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Abstract

As scRNA-seq expands dataset richness and001
advances cellular biology, transformer-based002
single-cell foundation models have emerged.003
Despite their efficacy, they face two key chal-004
lenges: (1) Biological Perspective: They over-005
look the unordered nature of gene expression006
and fail to incorporate pathway priors essen-007
tial for capturing functional interactions. (2)008
Computational Perspective: The high dimen-009
sionality of gene tokens leads to excessive tok-010
enization and a lack of an efficient mechanism011
for handling long-context sequences. Driven012
by these challenges, we propose a novel Single-013
cell Pre-trained Language Model via Genetic014
Pathway Learning, named scPaLM1, that ad-015
dresses these challenges through three key in-016
novations: ❶ Permutation-Invariant Embed-017
deding where we handle high numer of genes018
via patching technique at the same time keeping019
permuation-invaraince; ❷ a Genetic Pathway020
Learning module that is designed to learn dis-021
crete representations, enabling the modeling022
of collective gene behaviors in a data-driven023
way; ❸ Cell-level Information Aggregation024
that progressively aggregates cell representa-025
tions into a designated token during the train-026
ing phase, with a tailored masking strategy027
and a token-level contrastive regularizer. Com-028
prehensive evaluations across four biological029
benchmarks demonstrate scPaLM’s superiority:030
it achieves average 10.1% improvement in cell031
type annotation compared to scGPT across all032
datasets, 5.15% increase in drug response pre-033
diction correlation compared to scFoundation.034

1 Introduction035

Single-cell RNA sequencing has emerged as the036

state-of-the-art method for elucidating the intri-037

cacies and diversity inherent in RNA transcripts038

at the individual cell level and providing insights039

into the composition of distinct cell types and040

1Source code is provided in supplementary.
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Figure 1: Compared to existing works where Ngene

often reaches tens of thousands, we leverage the inher-
ent functional similarity among gene groups, such as
pathway-level organization (e.g., TREM2, HLA-DRA,
and CD86 within the Immune Response Pathway), to
enable latent pathway learning with an efficiently re-
duced token count K << Ngene in the latent space.

their respective functions within tissues, organs, 041

and organisms (Jovic et al., 2022). The massive 042

amount of data generated by scRNA-seq tech- 043

niques has provided massive information on vari- 044

ous cells, enabling a better understanding of them, 045

and hence benefit diverse research areas such as 046

development (Semrau et al., 2017), auto-immune 047

diseases (Gaublomme et al., 2015) and cancer di- 048

agnosis or prognosis (Patel et al., 2014). 049

To effectively model the scRNA-seq data, vari- 050

ous computational methods (Cui et al., 2024a; Hao 051

et al., 2024a) with different architecture designs 052

have been proposed. Recent progress in deep learn- 053

ing has inspired the usage of advanced machine 054

learning techniques, such as transformers (Vaswani, 055

2017), to scRNA-seq data analysis. These mod- 056

els, particularly those inspired by the success of 057
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BERT (Devlin et al., 2018) GPT (Radford et al.,058

