LAVa Score

1: Input: Total Budget B, KV Cache K,V Num-
ber of Layers L

2: Output: Compressed KV Cache K̂, V̂
3: s = [], e = [], K̂ = K, V̂ = V
4: for l = 1 to L do
5: Calculate sl based on Eq. 6
6: Calculate el based on Eq. 7, 8
7: s.append(sl)
8: e.append(el)
9: for l̃ = 1 to l do

10: Bl̃ =
el̃∑
l el

B
11: K̂l̃, V̂l̃ = EVICT(Bl̃, sl̃, K̂l̃, V̂l̃)
12: end for
13: end for
14: Return K̂, V̂

With such a measure, we can first initialize all 314

KV cache through prefilling, followed by KV cache 315

compression. Unfortunately, this approach results 316

in a high memory peak after prefilling (and be- 317

fore compression). To address this, the common 318

practice is that we perform prefilling and cache 319

eviction layer by layer. For dynamic layer-budget 320

allocation, we draw inspiration from CAKE: after 321

prefilling layer-l, the lower layers (< l) are recom- 322

pressed (over an already compressed cache). As a 323

result, a lower layer is compressed multiple times 324

using the same LAVa scores, but the budget is ad- 325

justed, becoming smaller over time as the memory 326

is shared with more higher layers being prefilled. 327

The specific algorithm is outlined in Algorithm 2. 328

4.3 Further Discussions 329

LLM with GQA Group Query Attention (GQA) 330

(Ainslie et al., 2023) is the technique most mod- 331

ern LLMs adopt due to its balance between per- 332

formance loss and memory efficiency. In GQA, 333

the KV cache is compressed by sharing a single 334

KV cache among all heads within a group. During 335

inference, the KV cache is replicated across heads 336

within each group for computation. When apply- 337

ing LAVa scores to GQA, we take a conservative 338

approach: the group-wise score for a token is de- 339

termined as the maximum of its head-wise scores 340

within the corresponding group. In other words, 341

we tend to retain the entry as long as it is important 342

for at least one head within the group. 343

5

Other Potential Directions Building on our344

framework, multiple research directions can be fur-345

ther explored. One possible question is whether the346

Layer Output Loss, which takes into account the347

FFN layer, should be considered. The interaction348

between the FFN layer and the layer attention out-349

put determines what information a layer writes to350

the residual stream (Ferrando and Voita, 2024). In351

other words, certain tokens in past residual streams352

may play a crucial role in activating the layer’s353

knowledge within the FFN. Accounting for these354

interactions could reduce performance loss, yet the355

challenge lies in how to do so efficiently.356

5 Experiments357

5.1 Experimental Settings358

Backbone LLMs. We evaluate two series of359

LLMs: Mistral-7B-Instruct-v0.2 (Jiang et al.,360

2023), Qwen2.5-7/14/32B-Instruct (Qwen and361

et al., 2025), all with a context length of 32k.362

These models are widely adopted for their mod-363

erate parameter sizes and strong performance on364

long-sequence tasks, all utilizing Group Query At-365

tention (Ainslie et al., 2023).366

Evaluation Benchmarks. To validate the effec-367

tiveness of our algorithm, we perform evaluation368

LongBench (Bai et al., 2024), a bilingual, multi-369

task benchmark for long-context understanding. It370

comprises 21 datasets across six task categories in371

both English and Chinese, with an average length372

of 6,711 words (English) and 13,386 characters373

(Chinese). LongBench covers key long-text appli-374

cation areas, including single-document QA, multi-375

document QA, summarization, few-shot learning,376

synthetic tasks, and code completion. We also con-377

duct experiments on Needle In A Haystack (Cai378

et al., 2024; Liu et al., 2024; Fu et al., 2024), of379

which the results are given in Appendix D.380

Baseline Methods. We compare our meth-381

ods against several baselines: PyramidKV,382

SnapKV, Ada-SnapKV, Ada-PyramidKV, and383

CAKE. Among these, PyramidKV and CAKE al-384

low different layer budgets. AdaKV is derived385

from the layer attention output loss but relies solely386

on attention for its scoring function and does not387

incorporate dynamic layer budget allocation. Ada-388

SnapKV employs the same scoring function as389

SnapKV and with a unform layer budget (also the390

same as SnapKV) but allows dynamic head bud-391

gets. Ada-PyramidKV follows the same approach392

as Ada-SnapKV but assigns fixed, varying budgets 393

across layers (like PyramidKV). More information 394

is given in Appendix B, D. 395

5.2 Main Results 396

Table 2 presents the results of Mistral-7B with 397

different eviction policies on LongBench, reveal- 398

ing several key observations. First, LAVa outper- 399

forms all baselines across different budgets, with 400

a more pronounced advantage at smaller budgets. 401

Second, dynamic head budget is crucial as Ada- 402

SnapKV and Ada-PyramidKV consistently outper- 403

form their counterparts with fixed budgets. Third, 404

among methods requiring no hyperparameter tun- 405

ing (SnapKV, Ada-SnapKV, and LAVa), LAVa 406

achieves the best performance, significantly sur- 407

passing others. For instance, at B = 128HL, LAVa 408

achieves an average score of 36.74, compared 409

to Ada-SnapKV’s 35.82. And finally, LAVa and 410

CAKE excel in code-related tasks. On RepoBench- 411

P with a 128HL budget, LAVa (48.92) and CAKE 412

(48.53) outperform Ada-SnapKV (46.85) by a sig- 413

nificant margin. This is interesting given that 414

Ada-SnapKV surpasses CAKE on average over 415

20 datasets. Similar trends are observed with the 416

Qwen series and presented in Appendix D. 417

To further investigate the last observation, we cat- 418

egorize the 20 LongBench datasets into two types: 419

extraction tasks, which require extracting answers 420

from the context (e.g., QA tasks evaluated with 421

F1 or Accuracy), and generation tasks, which in- 422

volve abstractive output (e.g., summarization and 423

code completion). For each category, we then com- 424

pute the average scores obtained with Qwen-7B 425

and Mistral-7B under varying cache budgets and 426

eviction policies. Figure 2 highlights several key 427

findings: 1) Extraction tasks are generally less af- 428

fected by compression, as LLM performance with 429

a compressed cache remains closer to that with 430

a full cache; 2) The performance gap among dif- 431

ferent eviction policies is greater on generation 432

tasks than on extraction tasks. This observation 433

is clearer with Qwen-7B; 3) CAKE and LAVa out- 434

perform Ada-SnapKV and methods with fixed-layer 435

budgets on generation tasks, though CAKE per- 436

forms significantly worse than Ada-SnapKV on 437

extraction tasks with Mistral-7B. This suggests the 438

importance of (dynamic) layer budget allocation 439

for generation tasks. LAVa, however, consistently 440

achieves top performance across both task types 441

and language models, particularly in low budgets. 442

6

Single-Doc. QA Multi-Doc. QA Summarization Few-shot Learning Synthetic Code

N
rtvQ

A

Q
asper

M
F-en

M
F-zh

H
otpotQ

A

2W
ikiM

Q
A

M
usique

D
ureader

G
ovReport

Q
M

Sum

V
CSU

M

M
ultiN

ew
s

TREC

TriviaQ
A

SA
M

Sum

LSH
T

PCount

PR-en

PR-zh

Lcc

RepoBench-P

Avg

Full Cache 26.77 32.34 49.63 48.42 43.43 27.89 18.61 30.85 32.92 24.54 15.04 27.20 71.00 86.23 43.41 39.00 2.81 86.56 89.75 55.29 52.55 45.07

B = 128HL
PyramidKV 20.01 19.23 43.81 32.37 35.62 22.34 14.38 17.53 18.95 21.91 11.07 20.87 47.00 85.34 40.21 19.25 2.86 65.60 59.49 49.52 45.67 34.51
SnapKV 20.99 19.65 45.04 32.02 36.48 22.19 14.04 17.68 18.83 21.36 10.91 20.29 45.00 84.10 40.01 19.75 3.06 64.48 60.50 49.84 45.27 34.42
Ada-PyramidKV 20.21 20.80 43.82 33.65 37.21 22.99 14.93 18.06 19.41 22.02 11.16 20.97 52.00 83.93 39.97 20.00 2.81 72.73 72.89 51.00 46.62 36.22
Ada-SnapKV 20.61 20.56 44.03 34.03 36.39 23.66 16.15 17.82 19.21 21.73 11.25 20.35 50.00 84.32 39.82 19.75 3.87 69.11 70.52 50.21 46.85 35.82
CAKE 21.01 20.16 44.08 32.52 36.16 23.89 15.32 17.67 18.82 22.62 10.93 21.03 47.00 85.14 39.90 21.25 3.02 63.65 65.96 51.81 48.53 35.06
LAVa (Ours) 19.57 21.11 44.29 33.91 38.29 23.59 15.32 18.56 19.33 22.32 11.42 21.07 53.50 85.20 40.16 21.75 2.88 69.87 74.75 51.94 48.92 36.74

B = 256HL
PyramidKV 20.79 22.74 45.90 35.72 38.63 24.02 15.97 18.99 21.61 22.34 11.02 22.24 58.00 84.06 40.52 22.75 2.96 74.70 83.83 51.85 48.86 38.23
SnapKV 21.39 22.15 46.50 34.77 39.68 25.01 14.86 19.11 21.61 23.04 11.46 22.67 57.00 85.04 40.81 23.25 3.18 76.49 83.60 51.99 49.42 38.49
Ada-PyramidKV 22.61 23.84 47.65 36.56 39.33 24.86 17.22 19.65 21.22 22.54 11.82 22.29 64.00 84.93 40.36 24.50 3.40 77.39 85.83 52.48 49.43 39.43
Ada-SnapKV 21.63 23.55 47.51 37.42 38.89 23.65 16.06 19.34 21.98 23.21 11.49 22.39 64.00 86.33 40.54 25.25 2.23 77.44 85.42 52.31 49.62 39.40
CAKE 21.37 23.40 46.84 35.02 38.10 24.50 14.81 19.40 21.59 22.77 11.32 22.68 55.00 85.46 41.92 24.75 2.96 75.66 86.46 54.29 51.38 38.84
LAVa (Ours) 22.70 24.67 48.62 37.81 39.68 25.96 16.77 20.26 21.92 22.48 11.88 22.91 65.00 85.24 41.28 26.75 2.88 76.76 85.75 54.17 51.77 40.12

