
Enhancing LLM Character-Level Manipulation via Divide and Conquer

Anonymous ACL submission

Abstract
Large Language Models (LLMs) have shown001
impressive generalization across diverse natu-002
ral language processing tasks. However, they003
consistently struggle with character-level string004
manipulation such as deletion, insertion, and005
substitution, despite the foundational role of006
these operations in data preprocessing and code007
generation. This gap raises a critical question:008
Why do LLMs, despite their strong token-level009
capabilities, fail at basic character-level ma-010
nipulations? To address this question, we con-011
duct a systematic analysis and uncover two012
key findings: (1) LLMs have limited ability013
to leverage intrinsic token knowledge for fine-014
grained character reasoning, and (2) decompos-015
ing words into atomized structures can signifi-016
cantly enhance their sensitivity to token-level017
structure. Building on these insights, we pro-018
pose Character-Level Manipulation via Divide019
and Conquer, a novel framework that bridges020
the gap between token-level processing and021
character-level manipulation. Our approach de-022
composes complex tasks into explicit character-023
level subtasks followed by controlled token re-024
construction phases. This method leads to sig-025
nificant accuracy improvements without requir-026
ing additional model training. Empirical results027
show that Character-Level Manipulation via028
Divide and Conquer achieves notable gains on029
the Deletion, Insertion, and Substitution030
benchmarks. We release our implementation031
and evaluation suite to support future research032
in character-aware language modeling.033

1 Introduction034

Large Language Models (LLMs) have recently035

demonstrated remarkable success across a wide036

range of NLP tasks (Brown et al., 2020; Wei et al.,037

2022b,a). Yet, beneath this progress lies a surpris-038

ingly persistent blind spot: even state-of-the-art039

LLMs routinely fail at seemingly simple character-040

level string manipulations. For example, when041

prompted to insert an ‘a’ after every ‘e’ in "intelli-042

gence", ChatGPT-4o produces "intellaigenca"—a043

non-trivial error for such a basic operation. These 044

failures are not anecdotal, but symptomatic of a 045

broader, systematic limitation. 046

This limitation stems from how LLMs process 047

text. Modern models rely on tokenization al- 048

gorithms, such as BPE (Sennrich et al., 2016) 049

and SentencePiece (Kudo and Richardson, 2018), 050

which convert words like "linguistics" into token 051

sequences (e.g., [3321, 84, 7592]1). While effi- 052

cient for most NLP tasks, such tokenization dis- 053

rupts access to individual characters, hindering the 054

model’s ability to reason and act at the charac- 055

ter level—even when some character-level knowl- 056

edge is passively learned during training. Our ex- 057

periments confirm that, although LLMs excel at 058

spelling, this skill rarely translates to reliable char- 059

acter manipulation. 060

Character-level operations are foundational in 061

many real-world workflows where the task can- 062

not simply be offloaded to an external script. For 063

example, in software engineering, code genera- 064

tion assistants must adaptively modify variable 065

names or syntax on-the-fly, based on ambiguous 066

or context-dependent user instructions (Chen et al., 067

2021). Data preprocessing and text normalization 068

pipelines often require flexible, language-aware 069

corrections (Zhang et al., 2024). Educational and 070

assistive technologies increasingly depend on nu- 071

anced, context-sensitive spelling and grammar edit- 072

ing (Omelianchuk et al., 2020; Caines et al., 2023). 073

In all these scenarios, it is impractical or impossi- 074

ble to enumerate all possible manipulations ahead 075

of time in a static codebase—flexibility and inter- 076

pretability demand that LLMs handle such tasks 077

within the flow of language. 078

Despite the centrality of these applications, 079

prior research has focused mainly on bench- 080

marking LLMs’ character-level capabilities (e.g., 081

CUTE (Edman et al., 2024)), rather than interro- 082

gating the mechanisms or designing methods that 083

1o200k_base tokenizer

1



Substitute ‘l’ with ‘j’ in ‘hello’

Replacing the letter ‘l’ with ‘j’ in ‘hello’ 
results in ‘hello’. 

hello

h

e

l

l

o

Decompose

h

e

j

j

o

hejjo
Manipulate

Reconstruct

Instruction

Direct Prompt

Our Method

Figure 1: (Upper) Given a character-level token manip-
ulation instruction, (Lower-(a)) direct prompting fails
with an incorrect answer while our (Lower-(b)) pro-
posed Token Character-Aware Decomposition (ToCAD)
method is more robust to such token manipulation tasks.

