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 a b s t r a c t

Determining whether two sets of images belong to the same or different distributions or domains is a crucial 
task in modern medical image analysis and deep learning; for example, to evaluate the output quality of image 
generative models. Currently, metrics used for this task either rely on the (potentially biased) choice of some 
downstream task, such as segmentation, or adopt task-independent perceptual metrics (e.g., Fréchet Inception 
Distance/FID) from natural imaging, which we show insufficiently capture anatomical features. To this end, we 
introduce a new perceptual metric tailored for medical images, FRD (Fréchet Radiomic Distance), which utilizes 
standardized, clinically meaningful, and interpretable image features. We show that FRD is superior to other 
image distribution metrics for a range of medical imaging applications, including out-of-domain (OOD) detec-
tion, the evaluation of image-to-image translation (by correlating more with downstream task performance as 
well as anatomical consistency and realism), and the evaluation of unconditional image generation. Moreover, 
FRD offers additional benefits such as stability and computational efficiency at low sample sizes, sensitivity to 
image corruptions and adversarial attacks, feature interpretability, and correlation with radiologist-perceived 
image quality. Additionally, we address key gaps in the literature by presenting an extensive framework for the 
multifaceted evaluation of image similarity metrics in medical imaging—including the first large-scale compar-
ative study of generative models for medical image translation—and release an accessible codebase to facilitate 
future research. Our results are supported by thorough experiments spanning a variety of datasets, modalities, 
and downstream tasks, highlighting the broad potential of FRD for medical image analysis.
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Fig. 1. Summary of our main contribution: FRD, a metric designed from the 
ground up for comparing unpaired distributions of real and/or generated med-
ical images.

1.  Introduction

Comparing image distributions is crucial in deep learning-driven 
medical image analysis. Example applications include out-of-domain 
(OOD) detection (Tschuchnig and Gadermayr, 2022), e.g., for detect-
ing if new medical images were acquired using different protocols; 
the evaluation of image-to-image translation models, e.g., for convert-
ing MRI (magnetic resonance imaging) to CT (computed tomography) 
(Wolterink et al., 2017; Armanious et al., 2020); the quality assessment 
of images generated to supplement real training data (Chen et al., 2021; 
Pinaya et al., 2022); and others (Chan et al., 2020).

However, image distribution metrics from general computer vision 
(e.g., Fréchet Inception Distance/FID (Heusel et al., 2017)) often miss 
key requirements for medical image analysis, and questioning of their 
unadapted use for this subfield has recently begun (Osuala et al., 2023a; 
Woodland et al., 2024; Konz et al., 2024b; Wu et al., 2025). For ex-
ample, in medical image OOD detection and image-to-image transla-
tion, the focus extends beyond just general image quality to image-level 
domain adaptation: ensuring that source-domain images (e.g., from one 
scanner, vendor or institution) are compatible with diagnostic models 
trained on target-domain images from another scanner/vendor/institu-
tion, addressing ubiquitous domain shift issues in medical imaging (Dur-
rer et al., 2024; Beizaee et al., 2023; Wang et al., 2024b; Modanwal 
et al., 2020; Yang et al., 2019; Liu et al., 2021; Zhang et al., 2018; Guan 
and Liu, 2021; Yao et al., 2019; Mårtensson et al., 2020). Additionally, 
medical imaging requires metrics that specifically capture anatomical 
consistency and realism, as well as clinical interpretability (Maier-Hein 
et al., 2024; Salahuddin et al., 2022; Chen et al., 2022a; Singh et al., 
2020). We argue that these specialized requirements are overlooked by 
the current metrics used for comparing sets of real and/or synthetic 
medical images.

The common approach of comparing medical image distributions in 
terms of the performance of some downstream task such as segmentation 
(because direct qualitative image assessment by radiologists is expen-
sive and non-standardized) is driven by the choice of task, and requires 

costly training and labeling efforts. A task-independent metric that cap-
tures general image quality and aligns with expected downstream task 
performance would therefore be preferable. In computer vision, per-
ceptual metrics like FID are commonly used to evaluate image qual-
ity relative to real images (Heusel et al., 2017; Saxena and Teli, 2021; 
Bińkowski et al., 2018), yet these metrics are based on natural image 
features. Despite this, many applications of medical image translation 
(Li et al., 2023b; Wang et al., 2024b; Li et al., 2023a; Shi et al., 2023) 
and generation (Pinaya et al., 2022; Hashmi et al., 2024; Hansen et al., 
2024; Sun et al., 2022) rely on FID (or the related Kernel Inception Dis-
tance/KID (Bińkowski et al., 2018)) for evaluation, even though recent 
findings suggest these metrics may poorly reflect medical image quality 
(Konz et al., 2024a,b; Chen et al., 2024b; Wu et al., 2025). Our experi-
ments further support this issue. Moreover, to date, no studies have pro-
posed interpretable metrics specifically tailored for comparing unpaired 
medical image distributions, despite the importance of explainability in 
medical image analysis.

In this paper, we showcase and address limitations in current met-
rics for comparing unpaired medical image distributions. We begin by 
evaluating “RadiologyFID” (RadFID) (Osuala et al., 2023b), a natural 
extension from FID which uses RadImageNet (Mei et al., 2026) features 
instead of ImageNet (Deng et al., 2009a) features, that has seen sur-
prisingly little use. We find that RadFID improves upon prior metrics in 
some areas, yet lacks in interpretability, stability on small datasets, and 
other essential qualities.

To address these gaps, we introduce Fréchet Radiomic Distance 
(FRD), a metric leveraging pre-defined, interpretable radiomic features 
which are widely used in medical image analysis (see e.g., Yip and Aerts 
(2016), Gillies et al. (2016), Van Griethuysen et al. (2017), Lambin et al. 
(2012)). In addition to the inherent interpretability of the radiomic fea-
tures it uses (Cui et al., 2023; Orton et al., 2023; Bang et al., 2021; Ye 
et al., 2024; Rifi et al., 2023), FRD offers numerous advantages over 
learned feature metrics like FID and RadFID, which we demonstrate for 
various applications via an extensive evaluation framework for medical 
image distribution similarity metrics, summarized in Fig. 2. FRD is an 
improved version of our previous early version “FRDv0” (Osuala et al., 
2024), being both more robust and capturing a larger, more descriptive 
space of image features (Section 3.1); we further verify the resulting im-
provements in this work with far more extensive intrinsic and extrinsic 
evaluations than were present in our preliminary study.

We demonstrate these results in key application areas for unpaired 
medical image distribution comparison, such as out-of-domain (OOD) 
detection/analysis and the evaluation of image-to-image translation and 
image generation models. Our experiments span a wide range of medical 
image datasets and downstream tasks, image translation and generation 
models, and perceptual metrics. The datasets (see Table 1) cover broad 
medical imaging scenarios that possess different image domains, includ-
ing breast MRI inter-scanner data from different vendors, inter-sequence 
brain MRI data involving varying sequences, inter-modality data such 
as lumbar spine and abdominal MRI and CT, and others, all of which 
present unique challenges for the explored tasks. We summarize our 
contributions as follows:

1. We highlight the shortcomings of common metrics for image distri-
bution comparison (e.g., FID) in meeting the unique requirements of 
medical imaging.

2. We introduce FRD, a task-independent perceptual metric based on 
radiomic features, which offers various improvements over prior 
metrics: (1) alignment with downstream tasks, (2) stability and com-
putational efficiency for small datasets, (3) clinical interpretability,
(4) sensitivity to image corruptions and adversarial attacks, and (5)
alignment with radiologist perceptions of image quality.

3. We validate FRD across diverse medical imaging datasets and appli-
cations, such as practical out-of-domain detection (including propos-
ing a novel, standardized dataset-level OOD metric), image-to-image 
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Fig. 2. Our evaluation framework for FRD and other medical image distribution 
similarity metrics.

translation, image generation, and others, demonstrating its superi-
ority in unpaired medical image distribution comparison.

4. We show that, thanks to various improvements, including more ro-
bust feature normalization and the inclusion of many additional fre-
quency space-based features which form a more expressive space of 
features to describe medical images, FRD outperforms our initially 
proposed FRDv0 (as well as other metrics) in essentially all tested 
scenarios.

5. Finally, we present a general-purpose evaluation framework for med-
ical image similarity metrics, including the first large-scale compara-
tive study of generative models for medical image-to-image transla-
tion, and release an accessible codebase to support future research.

We summarize FRD and visualize potential applications for it 
in Fig. 1. FRD can be readily used and integrated into experiment 
pipelines via our accessible codebase packaged as a Python library 
at https://github.com/RichardObi/frd-score. In addition, our evalua-
tion framework for medical image similarity metrics can be utilized at 
github.com/mazurowski-lab/medical-image-similarity-metrics.

2.  Related work

2.1.  Metrics for comparing image distributions

The standard approach for comparing two unpaired sets/distribu-
tions of images 𝐷1, 𝐷2 ⊂ ℝ𝑛 involves defining a distance metric between 
them that satisfies basic properties (reflexivity, non-negativity, symme-
try, and the triangle inequality) (Jayasumana et al., 2024). In image-to-
image translation for example, 𝐷2 represents images translated from a 
source domain to a target domain, and 𝐷1 is a set of real target domain 
images. For unconditional generation, 𝐷2 contains generated images, 
and 𝐷1 serves as a real reference set.

Typically, images from 𝐷1 and 𝐷2 are first encoded into a lower-
dimensional feature space 𝐹1, 𝐹2 ⊂ ℝ𝑚 respectively via an encoder 

𝑓 (𝑥) ∶ ℝ𝑛 → ℝ𝑚. Then, a distance such as the Fréchet distance (Fréchet, 
1957)—technically the 2-Wasserstein distance—is computed between 
these feature distributions. After assuming that 𝐹1 and 𝐹2 are Gaussian 
with respective estimated mean vectors 𝜇1, 𝜇2 and covariance matrices 
Σ1,Σ2, this distance becomes

𝑑𝐹 (𝐹1, 𝐹2) =
(

||𝜇1 − 𝜇2||22 +tr
[

Σ1 + Σ2 − 2(Σ1Σ2)
1
2
])

1
2 . (1)

The popular Fréchet Inception Distance (FID) metric (Heusel 
et al., 2017) computes this distance utilizing an ImageNet-pretrained 
(Deng et al., 2009b) Inception v3 network (Szegedy et al., 2016) as 
the encoder. Other metrics include KID (Kernel Inception Distance)
(Bińkowski et al., 2018), which uses Maximum Mean Discrepancy 
(MMD) and is suited for smaller datasets, and CMMD (CLIP-MMD)
(Jayasumana et al., 2024), which employs CLIP-extracted (Radford 
et al., 2021) image features with MMD as an alternative to FID. How-
ever, note that all of these distances utilize features learned from natural 
images.

2.2.  Radiology FID (RadFID)

Recent studies suggest that standard perceptual metrics like FID, 
which are pretrained on natural images, may be unsuitable for medi-
cal images (Konz et al., 2024a,b; Chen et al., 2024b; Wu et al., 2025). A 
straightforward solution to this is given by the usage of features from a 
model trained on a large “universal” medical image dataset, such as Ra-
diology ImageNet (RadImageNet) (Mei et al., 2026); such an approach, 
termed RadFID, was introduced in Osuala et al. (2023b) and then fur-
ther tested for unconditional generative model evaluation in Woodland 
et al. (2024). However, it has not seen widespread adoption, and this 
work is the first to explore its use for OOD detection as well as image 
translation.

2.3.  Fréchet radiomic distance (FRD): version 0

We introduced a preliminary version of the Fréchet Radiomic Dis-
tance in (Osuala et al., 2024) in the context of evaluating multi-
condition latent diffusion models for breast MRI generation, which we 
label here as “FRDv0”. FRDv0 is computed by extracting 94 different 
radiomic features 𝑣𝑗𝑖 for each image 𝑥𝑖 in the given dataset 𝐷 (𝐷1 or 
𝐷2), and min-max normalizing each type of feature (to [0, 1]) given its 
distribution in the dataset, as

𝑣𝑗𝑖 ←
𝑣𝑗𝑖 − min𝑖𝑣𝑗𝑖

max𝑖𝑣𝑗𝑖 − min𝑖𝑣𝑗𝑖
. (2)

Next, to make FRDv0 values comparable to FID, these are re-scaled to 
the common range of ImageNet pre-trained InceptionV3 features used 
to compute FID, [0, 7.456]. Finally, FRDv0 is computed as the Fréchet 
distance between these min-max normalized distributions of radiomic 
features for 𝐷1 and 𝐷2.

FRD makes several improvements to FRDv0 (Section 3.1), including 
(1) the addition of many radiomic features that better capture the vari-
ation and nuances of different signals (e.g., in frequency space) that are 
useful to compare imaging distributions; (2) using 𝑧-score normalization 
instead of min-max for better robustness to outliers; and (3) normalizing 
a given feature type for both 𝐷1 and 𝐷2 with respect to the same ref-
erence distribution. Our experiments in using these metrics for a wide 
range of applications (Section 4) show that these changes result in uni-
versal improvements.