2019), adopt a token-based approach, treating the059

expression count of each gene as a “token”, a con-060

cept widely embraced in natural language process-061

ing (NLP). These tokens are then assembled into062

a “sentence” representing the genetic expression063

profile of a cell. Such models have demonstrated064

exceptional performance in capturing the under-065

lying structures inherent to scRNA-seq data and066

have consistently outperformed conventional algo-067

rithms across various downstream tasks, including068

cell type annotation and bulk drug response predic-069

tion (Cui et al., 2024b; Hao et al., 2024b; Theodoris070

et al., 2023; Yang et al., 2022). Despite its effec-071

tiveness, several major bottlenecks remain:072

Biological Perspective. Unlike NLP domain,073

where the order of words carries semantic mean-074

ing, gene expression in scRNA-seq does not follow075

a strict order. Traditional transformer models as-076

sume sequential order (like in sentences), but gene077

expression is inherently unordered—what matters078

is the presence, absence, and expression levels of079

genes (Cui et al., 2024b). This naturally raises the080

challenge of efficiently handling the vast number081

of genes in single-cell data. Moreover, existing ap-082

proaches lack explicit mechanisms to incorporate083

pathway prior knowledge - the well-established bi-084

ological principle that genes operate in coordinated085

functional units to execute cellular processes (Cui086

et al., 2024b; Liang et al., 2023). This oversight087

limits their ability to model the hierarchical organi-088

zation of genetic regulation and discover biologi-089

cally interpretable patterns.090

Computational Perspective. Considering that091

each cell is expressed with vast number of genes,092

treating each individual gene as a distinct token093

leads to a substantial increase in the overall to-094

ken count, resulting in significant computational095

demands. Traditional approaches to address this096

issue is to select a subset of highly variable genes,097

such as the top 2, 000 genes, which can notably098

reduce the overall gene count (Cui et al., 2024b).099

However, this gene exclusion inevitably entails the100

loss of valuable biological information, as certain101

essential genes, like housekeeping genes, may not102

exhibit high variability while maintaining pivotal103

regulatory functions (Joshi et al., 2022).104

In this paper, we propose scPaLM, a transformer-105

based model that effectively harnesses massive106

scRNA-seq data. scPaLM incorporates multiple in-107

novative elements: ❶ We propose an Permutation-108

Invariant Embedding, an efficient embedding109

process that condenses the information from all 110

the genes into a reduced number of tokens by 111

leveraging a symmetric encoder-decoder architec- 112

ture while ensuring the nature of permutation- 113

invariance, substantially mitigates the computa- 114

tional expenses and facilitates rapid training and 115

inference; ❷ Acknowledging the collective nature 116

of gene functionality, we introduce a genetic path- 117

way learning, an encoder which seeks to encode 118

gene tokens into genetically related pathway to- 119

kens and acquire discrete representations for them 120

to capture the collective yet distinct functionality 121

of genes; Finally, ❸ to aggregate cell-specific infor- 122

mation, we establish a tailored training framework, 123

Cell-level Information Aggregation to learn a des- 124

ignated token to represent cells, with the establish- 125

ment of a masking strategy and a token-level con- 126

trastive regularizer. Extensive downstream tasks 127

including cell type annotation and drug response 128

prediction, scPaLM achieves greater performance 129

compared to baseline methods, including Gene- 130

former (Theodoris et al., 2023), scGPT (Cui et al., 131

2023) and scFoundation (Hao et al., 2023). 132

Our contributions are summarized as follows: 133

* We propose scPaLM, a pretrained foundation 134

model which incorporates biological pathway 135

with efficient tokenziation on massive scRNA- 136

seq data that achieves state-of-the-art perfor- 137

mance on various downstream tasks. 138

* We devise multiple innovative elements that con- 139

tribute to the success of scPaLM: (1) a novel 140

permutation-invariant embedding process that ef- 141

ficiently maps gene expression values into repre- 142

sentations for subsequent modeling; (2) a genetic 143

pathway encoder that is designed to model the 144

collective behaviors of genes by learning discrete 145

representations for their tokens; and (3) a training 146

scheme that aggregates cell-specific information 147

into a designated token, and two techniques that 148

augment the aggregation process. 149

* We demonstrate performance superiority of 150

scPaLM on various downstream tasks. For the 151

cell type annotation task, we outperform Gene- 152

former and scGPT by {8.4%,4.9%}/{8.4%,3.0%} 153

and {6.5%,0.9%}/{5.4%,0.2%} in terms of the 154

ARI and NMI scores of two scRNA-seq datasets. 155

For the drug response prediction task, we outper- 156

form scFoundation by up to 5.15% in terms of 157

the correlation of IC50 values. We also achieve 158
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state-of-the-art performance on the drug response159