make LLMs robust to such operations.084

Our systematic analysis reveals two key insights:085

(I) LLMs consistently perform well in spelling086

tasks, and (II) presenting words in fully atom-087

ized (character-separated) forms can activate latent088

character-level reasoning. Motivated by these find-089

ings, we propose Character-Level Manipulation via090

Divide and Conquer, a novel divide-and-conquer091

framework that bridges token-level and character-092

level processing. Specifically, our approach decom-093

poses any manipulation into three explicit stages:094

token decomposition, character-level manipulation,095

and token reconstruction—all accomplished within096

the LLM, without extra finetuning or external code.097

See Figure 1 for an overview.098

We validate our approach through comprehen-099

sive experiments: on Deletion, Insertion, and100

Substitution tasks, our method consistently out-101

performs standard prompting and few-shot base-102

lines across multiple LLMs. In addition, our error103

analysis uncovers persistent bottlenecks in LLMs’104

internal handling of character-level structure, pro-105

viding actionable insights for both practitioners and106

model designers.107

• We present the first systematic analysis of108

LLM character-manipulation challenges and109

show how structural input variation can un-110

lock reasoning capabilities.111

• We introduce a zero-shot, model-agnostic112

method that substantially improves character-113

level operation accuracy, requiring no addi- 114

tional training. 115

• Our extensive experimental analysis not only 116

validates the effectiveness of our approach, 117

but also lays the groundwork for future re- 118

search in making LLMs more robust and in- 119

terpretable at the character level. 120

2 Related Works 121

With the rise of "seq2seq" (Sutskever et al., 2014) 122

models built on the Transformer (Vaswani et al., 123

2017) architecture, natural language processing 124

has stepped into its new the era of Large Lan- 125

guage Model (LLM). Instruction fine-tuning tech- 126

nique (Brown et al., 2020) has enabled LLMs to 127

demonstrated remarkable generality: they show 128

the potential to outperform human performance 129

in tasks such as mathematics (Ahn et al., 2024), 130

programming (Shirafuji et al., 2023), and logical 131

reasoning (Parmar et al., 2024). However, LLMs 132

can still make naive mistakes on simple problems 133

by generating seemingly correct but nonfactual or 134

wrong answer (Huang et al., 2024). 135

Text preprocessing in modern language learn- 136

ing models (LLMs) primarily employs subword 137

tokenization methods (Wu et al., 2016; Kudo, 138

2018), with byte pair encoding (BPE) (Sennrich 139

et al., 2016) being one of the most widely used 140

approaches. However, the subword tokenization 141

paradigm has notable limitations that can hinder 142

the nuanced understanding of internal structure of 143

words (Chai et al., 2024). In this paper, we explore 144

these limitations through a series of character-level 145

tasks designed to assess LLMs’ comprehension of 146

words at the character level. 147

Current benchmarks that evaluate large language 148

models’ understanding of token composition re- 149

veal significant flaws and shortcomings in LLMs 150

that use subword units as tokens. For instance, 151

LMentry (Efrat et al., 2022) tests whether LLMs 152

can distinguish between the first and last letters 153

of a word or generate words containing a specific 154

letter. Meanwhile, CUTE (Edman et al., 2024) 155

introduces more challenging tasks, such as ask- 156

ing LLMs to replace, delete, insert, or swap letters 157

within words. The results demonstrate that even the 158

most advanced LLMs still have considerable room 159

for improvement on non-trivial token benchmarks. 160

Our paper goes beyond evaluation, presenting not 161

only underlying mechanism analysis but also effec- 162

tive methods. 163

2



A significant amount of research has been con-164

ducted on character-level models, where each indi-165

vidual character is treated as a separate token. Al-166

though the character-level models exhibited poten-167

tial for better generalization, especially in scenarios168

involving rare words, but they often struggled with169

efficiency and performance on tasks that require170

more abstract linguistic knowledge.171

3 Analysis172

Large Language Models have demonstrated re-173

markable capabilities in complex NLP tasks, from174

reasoning to coding. However, a simple character175

manipulation task reveals their surprising limita-176

tions. When GPT-4o receives an instruction to177

insert ‘a’ after every ‘e’ in the word "intelligence",178

it comes up with a wrong answer, "intellaigenca".179

This intriguing phenomenon motivates us to sys-180

tematically investigate why modern LLMs struggle181

with seemingly simple character manipulations de-182

spite their sophisticated abilities.183

3.1 Challenges in Character-Level Reasoning184

for LLMs185

To understand LLMs’ capabilities in handling char-186

acters within tokens, we first design diagnostic ex-187

periments using small open-sourced models as our188

primary study subject. The experiments aim to189

probe two aspects of character-level understanding:190

1) the ability to spell out characters sequentially and191

2) the ability to reason about individual characters192

within a word.193

Spelling In the spelling task, we evaluate the194

model’s capability to decompose words into their195

constituent characters. GEMMA2-9B achieves an196

impressive 97.4% accuracy on 814 single token197

English word, suggesting a strong ability to seri-198

alize words into character sequences. This high199

performance leads to an intuitive assumption that200

the model possesses a robust understanding of201

character-level composition.202

Reasoning However, this assumption quickly203

breaks down when we examine the model’s ability204

to verify if a certain letter exists in a word, see Fig-205

ure 2 for an extreme example. Statically, the model206

frequently reports non-existent characters, leading207

to false positive rates up to 1050% higher than true208

positives for certain characters, as shown in Figure209

3.210

Word Spelling

Prompt: Spell the word "hello".

Output: The word "hello" spelled out is: H-E-L-L-O✓

Character Retrieval
Prompt: Is the letter "a" in "hello"?

Output: Yes, the letter ’a’ is present in the word ’hello’.
Let’s think through it step by step: The word ’hello’ con-
sists of 5 letters: h, e, l, o, and l. Check for the presence
of the letter ’a’: 1) The first letter is ’h’, which is not ’a’.
2) The second letter is ’e’, which is not ’a’. 3) The third
letter is ’l’, which is not ’a’. 4) The fourth letter is ’l’,
which is not ’a’. 5) The fifth letter is ’o’, which is not ’a’.
Conclusion: After checking each letter individually, we
find that the letter ’a’ is present as the fifth letter in the
word ’hello’. Therefore, the letter ’a’ is indeed present in
the word ’hello’.

Answer Yes ✗

Figure 2: (Upper) Word spelling task performed with
LLAMA3.1-8B. (Bottom)Single character retrieval ex-
periment conducted on LLAMA3.1-8B. Intriguingly,
the model concludes with a wrong answer even if its
reasoning process is correct. We also observed simi-
lar incorrect answer, without reasoning process though,
from GEMMA2-9B, LLAMA3.2-11B and GPT-3.5.

Further investigation reveals a systematic error 211

pattern: our analysis demonstrates that verifica- 212

tion accuracy deteriorates significantly as token 213

length increases. The comparison between real to- 214

ken length and predicted token length distribution, 215

illustrated in Figure 4, suggests a fundamental limi- 216

tation in how LLMs actively utilize character-level 217

knowledge of tokens at different length. 218

3.2 Atomized Word Structure Enhances 219

Character-Level Reasoning for LLMs 220

Having established that LLMs internally encode 221

the compositional structure of words but do not 222

actively leverage this information when processing 223

related queries, we now turn to explore methods to 224

activate this hidden potential and unlock character- 225

level reasoning capabilities. 226

To achieve this, we first investigate how LLMs 227

comprehend a word’s internal structural informa- 228

tion by systematically examining the impact of or- 229

thographic variations on the model’s internal lex- 230

ical representation. Specifically, we design a con- 231

trolled perturbation method that generates different 232

segmentation patterns of the same word while pre- 233

serving its character sequence. 234

For case-level comparison, we define a pertur- 235

3



a b c d e f g h i j k l m n o p q r s t u v w x y z
Counts

0

10

20

30

40

50

60

C
h

ar
ac

te
r

↑30%

↑161%

↑96% ↑188%

↑21%

↑400%
↑120%↑312%

↑45%

↑1050%

↑357%

↑88%

↑100%

↑57%
↑63%

↑130%

↑650%

↑61%
↑92% ↑44%

↑105%

↑162%

↑833%

↑850%

↑475%

↑466%

Prediction Ground Truth

Figure 3: A more comprehensive character retrieval experiment conducted on GEMMA2-9B. The model tends to
mistakenly identify characters that are not present in a word as being part of it. The percentages represent the ratio
of false positives to true positives for each letter.

0 10 20 30
Count

0.00

0.05

0.10

0.15

0.20

D
en

si
ty

predictions

ground truth

(a) GEMMA2-9B

0 5 10 15 20 25
Count

0.00

0.05

0.10

0.15

0.20

D
en

si
ty

predictions

ground truth

(b) LLAMA3.1-8B

0 2 4 6 8 10
Count

0.0

0.1

0.2

0.3

0.4

D
en

si
ty

predictions

ground truth

(c) QWEN2.5-3B

0 5 10 15 20 25
Count

0.00

0.05

0.10

0.15

0.20

D
en

si
ty

predictions

ground truth

(d) GEMMA3-4B

Figure 4: Distribution of character counts per token pre-
dicted by various LLMs in different scales compared
to ground truth. The divergence between the distribu-
tions suggests a systematic bias or calibration shift in
the model’s character-level predictions.

bation degree k that determines the percentage of236

adjacent character pairs to be separated by whites-237

pace. Given a word with length L, we randomly238

select ⌊(L − 1)k%⌋ pairs of adjacent characters239

to insert whitespace between them. For instance,240

given the word "information", different perturba-241

tion degrees yield:242

• 0% perturbation:"information" (original form)243

• 25% perturbation: "in for mation" (2 spaces)244

• 50% perturbation: "in fo rm a tion" (4 spaces)245

• 100% perturbation: "i n f o r m a t i o n" (fully246

atomized form)247

This perturbation framework allows us to sys- 248

tematically analyze how different segmentation pat- 249

terns affect the model’s internal representations. 250

We examine the cosine similarities between the 251

hidden states of perturbed versions and the original 252

word across different layers of the model (see Fig- 253

ure 5). At early layers (l ∈ [0, 4]), the similarities 254

are naturally low since we only extract the last to- 255

ken’s representation. In middle layers (l ∈ [5, 12]), 256

similarities increase dramatically due to word-level 257

detokenization processes (Kaplan et al., 2024). In- 258

terestingly, in later layers (l ≥ 13) when the lex- 259

icon representation stabilize, we observe that the 260

fully atomized form (100% perturbation) shows 261

the strongest similarity to the original word. This 262

suggests that the model maintains a strong internal 263

connection between a word and its character-by- 264

character spelling, aligning with our observations 265

from Section 3.1 about LLMs’ high spelling accu- 266

racy. 267

With the special orthographical structure of the 268

atomized word, we are now able to unveil the pos- 269

sible underlying process of how LLM deal with 270

character-level knowledge reasoning, see Figure 271

6 as a qualitative analysis example. Based on the 272

attention map across different layers, the model 273

starts to shift its attention from the whole word to 274

the specific character of interest, in our case, the 275

letter to be removed. In later layers (l > 25), we 276

observe that the last input token starting to pay 277

more attentions to the token which is closely re- 278

lated to the ground truth. Finally, we also observed 279

that with the atomized word, LLM did achieve bet- 280

ter confidence, see Figure 7 for comparison of the 281

probabilities of the top-5 output token candidates 282

4



0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42
Layer

0.05

0.20

0.35

0.50

0.65

0.80

C
os

in
e

S
im

ila
ri

ty

25%

50%

75%

100%

Figure 5: The cosine similarity of hidden states be-
tween the original word form and its orthographic per-
turbed forms at varying degree across different layers
of GEMMA2-9B.