2.4.  Evaluating deep generative medical image models

We will study two types of generative models in medical imaging: 
image-to-image translation models and unconditional generative mod-
els. Image-to-image translation models, primarily used in radiology to 
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Fig. 3. Our extraction process and taxonomy for radiomic image features. From left to right, the steps of feature extraction include (1) the passing of the input 
image through possible filters, e.g., wavelet/frequency-space conversion, and (2) the measurement of various first-order or higher-order features, e.g., entropy and 
gray-level matrix features, respectively.

mitigate domain shift between datasets (Armanious et al., 2020; Mc-
Naughton et al., 2023), have applications such as inter-scanner trans-
lation (e.g., across different manufacturers) (Cao et al., 2023; Beizaee 
et al., 2023), inter-sequence translation (e.g., T1 to T2 MRI) (Durrer 
et al., 2024; Li et al., 2023b), and inter-modality translation (e.g., MRI 
to CT) (Yang et al., 2019; Phan et al., 2023; Zhang et al., 2018; Wang 
et al., 2024b). Our study includes datasets covering each of these sce-
narios.

Unconditional generative models, which learn to generate synthetic 
images given unlabeled real images for training, are commonly used 
to supplement medical image datasets, e.g., for the training of diagnos-
tic models (Kazeminia et al., 2020; Yi et al., 2019; Chen et al., 2022b), 
including the generation of rare cases (Chen et al., 2021). To our knowl-
edge, no previous work has developed task-independent metrics specif-
ically for medical image generation or translation models. The vast ma-
jority of works utilize FID (Heusel et al., 2017) (rather than e.g., RadFID), 
despite its aforementioned limitations.

2.5.  Radiomic features for medical image analysis

Radiomic features, which are typically hand-crafted, have long been 
used in diverse medical image diagnostic tasks (Van Griethuysen et al., 
2017; Yip and Aerts, 2016; Gillies et al., 2016; Lambin et al., 2012), 
providing a meaningful, interpretable feature space for analyzing med-
ical images. Applications include cancer screening (Jiang et al., 2021), 
outcome prediction (Aerts et al., 2014; Clark, 2008), treatment response 
assessment (Drukker et al., 2018; Cha et al., 2017; Li et al., 2016), and 
many others. A number of radiomic-based clinical tests have even re-
ceived FDA clearance (Huang et al., 2023). While previous works mainly 
use learned network features over pre-defined radiomic features for di-
agnostics (Wagner et al., 2021), few studies have applied radiomics for 
out-of-domain detection or the evaluation of image translation/genera-
tion models, which we show has strong potential.

3.  Methods

3.1.  Towards a metric designed for medical images: FRD

RadFID is a seemingly suitable alternative to FID, which we 
will show improves on typically-used perceptual metrics for medical 
images—such as FID—in various aspects. However, it still lacks clear 
interpretability of the features being used to compare images (as well 
as various other limitations which we will demonstrate with upcoming 
experiments). For medical imaging, especially in image-to-image trans-
lation tasks, it is often critical to answer specific questions about how an 
image’s features change or differ from some reference/original image—

a need less relevant in natural image translation tasks like style transfer. 
However, the learned features used in RadFID/FID are difficult to inter-
pret reliably (Section 6).

As a more interpretable alternative, we propose FRD, which utilizes 
a space of real-valued radiomic features of images. The taxonomy and 
extraction process of these features are illustrated in Fig. 3. They in-
clude image-level features such as basic first-order statistics, and textu-
ral statistics such as the gray level co-occurrence matrix (Haralick et al., 
1973), gray level run length matrix (Galloway, 1975), and gray level 
size zone matrix (Thibault et al., 2009). Crucially, we improve on FRDv0
(Osuala et al., 2024) by passing input images through various optional 
wavelet filters prior to radiomic computation: these filters first apply a 
spatial Fourier transform to an image, and then apply one of four differ-
ent possible choices of low- or high-pass filter combinations along the 
two spatial directions (e.g., low-low, low-high, high-low, and high-high).

This step results in a much more comprehensive space of fea-
tures with which to compare distributions of images—in particular, 
the frequency-based features which can capture crucial subtleties in 
images—which we will show results in improved performance for a wide 
range of applications (Sections 4 and C.1.1, etc.). In total, this results in 
𝑚 = 464 features, for each combination of filter and radiomic feature. 
All computations are completed via the PyRadiomics library (Van Gri-
ethuysen et al., 2017), and radiomics are extracted from the entire, un-
masked image. Note that we evaluate the importance of different types 
of features for FRD in Section C.1.1. Importantly, these features are in 
compliance with definitions provided by the Imaging Biomarker Stan-
dardization Initiative (Zwanenburg et al., 2016, 2020), mitigating past 
issues of poorly-standardized radiomics in the field (Yip and Aerts, 2016; 
Kocak et al., 2024).

Each image 𝑥 ∈ ℝ𝑛 is mapped to its radiomic feature representation 
𝑓radio(𝑥) ∈ ℝ𝑚, and we compute FRD as the Fréchet distance between 
radiomic feature distributions 𝐷1 and 𝐷2, applying a logarithmic trans-
formation for stability:
FRD(𝐷1, 𝐷2) ∶= log 𝑑𝐹 (𝑓radio(𝐷1), 𝑓radio(𝐷2)). (3)

We also 𝑧-score normalize each feature with respect to its distribution 
in 𝐷1. Note that we tested MMD distance as an alternative to Fréchet, 
but found it less effective (Section C.1.2).

3.2.  Downstream task-based image metrics

FRD and the other perceptual metrics discussed so far compare im-
age distributions in a downstream task-independent manner. However, 
in medical image analysis, task-dependent metrics are often more com-
mon, such as assessing how closely translated/generated images resem-
ble real target images by evaluating them with downstream tasks such 
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Table 1 
Main datasets evaluated in this paper. “Domains” are the source→target domain pairs used, e.g., for image translation. Each dataset is labeled for how its domains 
are similar (“Intra-”) and how they differ (“Inter-”), e.g., the BraTS dataset has intra-modality, inter-sequence domains. “FGT” is fibroglandular tissue.
 Abbrev. name Full name/citation  Domains  Intra-  Inter-  Train/val/test sizes Downstream tasks
 Breast MRI Duke Breast CancerMRI (DBC)(Saha 

et al., 2018a),(Lew et al., 2024)
 Siemens→GE(T1 MRI)  Sequence  ScannerManuf.  12K/2.4K/2.6K FGT segmentation,breast 

segmentation,cancer 
classification

 Brain MRI BraTS(Menze et al., 2015)  T1→T2  Modality  Sequence  28K/6K/6K Tumor segmentation,tumor 
detection,cancer classification

 Lumbar spine TotalSegmentator(Wasserthal et al., 
2023)and in-house MRIs

 T1 MRI→CT  Body region  Modality  2K/0.6K/0.6K Bone segmentation

 CHAOS CHAOS(Abdom. MRI & CT)(Kavur 
et al., 2021)

 CT→T1 MRI(in-phase)  Body region  Modality  1.8K/1.1K/0.6K Liver segmentation,liver 
classification

Fig. 4. Example images from each dataset, ordered left-to-right with respect to 
Table 1.

as semantic segmentation. For example, in image translation, this often 
involves training a model on real target domain images and testing it 
on translated images (Vorontsov et al., 2022; Kang et al., 2023), or vice 
versa (Yang et al., 2019; Chen et al., 2024b). If the task is segmentation, 
this approach also measures anatomical consistency between source and 
translated images. Such metrics will therefore serve as important targets 
for the task-independent metrics which we will evaluate.

While segmentation is the primary task of interest, we also assess 
other downstream tasks including object detection and classification. 
We denote downstream performance on a dataset 𝐷 (e.g., a translated 
image test set 𝐷test

𝑠→𝑡) as Perf(𝐷) ∈ ℝ, with higher values indicating better 
performance. Specifically, we use the Dice coefficient for segmentation, 
mIoU (mean Intersection-over-Union) and mAP@[0.5, 0.95] (mean Av-
erage Precision) for object detection, and AUC (area under the receiver 
operating characteristic curve) for classification—the latter computed 
on predicted logits to account for test set class imbalance (Mandrekar, 
2010; Maier-Hein et al., 2024).

3.3.  Datasets and downstream tasks

We evaluate a range of multi-domain medical (radiology) datasets 
of 2D image slices extracted from 3D volumes for out-of-domain detec-
tion, translation, and generation, covering inter-scanner, inter-sequence, 
and inter-modality cases (ordered from least to most severe visual dif-
ferences between domains). The datasets include: (1) breast MRI (T1-
weighted) from Siemens and GE scanners (DBC (Saha et al., 2018a; Lew 
et al., 2024)); (2) brain MRI (T1-weighted and T2-weighted sequences) 
from BraTS (Menze et al., 2015); (3) lumbar spine MRIs and CTs (from 
TotalSegmentator (Wasserthal et al., 2023) and in-house MRIs); and (4) 
abdominal CT and in-phase T1 MRI from CHAOS (Kavur et al., 2021). 
Each dataset is split by patient into training, validation, and test sets, 
which are each sub-split into domains (details in Table 1), resized to 
256 × 256 and normalized to [0, 1]. Example images are in Fig. 4.

The lumbar spine and CHAOS datasets pose especially challenging 
scenarios due to their relatively small size and significant differences 

in visible features and anatomical structures between their respective 
domains.

Downstream Task Evaluation. In addition to prior task-independent/per-
ceptual metrics (Section 2) and FRD (Section 3.1), we assess images 
using auxiliary models trained on downstream tasks (Table 1), as de-
scribed in Section 3.2. These models, trained on target domain data, are 
tested on various domains, such as target (𝐷test

𝑡 ), source (𝐷test
𝑠 ), source-

to-target translations (𝐷test
𝑠→𝑡), or others, depending on the experiment. 

Full details on model training, architecture, dataset creation, and task 
labels are provided in Sections B.2 and A.

4.  Evaluation and results

We will now demonstrate various applications of FRD, including 
out-of-domain detection (Section 4.1), image-to-image translation eval-
uation (Section 4.2), unconditional image generation evaluation (Sec-
tion 4.3), and abnormality detection (Section 4.4).

4.1.  FRD for out-of-domain detection

As discussed in the introduction, a common problem in deep learning 
for medical image analysis is domain shift: where when some diagnos-
tic downstream task model is presented with images that were acquired 
from a site, sequence, or modality different from the one where its train-
ing data originated, there may be a performance drop due to the data 
being OOD from the training data (AlBadawy et al., 2018; Mårtensson 
et al., 2020; Guo et al., 2024). In this section, we will show how FRD is 
overall superior to prior perceptual metrics for detecting when medical 
images are OOD.

Perceptual metrics like FRD and FID can help detect whether a new 
image 𝑥test is in-distribution (ID) or out-of-distribution (OOD) relative 
to a reference ID dataset 𝐷ID (e.g., some model’s training set) without 
labels. The OOD score 𝑠(𝑥test;𝐷ID) can be defined as the distance (here, 
we use 𝐿2) of 𝑥test’s features from the mean features of 𝐷ID:

𝑠(𝑥test;𝐷ID) = ||𝑓 (𝑥test) − 𝔼𝑥ID∼𝐷ID
𝑓 (𝑥ID)||2, (4)

where 𝑓 is an image feature encoder (Reiss and Hoshen, 2023; Schlegl 
et al., 2019). OOD performance thus depends on the choice of feature 
space, so we compare radiomic (i.e., FRD or FRDv0), RadImageNet (i.e., 
RadFID) and ImageNet (i.e., FID) features for OOD detection.

For each dataset, we use the target domain training set (Table 1) 
as 𝐷ID and compute the OOD score on the ID and OOD images of the 
test set,1 aggregating scores via AUC (Fawcett, 2006). OOD detection 
AUC results (top block of Table 2) and ID vs. OOD detection score dis-
tributions (Fig. 5) show that FRD radiomic features outperform learned 
feature spaces (FID, RadFID) and FRDv0 radiomic features on average, 
more clearly separating ID and OOD distributions. This is particularly 

1 Note that for datasets which have images from multiple domains of the same 
patient, e.g., BraTS, we use random sampling to ensure that the domain subsets 
for a given train/val/test set do not overlap by patient.
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Table 2 
Using different feature spaces/distance metrics for OOD detection. Best result and runner-up for a 
given detection metric and dataset are shown in bold and underlined, respectively. 95th percentile 
thresholding (Eq. (5)) was used to obtain accuracy, sensitivity and specificity results.