perturbation prediction task.160

2 Related Works161

Single-cell Data Analysis. Several methods have162

been proposed to model transcriptome measure-163

ments at the single-cell level that reflect biological164

diversity (Lopez et al., 2018). MAGIC (Dijk et al.,165

2017) aims to predict the missing measurements,166

often referred to as “dropouts”, by propagating in167

a graph constructed based on cell-cell similarity.168

scImpute (Li and Li, 2018) learns to accurately169

and robustly identify dropouts and perform imputa-170

tion on these identified positions. SAVER (Huang171

et al., 2018) leverages gene-to-gene relationships172

to recover the expression level of each individual173

cell. Lopez et al. (Lopez et al., 2018) developed174

a scalable framework called scVI for probabilistic175

representation and analysis of gene expression in176

single cells. More recently, there has been a notable177

utilization of pretrained transformers in the context178

of modeling single-cell RNA sequencing (scRNA-179

seq) data. In the realm of encoder-only transform-180

ers, scBERT (Yang et al., 2022) embeds each gene181

into a token and leverages an efficient transformer182

to model over 16, 000 genes for each individual183

cell. Subsequently, scFoundation (Hao et al., 2023)184

has made advancements in the embedding process185

introduced by scBERT, which has resulted in en-186

hanced performance. Geneformer (Theodoris et al.,187

2023) discards the original measurement of tran-188

scriptome and constructs input sequences that ac-189

count for the ranking of measurements across the190

entirety of the dataset, thereby creating a repre-191

sentation that encapsulates the relative expression192

levels of all genes within each cell. For decoder-193

only models, scGPT (Cui et al., 2023) leverages194

the concept of next token prediction in NLP to iter-195

atively predict the masked genes, creating a novel196

path for scRNA-seq data modeling. A concurrent197

work CellPLM (Wen et al., 2023) encodes cell-cell198

relations by leveraging spatially-resolved transcrip-199

tomic data in pre-training. In this work, our objec-200

tive is to deploy a vector quantization technique to201

learn discrete genetic pathway representation.202

3 Methodology203

Overview. A scRNA-seq dataset is usually stored204

as a matrix Xraw ∈ NNc×Ng , where Nc is the num-205

ber of cells and Ng is the number of genes. In206

X , each row represents the expression values of207

genes in a cell. A transformation (e.g., log1p) is 208

usually applied on Xraw to obtain X , i.e. data with 209

normalized scales (Yeo and Johnson, 2000). 210

The main components of scPaLM are transform- 211

ers (Vaswani, 2017). To facilitate the learning pro- 212

cess, we propose a novel embedding process (§3.1), 213

referred to as embed(·), that maps each row of X 214

into N tokens. Note that our embedding process 215

can produce a reduced amount of tokens, which 216

is more memory- and computation-efficient com- 217

pared to existing works which usually need to con- 218

struct a large number of tokens (typically equals to 219

Ng). The tokens are then fed into the transformers 220

in scPaLM, which leverage the attention mecha- 221

nism to capture the interaction between tokens and 222

learn the biological implications behind the scRNA- 223

seq data. The transformers have multiple layers and 224

process the token representations sequentially with 225

the following formula: hi = Layeri(hi−1), where 226

hi indicates the token representations generated by 227

the i-th transformer layer. 228

The training process for scPaLM consists of two 229

distinct stages. During the initial stage, we train 230

both an encoder and a decoder using a reconstruc- 231

tion loss. Specifically, the encoder is trained to map 232

the raw gene tokens to tokens that represent ge- 233

netic pathways (as discussed in §3.2), while the de- 234

coder’s role is to reverse this mapping, converting 235

genetic pathway tokens back to the original expres- 236

sion levels. In the second stage, we train another 237

encoder with an additional token designed to cap- 238

ture cell-specific information (as discussed in §3.3). 239

The two encoders we have trained in these two 240

stages collectively empower various downstream 241

tasks, exhibiting superior performance. 242

3.1 Permutation-Invariant Embedding 243

The Tokenization Dilemma in scRNA Model- 244

ing Current tokenization strategies for scRNA- 245

seq data face a fundamental trade-off: full-gene 246

tokenization preserves molecular granularity but 247

incurs prohibitive O(N2
g ) computational complex- 248

ity (20, 000 ≲ Ng ≲ 60, 000), while gene filtering 249

discards critical biological signals. Even advanced 250

methods like HVG selection (Cui et al., 2024b) 251

risk eliminating housekeeping genes with low vari- 252

ability but essential functions (Joshi et al., 2022). 253

This dilemma severely limits Transformer-based 254

models’ scalability and biological fidelity. 255

Pathway-Inspired Patch Construction Draw- 256

ing inspiration from Vision Transformers (Dosovit- 257
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Figure 2: The overview of our framework. Three main innovative components are introduced in our frameworks: an
efficient embedding process that is permutation-invariant; a module that captures genetic pathways; and a training
framework for cell information aggregation.