in our example.283

Quantitatively, on larger scale experiments with284

1K word samples, compared to the original word285

form, atomized words achieved a 143% median286

improvement in the probability score for correct287

first next-token prediction.288

Through this systematic analysis of perturbation289

effects, we gain insights into how LLMs construct290

and maintain lexical representations throughout291

their processing pipeline. Notably, the strong per-292

formance of the fully atomized form particularly293

informs our method design in Section 4, where we294

leverage this characteristic to improve character-295

level manipulation capabilities.296

4 Method297

Our analysis in Section 3 first identifies that LLMs298

struggle to effectively apply their intrinsic token299

knowledge to character-level reasoning. To address300

this, we propose the atomized word structure as a301

means to enhance LLMs’ reasoning capabilities at302

the character level. Building on these insights, we303

introduce Character-Level Manipulation via Divide304

and Conquer, a systematic approach that bridges305

token-level processing and character-level manip-306

ulation, enabling more precise and structured han-307

dling of character-level tasks.308

4.1 Task Formulation309

Character-level text manipulation serves as a fun-310

damental building block in modern NLP systems.311

From data preprocessing to code generation and312

text normalization, these operations underpin nu-313

merous practical applications. While humans can314

perform such operations effortlessly, token-based315

LLMs encounter significant challenges due to their316

architectural constraints. In this work, we inves-317

tigate three foundational character operations that 318

capture core manipulation requirements while high- 319

lighting key technical challenges. 320

• Deletion task requires removing specified 321

characters while preserving word structure. 322

Given a word W and a target character ci ∈ 323

W , the task produces W ′ such that ci ̸∈ W ′ 324

while maintaining the order of remaining char- 325

acters. For instance, removing ’l’ from ’hello’ 326

should yeild ’heo’. 327

• Insertion task adds new characters at specific 328

positions. Given a word W and an anchor 329

character ci ∈ W , the task inserts cj after 330

every occurance of ci ∈ W while keeping the 331

rest of characters unchanged. When inserting 332

’a’ after ’e’ in ’hello’, the output should be 333

’heallo’. 334

• Substitution task globally replaces characters 335

throughout a word. Given a word W and an 336

target character ci ∈ W , the substitution task 337

is to replace each character ci with a new char- 338

acter cj . For example, substituting ’l’ with ’j’ 339

in ’hello’ should produce ’hejjo’. 340

4.2 Character-Level Manipulation via Divide 341

and Conquer 342

Our key insight, as established in Section 3, is 343

that while LLMs demonstrate strong proficiency 344

in spelling (97.4% accuracy), they frequently fail 345

at active character-level reasoning—particularly 346

when required to retrieve, insert, or substitute let- 347

ters within words. Notably, our analysis shows 348

that presenting words in fully atomized (character- 349

separated) forms can activate latent character-level 350

knowledge within the model, leading to more reli- 351

able manipulation. Building on this, we propose a 352

principled three-stage divide-and-conquer frame- 353

work that explicitly guides LLMs through each 354

required sub-operation (see Figure 1). 355

Stage I: Token Atomization. The first stage ex- 356

plicitly decomposes the input word into a sequence 357

of isolated characters, separated by spaces (e.g., 358

"hello" → "h e l l o"). This atomization step is 359

critical: it sidesteps tokenization artifacts, mak- 360

ing each character independently accessible to the 361

LLM and preventing the model from relying solely 362

on its token-level priors. By providing controlled, 363

fine-grained segmentation, we prompt the LLM to 364

operate on characters rather than opaque subword 365

5



i n f o r m a t i o n

Only
return

the
result

.
EOT

NL
SOT

model
NL

Layer 7 Mean Attention

i n f o r m a t i o n

Only
return

the
result

.
EOT

NL
SOT

model
NL

Layer 9 Mean Attention

i n f o r m a t i o n

Only
return

the
result

.
EOT

NL
SOT

model
NL

Layer 11 Mean Attention

i n f o r m a t i o n

Only
return

the
result

.
EOT

NL
SOT

model
NL

Layer 13 Mean Attention

i n f o r m a t i o n

Only
return

the
result

.
EOT

NL
SOT

model
NL

Layer 15 Mean Attention

i n f o r m a t i o n

Only
return

the
result

.
EOT

NL
SOT

model
NL

Layer 17 Mean Attention

i n f o r m a t i o n

Only
return

the
result

.
EOT

NL
SOT

model
NL

Layer 19 Mean Attention

i n f o r m a t i o n

Only
return

the
result

.
EOT

NL
SOT

model
NL

Layer 21 Mean Attention

i n f o r m a t i o n

Only
return

the
result

.
EOT

NL
SOT

model
NL

Layer 23 Mean Attention

i n f o r m a t i o n

Only
return

the
result

.
EOT

NL
SOT

model
NL

Layer 25 Mean Attention

i n f o r m a t i o n

Only
return

the
result

.
EOT

NL
SOT

model
NL

Layer 27 Mean Attention

i n f o r m a t i o n

Only
return

the
result

.
EOT

NL
SOT

model
NL

Layer 29 Mean Attention

i n f o r m a t i o n

Only
return

the
result

.
EOT

NL
SOT

model
NL

Layer 31 Mean Attention

i n f o r m a t i o n
Only

return
the

result
.

EOT
NL

SOT
model

NL

Layer 33 Mean Attention

i n f o r m a t i o n

Only
return

the
result

.
EOT

NL
SOT

model
NL

Layer 35 Mean Attention

i n f o r m a t i o n

Only
return

the
result

.
EOT

NL
SOT

model
NL

Layer 37 Mean Attention

i n f o r m a t i o n

Only
return

the
result

.
EOT

NL
SOT

model
NL

Layer 39 Mean Attention

i n f o r m a t i o n

Only
return

the
result

.
EOT

NL
SOT

model
NL

Layer 41 Mean Attention

Figure 6: Averaged attention matrix across different layers with a special focus on tokens of interest. The darker the
color of the heat map cell represents smaller the attention value, and vice versa. In our case, the token "f" in the
x-axis is the target letter to remove from the word "information". Meanwhile, "in" is the first expected output token.
See more examples in the appendix B.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5
Logits

in

ination

inor

information

informat

ino

n

irn

i

info

iN

T
op

-K
N

ex
t

T
ok

en
C

an
d

id
at

es

6.78

4.00

3.52

3.92

3.66

6.12

3.64

3.53

4.38

2.88

2.83

2.47

2.27

1.96

1.91

1.87

atomized original

Figure 7: Logits for top-5 next token candidates using
original word form v.s. atomized form. In our case, the
sub-word "in" is the correct next-token prediction.