B = 512HL
PyramidKV 23.57 24.84 48.74 39.54 38.90 25.22 17.40 20.42 23.04 23.24 11.91 24.19 66.50 86.07 41.06 28.00 3.29 87.29 88.83 53.77 50.42 41.15
SnapKV 23.67 28.08 49.40 40.25 40.14 25.58 16.97 20.49 23.75 23.69 12.03 24.31 65.00 86.29 41.98 28.50 3.22 85.79 88.67 53.99 51.02 41.48
Ada-PyramidKV 24.37 27.30 48.01 40.88 39.75 25.96 18.58 20.90 23.59 23.33 12.07 24.04 67.50 86.44 42.58 31.50 3.38 85.88 89.67 54.15 51.30 41.89
Ada-SnapKV 24.63 27.48 48.90 41.28 39.84 26.33 18.26 20.91 23.59 23.51 12.27 24.32 67.50 86.38 42.34 32.50 2.98 87.65 89.17 54.39 51.03 42.11
CAKE 22.76 27.54 49.47 41.27 38.17 25.85 17.26 20.60 23.72 23.65 11.95 24.50 66.00 86.01 42.56 29.50 3.45 86.79 88.75 56.40 52.37 41.76
LAVa (Ours) 25.01 27.84 48.97 42.14 40.95 26.88 18.33 21.12 23.59 23.59 12.28 24.51 68.50 86.34 42.48 33.50 2.90 87.23 89.83 55.83 52.85 42.59

B = 1024HL
PyramidKV 25.62 28.96 48.35 42.18 40.89 26.65 19.69 21.96 25.10 23.57 12.58 25.42 68.50 86.30 41.92 35.50 2.98 86.77 89.50 55.26 51.03 42.79
SnapKV 24.80 30.17 49.13 43.23 41.16 26.92 17.89 22.58 25.75 23.64 12.88 25.85 67.50 86.25 42.56 36.00 2.88 88.10 88.92 55.23 51.38 43.00
Ada-PyramidKV 24.98 29.92 47.97 41.43 40.83 26.98 19.42 22.45 25.46 23.58 12.94 25.61 68.50 86.30 42.84 35.50 2.89 88.18 89.25 54.51 51.32 42.90
Ada-SnapKV 24.84 29.99 49.21 42.55 41.00 27.39 19.23 23.23 25.89 24.18 13.13 25.85 69.00 86.23 42.84 36.25 2.90 89.02 89.75 55.38 51.93 43.34
CAKE 25.15 30.34 49.00 43.08 40.86 26.70 19.93 23.07 25.82 23.72 13.16 26.05 68.00 86.25 42.70 36.00 2.91 88.60 88.75 56.75 53.26 43.36
LAVa (Ours) 25.59 31.21 48.27 43.43 41.92 27.38 19.48 23.48 26.06 23.86 13.38 26.00 70.00 86.22 42.43 38.00 2.73 87.01 88.75 57.31 53.28 43.65

Table 2: Final comparison based on Mistral-7B-Instruct-v0.2 among 21 datasets of LongBench. (Note: The best
result is highlighted in bold, and the second is in underline. Due to the negligible numerical values obtained from
the passage count dataset, its results were excluded from the computation of the average scores.)

Figure 2: Results of generation and extraction tasks.

5.3 Evaluation of Latency and Memory Peak443

We evaluate our algorithm’s efficiency during LLM444

inference by analyzing peak memory usage and445

decoding latency on Mistral-7B-Instruct-v0.2, im-446

plemented with FlashAttention-2 (Dao, 2023). Our447

comparison includes Full Cache, SnapKV, Ada-448

SnapKV, CAKE, and our proposed method, all us-449

ing a fixed allocation budget of 1024HL. We assess450

all methods across varying input context lengths451

while keeping the output length fixed at 128.452

Decoding Latency. By analyzing the decoding453

latency in Figure 3, we observe that our scoring454

Figure 3: Peak memory usage and decoding latency in
A800 80GB based on Mistral-7B-Instruct-v0.2.

function and dynamic budget allocation introduce 455

no additional decoding cost, achieving over a 9× 456

speedup compared to the full cache at a 128K con- 457

text length. Notably, our method is easier to deploy 458

than PyramidKV, Ada-PyramidKV, and CAKE, as 459

these baselines require parameter tuning. 460

Peak Memory Usage. As shown in Figure 3, the 461

peak memory usage of all methods generally in- 462

creases with context length due to the cost of prefill- 463

ing. Our method effectively maintains peak mem- 464

ory at a reasonable level, particularly compared 465

to the Full Cache, which encounters OOM issues 466

at higher context lengths. CAKE and LAVa, both 467

employing dynamic layer budgets, generally have 468

slightly higher peak memory usage. Compared to 469

CAKE, LAVa requires additional storage for the 470

norms of head-wise value vectors, but this extra 471

memory overhead remains minimal. 472

7

Figure 4: Ablation study on LongBench.

5.4 Further Analysis473

Dynamic Budget Allocation To examine the im-474

pact of dynamic budget allocation, we introduce475

two modifications: LAVa (-layer dynamic), which476

enforces a uniform layer budget of B/L, and LAVa477

(-head dynamic), which fixes the head budget at478

Bl/H after dynamically determining the layer bud-479

get Bl, performing head-wise cache eviction with-480

out cross-head comparisons. Results in Figure 4481

demonstrate that dynamic budget allocation at both482

the head and layer levels is essential for perfor-483

mance. Furthermore, it reinforces the finding that484

dynamic layer budgets are essential for generation485

tasks, whereas dynamic head budgets play a crucial486

role in text extraction tasks. Detailed results are487

provided in Appendix D, where we also analyze the488

influence of different layer allocation approaches.489

Analysis of LAVa Score. To validate the effec-490

tiveness of LAVa score, we replace our dynamic491

layer budgets with fixed ones with PyramidKV492

or Uniform allocation. For different total bud-493

get, we then compare LAVa-Pyramid with Ada-494

PyramidKV and LAVa-Uniform with Ada-SnapKV495

on LongBench. For each comparison, we count the496

number of tasks in LongBench where one method497

outperforms the other, totaling 20 comparisons per498

pair. Figure 5 presents the final winning rates,499

where a “win” indicates a higher score on a given500

task. The results show that our scoring function501

yields a significantly higher number of wins in most502

cases, validating its effectiveness.503

6 Related Work504

Recently, various KV cache compression methods505

have been proposed, leveraging different policies506

such as recency (Xiao et al., 2024), accumulated507

attention scores (Zhang et al., 2023), last-token508

attention scores (Oren et al., 2024), and recent at-509

tention scores (Li et al., 2024; Dai et al., 2024).510

While most approaches assume a uniform budget,511

recent efforts have been made for dynamic bud-512

Figure 5: LaVa score vs AdaKV score on LongBench

get allocation across layers (Qin et al., 2025) and 513

heads (Feng et al., 2024). Some methods aim at 514

layer-dependent budgets but fix the patterns across 515

all samples (Cai et al., 2024; Yang et al., 2024). In 516

general, KV cache eviction and budget allocation 517

are typically treated as separate problems, requir- 518

ing a combination of independent strategies. In 519

contrast, we develop a principled framework based 520

on information loss in the residual stream and pro- 521

pose a unified method for both cache compression 522

and dynamic budget allocation. 523

Closely related to LAVa is (Feng et al., 2025, 524

2024), which aims at minimizing the layer output 525

perturbation. However, this study only applies the 526

derived metric locally for head budget allocation. 527

In contrast, we propose a metric for layer-wise 528

cache eviction with dynamic layer budgets. 529

7 Conclusion 530

This paper introduced a principled framework for 531

KV cache compression, grounded in the princi- 532

ple of minimizing information loss in Transformer 533

residual streams. We demonstrated how various 534

existing methods fit within our framework. By 535

analyzing the Layer Attention Output Loss, we 536

proposed LAVa, a novel layer-wise compression 537

method that enables fully dynamic head and layer 538

budget allocation. Our experiments demonstrate 539

that dynamic layer budgets are crucial for gener- 540

ation tasks, whereas dynamic head budgets are 541

important for extraction tasks. As a fully dynamic 542

compression method, LAVa consistently maintains 543

top performance across task types and LLM archi- 544

tectures, while achieving the same speedup of 9× 545

with 128K context length compared to full cache. 546

Future directions include exploring new com- 547

pression algorithms based on our framework, as 548

well as extending our framework for model com- 549

pression. By advancing efficient methods for 550

LLMs, our work contributes to making LLM more 551

accessible and scalable for diverse applications. 552

8

Limitations553

There are several limitations to our work. While554

we propose a unified framework with multiple opti-555

mization opportunities, our theoretical analysis and556

experiments focus on only one direction. Although557

LAVa’s simplicity is a key advantage, other ap-558

proaches should be explored to further close the per-559

formance gap with a full-cache setup, particularly560

for generation tasks. Additionally, further research561

is needed to better understand why dynamic layer562

budget is crucial for generation tasks. Lastly, apart563

from FlashAttention-2 (Dao, 2023), our method564

has not yet been integrated into other widely used565

inference frameworks, such as vLLM (Kwon et al.,566

2023). We believe that such integration is essential567

for broader adoption and real-world deployment of568

our algorithm.569

References570

Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury571
Zemlyanskiy, Federico Lebron, and Sumit Sanghai.572
2023. GQA: Training generalized multi-query trans-573
former models from multi-head checkpoints. In The574
2023 Conference on Empirical Methods in Natural575
Language Processing.576