 Metric  Feature Space/Distance Metric  BreastMRI  Brain MRI  Lumbar  CHAOS  Avg.
 AUC  ImageNet  0.43  0.91  0.89  0.94  0.79

 RadImageNet  0.35  0.64 0.99 0.99  0.74
 FRDv0 0.60 0.90  0.78  1.00 0.82
 FRD  1.00  0.76  1.00  1.00  0.94

 Accuracy  ImageNet  0.65 0.73  0.81  0.84  0.76
 RadImageNet  0.68  0.48  0.98  0.92  0.77
 FRDv0 0.74  0.84  0.79  1.0 0.84
 FRD  0.96  0.57 0.92 0.95  0.85

 Sensitivity  ImageNet  0.03  0.51  0.37  0.83  0.44
 RadImageNet  0.02  0.03  1.00 0.88  0.48
 FRDv0 0.07 0.71  0.19  1.00 0.49
 FRD  1.00  0.95 0.71  1.00  0.92

 Specificity  ImageNet  0.88 0.95  0.96 0.87  0.92
 RadImageNet  0.92  0.94 0.97  1.00 0.96
 FRDv0  0.99  0.97  1.00  1.00  0.99
 FRD 0.95  0.92  1.00  0.85  0.93

true for the challenging case of breast MRI, where the domain shift is 
visually subtle (as shown in Fig. 4), likely due to the use of frequency-
space features in FRD, which can capture subtle visual details. Overall, 
FRD is sensitive to even these subtle changes because it relies on rigid, 
hand-crafted radiomic features, making it highly sensitive to distribu-
tional deviations and particularly suited for OOD detection (as well as 
detecting image corruptions; see Sections 5.4, 5.5, and C.5).

However, for true practical use, a score threshold 𝑠̂ would need to 
be set to binarily classify ID vs. OOD images without a validation set of 
OOD examples, as AUC simply integrates over all possible thresholds. 
Given the lack of OOD examples, this is doable if we heuristically set 𝑠̂
as the 95th percentile of the scores for known ID points:
𝑠̂ = Percentile95(𝑆ID), (5)

where 𝑆ID is the reference distribution of ID scores defined by 𝑆ID ∶=
{𝑠(𝑥;𝐷ID ⧵ 𝑥) ∶ 𝑥 ∈ 𝐷ID}. We illustrate these computed thresholds for 
each dataset using different feature spaces in Fig. 5, and show quanti-
tative detection results using them in Table 2. We see that using FRD 
or FRDv0 features over ImageNet or RadImageNet results in noticeably 
improved average accuracy and sensitivity, and on-par specificity, espe-
cially for the challenging subtle domain shift case of breast MRI. FRD 
improves on FRDv0 noticeably in AUC and sensitivity, and is roughly 
on-par for accuracy and specificity.

4.1.1.  OOD performance drop prediction
Another closely related question is “does FRD detect when performance 

will drop on new data?” for some downstream task model. We evaluated 
this for each of the downstream tasks of Table 1, and we see that in 
almost all cases, there is a drop in average performance on test data 
that was detected as OOD using the binary threshold approach of Eq.
(5), compared to ID performance (full table in Section C.2). Additionally, 
in Section C.3 we show that FRD outperforms other metrics in ranking 
which of different OOD datasets will result in worse downstream task 
performance.

4.1.2.  Towards practical dataset-level OOD detection
We also propose a FRD-based metric for dataset-level OOD detection, 

nFRDgroup, which is formulated to estimate the probability that some 
new test set 𝐷test is OOD as a whole, relative to 𝐷ID. This is particu-
larly designed for the realistic scenario of receiving a new dataset from 
some outside hospital/site, and wanting an interpretable indication of if 
the dataset is suitable for some in-domain trained model. While prelim-
inary, we found that this metric scores OOD datasets more consistently 
than other prior metrics, providing an estimated OOD probability of 

Fig. 5. OOD detection score distributions for in-domain (blue) and OOD (red) 
test images for each dataset (columns), using different feature spaces (rows). 
Computed detection thresholds (Eq. (5)) are shown as vertical dashed green
lines.

nFRDgroup ≃ 1 for 3 out of 4 datasets which span a variety of modalities 
and body regions; see Section C.4 for the full details.

4.1.3.  Summary: practical medical image OOD detection using FRD
Finally, in the interest of practical usage, we provide a step-by-step 

guide for OOD detection of medical images using FRD in Algorithm 1.

Algorithm 1 Medical image OOD detection using FRD.
Require: Test image set 𝐷test , reference ID image set 𝐷ID, radiomic fea-

ture encoder 𝑓 ∶= 𝑓radio. 
1: 𝑆ID ∶= {𝑠(𝑥ID;𝐷ID ⧵ 𝑥ID) ∶ 𝑥ID ∈ 𝐷ID}
2: 𝑠̂ = Percentile95(𝑆ID)
3: 𝓁test ∶= {𝟏[𝑠(𝑥test ;𝐷ID) ≥ 𝑠̂] ∶ 𝑥test ∈ 𝐷test}
4: return  Binary OOD labels 𝓁test
5: return  (Optional) dataset-level OOD score, nFRDgroup(𝐷test ;𝐷ID)
(Section C.4)
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Table 3 
Perceptual/task-independent metrics 𝑑(𝐷test

𝑠→𝑡, 𝐷
test
𝑡 ) for image translation models. Best and runner-up models according 

to each metric in bold and underlined, respectively.
 Breast MRI  Brain MRI

 Method  FRD  FRDv0  RadFID  FID  KID  CMMD  FRD  FRDv0  RadFID  FID  KID  CMMD
 CycleGAN  38.1  706  0.26  107  0.049  0.308  33.4  554  0.06  21.7 0.004  0.378
 MUNIT  43.7  626  0.29  144  0.089  1.480 25.7  540 0.05 21.6  0.006  0.388
 CUT 24.8 632  0.17  106  0.053  0.362  33.8  552  0.13  29.4  0.012 0.259
 GcGAN  24.6  647  0.17 104 0.040 0.322  12.1  523  0.04  19.0  0.003  0.239
 MaskGAN  48.7  1042  0.35  118  0.089  0.642  27.8  555  0.06  23.5  0.008  0.392
 UNSB  24.6  645 0.19  91  0.033  0.388  12.1 525  0.08  26.0  0.010  0.563

 Lumbar  CHAOS
 Method  FRD  FRDv0  RadFID  FID  KID  CMMD  FRD  FRDv0  RadFID  FID  KID  CMMD
 CycleGAN  6.71 350  0.25  210 0.161  2.950  42.8  470 0.11  122  0.051 0.379
 MUNIT  9.31  367  0.30  197  0.151  2.317  5.41  276  0.10  136  0.073  0.904
 CUT  6.48  417  0.21  245  0.206  3.373  6.84  514  0.10  145  0.083  0.444
 GcGAN 6.52  313  0.25  226 0.161  3.300 6.38 434  0.12  141 0.064  0.507
 MaskGAN  6.64  421  0.27  248  0.217  3.237  58.8  437  0.22  212  0.130  2.120
 UNSB  6.59  375 0.23 208  0.172 2.579  51.8  542 0.11 135  0.078  0.356

4.2.  FRD for evaluating image-to-image translation

4.2.1.  Image-to-image translation models
Unpaired image-to-image translation for medical images, lacking 

paired data, is challenging and typically relies on adversarial learning. 
We evaluate a variety of state-of-the-art unpaired models: CycleGAN 
(Zhu et al., 2017), MUNIT (Huang et al., 2018), CUT (Park et al., 2020), 
GcGAN (Fu et al., 2019), MaskGAN (Phan et al., 2023), and UNSB (Kim 
et al., 2024), each representing diverse techniques such as contrastive 
learning and style/content disentanglement. All models are trained on 
source and target domain images from each dataset, with detailed train-
ing specifics in Section B.1.

4.2.2.  Evaluation with perceptual metrics
We first evaluate each translation model using perceptual metrics 

to measure the distance between translated test set source domain im-
ages and real test set target domain images. We compare FRD to FRDv0, 
RadFID, FID, KID, and CMMD for this task, with results in Table 3. We 
first qualitatively observe that FID often fails to capture visual quality 
and anatomical consistency, particularly when there is a high seman-
tic shift between source and target domains, as shown in Fig. 6. For 
example, FID, KID and CMMD rate MUNIT as best for lumbar spine de-
spite a clear loss of bone structure—shown by MUNIT being the worst by 
segmentation performance in Table 4, which FRD and RadFID capture 
successfully. This highlights certain limitations of using prior perceptual 
metrics for medical images.

4.2.3.  Correlation with downstream task performance and anatomical 
consistency

Since a key goal of medical image translation is maintaining down-
stream task performance (e.g., segmentation) and mitigating domain 
shift, we will now examine whether perceptual metrics can serve as 
proxies for task performance by correlating perceptual distances with 
downstream task metrics. We calculate the Pearson correlation 𝑟 be-
tween each perceptual metric and downstream performance across all 
translation models (Tables 3 and 4).

As shown in Fig. 7, FRD has the strongest (most negative) average 
correlation with downstream task performance (𝑟 = −0.43), followed by 
RadFID (𝑟 = −0.36), while FRDv0, FID, KID, and CMMD are less consis-
tent (𝑟 = −0.01, 𝑟 = −0.17, 𝑟 = −0.17, 𝑟 = −0.08, respectively), especially 
for datasets with larger domain shifts. This is particularly the case for 
segmentation tasks (which measure anatomical consistency), where—
excluding CHAOS, which had low correlations likely due to it generally 
being a difficult dataset (see Section 3.3)—FRD and RadFID achieved 
mean correlations of 𝑟 = −0.58 and 𝑟 = −0.70, while FRDv0, FID, KID and 
CMMD have 𝑟 = −0.04, 𝑟 = −0.34, 𝑟 = −0.42, and 𝑟 = −0.08, respectively.

Fig. 6. Translations 𝑥test𝑠→𝑡 from each translation model (non-top rows) given ex-
ample inputs 𝑥test𝑠  (top row).

Fig. 7. Pearson correlation of perceptual metrics (vertical axis) (Table 3) with 
downstream task-based metrics (horizontal axis) (Table 4) for evaluating im-
age translation, taken across all translation models (lower 𝑟 (colder color) is 
better).
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Table 4 
Downstream task performance metrics Perf(𝐷test

𝑠→𝑡) for image translation models. In-domain and out-of-
domain performance shown at the bottom for reference for how susceptible each task is to domain shift, and 
as expected upper and lower performance bounds.

 Breast MRI  Brain MRI  Lumbar  CHAOS
 Dice  AUC  Dice  mIoU  mAP  AUC  Dice  Dice  AUC

 Method  Breast  FGT  Cancer  Tumor  Tumor  Cancer  Bone  Liver  Liver
 CycleGAN  0.871  0.494  0.530  0.348  0.164  0.126  0.805 0.232  0.284  0.591
 MUNIT  0.832  0.201  0.511  0.337  0.168  0.125 0.844  0.101  0.182  0.323
 CUT  0.843  0.373 0.544  0.303  0.159  0.133  0.861  0.277  0.444  0.744
 GcGAN 0.876 0.389  0.492 0.360  0.165  0.137  0.835  0.126  0.167 0.702
 MaskGAN  0.809  0.164  0.441  0.375  0.170  0.126  0.842  0.167  0.317  0.375
 UNSB  0.881  0.308  0.594  0.353 0.169 0.135  0.839  0.138 0.381  0.405
 In-domain  0.883  0.696  0.670  0.442  0.174  0.169  0.841  0.949  0.864  0.866
 OOD  0.747  0.446  0.538  0.005  0.152  0.065  0.727  0.007  0.062  0.504

Fig. 8. Top: FRD and other perceptual metrics for evaluating unconditional gen-
erative models, comparing a poor model (A) to a better model (B). Bottom:
example generated images.

These results align with recent work which showed that metrics like 
FID and KID, despite being popular in mainstream computer vision, do 
not reliably correlate with downstream task performance (Konz et al., 
2024b; Wu et al., 2025). Our results also potentially indicate generally 
best translation models for medical images, which we will discuss in 
Section 7.

4.3.  FRD for evaluating unconditional image generation

We have so far focused our experimental effort on image-to-image 
translation over image generation due to the direct relationship of it 
with the key problem of domain shift in medical imaging. We will now 
study FRD in evaluating unconditional generative medical image mod-
els, similar to FID’s typical use. We trained StyleGAN2-ADA (Karras 
et al., 2020) with default settings on four single-domain image genera-
tion tasks: (1) GE T1 breast MRI, (2) T1 brain MRI (BraTS), (3) lumbar 
spine CT, and (4) an abdominal CT dataset (CT-Organ (Rister et al., 
2020))2.

We evaluate each perceptual metric (FRD, FRDv0, RadFID, FID, 
CMMD, KID) by ranking samples from an early model iteration (Model 
A, 2 × 105 images seen in training) of visibly lower quality against a fully 
trained model (Model B, 10× more images seen in training)—similar to 
Jayasumana et al. (2024), with results and sample generated images 
shown in Fig. 8. FRD successfully identifies the lower-quality model in 
all cases, aligning with prior metrics, except for CMMD, which fails for 
breast MRI.