tokens, thus "unlocking" its implicit understanding366

of word structure. We note that this atomization is367

performed directly within the prompt and requires368

no additional model training.369

Stage II: Character-wise Manipulation. In this370

stage, the LLM is instructed to carry out the de-371

sired manipulation—deletion, insertion, or substi-372

tution—at the character level on the atomized se-373

quence. For example, to substitute ’l’ with ’j’ in "h374

e l l o", the model operates stepwise, applying the375

edit to each character position as appropriate. This376

explicit character-wise framing mitigates common377

failure modes of token-based manipulation, such378

as incomplete edits or positional drift. By reduc-379

ing the manipulation to a sequence of simple, local380

operations, this stage enhances both accuracy and 381

interpretability. We emphasize that each manipu- 382

lation is guided by a dedicated prompt template, 383

which can be flexibly adapted for different types of 384

string operations. 385

Stage III: Token Reconstruction. The final 386

stage incrementally reconstructs the manipulated 387

word from the edited character sequence, guiding 388

the LLM to output the result as a contiguous string 389

(e.g., "h e j j o" → "hejjo"). Crucially, we in- 390

struct the model to avoid additional corrections or 391

auto-normalization, which can otherwise cause the 392

output to revert to more common word forms—a 393

prevalent failure in direct prompting. This staged 394

reconstruction preserves the intended structure of 395

the manipulated word and ensures faithful execu- 396

tion of the requested operation. As with earlier 397

steps, this process is implemented at the prompt 398

level without altering the model’s weights. 399

Operationalization: Practically, our framework 400

chains these three stages together using a sequen- 401

tial LLM call. Example prompts for each stage 402

are provided in Appendix A. This architecture is 403

lightweight, requires no extra training or exter- 404

nal code, and is compatible with most instruction- 405

tuned LLMs. 406

Figure 1 demonstrates how our divide-and- 407

conquer approach successfully solves a substitution 408

task that direct prompting fails to handle. The next 409

section presents a comprehensive empirical evalu- 410

6



ation across diverse models, tasks, and linguistic411

settings.412

5 Experiments413

In this section, we first introduce our implementa-414

tion details and evaluation metrics, and then present415

various experiment results.416

Implementation details We use OpenAI official417

API for GPTs series evaluation. We set temperate418

to 0 and top_p to 0.95 for all API requests. For419

system message and user message, please see Ap-420

pendix A for more details.421

Dataset construction We select top 1K most fre-422

quently used English words 2 as input string to423

be manipulated. For Deletion and Substitution424

task, we randomly select one character within the425

word as the target to be removed or substituted426

with another different character. For Insertion427

task, we first randomly select an existing charac-428

ter within the string as anchor and then randomly429

select another new character from the alphabet to430

insert after the previous anchor.431

Evaluation metrics Due to the deterministic nat-
ural of our tasks, we adopt exact match (EM) to
evaluate the LLM’s output is valid or not and the
total accuracy is defined as:

Acc =
1

N

N∑
EM(y, ŷ)

where N is the total number of testing samples and432

y and ŷ are model prediction and ground truth.433

5.1 Comparison Experiments434

Our experiments are conducted with various popu-435

lar small-scale LLMs as well as proprietary com-436

mercial LLMs using different prompting strategies.437

The experimental results (see table 1) demon-438

strate several key findings regarding the perfor-439

mance of different LLMs on character-level ma-440

nipulation tasks.441

Overall Performance Our proposed method442

consistently outperforms both few-shot (Brown443

et al., 2020) and chain-of-thought (COT) (Wei444

et al., 2022c) baselines across all models and445

tasks. Among all tested models, openAI’s GPT-3.5446

achieves the best performance with our method.447

The improvement is particularly significant for448

more complex operations like character insertion.449

2https://www.kaggle.com/datasets/rtatman/english-word-
frequency/data

Table 1: Comparison of LLM Experiments Across
Character-level Operations Tasks. Del, Ins and
Sub are abbreviations for Deletion, Insertion and
Substitution tasks.

Model Del Ins Sub

GPT-3.5 w/ FS-1 0.875 0.159 0.663

GPT-3.5 w/ FS-4 0.903 0.162 0.439

GPT-3.5 w/ CoT 0.850 0.050 0.506

GPT-3.5 w/ ours 0.948 0.898 0.937

GPT-4O-MINI w/ FS-1 0.839 0.382 0.662

GPT-4O-MINI w/ FS-4 0.864 0.404 0.651

GPT-4O-MINI w/ CoT 0.881 0.462 0.788

GPT-4O-MINI w/ ours 0.918 0.813 0.916

LLAMA3-8B w/ FS-1 0.469 0.070 0.145

LLAMA3-8B w/ FS-4 0.572 0.071 0.331

LLAMA3-8B w/ CoT 0.504 0.124 0.310

LLAMA3-8B w/ ours 0.722 0.638 0.732

GEMMA2-9B w/ FS-1 0.463 0.061 0.293

GEMMA2-9B w/ FS-4 0.487 0.110 0.295

GEMMA2-9B w/ CoT 0.584 0.102 0.444

GEMMA2-9B w/ ours 0.769 0.510 0.694

Methodological Comparison We considered dif- 450

ferent kinds of commonly used prompting strategy, 451

including one/few-shot and COT. Our method’s 452

consistent superior performance indicates that it ad- 453

dresses the limitations of both baseline approaches 454

in handling character-level operations. 455

Task-specific Analysis The experimental results 456

reveal distinct patterns in different character ma- 457

nipulation tasks: Deletion task shows the highest 458

baseline performance across all models, suggesting 459

it might be the most intuitive operation for LLMs. 460

Insertion task: This proves to be the most chal- 461

lenging task for baseline methods, with few-shot 462

and COT approaches struggling to achieve satisfac- 463

tory results (average accuracy below 0.2 for some 464

models). Substitution task: Performance on this 465

task falls between deletion and insertion in terms 466

of difficulty. 467

Model Architecture Our experiment includes 468

OpenAI‘s GPT-3.5, GPT-4o-mini, Meta‘s 469

LLAMA3-8B (Dubey et al., 2024), and Google‘s 470

GEMMA2-9B (Riviere et al., 2024) for comparison. 471

Although the results show that proprietary models 472

outperform open-source models in all tasks, our 473

method is LM-independent. In all the LLMs 474

tested in the experiments, our method consistently 475

7



1 2 3 4 5 6 7 8 9 10 11
Number of Tokens

0

20

40

60

80

100

A
cc

u
ra

cy
(%

)
ToCAD(ours) FS-1 FS-4 COT

Figure 8: Deletion accuracy w.r.t. word lengths on
GEMMA2-9B. Our proposed method constantly outper-
forms other baselines. For more tasks and LMs compar-
ison, check appendix C.

outperforms other baseline methods.476

String Length In the experiments, we also ob-477

served that the performance of LLM on string ma-478

nipulation tasks is largely influenced by the length479

of the word, as illustrated in Figure 8. Specifically,480

model accuracy tends to decrease as string length481

increases. Although our approach is similarly af-482

fected by this pattern, it demonstrates a slower rate483

of performance deterioration compared to other484

baseline models, suggesting superior robustness in485

handling more challenging cases.486

5.2 Ablation Study487

Instruction-Following To evaluate the robust-488

ness of our method under varying parameter set-489

tings, we conducted experiments by modifying the490

instruction paradigm from zero-shot to few-shot.491

Specifically, we assessed the impact of different492

numbers of shots on the accuracy of each stage493

within our framework.494

Stage 0-shot 1-shot 2-shot 3-shot

I 0.993 0.997 0.997 0.999
II 0.896 0.927 0.937 0.892
III 0.636 0.673 0.685 0.671

Table 2: Performance at each stage for different instruc-
tions with varying numbers of examples.