Anthropic and et al. The claude 3 model family: Opus,577
sonnet, haiku.578

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu,579
Jiankai Tang, Zhidian Huang, Zhengxiao Du, Xiao580
Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang,581
and Juanzi Li. 2024. LongBench: A bilingual, multi-582
task benchmark for long context understanding. In583
Proceedings of the 62nd Annual Meeting of the As-584
sociation for Computational Linguistics (Volume 1:585
Long Papers), pages 3119–3137, Bangkok, Thailand.586
Association for Computational Linguistics.587

Zefan Cai, Yichi Zhang, Bofei Gao, Yuliang Liu, Tianyu588
Liu, Keming Lu, Wayne Xiong, Yue Dong, Baobao589
Chang, Junjie Hu, et al. 2024. Pyramidkv: Dynamic590
kv cache compression based on pyramidal informa-591
tion funneling. arXiv preprint arXiv:2406.02069.592

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,593
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan594
Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion595
Stoica, and Eric P. Xing. 2023. Vicuna: An open-596
source chatbot impressing gpt-4 with 90%* chatgpt597
quality.598

Jincheng Dai, Zhuowei Huang, Haiyun Jiang, Chen599
Chen, Deng Cai, Wei Bi, and Shuming Shi. 2024.600
Corm: Cache optimization with recent message601
for large language model inference. Preprint,602
arXiv:2404.15949.603

Tri Dao. 2023. Flashattention-2: Faster attention with 604
better parallelism and work partitioning. arXiv 605
preprint arXiv:2307.08691. 606

Yuan Feng, Junlin Lv, Yukun Cao, Xike Xie, and 607
S Kevin Zhou. 2024. Ada-kv: Optimizing kv cache 608
eviction by adaptive budget allocation for efficient 609
llm inference. arXiv preprint arXiv:2407.11550. 610

Yuan Feng, Junlin Lv, Yukun Cao, Xike Xie, and 611
S Kevin Zhou. 2025. Identify critical kv cache in 612
llm inference from an output perturbation perspec- 613
tive. Preprint, arXiv:2502.03805. 614

Javier Ferrando and Elena Voita. 2024. Information flow 615
routes: Automatically interpreting language models 616
at scale. In Proceedings of the 2024 Conference on 617
Empirical Methods in Natural Language Processing, 618
pages 17432–17445, Miami, Florida, USA. Associa- 619
tion for Computational Linguistics. 620

Yao Fu, Rameswar Panda, Xinyao Niu, Xiang Yue, Han- 621
naneh Hajishirzi, Yoon Kim, and Hao Peng. 2024. 622
Data engineering for scaling language models to 623
128k context. In Proceedings of the 41st Interna- 624
tional Conference on Machine Learning, ICML’24. 625
JMLR.org. 626

Daya Guo, Canwen Xu, Nan Duan, Jian Yin, and Ju- 627
lian McAuley. 2023. Longcoder: A long-range pre- 628
trained language model for code completion. In In- 629
ternational Conference on Machine Learning. 630

Zhiyu Guo, Hidetaka Kamigaito, and Taro Watanabe. 631
2024. Attention score is not all you need for token im- 632
portance indicator in KV cache reduction: Value also 633
matters. In Proceedings of the 2024 Conference on 634
Empirical Methods in Natural Language Processing, 635
pages 21158–21166, Miami, Florida, USA. Associa- 636
tion for Computational Linguistics. 637

Roger A Horn and Charles R Johnson. 2012. Matrix 638
analysis. Cambridge university press. 639

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan 640
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, 641
and Weizhu Chen. 2021. Lora: Low-rank adap- 642
tation of large language models. arXiv preprint 643
arXiv:2106.09685. 644

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men- 645
sch, Chris Bamford, Devendra Singh Chaplot, Diego 646
de las Casas, Florian Bressand, Gianna Lengyel, Guil- 647
laume Lample, Lucile Saulnier, Lélio Renard Lavaud, 648
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, 649
Thibaut Lavril, Thomas Wang, Timothée Lacroix, 650
and William El Sayed. 2023. Mistral 7b. Preprint, 651
arXiv:2310.06825. 652

Ehsan Kamalloo, Nouha Dziri, Charles Clarke, and 653
Davood Rafiei. 2023. Evaluating open-domain ques- 654
tion answering in the era of large language models. 655
In Proceedings of the 61st Annual Meeting of the 656
Association for Computational Linguistics (Volume 657
1: Long Papers), pages 5591–5606, Toronto, Canada. 658
Association for Computational Linguistics. 659

9

https://openreview.net/forum?id=hmOwOZWzYE
https://openreview.net/forum?id=hmOwOZWzYE
https://openreview.net/forum?id=hmOwOZWzYE
https://api.semanticscholar.org/CorpusID:268232499
https://api.semanticscholar.org/CorpusID:268232499
https://api.semanticscholar.org/CorpusID:268232499
https://doi.org/10.18653/v1/2024.acl-long.172
https://doi.org/10.18653/v1/2024.acl-long.172
https://doi.org/10.18653/v1/2024.acl-long.172
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://arxiv.org/abs/2404.15949
https://arxiv.org/abs/2404.15949
https://arxiv.org/abs/2404.15949
https://arxiv.org/abs/2502.03805
https://arxiv.org/abs/2502.03805
https://arxiv.org/abs/2502.03805
https://arxiv.org/abs/2502.03805
https://arxiv.org/abs/2502.03805
https://doi.org/10.18653/v1/2024.emnlp-main.965
https://doi.org/10.18653/v1/2024.emnlp-main.965
https://doi.org/10.18653/v1/2024.emnlp-main.965
https://doi.org/10.18653/v1/2024.emnlp-main.965
https://doi.org/10.18653/v1/2024.emnlp-main.965
https://api.semanticscholar.org/CorpusID:259262301
https://api.semanticscholar.org/CorpusID:259262301
https://api.semanticscholar.org/CorpusID:259262301
https://doi.org/10.18653/v1/2024.emnlp-main.1178
https://doi.org/10.18653/v1/2024.emnlp-main.1178
https://doi.org/10.18653/v1/2024.emnlp-main.1178
https://doi.org/10.18653/v1/2024.emnlp-main.1178
https://doi.org/10.18653/v1/2024.emnlp-main.1178
https://arxiv.org/abs/2310.06825
https://doi.org/10.18653/v1/2023.acl-long.307
https://doi.org/10.18653/v1/2023.acl-long.307
https://doi.org/10.18653/v1/2023.acl-long.307

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying660
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gon-661
zalez, Hao Zhang, and Ion Stoica. 2023. Efficient662
memory management for large language model serv-663
ing with pagedattention. In Proceedings of the 29th664
Symposium on Operating Systems Principles, SOSP665
’23, page 611–626, New York, NY, USA. Association666
for Computing Machinery.667

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat668
Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle Cai,669
Patrick Lewis, and Deming Chen. 2024. SnapKV:670
LLM knows what you are looking for before gener-671
ation. In The Thirty-eighth Annual Conference on672
Neural Information Processing Systems.673

Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paran-674
jape, Michele Bevilacqua, Fabio Petroni, and Percy675
Liang. 2024. Lost in the middle: How language mod-676
els use long contexts. Transactions of the Association677
for Computational Linguistics, 12:157–173.678

OpenAI and et al. 2024. Gpt-4 technical report.679
Preprint, arXiv:2303.08774.680

Matanel Oren, Michael Hassid, Nir Yarden, Yossi Adi,681
and Roy Schwartz. 2024. Transformers are multi-682
state rnns. arXiv preprint arXiv:2401.06104.683

Guanghui Qin, Corby Rosset, Ethan Chau, Nikhil Rao,684
and Benjamin Van Durme. 2024a. Dodo: Dynamic685
contextual compression for decoder-only lms. In686
Proceedings of the 62nd Annual Meeting of the As-687
sociation for Computational Linguistics (Volume 1:688
Long Papers), pages 9961–9975.689

Guanghui Qin, Corby Rosset, Ethan C. Chau, Nikhil690
Rao, and Benjamin Van Durme. 2024b. Nugget 2d:691
Dynamic contextual compression for scaling decoder-692
only language models.693

Ziran Qin, Yuchen Cao, Mingbao Lin, Wen Hu, Shixuan694
Fan, Ke Cheng, Weiyao Lin, and Jianguo Li. 2025.695
CAKE: Cascading and adaptive KV cache eviction696
with layer preferences. In The Thirteenth Interna-697
tional Conference on Learning Representations.698

Qwen and et al. 2025. Qwen2.5 technical report.699
Preprint, arXiv:2412.15115.700

A Vaswani. 2017. Attention is all you need. Advances701
in Neural Information Processing Systems.702

Wenhao Wu, Yizhong Wang, Guangxuan Xiao, Hao703
Peng, and Yao Fu. 2025. Retrieval head mechanis-704
tically explains long-context factuality. In The Thir-705
teenth International Conference on Learning Repre-706
sentations.707

Guangxuan Xiao, Jiaming Tang, Jingwei Zuo, junxian708
guo, Shang Yang, Haotian Tang, Yao Fu, and Song709
Han. 2025. Duoattention: Efficient long-context710
LLM inference with retrieval and streaming heads. In711
The Thirteenth International Conference on Learning712
Representations.713

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song 714
Han, and Mike Lewis. 2024. Efficient streaming lan- 715
guage models with attention sinks. In The Twelfth 716
International Conference on Learning Representa- 717
tions. 718

Dongjie Yang, Xiaodong Han, Yan Gao, Yao Hu, Shilin 719
Zhang, and Hai Zhao. 2024. PyramidInfer: Pyramid 720
KV cache compression for high-throughput LLM 721
inference. In Findings of the Association for Com- 722
putational Linguistics: ACL 2024, pages 3258–3270, 723
Bangkok, Thailand. Association for Computational 724
Linguistics. 725

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong 726
Chen, Lianmin Zheng, Ruisi Cai, Zhao Song, Yuan- 727
dong Tian, Christopher Ré, Clark Barrett, et al. 2023. 728
H2o: Heavy-hitter oracle for efficient generative in- 729
ference of large language models. Advances in Neu- 730
ral Information Processing Systems, pages 34661– 731
34710. 732