2 CHAOS was not large enough to train on for high generation quality.

4.4.  FRD as a predictor of abnormality

In this section, we will demonstrate a basic example of another use of 
FRD: as a predictor of abnormalities within medical images. We consider 
a dataset of axial breast DCE-MRI images cropped through the middle 
to only include one breast. We consider using FRD to predict whether 
a given test breast image is healthy or unhealthy in two scenarios: (1)
where only a reference set of healthy breast images 𝐷healthy is available 
(an anomaly detection/out-of-distribution detection scenario), and (2), 
a somewhat easier case where a reference set of unhealthy breasts 𝐷cancer
can also be used. The test set and reference sets are sampled from the 
MAMA-MIA (Garrucho et al., 2025) test and train sets, respectively, with 
full dataset creation and pre-processing details provided in Section A.5.

In the first scenario, for each test image 𝑥, we measure the FRD of 𝑥
from the reference healthy set via 𝑠(𝑥;𝐷healthy) (Eq. (4)), and use this as 
the unhealthy prediction score for 𝑥. We then aggregate all results via 
the AUC, computed with the 𝑠(𝑥;𝐷healthy) of each test image 𝑥 and its 
true label. From this, we obtained an AUC of 0.950.

In the second scenario, a reference set of unhealthy examples 𝐷cancer
is available in addition to 𝐷healthy, allowing us to simply classify some 𝑥
according to which of the reference sets it is closest to. More precisely, 
we predict a binary unhealthiness label 𝑦̂(𝑥) for 𝑥 via

𝑦̂(𝑥) =

{

0 if 𝑠(𝑥;𝐷healthy) < 𝑠(𝑥;𝐷cancer )
1 else . (6)

We then aggregate the results over the entire test set via the AUC given 
the predicted labels and the true labels, resulting in an AUC of 0.989.

Both of these experiments indicate that the features captured by FRD 
are highly discriminative for this task, which points to the meaningful-
ness of the features for medical imaging domains and respective diag-
nostic applications. Understandably, the task was slightly easier in the 
second scenario, due to the availability of unhealthy cases for direct 
comparison.

5.  Properties of FRD

In the following sections, we will demonstrate various intrinsic prop-
erties of FRD, including its relationship with user (radiologist) pref-
erence for image quality (Section 5.1), computational stability (Sec-
tion 5.2), computational efficiency (Section 5.3), and sensitivity to im-
age corruptions (Section 5.4) and adversarial attacks (Section 5.5).

5.1.  Relationship of FRD to user preference of image quality

In this section, we investigate whether FRD (and other metrics) cor-
relate with human expert-perceived quality of synthetically-generated 
images, in the context of breast cancer screening. We utilized the exper-
imental design of Garrucho et al. (2023), where three experienced read-
ers were asked to rate the realism of sets of high-quality synthetic mam-
mography images generated by a CycleGAN (Zhu et al., 2017) trained 
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Fig. 9. Reader Study: Using an ImageJ plugin, each reader was shown one im-
age at a time, which was randomly sampled from a set of 90 synthetic mammo-
grams. The image set was equally distributed between craniocaudal (CC) and 
mediolateral oblique (MLO) views (45 each), as well as between the Optimam, 
CSAW, and BCDR datasets (30 each). Images (a) to (f) are synthetic samples that 
looked realistic to the readers: (a) BCDR CC, (b) BCDR MLO, (c) Optimam CC, 
(d) Optimam MLO, (e) CSAW CC, and (f) CSAW MLO. Figure based on Garrucho 
et al. (2023).

on images from a specific acquisition site and anatomical view. This was 
conducted for six (anatomical view, acquisition site) settings, where the 
anatomical view is CC or MLO, and the dataset is OPTIMAM (Halling-
Brown et al., 2020), CSAW (Dembrower et al., 2020), or BCDR (Lopez 
et al., 2012). These three readers were two breast radiologists with over 
9 and 11 years of experience, respectively, and a surgical oncologist with 
over 14 years of experience in image-guided breast biopsy.

As illustrated in Fig. 9, ratings were conducted on a Likert scale, 
where the user had to rate a given generated image on a scale of 1 (ex-
tremely confident in the scan appearing fake) to 6 (extremely confident 
in it appearing real), where 1, 2, 3, 4, 5, and 6 are respectively mapped 
to equally-distributed probabilities (final ratings) of 0.05, 0.23, 0.41, 
0.59, 0.77, and 0.95 to compute the ROC curve of each reader as in 
Alyafi et al. (2020). In total, the study was completed on 90 synthetic 
images, containing 15 CC and 15 MLO images from each of the three 
mammography datasets.

Since this study essentially asked readers to visually compare the 
synthetic images to their known mental reference for how real mam-
mography images generally should appear, we can assess whether FRD 
and the other perceptual metrics can exhibit the same behavior. To this 
end, we compute the distance between (a) the set of synthetic images for 
a given dataset and view and (b) a fixed reference set of 90 real mam-
mography images sampled evenly from all views and datasets3 Shown 
in Fig. 10, we analyzed this for each of FRD, FRDv0, FID, and RadFID, 
and measured the correlation (Pearson’s linear correlation 𝑟, as well as 
Spearman’s non-linear/rank 𝑟 and Kendall’s 𝜏) between the metric and 
user rating, where each datapoint corresponds to each possible (view, 
dataset) combination. User ratings are averaged over all three readers 
and all 15 synthetic images for the given view and dataset. Addition-
ally, we explore using user ratings calibrated by ratings of real data in 
Section C.7.

The desired behavior for a perceptual distance metric is for a met-
ric to negatively correlate with user preference, as higher-quality/more 
realistic synthetic images—as measured by higher user rating—should 
correspond to the synthetic images having lower perceptual distance 
with respect to real images. Shown in Fig. 10, we see that out of all met-
rics, on average over all three correlation measures, FRD performs best 

3 Note that it is crucial for the reference set to remain constant for these met-
rics to have fixed scales.

Fig. 10. Top: Correlation coefficients (linear Pearson 𝑟𝑃  and non-linear/rank 
Spearman 𝑟𝑆 and Kendall 𝜏) of different distance metrics with average user (ra-
diologist) preference, for the task of measuring synthetic image quality. Bottom:
Associated plots and linear best fits for this data.

in this regard, similarly to FRDv0 in linear correlation (𝑟 ≃ −0.65) and 
out-performing noticeably in non-linear correlation.

On the other hand, FID and RadFID actually anti-correlate with user 
perception of quality of synthetic images, particularly RadFID; FID is 
surprisingly less worse in this regard (aligning with recent similar find-
ings in Woodland et al. (2024)), despite RadFID utilizing pretrained 
domain-specific medical image features, while FID uses natural image 
features. This surprising result for RadFID could be due to its underly-
ing Inception encoder being trained to focus on very specific patterns 
to detect (often localized) disease in the pretraining images and tasks 
of RadImageNet (Mei et al., 2026). While such local patterns may have 
high influence on RadFID, they may have relatively small influence on 
the overall image appearance and therefore the readers’ ratings of over-
all image quality, hence the seeming “mismatch” between RadFID and 
the readers’ ratings. On the contrary, FRD captures many generic, global 
image features (that didn’t rely on some training set) that will likely 
end up overlapping with reader perception in some aspect, which may 
be why FRD (negatively) correlates more predictably with reader prefer-
ence. Overall, this provides further evidence that FID and RadFID should 
be used with caution for medical images, and that FRD provides a notice-
able alternative that correlates substantially better with the perceptual 
preference of experienced readers.

5.2.  Sample efficiency and stability

The stability of perceptual metrics at small sample sizes is key for 
medical image datasets due to them being typically smaller (e.g., 𝑁 ≈
102–104) than natural image datasets (e.g., ImageNet with 𝑁 ≈ 106). FID 
generally requires 𝑁 ≈ 104–105 samples for stability (Heusel et al., 2017; 
Jayasumana et al., 2024), which can be prohibitive in this setting. We 
will now evaluate FRD, FRDv0, RadFID, and FID across varying sample 
sizes 𝑁 to test for this stability.

We test this under the case of image translation evaluation for the 
main datasets (Table 1): CycleGAN for breast MRI, GcGAN for brain 
MRI, CUT for lumbar spine, and MUNIT for CHAOS, respectively. Shown 
in Fig. 11 left, FRD remains stable even for very small 𝑁 (down to 
𝑁 = 10), while RadFID and FID—as well as FRDv0, to a lesser extent—
diverge as 𝑁 grows small across all datasets, indicating that these FID-
based metrics are not suitable for comparing small medical datasets of 
different sizes.

The stability of FRD at small 𝑁 , especially compared to that of FID 
and RadFID, is likely due to relatively few features dominating its com-
putation (see e.g., Fig. 15(a)), meaning the effective dimensionality 𝑚̃ is 
much smaller than the full 𝑚 ≈ 500. Thus, the Fréchet distance in FRD 
behaves as though it operates in a lower-dimensional space, enhancing 
stability even with limited samples.
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Fig. 11. Left: Sensitivity of FRD, FRDv0, RadFID and FID to sample size 𝑁 . Met-
ric values (vert. axes) are relative to their highest-𝑁 result. Right: Computation 
time for the metrics w.r.t 𝑁 , with linear best fits plotted in dashed lines.

More concretely, consider that computing the Fréchet distance (Eq.
(1)) as is necessary for FRD and FID requires estimating the covari-
ances matrices Σ1,Σ2 ∈ ℝ𝑚×𝑚 of the two data distributions in the 𝑚-
dimensional feature space (𝑚 ≈ 500 for FRD while 𝑚 ≈ 2000 for FID). 
For 𝑁 ≪ 𝑚, the estimation of these matrices can become very unstable, 
assuming that most of the 𝑚 feature dimensions contribute similarly to 
the variability of the data distributions, i.e., 𝑚̃ ≃ 𝑚.

The computational stability results shown in Fig. 11 indicate 𝑚̃ to be 
typically higher for FID/RadFID features compared to FRD features, as 
the former are noticeably less stable for low 𝑁 . As FRD features appear 
to have relatively low 𝑚̃, the true covariance matrices Σ in this feature 
space are approximately low rank, so that the estimation is stable for 
small 𝑁 because they can be mostly represented by the first 𝑚̃ terms of 
their eigendecompositions, e.g., tr(Σ) ≃ ∑𝑚̃

𝑖=1 𝜆𝑖 given eigenvalues 𝜆𝑖 of 
Σ.

5.3.  Computation time

We next compare the computation time of FRD to FID/RadFID 
(as well as FRDv0) across sample sizes 𝑁 , using data parallelism 
(num_workers=8) on UNSB-translated BraTS test images. As shown in 
Fig. 11 right, FRD is faster than FID/RadFID for small-to-moderate sam-
ple sizes (𝑁 ≲ 500). For larger 𝑁 , the computation time of FRD grows 
slightly faster, but both metrics remain efficient across different sam-
ple sizes (the computation time scales linearly with 𝑁 asymptotically), 
with FRD and FRDv0 particularly advantageous for small 𝑁 . While FRD 
is slightly slower than FRDv0—owing to the addition of various image 
filters prior to radiomic computation (Section 3.1)—the improved per-
formance in essentially all tested applications (Section 4) make it well 
worth it.

5.4.  Sensitivity to image corruptions

In this section, we analyze the sensitivity of FRD to image corruptions 
that may affect downstream task performance, compared to prior com-
mon metrics. Given the importance of downstream task performance 
metrics for medical image translation models, as well as the typical in-
creased sensitivity of medical image models to image corruptions com-
pared to natural image models (Konz and Mazurowski, 2024a), we study 
if a corruption to a (translated) image that noticeably affects down-
stream task performance on that image is also captured by the percep-
tual metrics. For further results, see Section C.5 where we show that FRD 
and FRD are sensitive to various realistic image corruptions in MRI.

Consider some image transformation/corruption 𝑇 ∶ ℝ𝑛 → ℝ𝑛. We 
model a preferable perceptual metric 𝑑 as approximately following the 
inverse proportionality
𝑑(𝐷𝑡, 𝑇 (𝐷𝑠→𝑡))
𝑑(𝐷𝑡, 𝐷𝑠→𝑡)

∝
∼

(

Perf(𝑇 (𝐷𝑠→𝑡))
Perf(𝐷𝑠→𝑡)

)−1
, (7)

evaluated on the test set’s target domain images 𝐷𝑡 and translated 
source-to-target images 𝐷𝑠→𝑡. In other words, if the perceptual distance 

Fig. 12. Sensitivity of FRD, FRDv0 (red lines), RadFID, FID, KID, and CMMD 
(green lines) to corruptions which affect downstream task performance (blue 
line) on translated images. Metric values (vertical axis) are relative to their un-
distorted result (“None”).

increases by some positive multiplicative factor 𝐾 (implying the corrup-
tion made the translated images more distant from the target domain), 
we would expect the performance to go worse by 1∕𝐾, up to a constant 
of proportionality—the sensitivity of the two metrics to image corrup-
tions should match.