According to the ablation results (see table 2),495

increasing the number of examples in the few-shot496

setting did not lead to significant performance im-497

provements across these three stages. This indi-498

cates that our method is not sensitive to prompt499

configuration and serves as a relatively stable and500

general framework for string manipulation.501

Type Input Expt Output

Auto-Correct
movies moviesq movies

include iclude include

chat chac chat

Multi-Targets
whxich whxichx whxich

data dxtx dxta

Table 3: Different error types with some failure cases as
examples. Input and Expt are input string and expected
ground truth, while Output is the wrong output.

5.3 Case Study 502

To demonstrate the effectiveness of the proposed 503

method, we qualitatively analyzed failure cases 504

from the evaluation dataset. 505

Two common error types were identified: 506

Error Type I: Auto-Correction When the cor- 507

rect answer closely resembles the input word, 508

LLMs tend to apply an internal correction mech- 509

anism. Instead of producing the expected output, 510

they generate a semantically meaningful word. Ex- 511

amples are shown in the first row of the Table 3. 512

Error Type II: Multi-Targets Some tasks re- 513

quire modifying multiple occurrences of a charac- 514

ter in a word. LLMs often stop processing after 515

handling the first occurrence, leading to incomplete 516

results. Examples are shown in the second row of 517

the Table 3. 518

6 Conclusion 519

This work reveals and addresses a fundamental gap 520

in the character-level manipulation abilities of large 521

language models (LLMs). We show that despite 522

strong generalization, LLMs often fail at explicit 523

string operations due to tokenization bottlenecks. 524

Our proposed divide-and-conquer framework lever- 525

ages atomized word structures and staged manip- 526

ulation to unlock latent character-level reasoning, 527

achieving consistent improvements across deletion, 528

insertion, and substitution tasks. Beyond the empir- 529

ical gains, our analysis sheds light on the structural 530

underpinnings of LLMs’ internal representations, 531

offering practical tools for model analysis and ac- 532

tionable insights for advancing token-level inter- 533

pretability. We hope these findings will encourage 534

further research bridging subword tokenization and 535

fine-grained linguistic control in next-generation 536

LLMs. 537

8



7 Limitations & Discussions538

Our study is limited to widely used, instruction-539

finetuned token-based LLMs. While dedicated540

character-level models may offer stronger perfor-541

mance for specific tasks, our focus is on practical,542

broadly compatible enhancements for existing mod-543

els. We also note that many real-world character544

manipulation problems could be solved with ex-545

plicit programming; the value of our approach lies546

in its ability to integrate natural language-driven547

editing within end-to-end LLM workflows. Addi-548

tionally, while our method reduces tokenization-549

induced errors, it introduces some necessary com-550

putational overhead due to multi-step prompting.551

References552

Janice Ahn, Rishu Verma, Renze Lou, Di Liu, Rui553
Zhang, and Wenpeng Yin. 2024. Large language554
models for mathematical reasoning: Progresses and555
challenges. ArXiv, abs/2402.00157.556

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie557
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind558
Neelakantan, Pranav Shyam, Girish Sastry, Amanda559
Askell, Sandhini Agarwal, Ariel Herbert-Voss,560
Gretchen Krueger, Tom Henighan, Rewon Child,561
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,562
Clemens Winter, Christopher Hesse, Mark Chen, Eric563
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,564
Jack Clark, Christopher Berner, Sam McCandlish,565
Alec Radford, Ilya Sutskever, and Dario Amodei.566
2020. Language models are few-shot learners. In567
Proceedings of the 34th International Conference on568
Neural Information Processing Systems, NIPS ’20,569
Red Hook, NY, USA. Curran Associates Inc.570

Andrew Caines, Luca Benedetto, Shiva Taslimipoor,571
Christopher Davis, Yuan Gao, Oeistein Andersen,572
Zheng Yuan, Mark Elliott, Russell Moore, Christo-573
pher Bryant, Marek Rei, Helen Yannakoudakis, An-574
drew Mullooly, Diane Nicholls, and Paula Buttery.575
2023. On the application of large language models576
for language teaching and assessment technology.577
ArXiv.578

Yekun Chai, Yewei Fang, Qiwei Peng, and Xuhong579
Li. 2024. Tokenization falling short: The curse of580
tokenization. ArXiv, abs/2406.11687.581

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming582
Yuan, Henrique Pondé, Jared Kaplan, Harrison Ed-583
wards, Yura Burda, Nicholas Joseph, Greg Brockman,584
Alex Ray, Raul Puri, Gretchen Krueger, Michael585
Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin,586
Brooke Chan, Scott Gray, Nick Ryder, Mikhail587
Pavlov, Alethea Power, Lukasz Kaiser, Moham-588
mad Bavarian, Clemens Winter, Philippe Tillet, Fe-589
lipe Petroski Such, David W. Cummings, Matthias590
Plappert, Fotios Chantzis, Elizabeth Barnes, Ariel591

Herbert-Voss, William H. Guss, Alex Nichol, Igor 592
Babuschkin, Suchir Balaji, Shantanu Jain, Andrew 593
Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan 594
Morikawa, Alec Radford, Matthew M. Knight, Miles 595
Brundage, Mira Murati, Katie Mayer, Peter Welinder, 596
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya 597
Sutskever, and Wojciech Zaremba. 2021. Evaluat- 598
ing large language models trained on code. ArXiv, 599
abs/2107.03374. 600

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, 601
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, 602
Akhil Mathur, Alan Schelten, Amy Yang, Angela 603
Fan, Anirudh Goyal, Anthony Hartshorn, Aobo Yang, 604
Archi Mitra, Archie Sravankumar, Artem Korenev, 605
Arthur Hinsvark, Arun Rao, Aston Zhang, and Zhi- 606
wei Zhao. 2024. The llama 3 herd of models. ArXiv. 607

Lukas Edman, Helmut Schmid, and Alexander Fraser. 608
2024. CUTE: Measuring LLMs’ understanding of 609
their tokens. In Proceedings of the 2024 Confer- 610
ence on Empirical Methods in Natural Language 611
Processing, pages 3017–3026, Miami, Florida, USA. 612
Association for Computational Linguistics. 613

Avia Efrat, Or Honovich, and Omer Levy. 2022. Lmen- 614
try: A language model benchmark of elementary 615
language tasks. ArXiv, abs/2211.02069. 616

Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong, 617
Zhangyin Feng, Haotian Wang, Qianglong Chen, 618
Weihua Peng, Xiaocheng Feng, Bing Qin, and Ting 619
Liu. 2024. A survey on hallucination in large lan- 620
guage models: Principles, taxonomy, challenges, and 621
open questions. ACM Trans. Inf. Syst. 622

Guy Kaplan, Matanel Oren, Yuval Reif, and Roy 623
Schwartz. 2024. From tokens to words: on the inner 624
lexicon of llms. ArXiv. 625

Taku Kudo. 2018. Subword regularization: Improv- 626
ing neural network translation models with multiple 627
subword candidates. In Proceedings of the 56th An- 628
nual Meeting of the Association for Computational 629
Linguistics (Volume 1: Long Papers), pages 66–75, 630
Melbourne, Australia. Association for Computational 631
Linguistics. 632

Taku Kudo and John Richardson. 2018. Sentencepiece: 633
A simple and language independent subword tok- 634
enizer and detokenizer for neural text processing. In 635
Proceedings of the 2018 Conference on Empirical 636
Methods in Natural Language Processing: System 637
Demonstrations, pages 66–71. 638

Kostiantyn Omelianchuk, Vitaliy Atrasevych, Artem 639
Chernodub, and Oleksandr Skurzhanskyi. 2020. 640
GECToR – grammatical error correction: Tag, not 641
rewrite. In Proceedings of the Fifteenth Workshop 642
on Innovative Use of NLP for Building Educational 643
Applications, pages 163–170, Seattle, WA, USA → 644
Online. Association for Computational Linguistics. 645