A Extension of The Information Flow of 733

LLM Decoding Process with KV Cache 734

KV cache is initialized at prefilling stage, which 735

basically computes the Key and Value for tokens 736

in the initial prompts in the standard way (Vaswani, 737

2017). In the following, we assume that there ex- 738

ists a KV cache of (N − 1) previous tokens and 739

demonstrate how decoding is performed at step-N . 740

Notation Table The LLM has L layers, each has 741

H heads. The model and head dimensions are d 742

and dh = d/H; Kl, Vl are the KV cache for the l- 743

th layer up to the current time step (the N -th token), 744

which are of [H, (N − 1), dh] sizes. The notations 745

for the theoretical analysis are listed in Table 3. 746

Decoding Process According to (Ferrando and 747

Voita, 2024), the decoding process of large lan- 748

guage models (LLMs) can be viewed as a series 749

of operations on the current residual stream, as il- 750

lustrated in Figure 1. In each layer, information is 751

read from the residual stream, updated, and then 752

written back. Specifically, supposing that xNl is 753

the current input for layer l, we first calculate the 754

corresponding QN
l ,KN

l , V N
l as follows: 755

QN
l = xNl WQ

l ;KN
l = xNl WK

l ;V N
l = xNl W V

l 756

where QN
l ,KN

l , V N
l are of size (H × 1× dh), con- 757

taining H head-wise caches. The layer-wise KV 758

cache is then updated as follows: 759

Kl = Cat[Kl,K
N
l], Vl = Cat[Vl, V

N
l] 760

where Kl, Vl are tensors of size (H×N ×dh), and 761

Cat indicates the concatenation operation.We then 762

10

https://doi.org/10.1145/3600006.3613165
https://doi.org/10.1145/3600006.3613165
https://doi.org/10.1145/3600006.3613165
https://doi.org/10.1145/3600006.3613165
https://doi.org/10.1145/3600006.3613165
https://openreview.net/forum?id=poE54GOq2l
https://openreview.net/forum?id=poE54GOq2l
https://openreview.net/forum?id=poE54GOq2l
https://openreview.net/forum?id=poE54GOq2l
https://openreview.net/forum?id=poE54GOq2l
https://doi.org/10.1162/tacl_a_00638
https://doi.org/10.1162/tacl_a_00638
https://doi.org/10.1162/tacl_a_00638
https://arxiv.org/abs/2303.08774
https://openreview.net/forum?id=jVsXDLIt45
https://openreview.net/forum?id=jVsXDLIt45
https://openreview.net/forum?id=jVsXDLIt45
https://openreview.net/forum?id=jVsXDLIt45
https://openreview.net/forum?id=jVsXDLIt45
https://openreview.net/forum?id=EQgEMAD4kv
https://openreview.net/forum?id=EQgEMAD4kv
https://openreview.net/forum?id=EQgEMAD4kv
https://arxiv.org/abs/2412.15115
https://openreview.net/forum?id=EytBpUGB1Z
https://openreview.net/forum?id=EytBpUGB1Z
https://openreview.net/forum?id=EytBpUGB1Z
https://openreview.net/forum?id=cFu7ze7xUm
https://openreview.net/forum?id=cFu7ze7xUm
https://openreview.net/forum?id=cFu7ze7xUm
https://openreview.net/forum?id=NG7sS51zVF
https://openreview.net/forum?id=NG7sS51zVF
https://openreview.net/forum?id=NG7sS51zVF
https://doi.org/10.18653/v1/2024.findings-acl.195
https://doi.org/10.18653/v1/2024.findings-acl.195
https://doi.org/10.18653/v1/2024.findings-acl.195
https://doi.org/10.18653/v1/2024.findings-acl.195
https://doi.org/10.18653/v1/2024.findings-acl.195

Notation Explanation Notation Explanation

N Current token length AN
l,h[i] Attention weight of position i at layer l, head h and step N

Ne Expected token length yNl Attention output of layer l and step N

L Total number of layers ŷNl Modified attention output of layer l and step N after eviction
H Total number of heads per layer p Logits after last layer for next token
l Layer index, l ∈ [L] p̂ Modified logits after last layer for next token after eviction
h Head index, h ∈ [H] P Information loss function of Transformer residual streams
d The model embedding dimension w Sliding window size
dh The head embedding dimension dh = d/H Bl,h Budget for head h of layer l
xNl The input hidden states of step N and layer l Bl Budget for layer l
QN

l The query vector of step N and layer l B Fixed total budget for KV Cache, B =
∑

l∈[L] Bl
KN

l The key vector of step N and layer l sl,h[i] Score of position i at layer l and head h

V N
l The value vector of step N and layer l el The uncertainty of layer l for dynamic layer budget allocation

Kl,h Key cache of layer l and head h Il,h Attention mask for the head h of layer l, Il,h ∈ [1, 0]N

Vl,h Value cache of layer l and head h I Attention mask I ∈ [1, 0]L×H×N

Table 3: Notation table.

calculate the attention scores of step-N for layer-l:763

AN
l = Cath∈[H]

(
AN

l,h

)
764

where AN
l,h = Softmax(

QN
l,hKl,h√

dh
). Here,765

textbfAN
l,h[i] indicates how much the token at step-766

N (the N -th token) attends to the i-th token (i <=767

N). Layer-l attention output is calculated as fol-768

lows:769

yNl = Cath∈[H](A
N
l,hVl,h)W

O
l ∈ R1×d770

where WO
l ∈ Rd×d. The layer output xNl+1, which771

is also the input for the layer-(l + 1), is calculated772

as xNl+1 = yNl + FFN(yNl).773

In the last layer, we exploits an un-embedding774

layer (WM ∈ Rd×|V|) to get the probability vector775

p for next token sampling:776

pN =
(
yNL + FFN(yNL

)
WM (9)777

Head-wise vs Layer-wise Cache Current query778

matrix and KV cache on head h of layer l are :779

QN
l,h = QN

l [:, dh ∗h : dh ∗(h+1)] ∈ R1×dh (10)780
781

Kl,h = Kl[:, dh ∗ h : dh ∗ (h+ 1)], (11)782

Vl,h = Vl[:, dh ∗ h : dh ∗ (h+ 1)] ∈ RN×dh

(12)
783

Henc, the layer-wise KV cache can be treated as784

concatenation of head-wise elements where we just785

change the order of dimensions:786

Kl = Cath∈[H][Kl,h] ∈ RH×N×dh , (13)787

Vl = Cath∈[H][Vl,h] ∈ RH×N×dh (14)788

And the same to the query matrix:789

QN
l = Cath∈[H][Q

N
l,h] ∈ RH×1×dh (15)790

B Extension of A Principled Framework 791

for KV Cache Eviction based on 792

Information Loss 793

The unified problem for budget allocation and 794

cache eviction can be defined as follows: 795

min
I,B
P(x1...N1 , I,B) (16) 796

st.
∑
i∈[N]

Il,h[i] = Bl,h; 797

∑
h∈[H]

Bl,h = Bl;
∑
l∈[L]

Bl = B 798

Il,h[k] = 1 , ∀l, h; and ∀k ∈ [N − w,N] 799

The optimization problem in Eq. 16 is infeasible to 800

solve for several reasons. We can instead search for 801

a scoring function s, where sl,h[i] assigns an impor- 802

tance score to token i at layer l and head h. This 803

scoring function allows us to greedily choose the 804

least important entries to be masked until the bud- 805

get is met I = Select(s,B). Bringing everything 806

together, we arrive at the following (surrogate) op- 807

timization problem: 808

min
B,s∈F

P(x1...N1 , s,B) (17) 809

Current various kv cache eviction methods can 810

be adapted into our framework, just defining sev- 811

eral significant functions and parameters (includ- 812

ing P, I,B and s) and introducing additional con- 813

straints, which will result in suboptimal perfor- 814

mance. In addition, they adopt many heuristic 815

techniques based on observations to simplify the 816

problem. The full summarization of how existeing 817

methods can be formalized within our framework 818

is presented in Table 4. 819

11

Methods Budgets Scoring Function Loss
Bl,h Bl

H2O (Zhang et al., 2023) Bl/H B/L Accumulated attention scores

Head Attention

sl,h[i] =
∑N

j=i+1 A
j
l,h[i]

SnapKV (Li et al., 2024) Bl/H B/L Recent attention scores
sl,h[i] =

1
w

∑N
j=N−w Aj

l,h[i], ∀i < N−w
TOVA (Oren et al., 2024) Bl/H B/L Last-token attention scores

sl,h[i] = AN
l,h[i]

CAKE (Qin et al., 2025) Bl/H Dynamic Recent attention scores + attention shifts
sl,h[i] = γVARN

j=N−w([A
j
l,h[i]))

+ 1
w

∑N
j=N−w Aj

l,h[i], ∀i < N − w

VATP (Guo et al., 2024) Bl/H B/L Recent attention scores + value vectors Head Attention
Outputsl,h[i] =

∥Vl,h[i]∥1
w

∑N
j=N−w Aj

l,h[i]

AdaKV (Feng et al., 2024) Dynamic Fixed Recent attention scores
Layer Attention
Output

DuoAttention (Xiao et al., 2025) w or full - Head classifier (retrieval vs non-retrieval)
LAVa (Ours) Dynamic Dynamic Recent attention scores + value vectors

sl,h[i] =
maxk∥Vl,h[k]∥1

w

∑N
j=N−w Aj

l,h[i]

Dodo (Qin et al., 2024a) Dynamic B/L Neural Network (LoRA) Logits

Table 4: Comparison between different methods; Dodo and DuoAttention require training; The layer cache budget
Bl of AdaKV is based on the method it is integrated with.