We tested this on all datasets for downstream segmentation tasks that 
were sensitive to such corruptions (fibroglandular tissue (FGT) for breast 
MRI, tumor for brain MRI, bone for lumbar spine, and liver for CHAOS 
(Table 4)), for various translation models (CycleGAN, GcGAN, CUT, and 
MUNIT, respectively). We evaluate simple image corruptions 𝑇  as Gaus-
sian blurs with positive integer kernel 𝑘 (labeled as blur𝑘) or sharpness 
adjustments of non-negative factor 𝛾 (sharpness𝛾), from TorchVision 
(maintainers and contributors, 2016). We show the results in Fig. 12, 
plotting 𝑑(𝐷𝑡, 𝑇 (𝐷𝑠→𝑡))∕𝑑(𝐷𝑡, 𝐷𝑠→𝑡) and Perf(𝑇 (𝐷𝑠→𝑡))∕Perf(𝐷𝑠→𝑡) for 
each corruption for all proposed and prior perceptual metrics
𝑑.

For breast MRI, we see that the corruption sensitivity of FID and 
FRD fairly well match the performance sensitivity, with the other per-
ceptual metrics less so (for example, FRD and RadFID can be over-
sensitive to corruptions which barely affect performance). For lumbar 
spine, FRD, FRDv0 and RadFID follow the performance sensitivity well, 
while other perceptual metrics are generally not as sensitive. For BraTS, 
performance is typically not sensitive to corruptions, which FRD and 
FRDv0 follow; other perceptual metrics are generally oversensitive, but 
all still increase when performance decreases due to blurring. CHAOS 
is an interesting case, where all perceptual metrics except for FID are 
overly sensitive to corruptions despite only small changes to perfor-
mance, likely due in part to challenges of training the downstream task 
model on such a small and challenging dataset (Section 3.3). Overall, 
the sensitivity of FRD aligns best with performance sensitivity. Other 
perceptual metrics are not as consistent over all datasets, which aligns 
with the results of Section 4.2.3.
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5.5.  Sensitivity to targeted adversarial attacks

Another type of image corruption that is important to consider is ad-
versarial examples, a type of adversarial attack on some trained down-
stream task model 𝑓 where an input image 𝑥 is modified in a targeted 
manner to drastically change the model’s prediction 𝑓 (𝑥) to be incorrect 
(Goodfellow et al., 2015), while constraining the modifications to 𝑥 to 
be as subtle as possible. This scenario is important to consider due to the 
safety-critical nature of medical image diagnosis applications. Here, we 
will consider the case of attacking a binary classification neural network 
to judge whether FRD (and other distance metrics) can detect when im-
ages have been attacked.

We use the FGSM method (Goodfellow et al., 2015) to attack some 
input image 𝑥; FGSM uses the gradient of the network’s prediction loss 
to modify the input image 𝑥 with true binary domain label 𝑦 to some 𝑥̃
in order for 𝑓 to misclassify 𝑥, as

𝑥̃ = FGSM(𝑥, 𝑦) ∶= 𝑥 + 𝜖sign
(

𝜕𝐿(𝑓 (𝑥), 𝑦)
𝜕𝑥

)

, (8)

where 𝐿 is the (binary cross-entropy) loss between the model’s predic-
tion 𝑓 (𝑥) and the true label 𝑦. The use of the real-valued parameter 𝜖 > 0
and sign function constrains the attacked image to be imperceptible with 
a tolerance of 𝜖, i.e., ||𝑥̃ − 𝑥||∞ < 𝜖.

Given some test dataset 𝐷 of images 𝑥 and corresponding labels 𝑦, 
we will attack each image in 𝐷 to obtain the attacked set 𝐷̃𝜖 ∶= {𝑥̃ =
FGSM(𝑥, 𝑦) ∶ (𝑥, 𝑦) ∼ 𝐷}, using various 𝜖 (note that 𝜖 = 0 is the base-
line case of non-attacked images, i.e., 𝐷̃0 = 𝐷). We will then deter-
mine if various distance metrics 𝑑, including FRD, can detect the at-
tacked images compared to a separate reference set of clean images (the 
training set for 𝑓 ) 𝐷ref , via 𝑑(𝐷ref , 𝐷̃𝜖). We will measure two desider-
ata: (a) if the metrics can differentiate between clean and attacked 
images—i.e., if 𝑑(𝐷ref , 𝐷) < 𝑑(𝐷ref , 𝐷̃𝜖) for various 𝜖—and (b) if the dis-
tances 𝑑(𝐷ref , 𝐷̃𝜖) increase as the attack becomes more severe (𝜖 grows
larger).

We use a subset of the experimental setup of Konz and Mazurowski 
(2024a) (see that paper for more details), performing attacks on binary 
classification models for seven medical image datasets. These are (1) 
brain MRI glioma detection (BraTS, Menze et al. (2015)); (2) breast 
MRI cancer detection (DBC, Saha et al. (2018b)); (3) prostate MRI 
cancer risk scoring (Prostate MRI, Sonn et al. (2013)); (4) brain CT 
hemorrhage detection (RSNA-IH-CT, Flanders et al. (2020)); (5) chest 
X-ray pleural effusion detection (CheXpert, Irvin et al. (2019)); (6) 
musculoskeletal X-ray abnormality detection (MURA, Rajpurkar et al. 
(2018)); and (7) knee X-ray osteoarthritis detection (OAI, Tiulpin et al. 
(2018)). We evaluate 𝑓 as being either a ResNet-18 (He et al., 2016) or 
a VGG-13 (Simonyan and Zisserman, 2015), and train them with train-
ing sets (𝐷ref ) of size 1750, before evaluating and attacking them on 
class-balanced test sets of size 750, via the dataset creation/sampling 
procedures described in Konz and Mazurowski (2024a). As shown in 
full in Section C.6, these attacks are typically quite successful, even 
for very small values of 𝜖, despite them being practically undetectable
visually.

We show the results of these experiments in Fig. 13, where we show 
how 𝑑(𝐷ref , 𝐷̃𝜖) changes with respect to attack strength 𝜖 (including 
𝜖 = 0 for the unattacked case of 𝐷̃𝜖 = 𝐷), for various distance metrics 
𝑑, on all datasets and models. We see that FRD clearly differentiates 
attacked images (𝜖 > 0) from non-attacked images (𝜖 = 0) in almost all 
cases (desiderata (a)), and that it typically increases with higher attack 
strength/𝜖 (desiderata (b)). Moreoever, FRD is typically more sensitive 
to the most subtle attacks (𝜖 = 1∕255) compared to FRD and almost all 
other metrics, possibly due to the inclusion of frequency/wavelet fea-
tures. These results show that FRD can detect adversarial attacks and 
their severity, despite the fact that these attacks are practically imper-
ceptible.

6.  FRD for interpretability

In this section, we will demonstrate how FRD aids in interpreting 
differences between large sets of medical images, i.e., understanding the 
main features that differ between the two sets. The example we will 
study is interpreting the effects of image-to-image translation models, 
but this formalism could be applied to any two distributions of images.

At the single-image level, an input image 𝑥𝑠 and output translated 
image 𝑥𝑠→𝑡 can be converted to feature representations (radiomic or 
learned) ℎ𝑠 ∶= 𝑓 (𝑥𝑠) and ℎ𝑠→𝑡 ∶= 𝑓 (𝑥𝑠→𝑡), and we can interpret the fea-
ture change vector Δℎ ∶= ℎ𝑠→𝑡 − ℎ𝑠 and it’s absolute change counterpart 
|Δℎ| defined element-wise by |Δℎ|𝑖 ∶= |ℎ𝑖𝑠→𝑡 − ℎ𝑖𝑠|. At the image dis-
tribution level, we can define Δℎ ∶= 𝜇𝑠→𝑡 − 𝜇𝑠 (and similarly |Δℎ| via 
|Δℎ|𝑖 ∶= |𝜇𝑖

𝑠→𝑡 − 𝜇𝑖
𝑠|), where 𝜇𝑠, 𝜇𝑠→𝑡 ∈ ℝ𝑚 are the mean vectors of the 

input and output feature distributions, respectively. In this case, we also 
define the distributions of values for individual features as 𝐹 𝑖

𝑠 ∶= {ℎ𝑖𝑠 ∶
ℎ𝑠 ∈ 𝐹𝑠} and 𝐹 𝑖

𝑠→𝑡 ∶= {ℎ𝑖𝑠→𝑡 ∶ ℎ𝑠→𝑡 ∈ 𝐹𝑠→𝑡}.
In either case, Δℎ is simply the linear direction vector in feature 

space between the input and output distributions, analogous with other 
interpretability works that utilize the linear representation hypothesis 
(Park et al., 2024; Kim et al., 2018; Alain and Bengio, 2017; Konz et al., 
2023). We will next discuss the options and challenges for interpreting 
Δℎ, for either learned features or fixed (radiomic) features.

Attempting Interpretability with Learned vs. Radiomic Features. A com-
mon method for interpreting directions 𝑣 in a deep encoder’s feature 
space, such as Δℎ, is feature inversion (Olah et al., 2017; Mahendran and 
Vedaldi, 2015), which uses gradient-based optimization to find an input 
image 𝑥𝑣 that aligns with 𝑣 in feature space, i.e.,

𝑥𝑣 = argmax𝑥cossim(𝑣, 𝑓 (𝑥)). (9)

However, we found that doing so using either ImageNet or RadImageNet 
features resulted in abstract visualizations that lack clear, quantitative 
insights useful for clinical interpretation (Fig. 14; see Section C.8 for 
details).

Alternatively, the individual features of Δℎ could be examined sta-
tistically with questions like “which features changed the most?” or “did 
only a few features account for most of the cumulative change?”. However, 
concretely interpreting individual learned features remains challenging 
due to the qualitative nature of feature inversion, so we face the same 
problem.

Thankfully, the clear definitions of radiomic features (Section 3.1) al-
low for clear, quantitative answers to feature interpretability questions, 
beyond what is possible for learned feature techniques like feature in-
version. Here we will exemplify this by interpreting a CUT model trained 
for lumbar translation, with the following questions.

1. Which features changed the most? Sorting features by their values 
in the |Δℎ| between input and output image distributions (Fig. 15(a)) 
identifies those with the highest change, primarily textural/gray-
level matrix features, reflecting appearance shifts from MRI to CT 
(Fig. 15(b)).

2. Did only a few features change significantly? Yes—50% of cumu-
lative feature changes (measured by |Δℎ|) are covered by only 37 out 
of 500 features, indicating a light-tailed distribution (Fig. 15(a)).

3. Which images changed the most or least? Sorting input/out-
put image pairs (𝑥𝑠, 𝑥𝑠→𝑡) by their absolute feature change ||ℎ𝑠→𝑡 −
ℎ𝑠||2 = ||Δℎ||2 (Fig. 15 (c)) shows that the most-changed images 
have distinct anatomical differences, while the least-changed images 
mainly differ in texture and intensity (Fig. 15(d)).

This interpretability methodology could also help compare transla-
tion models on the same dataset and assess model effects on the images, 
or analyze the domain shift between two datasets.
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Fig. 13. Using different distance metrics (vertical axes) to detect FGSM adversarial attacks of various strength (horizontal axes), for ResNet-18 (top) and VGG-13 
(bottom) classification models. Note that distance metrics are scaled to [0, 1] over their plotted range of values for the sake of visualization.

Fig. 14. Attempts at medical image translation interpretability via learned fea-
ture inversion.

Fig. 15. Translation interpretability using radiomic features.

7.  Discussion and conclusions

Overall, our results with FRD show the value of using interpretable, 
medical image-specialized feature spaces like radiomic features for com-
paring unpaired medical image distributions. We showed that FRD con-
sistently and substantially improves over FRD, FID, RadFID, as well as 
other prior common metrics for unpaired medical image comparison 
on all evaluated tasks. These include stronger alignment with down-
stream task metrics and anatomical consistency (Section 4.2.3) for the 
task of evaluating image-to-image translation, OOD detection ability 
(Section 4.1), alignment with radiologist preferences of image qual-
ity (Section 5.1), computational stability and efficiency, especially for 
small sample sizes (Sections 5.2 and 5.3), sensitivity to performance-
affecting image corruptions (Section 5.4) and adversarial image attacks 
(Section 5.5), as well as, notably, enhanced interpretability for clinical 
use (Section 6).