Mihir Parmar, Nisarg Patel, Neeraj Varshney, Mutsumi 646
Nakamura, Man Luo, Santosh Mashetty, Arindam 647

9

https://api.semanticscholar.org/CorpusID:267365459
https://api.semanticscholar.org/CorpusID:267365459
https://api.semanticscholar.org/CorpusID:267365459
https://api.semanticscholar.org/CorpusID:267365459
https://api.semanticscholar.org/CorpusID:267365459
https://arxiv.org/abs/2307.08393
https://arxiv.org/abs/2307.08393
https://arxiv.org/abs/2307.08393
https://api.semanticscholar.org/CorpusID:270560764
https://api.semanticscholar.org/CorpusID:270560764
https://api.semanticscholar.org/CorpusID:270560764
https://api.semanticscholar.org/CorpusID:235755472
https://api.semanticscholar.org/CorpusID:235755472
https://api.semanticscholar.org/CorpusID:235755472
https://doi.org/10.48550/arXiv.2407.21783
https://doi.org/10.18653/v1/2024.emnlp-main.177
https://doi.org/10.18653/v1/2024.emnlp-main.177
https://doi.org/10.18653/v1/2024.emnlp-main.177
https://api.semanticscholar.org/CorpusID:253370569
https://api.semanticscholar.org/CorpusID:253370569
https://api.semanticscholar.org/CorpusID:253370569
https://api.semanticscholar.org/CorpusID:253370569
https://api.semanticscholar.org/CorpusID:253370569
https://doi.org/10.1145/3703155
https://doi.org/10.1145/3703155
https://doi.org/10.1145/3703155
https://doi.org/10.1145/3703155
https://doi.org/10.1145/3703155
https://doi.org/10.48550/arXiv.2410.05864
https://doi.org/10.48550/arXiv.2410.05864
https://doi.org/10.48550/arXiv.2410.05864
https://doi.org/10.18653/v1/P18-1007
https://doi.org/10.18653/v1/P18-1007
https://doi.org/10.18653/v1/P18-1007
https://doi.org/10.18653/v1/P18-1007
https://doi.org/10.18653/v1/P18-1007
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/2020.bea-1.16
https://doi.org/10.18653/v1/2020.bea-1.16
https://doi.org/10.18653/v1/2020.bea-1.16


Mitra, and Chitta Baral. 2024. LogicBench: Towards648
systematic evaluation of logical reasoning ability of649
large language models. In Proceedings of the 62nd650
Annual Meeting of the Association for Computational651
Linguistics (Volume 1: Long Papers), pages 13679–652
13707, Bangkok, Thailand. Association for Compu-653
tational Linguistics.654

Gemma Team Morgane Riviere, Shreya Pathak,655
Pier Giuseppe Sessa, Cassidy Hardin, Surya Bhupati-656
raju, L’eonard Hussenot, Thomas Mesnard, Bobak657
Shahriari, Alexandre Ram’e, Johan Ferret, Peter658
Liu, Pouya Dehghani Tafti, Abe Friesen, Michelle659
Casbon, Sabela Ramos, Ravin Kumar, Charline Le660
Lan, Sammy Jerome, Anton Tsitsulin, Nino Vieil-661
lard, Piotr Stańczyk, Sertan Girgin, Nikola Momchev,662
Matt Hoffman, Shantanu Thakoor, Jean-Bastien Grill,663
Behnam Neyshabur, Alanna Walton, Aliaksei Sev-664
eryn, Alicia Parrish, Aliya Ahmad, Allen Hutchi-665
son, Alvin Abdagic, Amanda Carl, Amy Shen, Andy666
Brock, Andy Coenen, Anthony Laforge, Antonia Pa-667
terson, Ben Bastian, Bilal Piot, Boxi Wu, Brandon668
Royal, Charlie Chen, Chintu Kumar, Chris Perry,669
Christoper A. Welty, Christopher A. Choquette-670
Choo, Danila Sinopalnikov, David Weinberger, Dim-671
ple Vijaykumar, Dominika Rogozi’nska, D. Herbi-672
son, Elisa Bandy, Emma Wang, Eric Noland, Erica673
Moreira, Evan Senter, Evgenii Eltyshev, Francesco674
Visin, Gabriel Rasskin, Gary Wei, Glenn Cameron,675
Gus Martins, Hadi Hashemi, Hanna Klimczak-676
Pluci’nska, Harleen Batra, Harsh Dhand, Ivan Nar-677
dini, Jacinda Mein, Jack Zhou, James Svensson,678
Jeff Stanway, Jetha Chan, Jin Zhou, Joana Car-679
rasqueira, Joana Iljazi, Jocelyn Becker, Joe Fernan-680
dez, Joost R. van Amersfoort, Josh Gordon, Josh681
Lipschultz, Joshua Newlan, Junsong Ji, Kareem Mo-682
hamed, Kartikeya Badola, Kat Black, Katie Mil-683
lican, Keelin McDonell, Kelvin Nguyen, Kiranbir684
Sodhia, Kish Greene, Lars Lowe Sjoesund, Lau-685
ren Usui, L. Sifre, Lena Heuermann, Leti cia Lago,686
Lilly McNealus, Livio Baldini Soares, Logan Kil-687
patrick, Lucas Dixon, Luciano Martins, Machel Reid,688
Manvinder Singh, Mark Iverson, Martin Gorner,689
Mat Velloso, Mateo Wirth, Matt Davidow, Matt690
Miller, Matthew Rahtz, Matthew Watson, Meg Ris-691
dal, Mehran Kazemi, Michael Moynihan, Ming692
Zhang, Minsuk Kahng, Minwoo Park, Mofi Rah-693
man, Mohit Khatwani, Natalie Dao, Nenshad Bar-694
doliwalla, Nesh Devanathan, Neta Dumai, Nilay695
Chauhan, Oscar Wahltinez, Pankil Botarda, Parker696
Barnes, Paul Barham, Paul Michel, Peng chong697
Jin, Petko Georgiev, Phil Culliton, Pradeep Kup-698
pala, Ramona Comanescu, Ramona Merhej, Reena699
Jana, Reza Ardeshir Rokni, Rishabh Agarwal, Ryan700
Mullins, Samaneh Saadat, Sara Mc Carthy, Sarah701
Perrin, S’ebastien M. R. Arnold, Se bastian Krause,702
Shengyang Dai, Shruti Garg, Shruti Sheth, Sue Ron-703
strom, Susan Chan, Timothy Jordan, Ting Yu, et al.704
2024. Gemma 2: Improving open language models705
at a practical size. ArXiv, abs/2408.00118.706

Rico Sennrich, Barry Haddow, and Alexandra Birch.707
2016. Neural machine translation of rare words with708
subword units. In Proceedings of the 54th Annual709

Meeting of the Association for Computational Lin- 710
guistics (Volume 1: Long Papers), pages 1715–1725, 711
Berlin, Germany. Association for Computational Lin- 712
guistics. 713

Atsushi Shirafuji, Yutaka Watanobe, Takumi Ito, 714
Makoto Morishita, Yuki Nakamura, Yusuke Oda, and 715
Jun Suzuki. 2023. Exploring the robustness of large 716
language models for solving programming problems. 717
ArXiv, abs/2306.14583. 718

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014. 719
Sequence to sequence learning with neural networks. 720
In Proceedings of the 28th International Conference 721
on Neural Information Processing Systems - Volume 722
2, NIPS’14, page 3104–3112, Cambridge, MA, USA. 723
MIT Press. 724