H2O. (Zhang et al., 2023) Allocation budgets B820

are all fixed before generation. The budgets of all821

layers are the same and the budgets of all heads are822

also the same.823

Bl,h =
B
HL

(18)824

H2O uses head attention loss and adopt accumu-825

lated attention scores as score function.826

sl,h[i] =
N∑

j=i+1

Aj
l,h[i], Il,h = Select(sl,h,Bl,h)

(19)827

H2O claimed that the accumulated attention score828

can preserve the future attention pattern better. This829

technique is heuristic and based on observations830

of experiments in several methods like H2O and831

SnapKV (Li et al., 2024), but it is valid and actually832

can improve the performance, mitigating the im-833

pact of absolutism of only current attention scores834

(Oren et al., 2024).835

TOVA. (Oren et al., 2024) The difference be-836

tween TOVA and H2O is that TOVA uses current837

attention scores as score function.838

sl,h[i] = AN
l,h[i], Il,h = Select(sl,h,Bl,h) (20)839

SnapKV. (Li et al., 2024) The difference between840

SnapKV and H2O is that SnapKV uses recent atten-841

tion scores as score function, which means SnapKV842

only utilizes tokens within sliding window to cal- 843

culate accumulated attention scores. We set sliding 844

window size as w: 845

sl,h[i] =

N∑
j=N−w

Aj
l,h[i] 846

Il,h = Select(sl,h,Bl,h) (21) 847

SnapKV claims that the accumulated attention 848

scores of the recent sliding window is enough to 849

represent the significance of tokens. Furthermore, 850

SnapKV adopts pooling operation to preserve the 851

completeness of the information. In our view, bet- 852

ter protecting the coherence of the text is the reason 853

for the effectiveness of pooling operation. 854

PyramidKV. (Cai et al., 2024) The difference 855

between PyramidKV and SnapKV is that consider- 856

ing the different significance of layers in the long- 857

context setting, PyramidKV set the budgets of lay- 858

ers in a descending order like a pyramid. It uses a 859

hyper-parameter β to control the shape of pyramid. 860

BL−1 =
B

β ∗ L
,B0 =

2 ∗ B
L
− BL−1 861

Bl = B0 −
BL−1 − B0

L− 1
∗ l (22) 862

And the budgets of heads in one layer are the same: 863

Bl,h = Bl
H . 864

Hence, compared with SnapKV, PyramidKV 865

consider about different budgets of layers in a 866

heuristic way. 867

12

CAKE. (Qin et al., 2025) Allocation budgets B868

are generated through the online prefilling stage.869

All heads of one layer have the same budget. So870

CAKE do not consider the level of head (such as871

using mean information across heads).872

Considering spatial and temporal information,873

CAKE allocates different budgets to different lay-874

ers. And not adopting the fixed pattern like Pyra-875

midKV, CAKE claims that for different samples,876

the allocation pattern also needs to be adapted. It877

defines functions of spatial and temporal informa-878

tion for one layer l, the spatial information function879

H is formed as entropy of attention scores (larger880

values means more even distribution) and the tem-881

poral information function V (larger values means882

more distribution shift) is formed as variance of883

attention scores (A(n) means the attention scores884

distribution in the n-th step of prefilling stage):885

Hl = −
N∑
j=1

Aj
l log(A

j
l),886

Vl =
N∑
j=1

VAR([At
l [j]]

t∈[j,N]) (23)887

Then CAKE uses these two functions to determine888

the budget of layers, where γ1 and γ2 are two hyper-889

parameters to control the influence of two func-890

tions:891

Pl = H
1
γ1
l V

1
γ2
l ,Bl =

Pl∑l∈[L] Pl
B,Bl,h =

Bl
H
(24)892

CAKE also uses head attention loss function as op-893

timization objective but it also introduces extra in-894

formation in score function. CAKE integrates tem-895

poral information into score function of SnapKV.896

It adopts variance to represent the distribution shift897

of attention scores for the same token (γ is also898

a hyper-parameter to control the influence of tem-899

poral information). We set sliding window size as900

w:901

sl,h[i] =
N∑

j=N−w

Aj
l,h[i] + γVAR([At

l,h[i]]
t∈[i,N])902

Il,h = Select(sl,h,Bl,h) (25)903

AdaKV. (Feng et al., 2024) The algorithm of904

AdaKV is based on other methods. It adopts905

layer attention output loss function but not con-906

duct real training. Deriving the upper bound of907

output loss (as shown in Eq. 26 where C =908

maxh∈[H]∥WO
l,h

T
V T
l,h∥1), AdaKV obtains the in- 909

sight that allocating different budgets to heads of 910

one layer based on the score function just consider- 911

ing about information within attention scores can 912

preserve the performance of model further. 913

∥yl − ŷl∥1≤ 2C
∑
h∈[H]

(
∑
i∈[N]

AN
l,h[i](1− Il,h[i]))

(26) 914

We set ŝl as the topk results of all sl,h, h ∈ [H], the 915

budget of one head h can be calculated by: 916

Bl,h = Num(ŝl,h), ŝl, Il = Select(sl,h,Bl,h)
(27) 917

AdaKV combines this insight with SnapKV and 918

PyramidKV for better results. So the score func- 919

tion of AdaKV is the same as Eq. 21. However, the 920

bound of AdaKV ignores the influence of value in- 921

formation and just use the max information, which 922

will make the bound too loose. Our framework 923

about output loss is motivated by this research and 924

we conduct some modification and further studies. 925

For the details and how to derive upper bound of 926

output loss, refer to Section 4. 927

DuoAttention. (Xiao et al., 2025) DuoAttention 928

uses layer attention output loss function as op- 929

timization objective. Unlike H2O and TOVA, at- 930

tention mask I of DuoAttention is constraint to 931

a pattern combined with sink and recent tokens 932

based on allocation budgets B, which means score 933

function s id for tokens are not needed. Here sink 934

tokens means several initial tokens in prompt de- 935

fined by StreamingLLM (Xiao et al., 2024). 936

Il,h[i] =

{
1 if position k is sink or recent, k ∈ [N]

0 otherwise, evict Kl,h[k] and Vl,h[k]
(28) 937

DuoAttention adopts real optimization method and 938

needs training based on 2-norm of output loss func- 939

tion. The optimization result is to determine the 940

allocation budgets B. In detail, it determines which 941

head was allocated with full budget and which head 942

was allocated with a compressed budget. So be- 943

sides I and B, DuoAttention introduces a param- 944

eter α to be optimized and finally determines the 945

different functions of heads, including Retrieval 946

Heads (Wu et al., 2025) and Streaming Heads. We 947

define ŵ as the numbers of sink and recent tokens. 948

Bl,h =

{
n if head h of layer l is Retrieval Head
ŵ otherwise, Streaming Head

(29) 949

13

Dodo. (Qin et al., 2024a) Dodo uses logit loss950

function as optimization objective. But not adopt-951

ing a predefined rule for attention mask I, Dodo952

uses a score function ϕ implemented by LoRA (Hu953

et al., 2021) adapters to determine the attention954

mask for tokens, which is trained along with log-955

its loss. Logits loss is defined by loss of future956

expected tokens which are not pratical. So Dodo957

converts the expected tokens into past tokens and958

the loss function can be formalized as:959

P (I,B) =
∑
i∈[N]

CE(p, p̂)i (30)960

The score function ϕ is trained via this loss func-961

tion and finally determines which tokens will be962

preserved. The cache budget B for all heads and963

layers are the same. Besides, Dodo merges the in-964

formation within tokens evicted into the preserved965

tokens similar to KV cache merging methods.966

C Extension of LAVa: Layer-wise Cache967

Eviction with Dynamic Budget968

Allocation969

Details of Lemma 1. We define and derive the970

Layer Attention Output Loss in this lemma.971

Lemma 1. Based on the Lp norm, the layer at-972

tention output loss due to the attention mask I is973

measured for layer-l at the current (N -th) decoding974

step as follows:975

P(x1...N1 , I,B) = ∥yNl − ŷNl ∥p (31)976

=

∥∥∥∥∥Cath

[
(AN

l,h −
AN

l,h ⊙ Il,h
∥AN

l,h ⊙ Il,h∥1
)Vl,h

]
WO

l

∥∥∥∥∥
p

977

where ⊙ indicates element-wise multiplication and978

ŷNl = Cath(Â
N
l,hVl,h)W

O
l979

As we mentioned above:980

yNl = Cath∈[H](A
N
l,hVl,h)W

O
l981

ŷNl = Cath∈[H(ÂN
l,hVl,h)W

O
l982

(32)983

And based on the definition of attention mask I , the984

attention weights after eviction can be calculated985

as:986

ÂN
l,h = Softmax(

− inf ⊙(1− Il,h) +QN
l,hK

T
l,h√

dh
)

(33)987

Hence, Lemma 32 is equal to (Temporarily ignor- 988

ing the superscript N): 989

Âl,h =
Al,h ⊙ Il,h
∥Al,h ⊙ Il,h∥1

(34) 990

This theorem has been proved by AdaKV (Feng 991

et al., 2024), so we will not elaborate further here. 992

Proof of Theorem 1. Then we drive the upper 993

bound of Layer Attention Output Loss and give 994

this theorem. 995

Theorem 1. The L1 norm of layer attention out-
put loss can be bounded by:

(35)∥yl − ŷl∥1

≤ 2Ĉ

h∈[H]∑
V̄l,h(

k∈[N]∑
AN

l,h[k](1− Il,h[k]))

where V̄l,h = maxk∈[N]∥Vl,h[k]∥1 and Ĉ = 996

∥WO
l

T ∥1 is a constant, which is independent of 997

any head or token within layer-l. 998

Proof. First we need to introduce a lemma: 999

Lemma 2. Given a vector x ∈ R1×m and a matrix 1000

W ∈ Rm×n, we can get the relationship between 1001

matrix norm and vector norm: 1002

∥xW∥p≤ ∥x∥p∥W T ∥p (36) 1003

∥xW∥p and ∥x∥p are vector p-norm, ∥W T ∥p is 1004

matrix p-norm which is calculated by the largest 1005

sum of column absolute value. 1006

This lemma is derived from Horn and Johnson
(2012). Then we can obtain (Temporarily ignoring
the superscript N):

∥yl − ŷl∥1

≤ ∥Cath[(Al,h−
Al,h ⊙ Il,h
∥Al,h ⊙ Il,h∥1

)Vl,h]∥1∥WO
l

T ∥1

(37)