Medical Image Similarity from the Perspective of Radiologists. It is also im-
portant to consider the task of measuring the similarity of medical im-
ages from the perspective of radiologists. To explore this, we performed 
a semi-structured expert interview of two experienced radiologists (au-
thors L.G. and J.L.). According to them, distinguishing between images 
from clearly different acquisition types, such as T1- vs. T2-weighted 
brain MRI or between modalities like abdominal/lumbar spine MRI and 
CT scans (Fig. 4), is a straightforward task. In contrast, differentiat-
ing between more subtly distinct domains, such as breast MRI scans 
acquired using the same sequence type but different scanner manufac-
turers or settings (Fig. 4), is considerably more challenging. Nonethe-
less, identifying such differences is crucial, as even subtle domain shifts 
can significantly impact the performance of downstream tasks (Table 4, 
bottom two rows), despite the almost imperceptible visual differences 
between domains.

Notably, FRD is able to detect these subtle domain differences with 
high consistency (see the OOD detection results of Table 2, first column). 
If a radiologist was to use such a downstream task model in clinical 
practice, FRD could help inform whether the model is well-calibrated 
for some new image at hand by detecting if the new image is OOD of 
the model’s training set. More generally, this could be used to detect any 
gradual distribution shift of newly acquired data over time compared to 
the model’s original training set, indicating if the model may require 
fine-tuning on the new data.

In general, we have found that FRD is sensitive to variations in both 
scanner protocol and sequence type in a way that follows intuition. For 
example, FRD detects the subtle differences between GE-acquired and 
Siemens-acquired T1-weighted images in the breast MRI dataset (Ta-
ble 1), as FRD between the GE training set and the GE test set is 8.561, 
while FRD between the former and the Siemens test set is 60.54, no-
ticeably higher. We also found that FRD captures how intra-modality 
(sequence type) variation should be less than inter-modality variation 
on the brain MRI dataset (Table 1), where the FRD with respect to the 
T1 sequence training set is noticeably higher for the T2 and FLAIR se-
quences’ test sets (7.762 and 7.147, respectively), compared to the FRD 
computed for the same sequence type (but different patients) of the T1 
test set (2.923).

Recommendations for Best Medical Image Translation Models. A further 
contribution of our study comprises a comprehensive set of experiments 
to compare source-to-target domain image translation methods. To this 
end, our empirical findings suggest notable general recommendations 
for medical image translation models. For severe domain shifts (e.g., 
lumbar spine and CHAOS), CUT performed best in both downstream 
tasks and perceptual metrics of FRD and RadFID, likely due to its con-
trastive learning approach that preserves image structure. For more sub-
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tle shifts (breast MRI and brain MRI), GcGAN performs well, with UNSB 
and CycleGAN also effective for breast MRI. As such, our findings rec-
ommend incorporating contrastive learning approaches such as CUT for 
high domain shifts, while adversarial learning may suffice for moderate 
shifts, as demonstrated by GcGAN.

Limitations. Our work covered a range of diagnostic tasks and imag-
ing domains, but is still limited to radiology. Other modalities could be 
explored, though radiomic features may need adjustment or (partial) 
replacement by other types of modality-specific imaging biomarkers. In 
this regard, our work demonstrates the vast potential of using imaging 
biomarker variability as a dataset comparison technique across medical 
domains.

For instance, in histopathology (Gurcan et al., 2009; Gupta et al., 
2019; Hölscher et al., 2023) and cytopathology (Rodenacker and Bengts-
son, 2003), quantitative pathomics features can be extracted, charac-
terizing tissue architecture, cellular morphology, cell density, texture, 
intensity, and spatial relationships. Therefore, measuring the variabil-
ity between such pathomics feature distributions across sets of cytol-
ogy or histology images or image patches can provide insights into out-
of-distribution detection, tissue characterization, disease localization, 
and generative model evaluation in this domain. This motivates future 
work to define and empirically assess variants of a respective “Fréchet 
Pathomic Distance”. On another note, in further medical imaging do-
mains, such as dermatology, radiomic features have already shown util-
ity in disease characterization (Attallah and Sharkas, 2021; Wang et al., 
2024a), suggesting such features and, thus, FRD can be directly appli-
cable for comparing distributions in such domains. Therefore, there is 
much potential for future work in quantifying the descriptive power of 
radiomics across different medical fields to identify where additional 
biomarkers are needed and where radiomics features suffice, followed 
by experiments evaluating FRD in these contexts.

Finally, our interpretability contributions are nascent, and further 
work is needed to extract more qualitative, yet concrete, insights. Ad-
ditionally, the absolute values of FRD are only meaningful in relative 
comparisons between models on the same dataset (i.e., measured using 
the same reference dataset 𝐷1), similar to FID and other metrics.

Future Work and Expansions. There are many potential further appli-
cations of FRD with one example being the evaluation of multimodal 
models, such as vision-language models, e.g., CLIP-type (Radford et al., 
2021) models or text-to-image generative models, e.g., Stable Diffusion-
type (Rombach et al., 2022) models. FRD may also hold potential for 
evaluating video generative models (e.g., in ultrasound imaging (Chen 
et al., 2024a; Reynaud et al., 2025)), prompting further research into 
optimal strategies for feature handling–such as whether to (a) extract 
aggregated features from video sequences or (b) aggregate features ex-
tracted from individual frames. Additionally, applying FRD to sets of 
video frames could support identification of frames of interest and detec-
tion of transitions where the informational content of the video changes.

We evaluated the relationship between FRD and downstream task 
performance on single-task, single-domain models by correlating the 
FRD (computed between evaluation and reference sets) with model per-
formance (Section 3.3). Given the field’s shift towards generalist foun-
dation models (e.g., those trained across multiple domains, modalities, 
or tasks) (Paschali et al., 2025), it’s crucial to assess FRD’s utility in 
this context. Following the initial pre-print release of this work, we ap-
plied FRD to the recently-released MRI-CORE foundation model for MRI 
analysis (Dong et al., 2025). We found that the FRD computed between 
MRI-CORE’s pre-training set and its zero-shot and few-shot evaluation 
sets was strongly correlated with the change in performance (3D Dice 
coefficient) gained from pre-training from initial SAM weights (Spear-
man 𝑟 = −0.721 and −0.842, respectively), across ten segmentation tasks 
(Fig. 4 of Dong et al. (2025)). This result supports the broader utility of 
FRD for characterizing the performance of a range of models for medical 
image analysis.

Future work can consider certain modifications and expansions to 
FRD. For instance, radiomic features can be computed exclusively within 
a mask or region of interest (ROI), and, as another alternative, sub-
sequently even further extended to a weighted combination of local 
(within-mask) and global (whole-image) features. This would enable 
additional applications, such as evaluating the quality or variability of 
image annotations by computing FRD between radiomic features ex-
tracted from a “gold standard” mask and those from candidate annota-
tions. Such an approach would not only quantify the impact of inter- 
and intra-observer variability on radiomic biomarkers but also offer a 
complementary way to assess segmentation and object detection model 
performances. This assessment can be complementary alongside tradi-
tional annotation similarity metrics such as the Dice Score, Intersection 
over Union and Hausdorff Distance, which can be overly influenced by 
annotation size, spatial extent, and outliers (Reinke et al., 2024). On an-
other note, the effect of weighting certain types of features (e.g., image-
space, frequency-space/wavelet, etc.) over others within FRD could be 
modified, which may be advantageous for certain applications.

CRediT authorship contribution statement

Nicholas Konz: Writing – review & editing, Writing – original draft, 
Visualization, Validation, Supervision, Software, Project administration, 
Methodology, Investigation, Formal analysis, Data curation, Conceptu-
alization; Richard Osuala: Writing – review & editing, Writing – orig-
inal draft, Visualization, Validation, Supervision, Software, Project ad-
ministration, Methodology, Investigation, Formal analysis, Data cura-
tion, Conceptualization; Preeti Verma: Software, Investigation, For-
mal analysis; Yuwen Chen: Validation, Formal analysis, Data cura-
tion; Hanxue Gu: Visualization, Formal analysis, Data curation; Haoyu 
Dong: Visualization, Formal analysis; Yaqian Chen: Writing – review 
& editing, Conceptualization; Andrew Marshall: Writing – review & 
editing, Formal analysis, Conceptualization; Lidia Garrucho: Project 
administration, Methodology; Kaisar Kushibar: Methodology, Concep-
tualization; Daniel M. Lang: Supervision, Project administration, Fund-
ing acquisition; Gene S. Kim: Writing – review & editing, Supervision, 
Funding acquisition, Conceptualization; Lars J. Grimm: Writing – re-
view & editing, Supervision, Conceptualization; John M. Lewin: Writ-
ing – review & editing, Investigation, Conceptualization; James S. Dun-
can: Writing – review & editing, Supervision, Project administration, 
Funding acquisition, Conceptualization; Julia A. Schnabel: Writing – 
review & editing, Supervision, Project administration, Funding acquisi-
tion; Oliver Diaz: Writing – review & editing, Supervision, Project ad-
ministration, Funding acquisition, Conceptualization; Karim Lekadir:
Writing – review & editing, Supervision, Project administration, Fund-
ing acquisition; Maciej A. Mazurowski: Writing – review & editing, 
Supervision, Project administration, Methodology, Funding acquisition, 
Conceptualization.

Declaration of competing interest

The authors declare the following financial interests/personal rela-
tionships which may be considered as potential competing interests:

Maciej A. Mazurowski reports financial support was provided by 
National Institute of Biomedical Imaging and Bioengineering. Karim 
Lekadir reports financial support was provided by Horizon Europe. 
Karim Lekadir reports financial support was provided by Horizon 2020. 
Oliver Diaz reports financial support was provided by Ministry of Sci-
ence, Innovation and Universities of Spain. Richard Osuala reports fi-
nancial support was provided by Helmholtz Association Helmholtz In-
formation & Data Science Academy. Daniel M. Lang reports financial 
support was provided by Helmholtz Information & Data Science Incu-
bator. If there are other authors, they declare that they have no known 
competing financial interests or personal relationships that could have 
appeared to influence the work reported in this paper. 

Medical Image Analysis 110 (2026) 103943 

13 



N. Konz et al.

Acknowledgments

Research reported in this publication was supported by the National 
Institute Of Biomedical Imaging And Bioengineering of the National In-
stitutes of Health under Award Number R01EB031575. The content is 
solely the responsibility of the authors and does not necessarily repre-
sent the official views of the National Institutes of Health. This research 
received funding from the European Union’s Horizon Europe and Hori-
zon 2020 research and innovation programme under grant agreement 
no 101057699 (RadioVal) and no 952103 (EuCanImage), respectively. 
It was further partially supported by the project FUTURE-ES (PID2021-
126724OB-I00) and AIMED (PID2023-146786OB-I00) from the Min-
istry of Science, Innovation and Universities of Spain. Richard Osuala 
acknowledges a research stay grant from the Helmholtz Information 
and Data Science Academy (HIDA). Daniel M. Lang and Julia A. Schn-
abel received funding from HELMHOLTZ IMAGING, a platform of the 
Helmholtz Information & Data Science Incubator. 

Appendix A.  Dataset and task labeling details

A.1.  Breast MRI

For breast MRI we use the 2D slices of the pre-contrast scan vol-
umes from the Duke Breast Cancer dataset (Saha et al., 2018a), using 
the same train/validation/test splits (by patient) and preprocessing of 
(Konz et al., 2024a) from the 100 patient volumes with FGT and breast 
segmentation annotations (see the following paragraph). This results in 
train/validation/test splits with source, target domain sub-splits of size 
{4096, 7900}∕{432, 1978}∕{688, 1890} images.

FGT and breast segmentation. FGT (fibroglandular/dense tissue) and 
breast segmentation masks for this dataset are provided from (Lew et al., 
2024).

Cancer classification/slice-level detection. For the cancer classification 
task, we follow the same convention of (Konz and Mazurowski, 2024b), 
and label slice images as cancer-positive if they contain any tumor 
bounding box annotation, and negative if they are at least 5 slices away 
from any positive slices (ignoring the intermediate ambiguous slices). 
We then train a basic ResNet-18 (He et al., 2016) (modified for 1-channel 
input images) as our binary cancer classification model, on the positive 
and negative slices from the training set’s GE scans. The model’s evalua-
tion datasets are otherwise unchanged from the other downstream tasks 
(besides the labels used for the images).

A.2.  Brain MRI

For brain MRI, we utilized the multi-modal brain tumor dataset from 
the BraTS 2018 challenge (Menze et al., 2015). Since the BraTS’s own 
validation set doesn’t have masks available, we began by extracting the 
original shared training set and dividing the patients into training, val-
idation, and test sets with a ratio of 0.7:0.15:0.15 for this paper. Next, 
we focused on the T1 and T2 sequence volumes along with their cor-
responding masks. Each slice of the image volume was normalized and 
saved as 2D PNG files to construct our 2D dataset. Note that because 
by default, each patient has both T1 and T2 scans, we used randomly 
sampling to construct the T1 and T2 subsets of the train, validation, and 
test sets such that there is no overlap between patients for the T1 and 
T2 sets (for example, the T1 and T2 test set images).