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob 725
Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz 726
Kaiser, and Illia Polosukhin. 2017. Attention is all 727
you need. In Proceedings of the 31st International 728
Conference on Neural Information Processing Sys- 729
tems, NIPS’17, page 6000–6010, Red Hook, NY, 730
USA. Curran Associates Inc. 731

Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu, 732
Adams Wei Yu, Brian Lester, Nan Du, Andrew M. 733
Dai, and Quoc V Le. 2022a. Finetuned language 734
models are zero-shot learners. In International Con- 735
ference on Learning Representations. 736

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, 737
Barret Zoph, Sebastian Borgeaud, Dani Yogatama, 738
Maarten Bosma, Denny Zhou, Donald Metzler, Ed H. 739
Chi, Tatsunori Hashimoto, Oriol Vinyals, Percy 740
Liang, Jeff Dean, and William Fedus. 2022b. Emer- 741
gent abilities of large language models. Transactions 742
on Machine Learning Research. Survey Certifica- 743
tion. 744

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten 745
Bosma, brian ichter, Fei Xia, Ed H. Chi, Quoc V Le, 746
and Denny Zhou. 2022c. Chain of thought prompt- 747
ing elicits reasoning in large language models. In 748
Advances in Neural Information Processing Systems. 749

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc Le, 750
Mohammad Norouzi, Wolfgang Macherey, Maxim 751
Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff 752
Klingner, Apurva Shah, Melvin Johnson, Xiaobing 753
Liu, ukasz Kaiser, Stephan Gouws, Yoshikiyo Kato, 754
Taku Kudo, Hideto Kazawa, and Jeffrey Dean. 2016. 755
Google’s neural machine translation system: Bridg- 756
ing the gap between human and machine translation. 757
ArXiv. 758

Haochen Zhang, Yuyang Dong, Chuan Xiao, and Masa- 759
fumi Oyamada. 2024. Jellyfish: Instruction-tuning 760
local large language models for data preprocessing. 761
In Proceedings of the 2024 Conference on Empiri- 762
cal Methods in Natural Language Processing, pages 763
8754–8782, Miami, Florida, USA. Association for 764
Computational Linguistics. 765

10

https://doi.org/10.18653/v1/2024.acl-long.739
https://doi.org/10.18653/v1/2024.acl-long.739
https://doi.org/10.18653/v1/2024.acl-long.739
https://doi.org/10.18653/v1/2024.acl-long.739
https://doi.org/10.18653/v1/2024.acl-long.739
https://api.semanticscholar.org/CorpusID:270843326
https://api.semanticscholar.org/CorpusID:270843326
https://api.semanticscholar.org/CorpusID:270843326
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://api.semanticscholar.org/CorpusID:259252094
https://api.semanticscholar.org/CorpusID:259252094
https://api.semanticscholar.org/CorpusID:259252094
https://openreview.net/forum?id=gEZrGCozdqR
https://openreview.net/forum?id=gEZrGCozdqR
https://openreview.net/forum?id=gEZrGCozdqR
https://openreview.net/forum?id=yzkSU5zdwD
https://openreview.net/forum?id=yzkSU5zdwD
https://openreview.net/forum?id=yzkSU5zdwD
https://openreview.net/forum?id=_VjQlMeSB_J
https://openreview.net/forum?id=_VjQlMeSB_J
https://openreview.net/forum?id=_VjQlMeSB_J
https://doi.org/10.48550/arXiv.1609.08144
https://doi.org/10.48550/arXiv.1609.08144
https://doi.org/10.48550/arXiv.1609.08144
https://doi.org/10.18653/v1/2024.emnlp-main.497
https://doi.org/10.18653/v1/2024.emnlp-main.497
https://doi.org/10.18653/v1/2024.emnlp-main.497


A Experimental Prompts766

To compare our proposed method with frequently767

used baseline methods, we deployed single-shot768

prompt template (Figure. 9), 4-shot prompt tem-769

plate (Figure. 10) and Chain-of-Thought template770

(Figure. 11) in our comparison experiment.771

One-Shot Prompt Template

Deletion: Delete every instance of a specified letter in
a given word, based on the following examples:\n\ne.g.:
Delete every instance of "a" in "alphabet". Answer: "lph-
bet"\n\nQuestion: Delete every instance of "{}" in "{}".

Insertion: Add the specified letter after every instance of
the second specified letter in a given word, based on the
following examples:\n\ne.g.: Add an "e" after every "a" in
"alphabet". Answer: "aelphaebet"\n\nQuestion: Add an
"{}" after every "{}" in "{}".

Substitution: Substitute the first specified letter with the
second specified letter in a given word, based on the fol-
lowing examples:\n\ne.g.: Substitute "a" with "b" in "al-
phabet". Answer: "blphbbet"\n\nQuestion: Substitute "{}"
with "{}" in "{}".

Figure 9: Few-shot (n=1) prompt template.

Three-Shot Prompt Template

Deletion: Delete every instance of a specified letter in
a given word, based on the following examples:\n\n1.
Delete every instance of "a" in "alphabet". Answer: "lph-
bet"\n2. Delete every instance of "l" in "hello". Answer:
"heo"\n3. Delete every instance of "z" in "zebra". Answer:
"ebra"\n4. Delete every instance of "u" in "tongue". An-
swer: "tonge"\n\nQuestion: Delete every instance of "{}"
in "{}".

Insertion: Add the specified letter after every instance of
the second specified letter in a given word, based on the
following examples:\n\n1. Add an "e" after every "a" in
"alphabet". Answer: "aelphaebet"\n2. Add an "l" after
every "l" in "hello". Answer: "hellllo"\n3. Add an "t" after
every "z" in "zebra". Answer: "ztebra"\n4. Add an "f" after
every "u" in "tongue". Answer: "tongufe"\n\nQuestion:
Add an "{}" after every "{}" in "{}".

Substitution: Substitute the first specified letter with the
second specified letter in a given word, based on the follow-
ing examples:\n\n1. Substitute "a" with "b" in "alphabet".
Answer: "blphbbet"\n2. Substitute "h" with "e" in "hello".
Answer: "eello"\n3. Substitute "z" with "a" in "zebra".
Answer: "aebra"\n4. Substitute "u" with "e" in "tongue".
Answer: "tongee"\n\nQuestion: Substitute "{}" with "{}"
in "{}".

Figure 10: Few-shot(n=4) prompt template.

B Attentions772

This section of the appendix presents another ex-773

ample (see Figure 16) illustrating how an atomized774

Chain-of-Thought Prompt Template

Deletion: Delete every instance of "{}" in "{}". Show you
reasoning process step by step. Please provide the final
answer at the end with "Answer:".

Insertion: Add an "{}" after every "{}" in "{}". Show you
reasoning process step by step. Please provide the final
answer at the end with "Answer:".

Substitution: Substitute "{}" with "{}" in "{}". Show you
reasoning process step by step. Please provide the final
answer at the end with "Answer:".

Figure 11: Chain-of-Thought (CoT) prompt template.

Structured Prompt Templates for Stage I Pipeline

Goal: Decompose a word into a list of its characters.
Prompt Template:

Given the word "{WORD}", return a Python list
of its characters.

Example: Input: "linguistics" Output: [’l’,
’i’, ’n’, ’g’, ’u’, ’i’, ’s’, ’t’,
’i’, ’c’, ’s’]

Input: "{WORD}" Output:

Alternatively, as JSON:

Given the word "{WORD}", return its charac-
ters in a JSON array.

Example: Input: "hello" Output: ["h", "e",
"l", "l", "o"]

Figure 12: Complete structured prompt template for
stage I pipeline

Structured Prompt Templates for Stage III Pipeline

Goal: Concatenate the character list into a string and out-
put as a structured object.
Prompt Template:

Given the Python list {MODIFIED_LIST}, con-
catenate the characters to form a single string,
and return the result as a JSON object with the
field "result".