We set ∥WO
l

T ∥1 as Ĉ because it is the constant 1007

model parameter. Then we know that and set: 1008

Gl,h = (Al,h −
Al,h ⊙ Il,h
∥Al,h ⊙ Il,h∥1

)Vl,h ∈ R1×dh

(38) 1009

Thus ∥Cath∈[H][Gl,h]∥1 is the vector 1-norm of a
vector ∈ R1×(dh∗H). According to the definition of

14

vector 1-norm, we can transform cat operation to
sum and continue derivation based on Theorem 2:

∥yl − ŷl∥1

≤ Ĉ∥Cath∈[H][(Al,h −
Al,h ⊙ Il,h
∥Al,h ⊙ Il,h∥1

)Vl,h]∥1

= Ĉ
∑
h∈[H]

∥(Al,h −
Al,h ⊙ Il,h
∥Al,h ⊙ Il,h∥1

)Vl,h∥1

≤ Ĉ
∑
h∈[H]

(∥Al,h −
Al,h ⊙ Il,h
∥Al,h ⊙ Il,h∥1

∥1∥V T
l,h∥1)

(39)

Next we will prove that ∥Al,h −
Al,h⊙Il,h

∥Al,h⊙Il,h∥1 ∥1=1010

2
∑i∈[N]

ifIl,h[i]=0Al,h[i].1011

Let ∥Al,h ⊙ Il,h∥1=
∑

i∈[N] Il,h[i]Al,h[i] =1012 ∑i∈[N]
ifIl,h[i]=1Al,h[i] as F ∈ (0, 1]:1013

∥Al,h −
Al,h ⊙ Il,h
∥Al,h ⊙ Il,h∥1

∥1 = ∥
F − Il,h

F
⊙Al,h∥1

=
∑
i∈[N]

|
(F − Il,h[i])Al,h[i]

F
|

=

i∈[N]∑
ifIl,h[i]=0

Al,h[i] +

i∈[N]∑
ifIl,h[i]=1

(1− F)Al,h[i]

F

=

i∈[N]∑
ifIl,h[i]=0

Al,h[i] +

∑i∈[N]
ifIl,h[i]=1Al,h[i]

F

−
i∈[N]∑

ifIl,h[i]=1

Al,h[i]

=

i∈[N]∑
ifIl,h[i]=0

Al,h[i] + 1−
i∈[N]∑

ifIl,h[i]=1

Al,h[i]

= 2

i∈[N]∑
ifIl,h[i]=0

Al,h[i]

(40)

Then based on the definition of matrix 1-norm1014

and ∥V T
l,h∥1∈ Rdh×N , we can calculate this as the1015

largest sum of row absolute value of Vl,h ∈ RN×dh ,1016

which is equals to the largest vector 1-norm of V1017

value of previous tokens, formalized as:1018

V̄l,h = ∥V T
l,h∥1= maxk∈[N]∥Vl,h[k]∥1 (41)1019

Now we can obtain:

(42)∥yl − ŷl∥1

≤ 2Ĉ
∑
h∈[H]

(

i∈[N]∑
ifIl,h[i]=0

AN
l,h[i]∥V T

l,h∥1)

= 2Ĉ
∑
h∈[H]

(
∑
i∈[N]

AN
l,h[i]V̄l,h(1− Il,h[i]))

Here the proof is done. 1020

Potential Future Work Another potential av- 1021

enue is formulating the problem as an online rein- 1022

forcement learning (RL) task, where the objective 1023

is to optimize the policy (i.e., the scoring func- 1024

tion) to maximize the expected reward. Here, the 1025

expected reward can be cast as minimizing the ex- 1026

pected loss in future residual streams, not just the 1027

past ones. This direction is potential for the cache- 1028

offload and retrieval problem, where we need to 1029

decide which parts of the cache to offload to CPU 1030

or retrieve from CPU while maintaining the com- 1031

munication cost. 1032

Additionally, this framework could be extended 1033

to model pruning, not just masking tokens but also 1034

selectively masking model parameters to minimize 1035

information flow while preserving efficiency. 1036

D Extension of Experiments 1037

Implementation Details For SnapKV and Ada- 1038

SnapKV, no additional hyperparameters are re- 1039

quired. However, for PyramidKV, we must adjust 1040

the parameter β to control the shape of the cache 1041

budget pyramid. We set β to (5, 10, 20) and select 1042

the best-performing result, the same approach to 1043

Ada-PyramidKV. For CAKE, three parameters re- 1044

quire tuning: γ1 and γ2 for layer budget allocation, 1045

and γ3 for the scoring function, as explained in Ap- 1046

pendix B. Based on recommendations from (Qin 1047

et al., 2025), we set 1/γ1 to (0.2, 0.3, 0.5, 1, 2), 1048

1/γ2 to (0.2, 0.3, 0.5, 1, 2), and γ3 to (0, 5, 10, 200). 1049

We then evaluate different combinations and select 1050

the one that yields the best overall performance. 1051

Pooling operators, such as max pooling or aver- 1052

age pooling, can be applied to token score vectors 1053

to smooth score variations across adjacent tokens 1054

(Li et al., 2024; Cai et al., 2024; Qin et al., 2025). 1055

This strategy is also employed in the implemen- 1056

tation of LAVa and all the baselines. For pooling 1057

operation, for all methods, we adopt maxpool func- 1058

tion and set kernel size as 7. 1059

15

Results of LAVa in LongBench The results of1060

Qwen2.5-7B-Instruct are listed in Table 5. The re-1061

sults of Qwen2.5-14B-Instruct and Qwen2.5-32B-1062

Instruct are in Table 6. From all these results, we1063

can obtain the similar conclusion like Mistral in1064

main text. LAVa outperforms all baselines across1065

different budgets, even in models with larger pa-1066

rameter size.1067

Results of LAVa in Needle In A Haystack The1068

results of Needle In A Haystack are shown in Ta-1069

ble 7. The conclusion is consistent with that of1070

LongBench. Our method shows superior overall1071

performance, demonstrating its robust in preserv-1072

ing the model’s retrieval capacity.1073

Results of Dynamic Budget Allocation The de-1074

tailed results of ablation study based on Mistral-7B-1075

Instruct-v0.2 in LongBench are listed in Table 8.1076

It demonstrates that dynamic budget allocation at1077

both the head and layer levels is essential for strong1078

performance, with a more pronounced performance1079

drop when head-wise allocation is removed under1080

constrained budgets. This is expected, as LAVa’s1081

strength lies in its ability to compare cache entries1082

across heads.1083

Analysis of Different Layer Allocation To val-1084

idate the effectiveness of our layer budget alloca-1085

tion, we modify LAVa to incorporate two alterna-1086

tive strategies: LAVa-Uniform, which is equiva-1087

lent to LAVa (-layer), and LAVa-Pyramid, which1088

retains LAVa’s head budget allocation and layer-1089

wise cache eviction but adopts Pyramid for layer1090

allocation. The results in Table 9 indicate that our1091

method outperforms these alternatives. Notably,1092

LAVa-Pyramid requires finetuning, whereas the1093

other methods do not. Moreover, LAVa-Pyramid1094

fails to outperform LAVa-Uniform at higher bud-1095

gets, aligning with the observed comparison be-1096

tween Ada-SnapKV and Ada-Pyramid. This un-1097

derscores the limitation of heuristic-based designs,1098

which may not always yield optimal results.1099

16

Single-Doc. QA Multi-Doc. QA Summarization Few-shot Learning Synthetic Code

N
rtvQ

A

Q
asper

M
F-en

M
F-zh

H
otpotQ

A

2W
ikiM

Q
A

M
usique

D
ureader

G
ovReport

Q
M

Sum

V
CSU

M

M
ultiN

ew
s

TREC

TriviaQ
A

SA
M

Sum

LSH
T

PCount

PR-en

PR-zh

Lcc

RepoBench-P

Avg

Full Cache 29.05 43.34 52.52 62.27 57.59 47.05 30.24 29.25 31.78 23.64 15.96 23.96 72.50 88.82 45.61 42.75 8.50 100.00 96.50 59.61 67.12 48.96

B = 128HL
PyramidKV 21.96 26.41 42.53 52.77 49.33 42.17 23.48 17.88 16.80 19.29 11.24 14.30 42.50 83.78 41.15 22.39 8.50 95.50 63.50 48.53 51.39 37.88
SnapKV 25.24 27.66 43.90 53.53 51.00 42.12 24.59 18.56 18.04 19.85 11.32 15.55 41.00 83.18 40.68 24.88 9.00 98.00 81.50 49.44 52.58 39.60
Ada-PyramidKV 23.08 27.53 42.07 53.17 50.73 42.03 23.31 18.03 17.48 19.65 11.21 14.71 42.50 83.90 41.25 22.81 9.00 94.00 76.00 49.17 52.69 38.78
Ada-SnapKV 25.20 28.45 45.00 54.37 51.08 44.02 24.66 18.81 18.26 20.09 11.50 16.25 42.50 84.06 41.00 22.49 9.00 96.50 87.50 49.92 54.32 40.24
CAKE 24.43 30.15 45.03 54.86 50.65 42.41 25.91 18.89 18.21 20.66 11.60 15.84 42.00 84.54 41.95 26.24 8.50 95.50 81.50 51.60 55.09 40.26
LAVa (Ours) 23.29 28.87 46.80 56.10 52.65 42.96 25.09 19.25 18.24 20.52 11.80 16.28 43.00 84.56 42.18 23.95 8.50 96.00 85.00 53.45 56.07 40.69