Tumor segmentation and detection. The original mask contains multiple 
classes of segmentation, including: Background (Label 0), Enhancing Tu-
mor (Label 4), Tumor Core (Label 1), Whole Tumor (Label 2), Peritu-
moral Edema (Label 3). We conducted a binary tumor/not-tumor seg-
mentation by combing all pixels with label larger than 0. For tumor 
detection, the tumor bounding box is generated by the smallest box that 

covers the entire tumor region. For those cases without tumor shown in 
that slice, we excluded them during model training/validation/testing.

Cancer classification/slice-level detection. We also further modify the task 
into a binary tumor classification task: whether this slice contains tu-
mor or not. For those slices that are near the boundary of the tumor, 
specifically the 5 slices before and after the tumor presence (switching 
between positive and negative in each volume), we excluded them from 
the classification as they are considered ambiguous slices.

A.3.  Lumbar spine

The CT lumbar spine dataset is obtained from TotalSegmentator 
(Wasserthal et al., 2023), and the T1 MRI data is private (to be re-
vealed upon paper acceptance). We split the 2D source and target data 
in train/val/test as {495, 1466}∕{175, 409}∕{158, 458}.

Bone segmentation. We perform binary classification on each pixel to 
determine whether it includes bone or not. The ground truth masks 
for MRI are reviewed by experts, while the CT masks are sourced from 
Wasserthal et al. (2023).

A.4.  CHAOS

We extract 2D CT and T1 in-phase MRI slices from the CHAOS 
dataset (Kavur et al., 2021). For each domain, we randomly split the 
data by patient in the ratio of 10:5:5, resulting in the 2D slices for 
the source and target domains being divided into train/val/test as 
{1488, 322}∕{926, 182}∕{460, 182}.

Liver segmentation. Liver masks for both modalities are provided by 
Kavur et al. (2021).

Liver classification. We assign positive labels to slices which contain the 
liver and negative labels to those that do not.

A.5.  Single breast cancer prediction experiments

For the experiments of Section 4.4, we used the MAMA-MIA (Garru-
cho et al., 2025) breast DCE-MRI dataset. For the train and test sets of 
MAMA-MIA, each 2D slice image from each axial MRI volume was split 
in half down the middle to result in two images of single breasts. A given 
single breast image was then labeled as either healthy or cancerous if 
its accompanying lesion segmentation (from Garrucho et al. (2025)) was 
non-zero within the image. Applying this procedure to MAMA-MIA’s test 
set resulted in our experiment’s test set of both healthy and cancerous 
single breast images, and applying it to MAMA-MIA’s train set resulted in 
our reference sets of healthy and cancerous images, 𝐷healthy and 𝐷cancer , 
respectively.

Appendix B.  Model training/architectural details

In this section we describe the training details of all networks in the 
paper. All experiments were completed on four 48GB NVIDIA A6000 
GPUs.

B.1.  Translation models

All six translation models (CycleGAN (Zhu et al., 2017), MUNIT 
(Huang et al., 2018), CUT (Park et al., 2020), GcGAN (Fu et al., 2019), 
MaskGAN (Phan et al., 2023), and UNSB (Kim et al., 2024)) were trained 
with their default settings (besides being modified to input and output 
1-channel images), except for a few exceptions to be described shortly; 
these settings are shown in Table B.5.

The exceptions are that for MUNIT and CUT, training for too long 
resulted in drastic changes in image content for breast MRI and lumbar 
so we chose earlier model iterations of 10, 000 and 20, 000, respectively 
for MUNIT, and 20 epochs for both for CUT.
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Table B.5 
Translation model training details.

 Model  Training time  Batch size
 CycleGAN (Zhu et al., 2017)  200 epochs  4
 MUNIT (Huang et al., 2018)  1M iters.  1
 CUT (Park et al., 2020)  200 epochs  1
 GcGAN (Fu et al., 2019)  200 epochs  32
 MaskGAN (Phan et al., 2023)  200 epochs  4
 UNSB (Kim et al., 2024)  200 epochs  1

B.2.  Downstream task models

In this section we describe the architectural and training details of 
all models trained for the downstream tasks of each dataset (Table 1) on 
its respective target domain data from the training set. All models are 
trained with Adam (Kingma and Ba, 2015) and a weight decay strength 
of 10−4 for 100 epochs.

Segmentation. For all segmentation downstream tasks we train a stan-
dard UNet (Ronneberger et al., 2015) with five encoding blocks, at a 
batch size of 8 with a learning rate of 0.01. The model is trained with 
equally-weighted cross-entropy and Dice losses, the latter implemented 
with MONAI (Cardoso et al., 2022).

Object Detection. For detection downstream tasks, we trained a Faster-
RCNN (Girshick, 2015) with a batch size of 4 and a learning rate of 
0.005. The model is implemented using Torchvision (maintainers and 
contributors, 2016), with the number of predicted classes modified to 
2. The loss function is the default loss from this built-in model.

Classification/Slice-level Detection. For classification tasks we train a 
standard ResNet-18 (He et al., 2016), modified to take in one-channel 
inputs and output one logit (as all tasks are binary classification). We 
use a batch size of 64 and a learning rate of 0.001, with a cross-entropy 
loss.

Appendix C.  Additional experiments

C.1.  Ablation studies

C.1.1.  Radiomic feature importance
To better interpret FRD, we assess the importance of different ra-

diomic feature groups (textural/gray-level matrix, wavelet, first-order) 
by ablation: examining how removing each group affects the translation 
model downstream task performance results (Fig. 7). For the wavelet 
features, which correspond to those where the image is passed through 
a frequency-based filter (-LL, -LH, -HL or -HH) before the computation 
of the feature, we evaluate both completely excluding all features (“no 
wavelet”) as well as removing those for only one filter type (-LL, -LH, 
-HL or -HH). Results are shown in Fig. C.16.

Overall, wavelet and first-order features are most crucial for FRD, 
as excluding them significantly worsens correlation results. In evalu-
ating sub-types of wavelet features, we see that excluding wavelet-HH 
improves performance for three tasks (breast MRI segmentation (FGT) 
and brain MRI/BraTS segmentation and detection mIoU), yet worsens 
performance for others (breast MRI segmentation (breast) and classifi-
cation, BraTS detection mAP, and CHAOS classification). We see simi-
lar tradeoffs for excluding wavelet-HL, -LH, or -LL features. In general, 
there is no consistent advantage to excluding one type of wavelet feature 
while including the others.

Textural features are somewhat important for breast MRI but have 
limited impact on other datasets. Breast MRI is generally the most sen-
sitive to feature exclusion, suggesting that subtle domain shifts require 
a broader range of features for accurate analysis. Overall, these findings 
indicate that including all types of radiomic features for computing FRD 
results in a better general-purpose metric.

Fig. C.16. Importance of different radiomic features for FRD. Pearson correla-
tion 𝑟 between FRD and downstream task performance metrics across all trans-
lation models (as in Fig. 7), comparing using standard FRD with all features (top 
row) to removing certain groups of features (lower rows).

Table C.6 
Correlation 𝑟 of FRD computed with MMD distance (Eq.
(C.1)) with standard Fréchet distance FRD (Eq. (3)), across 
all translation models.

 Corr.type  BreastMRI  BrainMRI  Lumbar  CHAOS
 Pearson -0.75 -0.79  0.81 -0.84
 Spearman -0.83 -0.83  0.49 -0.54

Fig. C.17. Pearson correlation 𝑟 between FRD and downstream task perfor-
mance metrics across all translation models (as in Fig. 7), comparing using 
Fréchet or MMD distance for FRD.

C.1.2.  Using MMD instead of Fréchet distance
Perceptual metrics such as CMMD and KID use the MMD (Maximum 

Mean Discrepancy) distance metric 𝑑MMD (Gretton et al., 2012) over 
the more common Fréchet distance, due to advantages such as lack-
ing the Gaussianity assumption and being suitable for smaller datasets 
(Jayasumana et al., 2024; Bińkowski et al., 2018). Here we will evalu-
ate calculating our proposed FRD distance using MMD (with a standard 
Gaussian RBF kernel) as
FRDMMD(𝐷1, 𝐷2) ∶= 𝑑MMD(𝑓𝑟𝑎𝑑𝑖𝑜(𝐷1), 𝑓𝑟𝑎𝑑𝑖𝑜(𝐷2)), (C.1)

instead of via Fréchet distance as 𝑑radio (Eq. (3)). We compare the two 
metrics (FRD and “FRD-MMD”) in terms of (1) how much they correlate 
with downstream task performance metrics (as in Fig. 7), in Fig. C.17, 
and (2) whether they rank translation models similarly (linearly or non-
linearly), in Table C.6.

We first see that FRD-MMD is noticeably inferior to FRD in terms of 
its negative correlation to downstream task performance (Fig. C.17); for 
all but one task, the correlation 𝑟 is either close to zero, or in the wrong 
direction (positive 𝑟, as higher perceptual distance should correlate with 
worse performance, not better). Moreover, FRD-MMD is not consistent 
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Table C.7 
Downstream task performance on test points detected as ID vs. OOD using our thresholding method.

 Breast MRI  Brain MRI  Lumbar  CHAOS
 Dice  AUC  Dice  mIoU  mAP  AUC  Dice  Dice  AUC

 Detected as:  Breast  FGT  Cancer  Tumor  Tumor  Cancer  Bone  Liver  Liver
 In-Domain  0.904  0.698  0.670  0.434  0.179  0.175  0.619  0.856  0.848  0.789
 Out-of-Domain  0.731  0.473  0.535  0.498  0.215  0.223  0.618  0.001  0.129  0.463

in terms of its relationship to standard FRD (Table C.6). We hypothesize 
that these issues could potentially be due to the dependence of MMD on 
the choice of kernel, which could require further tuning, or the fact that 
MMD does not have an assumption of Gaussianity unlike the Fréchet 
distance, which may result in a metric that is too unconstrained.

C.2.  OOD performance drop prediction

In Table C.7 we evaluate if images detected as out-of-domain with 
our OOD score thresholding approach (Section 4.1) also result in low-
ered performance compared to on detected ID cases.

C.3.  OOD performance drop severity ranking

Here, we assess how well FRD and other perceptual metrics predict 
performance drops on out-of-domain (OOD) data. Given a model trained 
on target domain data 𝐷𝑡 and two new OOD datasets 𝐷OOD,1 and 𝐷OOD,2, 
we examine if a metric 𝑑 can correctly indicate which OOD dataset will 
suffer a greater performance drop. Specifically, we test if Perf(𝐷test

OOD,2) <
Perf(𝐷test

OOD,1) aligns with 𝑑(𝐷test
OOD,2, 𝐷𝑡) > 𝑑(𝐷test

OOD,1, 𝐷𝑡), and vice versa.
We evaluate this scenario with the datasets in Table 1 which possess 

additional data domains beyond the target domain and default source 
domain 𝐷𝑠, namely, BraTS using its T2-FLAIR data (Menze et al., 2015), 
and CHAOS using its T1 Dual Out-Phase and T2 SPIR MRI data (Kavur 
et al., 2021). We show these task performance vs. perceptual distance 
agreement results in Table C.8 for each type of downstream task, and 
for each possible pair of 𝐷OOD,1 and 𝐷OOD,2 for each dataset (T1 MRI 
and T2 FLAIR MRI for BraTS, respectively, and all 2-combinations of 
{T1 Dual Out-Phase MRI, T2 SPIR MRI, and CT} for CHAOS). Shown in 
Tables C.9 and C.10 are the specific results that generated Table C.8.

C.4.  Towards dataset-level OOD detection

In Section 4.1, we showed how FRD/radiomic features can be used 
for single image-level binary OOD detection. However, a more realistic 
scenario may be that some new dataset is acquired from an outside hos-
pital/site, and we wish to know if the dataset is generally OOD relative 
to our own reference ID dataset 𝐷ID that we used to train some down-
stream task model, to get some idea of how our model will perform on 
the new dataset 𝐷test . For example, our ID dataset could be breast MRI 
collected from GE scanners, and the new dataset could potentially have 
OOD (e.g., Siemens) images. Our goal is therefore to have a metric that 
returns an (approximately) standardized value if 𝐷test is OOD.

A naive prior approach to this could be to measure the FID or Rad-
FID between 𝐷ID and 𝐷test , but as we will show, such distances are not 
clearly interpretable due to the distance value being noticeably affected 
by the specific dataset used, as well as the sample size (Section 5.2). To 
this end, we propose a FRD-based metric for dataset-level OOD detec-
tion which is designed to return 1 (or a value close to it) when the test 
set is completely OOD.