Example: Input: [’h’, ’e’, ’j’, ’j’,
’o’] Output: {"result": "hejjo"}

Input: {MODIFIED_LIST} Output:

Figure 13: Complete structured prompt template for
stage III pipeline

11



Structured Prompt Templates for Stage II Pipeline

Goal: Manipulate the character list according to the speci-
fied operation and output the result in a structured format.
Prompt Templates:
Deletion:

Given the Python list {CHAR_LIST}, delete ev-
ery occurrence of the character "{TARGET}".
Return the resulting list.

Example: Input: [’h’, ’e’, ’l’, ’l’,
’o’], Target: "l" Output: [’h’, ’e’, ’o’]

Input: {CHAR_LIST}, Target: "{TARGET}" Out-
put:

Insertion:

Given the Python list {CHAR_LIST}, insert the
character "{INSERT}" after every occurrence
of "{ANCHOR}". Return the resulting list.

Example: Input: [’h’, ’e’, ’l’, ’l’,
’o’], Insert: "a" after "l" Output: [’h’, ’e’,
’l’, ’a’, ’l’, ’a’, ’o’]

Input: {CHAR_LIST}, Insert: "{INSERT}" after
"{ANCHOR}" Output:

Substitution:

Given the Python list {CHAR_LIST}, replace
every occurrence of "{FROM}" with "{TO}".
Return the resulting list.

Example: Input: [’h’, ’e’, ’l’, ’l’,
’o’], Substitute: "l" with "j" Output: [’h’,
’e’, ’j’, ’j’, ’o’]

Input: {CHAR_LIST}, Substitute: "{FROM}"
with "{TO}" Output:

Alternatively, for JSON syntax, simply replace brackets
with square brackets and use double quotes:
Example: Input: ["h", "e", "l", "l", "o"], Substitute: "l"
with "j" Output: ["h", "e", "j", "j", "o"]

Figure 14: Complete structured prompt template for
stage II Pipeline

word structure can enhance and reinforce an LLM’s 775

structural reasoning ability at the character level. 776

This observation motivated us to later develop a 777

framework that enables LLMs to process character- 778

level manipulation tasks more accurately. 779

C Robustness 780

This appendix section provides additional experi- 781

mental results, comparing baseline methods with 782

our proposed methods across varying word lengths, 783

using different large language models (LLMs) on 784

multiple tasks (Figure 16). The results demonstrate 785

that our methods consistently outperform the base- 786

line methods across all scenarios. 787

12



a n x i o u s

.

EOT

NL

SOT

model

NL

Layer 7 Mean Attention

a n x i o u s

.

EOT

NL

SOT

model

NL

Layer 9 Mean Attention

a n x i o u s

.

EOT

NL

SOT

model

NL

Layer 11 Mean Attention

a n x i o u s

.

EOT

NL

SOT

model

NL

Layer 13 Mean Attention

a n x i o u s

.

EOT

NL

SOT

model

NL

Layer 15 Mean Attention

a n x i o u s

.

EOT

NL

SOT

model

NL

Layer 17 Mean Attention
a n x i o u s

.

EOT

NL

SOT

model

NL

Layer 19 Mean Attention

a n x i o u s

.

EOT

NL

SOT

model

NL

Layer 21 Mean Attention

a n x i o u s

.

EOT

NL

SOT

model

NL

Layer 23 Mean Attention

a n x i o u s

.

EOT

NL

SOT

model

NL

Layer 25 Mean Attention

a n x i o u s

.

EOT

NL

SOT

model

NL

Layer 27 Mean Attention

a n x i o u s

.

EOT

NL

SOT

model

NL

Layer 29 Mean Attention

a n x i o u s

.

EOT

NL

SOT

model

NL

Layer 31 Mean Attention

a n x i o u s

.

EOT

NL

SOT

model

NL

Layer 33 Mean Attention

a n x i o u s

.

EOT

NL

SOT

model

NL

Layer 35 Mean Attention

a n x i o u s

.

EOT

NL

SOT

model

NL

Layer 37 Mean Attention

a n x i o u s

.

EOT

NL

SOT

model

NL

Layer 39 Mean Attention

a n x i o u s

.

EOT

NL

SOT

model

NL

Layer 41 Mean Attention

Figure 15: Averaged attention matrix across heads on different layers with a special focus on tokens of interest. The
darker the color of the heat map cell represents smaller the attention value, and vice versa. Notice that to maximize
the use of the limited space, we renamed certain special tokens (<start_of_turn> → SOT, <end_of_turn> → EOT,
\n → NL) and cropped the attention matrices to include only the relevant tokens. In our case, the token "x" in the
x-axis is the target letter to remove from the word "anxious". Meanwhile, "an" is the first expected output token.

2 4 6 8 10
String Length

0

20

40

60

80

100

A
cc

u
ra

cy
(%

)

ToCAD(ours) FS-1 FS-4 COT

(a) Del on GEMMA2-9B

4 6 8 10 12 14
String Length

0

20

40

60

80

A
cc

u
ra

cy
(%

)

ToCAD(ours) FS-1 FS-4 COT

(b) Ins on GEMMA2-9B

4 6 8 10 12
String Length

0

20

40

60

80

100

A
cc

u
ra

cy
(%

)

ToCAD(ours) FS-1 FS-4 COT

(c) Sub on GEMMA2-9B

2 4 6 8 10
Number of Tokens

0

20

40

60

80

100

A
cc

u
ra

cy
(%

)

ToCAD(ours) FS-1 FS-4 COT

(d) Del on LLAMA3-8B

4 6 8 10 12 14
Number of Tokens

0

20

40

60

80

A
cc

u
ra

cy
(%

)

ToCAD(ours) FS-1 FS-4 COT

(e) Ins on LLAMA3-8B

4 6 8 10 12
Number of Tokens

0

20

40

60

80

A
cc

u
ra

cy
(%

)

ToCAD(ours) FS-1 FS-4 COT

(f) Sub on LLAMA3-8B

2 4 6 8 10
Number of Tokens

40

60

80

100

A
cc

u
ra

cy
(%

)

ToCAD(ours) FS-1 FS-4 COT

(g) Del on GPT-3.5

4 6 8 10 12 14
Number of Tokens

0

20

40

60

80

100

A
cc

u
ra

cy
(%

)

ToCAD(ours) FS-1 FS-4 COT

(h) Ins on GPT-3.5

4 6 8 10 12
Number of Tokens

20

40

60

80

100

A
cc

u
ra

cy
(%

)

ToCAD(ours) FS-1 FS-4 COT

(i) Sub on GPT-3.5

2 4 6 8 10
Number of Tokens

0

20

40

60

80

100

A
cc

u
ra

cy
(%

)

ToCAD(ours) FS-1 FS-4 COT

(j) Del on GPT-4O-MINI

4 6 8 10 12 14
Number of Tokens

0

20

40

60

80

100

A
cc

u
ra

cy
(%

)

ToCAD(ours) FS-1 FS-4 COT

(k) Ins on GPT-4O-MINI

4 6 8 10 12
Number of Tokens

0

20

40

60

80

100

A
cc

u
ra

cy
(%

)

ToCAD(ours) FS-1 FS-4 COT

(l) Sub on GPT-4O-MINI

Figure 16: Character-level manipulation accuracy comparison of different baseline methods on various string lengths
across four different LLMs(GEMMA2-9B, LLAMA3-8B, GPT-4O-MINI, and GPT-3.5). Our proposed method
constantly outperforms other comparing baseline methods.

13