B = 256HL
PyramidKV 24.82 31.13 46.92 56.06 53.07 42.31 25.06 19.54 19.27 20.47 12.01 16.55 50.00 84.88 42.04 25.39 8.50 96.00 85.50 52.03 55.82 41.30
SnapKV 26.61 23.77 49.15 58.37 56.03 44.18 25.68 20.96 20.84 20.99 12.19 18.52 48.50 86.31 43.06 29.89 8.50 97.50 95.00 54.26 59.42 43.32
Ada-PyramidKV 25.97 31.01 47.31 56.43 54.17 43.03 25.23 19.41 19.60 21.09 11.87 17.07 54.50 86.04 42.69 27.28 8.50 97.00 90.00 52.78 56.55 42.26
Ada-SnapKV 26.52 34.50 50.01 58.28 55.61 43.60 26.14 20.89 21.30 20.94 12.51 18.59 52.50 85.50 42.97 28.43 8.50 98.00 93.50 53.94 59.30 43.41
CAKE 26.59 33.95 49.80 58.25 54.89 44.42 26.47 20.35 21.23 21.94 12.35 18.53 47.50 85.41 43.51 32.33 8.50 97.50 94.00 55.56 61.13 43.53
LAVa (Ours) 27.04 35.19 49.36 59.74 55.35 44.13 27.25 20.88 21.15 21.51 12.77 18.96 49.00 86.73 43.42 30.35 8.50 98.00 93.00 56.19 62.19 43.84

B = 512HL
PyramidKV 28.02 35.74 50.84 58.11 55.26 44.72 25.85 20.94 21.83 21.34 12.33 18.95 59.50 86.13 43.04 32.83 8.50 99.00 96.00 55.65 59.42 44.48
SnapKV 28.27 28.22 50.69 60.27 56.18 44.69 27.28 21.98 23.79 21.89 13.20 20.64 59.50 84.10 43.68 35.52 8.50 100.00 94.00 56.66 62.69 45.32
Ada-PyramidKV 27.31 37.36 49.62 58.57 55.40 44.66 26.74 21.35 22.39 21.12 12.42 19.32 62.00 86.29 43.78 33.33 8.50 99.00 95.50 55.78 60.99 44.83
Ada-SnapKV 28.03 38.51 50.06 60.54 55.50 45.06 28.81 22.04 23.98 22.49 13.05 20.80 62.00 85.83 44.37 37.10 8.50 100.00 94.00 56.44 62.71 45.71
CAKE 28.17 39.09 50.22 60.00 54.89 45.21 26.31 22.20 23.65 21.98 13.04 20.57 57.50 85.60 44.61 37.23 8.50 99.50 94.00 58.27 63.95 45.45
LAVa (Ours) 27.21 39.08 50.47 60.09 55.63 45.25 27.75 22.91 23.83 22.81 13.05 20.84 58.50 86.15 45.02 37.43 8.50 100.00 93.50 58.02 64.57 45.74

B = 1024HL
PyramidKV 28.06 40.11 51.83 60.22 57.55 45.38 29.31 22.42 24.35 22.04 13.12 21.12 68.00 85.27 44.18 36.99 8.50 100.00 96.50 58.29 62.56 46.47
SnapKV 29.01 42.02 51.86 61.22 56.82 45.04 28.95 23.97 26.26 22.76 13.66 22.50 68.50 86.85 45.52 42.50 8.50 100.00 96.50 57.94 65.59 47.43
Ada-PyramidKV 28.52 40.50 51.87 60.27 56.42 45.80 29.18 23.01 24.45 22.10 13.31 21.25 69.00 86.41 45.10 37.79 8.50 100.00 96.50 57.16 63.31 46.69
Ada-SnapKV 29.61 42.30 51.79 60.29 56.38 45.75 29.30 23.64 26.21 22.80 13.85 22.39 69.00 88.09 45.36 41.75 8.50 100.00 96.00 58.15 65.77 47.47
CAKE 29.70 41.08 51.85 60.64 57.34 45.02 30.48 23.82 25.92 22.95 13.69 22.45 67.50 86.63 45.22 42.00 8.50 100.00 96.50 59.49 65.99 47.47
LAVa (Ours) 29.79 41.68 51.84 60.79 57.04 45.27 30.01 23.99 26.36 22.90 13.81 22.42 69.50 87.42 45.46 41.00 8.50 100.00 96.50 59.97 66.24 47.64

Table 5: Final comparison based on Qwen2.5-7B-Instruct among 21 datasets of LongBench. (Note: The best result
is highlighted in bold, and the second is in underline.)

Single-Doc. QA Multi-Doc. QA Summarization Few-shot Learning Synthetic Code

N
rtvQ

A

Q
asper

M
F-en

M
F-zh

H
otpotQ

A

2W
ikiM

Q
A

M
usique

D
ureader

G
ovReport

Q
M

Sum

V
CSU

M

M
ultiN

ew
s

TREC

TriviaQ
A

SA
M

Sum

LSH
T

PCount

PR-en

PR-zh

Lcc

RepoBench-P

Avg

Qwen2.5-14B-Instruct

Full Cache 29.33 45.19 53.59 62.79 62.59 57.69 38.47 29.87 29.74 23.53 14.75 21.90 77.50 90.23 47.27 50.00 9.23 98.67 98.25 62.60 51.13 50.21

Qwen2.5-14B-Instruct, B=128h
PyramidKV 19.67 22.26 39.57 50.04 50.75 49.47 30.31 16.67 16.10 19.43 10.53 13.51 42.00 82.29 40.90 27.00 12.12 82.50 56.67 54.52 41.38 37.03
SnapKV 21.04 25.50 42.11 49.89 54.31 51.87 33.60 17.78 17.12 19.95 10.75 14.53 43.50 85.95 41.81 26.75 10.50 89.58 65.00 55.42 43.42 39.07
Ada-PyramidKV 20.85 24.83 40.88 51.78 54.65 52.34 29.78 16.83 16.67 19.59 10.32 13.90 46.50 80.76 40.58 25.75 11.18 87.75 63.75 53.72 43.49 37.90
Ada-SnapKV 22.16 25.58 42.80 52.22 55.10 53.21 33.50 17.98 17.69 20.25 10.86 14.81 45.50 85.62 42.49 27.00 9.05 91.33 68.17 56.26 43.39 39.76
CAKE 22.20 26.13 42.10 50.83 54.75 53.25 31.77 17.73 17.56 19.98 10.84 15.44 44.00 87.51 42.65 28.50 13.96 86.50 78.83 54.92 43.90 40.16
LAVa (Ours) 22.24 26.52 43.09 52.39 55.97 53.43 33.68 18.23 17.94 20.57 10.98 15.10 46.00 86.79 42.20 27.17 10.53 92.00 73.00 55.74 44.63 40.39

Qwen2.5-14B-Instruct, B=512h
PyramidKV 26.18 38.19 48.71 59.81 60.74 55.26 36.82 20.55 21.21 21.27 11.86 18.43 68.50 89.21 45.38 44.25 8.59 98.33 96.75 59.71 48.71 46.59
SnapKV 26.99 39.34 48.84 59.34 60.20 54.86 37.47 21.43 22.25 21.95 11.93 19.34 66.50 88.78 45.95 45.25 8.22 98.25 98.58 61.12 49.42 46.95
Ada-PyramidKV 26.78 40.25 49.71 60.40 60.64 55.69 37.72 20.75 21.49 21.54 11.67 18.60 70.00 88.59 45.70 44.50 8.77 98.33 96.75 60.23 48.85 47.00
Ada-SnapKV 26.03 41.56 49.42 60.88 59.99 55.63 38.34 21.33 22.49 22.09 11.96 19.32 69.50 89.01 46.35 46.75 7.72 98.17 98.50 62.21 49.92 47.48
CAKE 25.39 39.92 48.62 60.30 60.42 55.19 38.37 21.40 22.56 21.72 12.31 19.57 70.00 89.03 46.19 46.25 6.68 98.17 98.25 60.90 49.31 47.17
LAVa (Ours) 26.23 40.65 48.93 59.45 60.34 55.36 37.50 21.53 22.57 22.13 11.91 19.48 67.00 88.68 46.50 46.75 7.98 97.75 97.75 61.85 50.38 47.18

Qwen2.5-32B-Instruct

Full Cache OOM

Qwen2.5-32B-Instruct, B=128h
PyramidKV 21.32 27.86 43.55 56.05 55.74 53.85 32.25 16.74 17.08 18.88 10.71 15.76 48.00 54.41 40.69 29.50 11.17 94.00 73.09 48.04 35.36 38.29
SnapKV 21.72 28.31 42.83 56.03 54.43 55.52 30.78 16.94 16.92 19.04 10.53 15.69 48.50 58.30 39.64 27.50 12.00 93.75 74.37 47.15 35.82 38.37
Ada-PyramidKV 21.19 29.67 45.61 58.04 57.30 55.65 32.96 17.45 17.37 19.30 10.89 16.02 51.50 56.24 40.24 30.25 12.00 97.00 82.67 48.14 35.94 39.78
Ada-SnapKV 21.79 28.64 45.49 56.56 57.12 56.14 32.54 17.66 17.63 19.31 10.66 16.12 49.50 60.07 40.03 27.50 12.00 96.04 85.13 47.96 36.29 39.72
CAKE 21.28 28.40 43.30 55.71 55.93 54.89 32.86 17.04 17.00 19.44 10.50 16.18 46.50 56.35 40.38 31.88 12.50 94.79 82.92 46.63 36.05 39.07
LAVa (Ours) 22.29 30.12 45.50 57.06 56.59 58.51 33.72 17.50 17.42 19.97 11.09 16.29 48.50 57.21 40.23 28.17 10.00 97.42 84.09 48.12 36.68 39.83

Qwen2.5-32B-Instruct, B=512h
PyramidKV 26.00 37.40 48.67 61.17 60.60 60.44 34.75 19.37 20.84 20.61 11.64 18.48 66.00 55.11 42.71 39.00 11.56 99.75 98.54 50.28 38.12 43.86
SnapKV 25.71 40.23 48.81 62.94 61.16 60.60 34.85 20.64 22.69 21.27 11.61 20.04 66.50 77.77 44.01 41.86 11.19 100.00 99.03 52.20 39.15 45.82
Ada-PyramidKV 26.41 38.97 50.14 61.50 61.50 61.86 37.55 19.67 21.49 20.71 11.23 18.68 67.50 60.81 43.40 39.75 11.08 99.75 99.62 50.60 38.27 44.79
Ada-SnapKV 27.51 39.44 49.21 63.09 61.70 61.60 37.23 20.35 22.69 21.72 11.74 20.45 69.00 77.87 44.19 42.04 11.56 100.00 98.24 52.22 39.14 46.24
CAKE 25.32 40.24 49.66 63.28 59.75 61.42 37.11 20.44 22.73 21.22 11.67 20.28 66.50 77.31 43.92 44.58 11.19 100.00 98.78 52.36 38.99 46.04
LAVa (Ours) 26.56 41.18 50.80 62.49 61.90 60.83 37.25 21.44 23.16 22.02 11.86 20.30 68.50 77.69 43.97 42.23 11.50 100.00 98.53 52.24 38.86 46.35

Table 6: Final comparison based on Qwen2.5-14B-Instruct and Qwen2.5-32B-Instruct among 21 datasets of
LongBench. (Note: The best result is highlighted in bold, and the second is in underline.)