We do so by considering an ID reference point 𝑥ID ∼ 𝐷ID and test set 
point 𝑥 ∼ 𝐷test , both randomly sampled. Now, we wish to have a metric 
that estimates the probability that the test set is OOD. The key insight 
here is that the higher this probability, the higher the chance that 𝑥
is OOD, such that it’s expected score/distance from 𝐷ID, 𝑠(𝑥) (Eq. (4)) 
will in turn be more likely to be larger than that of a typical ID point 
𝑥ID. Assuming that OOD points will not be typically closer to 𝐷 than ID 

points, which is true by the definition of OOD, then the minimum value 
of this probability is Pr[𝑠(𝑥) > 𝑠(𝑥ID)] = 0.5 if 𝐷test is 100% ID (no clear 
difference between the test set and reference set score distributions), 
and Pr[𝑠(𝑥) > 𝑠(𝑥ID)] = 1 if 𝐷test is 100% OOD.

We then convert this to a metric, nFRDgroup (FRD for group-level 
OOD detection normalized to a fixed range) that ranges from 0 to 1 with
nFRDgroup ∶= 2(Pr[𝑠(𝑥) > 𝑠(𝑥ID)] − 0.5). (C.2)

The final question is then how Pr[𝑠(𝑥) > 𝑠(𝑥ID)] can be computed in prac-
tice; thankfully, the area under the ROC curve (AUC) by definition is this 
quantity (Fawcett, 2006), which can be easily computed, giving
nFRDgroup ∶= 2(AUC[𝑆test , 𝑆ID] − 0.5), (C.3)

where 𝑆test ∶= {𝑠(𝑥) ∶ 𝑥 ∈ 𝐷test} and 𝑆ID is the reference distribution of 
ID scores, 𝑆ID ∶= {𝑠(𝑥ID;𝐷ID ⧵ 𝑥ID) ∶ 𝑥ID ∈ 𝐷ID}, as in Section 4.1.

We evaluate nFRDgroup for OOD-scoring OOD test sets in Table C.11, 
averaged over 10 randomly sampled test sets of size 100 for each trial, 
compared to using the FID or FRDFID between 𝐷test and 𝐷ID. While all 
metrics assign a higher score for the OOD test set than the ID test set, 
we note that the scale of FID and RadFID OOD test set distance values 
changes noticeably depending on the dataset, a factor which would be 
even more pronounced if considering datasets of different sizes, as those 
metrics can be highly unstable for different sample sizes (Section 5.2). 
On the other hand, nFRDgroup is ≈ 1 for the OOD test set in 3/4 datasets 
(besides BraTS, due to it generally proving difficult for disentangle the 
ID and the OOD distributions (Section 4.1)), making it a more standard-
ized, interpretable and practical metric. This enables us to posit that a 
nFRDgroup score of ≈ 1 for some new dataset means that the dataset is 
likely OOD.

We similarly see that for completely ID test sets (Table C.12), 
nFRDgroup is ≈ 0 in 3∕4 cases. While RadFID does so for 4∕4 cases, this 
doesn’t account for the fact that RadFID is still highly sensitive to sam-
ple size, hurting its interpretable, standardized, realistic use in this case. 
Finally, we also show ablation studies in these two tables of using Im-
ageNet or RadImageNet features to compute nFRDgroup instead of ra-
diomic features, where we see that using these learned features results 
in less stable OOD test set distance values.

C.5.  FRD vs. FRDv0: A study on realistic MRI corruptions

Now we will compare the sensitivity of FRD to image corruptions 
compared to its predecessor, FRDv0 Osuala et al. (2024), in the context 
of realistic MRI corruptions. Given an image dataset 𝐷, we will mea-
sure the effect that randomized transformations 𝑇  have on the distance 
𝑑(𝐷, 𝑇 (𝐷)) (measured via FRD or FRDv0), as 𝑇  becomes more severe. 
The dataset that we use is the CHAOS T1-Dual In-Phase MRI training 
set (Table. 1). These transformations (besides random swapping) were 
chosen to simulate realistic artefacts to which MRI may be susceptible, 
due to issues such as motion, noise, etc.

Given some image 𝑥 ∼ 𝐷 with pre-established maximum intensity 
𝐼max, the transformations 𝑇  that we consider are listed as follows, each 
controlled by a percentage/severity parameter 𝑝 ∈ [0, 100].

1. Gaussian noise. Random Gaussian noise is added to 𝑥 via 𝑥 ←
clip(𝑥 + 𝑝𝐼max

100 𝜖, [0, 𝐼max]) where 𝜖 ∼  (0, 1).
2. Gaussian blur. Apply Gaussian blur with kernel size 𝑘 = 𝑝

100 ×
max_size, rounded to the nearest odd integer, where max_size is 
the pixel length of the longest side of the image.
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Table C.8 
Can FRD predict OOD performance drop severity? For each downstream task type (sub-tables) trained 
on a given dataset’s target domain data 𝐷𝑡 (first row) and for two OOD test sets 𝐷test

OOD,1 and 𝐷test
OOD,2 (sec-

ond row), whether Perf(𝐷test
OOD,2) < Perf(𝐷test

OOD,1) does (3) or does not (7) correspond to 𝑑(𝐷test
OOD,2, 𝐷𝑡) >

𝑑(𝐷test
OOD,1, 𝐷𝑡) and vice-versa. “-” denotes that the given perceptual metric was only negligibly affected by 

the change of the OOD dataset. “DOP” is “Dual Out-Phase”.
 Segmentation (Dice)

 Brain MRI:trained on T2  CHAOS: trained on T1 Dual In-Phase
 T1vs. T2 FLAIR  T1 DOPvs. T2 SPIR  T1 DOPvs. CT  T2 SPIRvs. CT

 FRD  3  7  3  3
 RadFID  3  3  3  3
 FID  7  3  3  3
 KID  -  3  3  3
 CMMD  7  3  3  3
 Detection
 Brain MRI:trained on T2
 T1 vs. T2 FLAIR
 mIoU  mAP
 7  3
 7  3
 3  7
 -  -
 3  7
 Classification (AUC)
 Brain MRI:trained on T2  CHAOS: trained on T1 Dual In-Phase
 T1vs. T2 FLAIR  T1 DOPvs. T2 SPIR  T1 DOPvs. CT  T2 SPIRvs. CT
 3  3  3  3
 3  7  3  3
 7  7  3  3
 -  7  3  3
 7  7  3  3

Table C.9 
Downstream task performance Perf(𝐷test

OOD) (left block) and perceptual distances 𝑑(𝐷test
OOD, 𝐷𝑡) (right 

block) on out-of-domain data 𝐷test
OOD (each row) for downstream task models trained on (in-domain) 

BraTS T2 MRI data 𝐷𝑡, to supplement Table C.8.
 Downstream task performance  Perceptual distance metrics

𝐷test
OOD  Dice  mIoU  mAP  AUC  FRD  RadFID  FID  KID  CMMD

 T1 MRI  0.005  0.152  0.065  0.727  6.18  0.25  108  0.089  0.179
 T2 FLAIR MRI  0.286  0.144  0.108  0.885  5.09  0.19  117  0.088  0.394

Table C.10 
Downstream task performance Perf(𝐷test

OOD) (left block) and perceptual distances 𝑑(𝐷test
OOD, 𝐷𝑡) (right 

block) on out-of-domain data 𝐷test
OOD (each row) for downstream task models trained on (in-domain) 

CHAOS T1 Dual In-Phase MRI data 𝐷𝑡, to supplement Table C.8.
 Downstream task performance  Perceptual distance metrics

𝐷test
OOD  Dice  AUC  FRD  RadFID  FID  KID  CMMD

 T1 Dual Out-Phase MRI  0.779  0.853  7.87  0.09  143  0.096  0.205
 T2 SPIR MRI  0.262  0.867  7.55  0.20  189  0.126  0.507
 CT  0.062  0.504  60.6  0.65  277  0.268  1.666

Table C.11 
Dataset-level OOD detection scores for OOD test sets.

 Metric  BreastMRI  Brain MRI  Lumbar  CHAOS
 FID  178  223  277  338
 RadFID  0.22  0.35  1.23  1.64
nFRDgroup  1.00  0.62  0.95  1.00
 +ImageNet  0.01  0.84  0.75  0.94
 +RadImageNet  0.14  0.32  0.99  0.94

3. Random swap. Randomly chosen small square patches of size 𝑘 = 15
are swapped in the image, repeated round(𝑝) times.

4. Motion artifacts. MRI motion artifacts are simulated with re-
alistic movement transformations (rotation and/or translation) 
via the RandomMotion function of TorchIO (Pérez-García et al., 
2021). We used RandomMotion with parameters degrees = 𝑝

100 × 10, 

Table C.12 
Dataset-level OOD detection scores for ID test sets.

 Metric  BreastMRI  Brain MRI  Lumbar  CHAOS
 FID  92  73  77  48
 RadFID  0.09  0.06  0.04  0.04
nFRDgroup  0.00  0.04  0.07  0.44
 +ImageNet  0.22 -0.04  0.05 -0.05
 +RadImageNet  0.1 -0.05  0.07 -0.13

translation = 𝑝
100 × 10, and num_transforms = max(1, round( 𝑝

100 ×
2)).

5. Random bias field. MRI bias field artifacts are simulated via 
spatially-varying low-frequency intensity variations, implemented 
via TorchIO’s RandomBiasField function with coefficients =
𝑝

100 × 0.5.
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Fig. C.18. Comparison of FRD and FRDv0 (Osuala et al., 2024) in terms of sen-
sitivity to abdominal MR image corruptions.

Fig. C.19. Top: Adversarial attack success (accuracy drop) on ResNet-18 and 
VGG-13 classification models. Bottom: Example non-attacked (first row) and 
attacked (second row) versions of the same images, from 𝜖 = 1∕255 FGSM attacks 
on ResNet-18 models for different datasets (columns of image; ordered left-to-
right by legend labels in the top plots).

6. Deformation. MRI soft tissue deformations are simulated 
via random non-linear spatial corruptions, using TorchIO’s
RandomElasticDeformation function. We use parameters of 
max_displacement = 𝑝

100 × 7.5 and num_control_points =
max(5, round( 𝑝

100 × 7)).

We plot the results of this study in Fig. C.18. We see that FRD and 
FRDv0 have similar sensitivity behavior to image corruptions, besides 
the random bias field results for 𝑝 = 5. In general, the two distance met-
rics increase as the corruption severity increases, which is the desired 
behavior.

C.6.  Adversarial attack success results

We show the success of our adversarial attacks in terms of decreased 
model accuracy in Fig. C.19, alongside example clean and attacked im-
ages.

Fig. C.20. Top: Correlation coefficients (linear Pearson 𝑟𝑃  and non-linear/rank 
Spearman 𝑟𝑆 and Kendall 𝜏) of different distance metrics with calibrated av-
erage user (radiologist) preference, for the task of measuring synthetic image 
quality. Bottom: Associated plots and linear best fits for this data.

C.7.  Calibrating user preference ratings

Continuing from Section 5.1, a related way to measure a reader’s 
rating of the quality of synthetic images is not just by their absolute 
average Likert score for the images, but by calibrating this measure by 
subtracting the average score for a set of relevant real images from it 
(in particular, 15 random real images for a given dataset and anatomical 
view). This aims to mitigate confounding effects on user preference, such 
as certain readers having a general bias in rating both synthetic and 
real images, higher or lower. We show the correlation results of this in 
Fig. C.20.

Similar to Fig. 10, we see that FRD correlates (negatively) fairly well 
with calibrated user preference, while FID and RadFID actually, unde-
sirably, correlate positively. While FRD is substantially more correlated 
with user preference than FID and RadFID, FRDv0 does show a some-
what stronger correlation compared to FRD. Intuitively, this is plausi-
ble due to FRD including numerous additional frequency/wavelet ra-
diomic features that are not present in FRDv0, many of which (those 
not at low frequencies) are typically barely perceptible by the human 
eye (Dieleman, 2020; Salimans et al., 2017); thus, FRD will focus more 
on such features when comparing images. As demonstrated, the inclu-
sion of these features resulted in noticeable improvements to FRD over 
FRDv0 in many medical image analysis applications (see Sections 4 and 
C.1.1), i.e., where accounting for these subtle details is helpful for the 
underlying task.

C.8.  Attempting to interpret differences between medical image 
distributions with learned features

We have applied feature inversion (Olah et al., 2017; Mahendran 
and Vedaldi, 2015) to visualize Δℎ using ImageNet and RadImageNet 
features (via Lucent (Kiat, 2021)), for breast MRI and brain MRI UNSB 
translation models, shown in Fig. 14. While the results hint at general 
textural and shape changes from translation, they lack clear, quantita-
tive insights useful for clinical interpretation.

Appendix D.  Additional discussion

D.1.  Downstream task metrics as image distribution distance metrics

Segmentation performance metrics are themselves distance func-
tions between two distributions of image features. If the predictions of 
the downstream task model on its test set and the corresponding ground 
truth labels/segmentations are taken as “features” of the images, then 
performance metrics such as Dice segmentation coefficient, IoU, etc. are 
image distribution metrics that clearly follow the topological require-
ments of distance metrics: reflexivity, non-negativity, symmetry, and 
the triangle inequality (Section 2).
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