17

Methods Mistral-7B Qwen2.5-7B

Full Cache 99.88 99.66

B = 128HL
PyramidKV 91.44 91.10
SnapKV 91.25 93.28
Ada-PyramidKV 92.08 92.70
Ada-SnapKV 92.12 94.30
CAKE 92.79 94.61
LAVa (Ours) 93.35 95.57

B = 1024HL
PyramidKV 97.88 99.56
SnapKV 97.95 99.48
Ada-PyramidKV 98.58 99.58
Ada-SnapKV 98.54 99.53
CAKE 98.32 99.55
LAVa (Ours) 98.95 99.59

Table 7: Average scores of Mistral-7B-Instruct-v0.2 and
Qwen2.5-7B-Instruct in Needle In A HayStack.

18

Single-Doc. QA Multi-Doc. QA Summarization Few-shot Learning Synthetic Code

N
rtvQ

A

Q
asper

M
F-en

M
F-zh

H
otpotQ

A

2W
ikiM

Q
A

M
usique

D
ureader

G
ovReport

Q
M

Sum

V
CSU

M

M
ultiN

ew
s

TREC

TriviaQ
A

SA
M

Sum

LSH
T

PCount

PR-en

PR-zh

Lcc

RepoBench-P

Avg

Full Cache 26.77 32.34 49.63 48.42 43.43 27.89 18.61 30.85 32.92 24.54 15.04 27.20 71.00 86.23 43.41 39.00 2.81 86.56 89.75 55.29 52.55 45.07

B = 128HL
LAVa (Ours) 19.57 21.11 44.29 33.91 38.29 23.59 15.32 18.56 19.33 22.32 11.42 21.07 53.50 85.20 40.16 21.75 2.88 69.87 74.75 51.94 48.92 36.74
− layer 20.32 21.18 45.17 35.00 37.37 23.62 15.09 18.20 19.21 22.04 11.35 20.99 48.50 85.32 39.33 20.75 3.42 67.93 73.75 51.28 47.52 36.20
− head 20.33 20.27 44.06 32.23 36.64 22.84 14.19 18.15 18.88 21.51 11.09 20.89 45.00 84.29 39.57 20.25 3.21 65.23 64.25 51.88 47.51 34.95

B = 256HL
LAVa (Ours) 22.70 24.67 48.62 37.81 39.68 25.96 16.77 20.26 21.92 22.48 11.88 22.91 65.00 85.24 41.28 26.75 2.88 76.76 85.75 54.17 51.77 40.12
− layer 21.78 24.74 47.82 37.47 39.06 25.53 16.21 19.94 21.86 23.22 11.81 22.91 62.00 85.37 41.53 25.25 2.77 78.53 87.67 52.78 49.85 39.77
− head 21.34 22.77 47.43 35.87 37.71 25.50 15.47 19.43 21.55 23.06 12.08 22.86 58.00 84.88 41.69 22.25 3.11 74.77 84.18 53.89 51.19 38.80

B = 512HL
LAVa (Ours) 25.01 27.84 48.97 42.14 40.95 26.88 18.33 21.12 23.59 23.59 12.28 24.51 68.50 86.34 42.48 33.50 2.90 87.23 89.83 55.83 52.85 42.59
− layer 24.43 27.98 48.72 41.00 40.23 26.17 18.50 20.74 24.00 23.40 12.68 24.20 66.50 86.04 42.26 32.75 2.84 87.89 89.33 54.11 51.22 42.11
− head 23.59 27.70 48.61 40.61 40.22 25.79 17.87 20.68 23.91 23.39 12.38 24.28 66.50 86.09 41.95 28.50 2.97 86.88 89.17 55.73 52.53 41.82

B = 1024HL
LAVa (Ours) 25.59 31.21 48.27 43.43 41.92 27.38 19.48 23.48 26.06 23.86 13.38 26.00 70.00 86.22 42.43 38.00 2.73 87.01 88.75 57.31 53.28 43.65
− layer 25.76 30.38 49.54 43.54 41.08 27.03 18.83 22.73 25.79 23.69 13.13 25.88 69.50 86.30 43.10 37.25 2.71 87.56 89.25 55.04 51.67 43.35
− head 25.76 29.61 49.31 42.77 40.82 27.63 18.59 22.64 26.29 23.77 12.70 25.82 68.00 85.82 41.77 35.00 2.63 89.06 89.25 57.31 53.22 43.26

Table 8: Ablation study based on Mistral-7B-Instruct-v0.2 among 21 datasets of LongBench. (Note: The best result
is highlighted in bold.)

Single-Doc. QA Multi-Doc. QA Summarization Few-shot Learning Synthetic Code

N
rtvQ

A

Q
asper

M
F-en

M
F-zh

H
otpotQ

A

2W
ikiM

Q
A

M
usique

D
ureader

G
ovReport

Q
M

Sum

V
CSU

M

M
ultiN

ew
s

TREC

TriviaQ
A

SA
M

Sum

LSH
T

PCount

PR-en

PR-zh

Lcc

RepoBench-P

Avg

Full Cache 26.77 32.34 49.63 48.42 43.43 27.89 18.61 30.85 32.92 24.54 15.04 27.20 71.00 86.23 43.41 39.00 2.81 86.56 89.75 55.29 52.55 45.07

B = 128HL
LAVa-Pyramid 19.91 20.36 44.32 35.06 37.68 23.58 15.40 17.99 19.61 22.09 10.87 21.05 52.00 84.45 40.09 20.25 2.89 72.32 76.92 51.81 46.81 36.63
LAVa-Uniform 20.32 21.18 45.17 35.00 37.37 23.62 15.09 18.20 19.21 22.04 11.35 20.99 48.50 85.32 39.33 20.75 3.42 67.93 73.75 51.28 47.52 36.20
LAVa (Ours) 19.57 21.11 44.29 33.91 38.29 23.59 15.32 18.56 19.33 22.32 11.42 21.07 53.50 85.20 40.16 21.75 2.88 69.87 74.75 51.94 48.92 36.74

B = 256HL
LAVa-Pyramid 21.22 23.96 47.86 37.12 38.92 24.94 16.70 19.11 21.43 22.44 11.20 22.77 62.50 85.17 41.34 23.75 3.34 79.07 86.58 52.25 49.70 39.40
LAVa-Uniform 21.78 24.74 47.82 37.47 39.06 25.53 16.21 19.94 21.86 23.22 11.81 22.91 62.00 85.37 41.53 25.25 2.77 78.53 87.67 52.78 49.85 39.77
LAVa (Ours) 22.70 24.67 48.62 37.81 39.68 25.96 16.77 20.26 21.92 22.48 11.88 22.91 65.00 85.24 41.28 26.75 2.88 76.76 85.75 54.17 51.77 40.12

B = 512HL
LAVa-Pyramid 24.59 27.33 48.36 40.24 39.75 26.18 18.26 20.82 23.39 23.38 12.35 24.08 67.00 86.66 42.55 32.00 2.93 86.13 89.62 53.46 51.53 41.88
LAVa-Uniform 24.43 27.98 48.72 41.00 40.23 26.17 18.50 20.74 24.00 23.40 12.68 24.20 66.50 86.04 42.26 32.75 2.84 87.89 89.33 54.11 51.22 42.11
LAVa (Ours) 25.01 27.84 48.97 42.14 40.95 26.88 18.33 21.12 23.59 23.59 12.28 24.51 68.50 86.34 42.48 33.50 2.90 87.23 89.83 55.83 52.85 42.59

B = 1024HL
LAVa-Pyramid 24.88 29.51 49.01 42.57 41.16 27.20 19.40 22.61 25.58 24.00 13.08 25.71 68.50 86.19 43.19 37.00 2.67 87.73 90.25 54.72 51.53 43.19
LAVa-Uniform 25.76 30.38 49.54 43.54 41.08 27.03 18.83 22.73 25.79 23.69 13.13 25.88 69.50 86.30 43.10 37.25 2.71 87.56 89.25 55.04 51.67 43.35
LAVa (Ours) 25.59 31.21 48.27 43.43 41.92 27.38 19.48 23.48 26.06 23.86 13.38 26.00 70.00 86.22 42.43 38.00 2.73 87.01 88.75 57.31 53.28 43.65

Table 9: Layer allocation comparison based on Mistral-7B-Instruct-v0.2 among 21 datasets of LongBench. (Note:
The best result is highlighted in bold.)

19

	Introduction
	The Information Flow of LLM Decoding Process with KV Cache
	A Principled Framework for KV Cache Eviction based on Information Loss
	LAVa: Layer-wise Cache Eviction with Dynamic Budget Allocation
	Layer Attention Output Loss and the Scoring Function
	Layer Budget Allocation
	Further Discussions

	Experiments
	Experimental Settings
	Main Results
	Evaluation of Latency and Memory Peak
	Further Analysis

	Related Work
	Conclusion
	Extension of The Information Flow of LLM Decoding Process with KV Cache
	Extension of A Principled Framework for KV Cache Eviction based on Information Loss
	Extension of LAVa: Layer-wise Cache Eviction with Dynamic Budget Allocation
	Extension of Experiments