skiy et al., 2020), we reconceptualize gene patches258

as functional units analogous to biological path-259

ways. However, unlike image pixels with spatial260

coherence, genes lack inherent positional relation-261

ships. Direct application of ViT-style patching in-262

troduces order sensitivity—permuting gene order263

alters patch composition, contradicting biological264

reality where expression vectors are permutation-265

invariant. To resolve this, we develop a symmetric266

embedding architecture that dynamically clusters267

genes into N pathway-aligned patches (N ≪ Ng)268

through order-agnostic operations.269

Symmetric Embedding Pipeline As detailed in270

Algorithm 1, our pipeline enforces permutation271

invariance through three key stages. First, gene272

expressions are projected into d-dimensional vec-273

tors via learnable matrices P 1 ∈ RNg×d, scaled274

by gene-specific coefficients α. A hierarchical275

pooling strategy then aggregates these embeddings:276

zero-expression genes are replaced by a learnable277

embedding and pooled separately, then combined278

with active genes through concatenation and linear279

fusion. This two-stage process ensures balanced280

representation of both silent and active genomic281

regions. The final embeddings Ē ∈ RN×d are282

computed through linear interpolation of pooled283

features with learnable basis vectors P ′, eliminat-284

ing positional dependencies. This architecture re-285

duces token count by 99.6% (from Ng = 60, 664286

to N = 256) while achieving 16.1% higher clus-287

tering accuracy than gene-wise baselines (Table 6),288

demonstrating superior biological fidelity. 289

3.2 Genetic Pathway Learning 290

Biologically, most genes do not function in iso- 291

lation; instead, they function in concert to per- 292

form biological functions (Alexa et al., 2006; Shas- 293

try, 2009; Mi et al., 2013). Here, groups of bio- 294

logically related genes that demonstrate substan- 295

tial associations with specific biological processes 296

are commonly referred to as pathways. Recog- 297

nizing the activated pathways within a cell holds 298

paramount importance in comprehending its char- 299

acteristics (Wang and Sherwood, 2011). Despite 300

such significance of pathways current methodolo- 301

gies frequently overlook this aspect. 302

Pathway Modeling through Discrete Represen- 303

tations Learning. We propose to learn distinct 304

“pathway” tokens, represented as discrete codes, by 305

training an encoder and a vector quantizer. To 306

be more specifically, the encoder, implemented 307

as a transformer, maps Ē into hidden represen- 308

tations, denoted as E = {e1, e2, . . . , eN}. Sub- 309

sequently, the quantizer learns a codebook V = 310

{v1,v2, . . . ,vK}, and associates each ei with the 311

closest entry in V in terms of distance. More pre- 312

cisely, for each embedding with index i, we derive 313

the corresponding embedding from the codebook 314

with the following formula: zi = argminv∈V ∥v− 315

ei∥2. After acquiring Z = {z1, z2, . . . ,zN}, we 316

input it into an additional decoder, which is imple- 317

mented as another transformer model, and obtain 318

the output vector o ∈ RN
g . These modules are 319
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trained using reconstruction tasks, where a mean-320

squared-error (MSE) loss is employed to minimize321

the dissimilarity between x and o. Furthermore,322

we introduce a commitment loss (Huh et al., 2023)323

to minimize the distance between each pair of ei324

and zi, which has the following form:325

Lcmt =

N∑
i=1

β∥sg(zi)−ei∥+(1−β)∥zi−sg (ei)∥,

(1)326

where sg indicates the stop-gradient operation. To327

mitigate the issue of index collapses in VQ tech-328

niques, we follow Huh et al. (2023) to regularly329

replace the unused tokens in codebooks with ran-330

domly re-initialized tokens, and leverage an affine331

parameterization to minimize interval covariate332

shifts. More details are provided in Appendix C.333

3.3 Cell Information Aggregation334

While the pathway encoder encodes gene expres-335

sion values into pathway tokens, it does not pro-336

vide a cellular-level representation. One possible337

approach to constructing cell representations in-338

volves concatenating the representation of genetic339

pathway tokens. However, this results in a pro-340

hibitively high-dimensional representation, leading341

to increased computational costs in downstream342

tasks. Alternatively, using the average representa-343

tion of pathway tokens, while simpler, yields infe-344

rior performance as shown in §5.345

Additional tokens to aggregate cell informa-346

tion. To aggregate gene representations effec-347

tively and efficiently at the cellular level, we intro-348

duce a learnable token, eC , designed to encapsu-349

late cell-specific information. This token is asso-350

ciated with a subset, denoted as zi1 , zi2 , . . . ,ziN′ ,351

randomly selected with monotonically increasing352

indices from the set Z , therefore information is353

transferred to eC . We employ an encoder to con-354

vert these tokens into representations, which we355

denote as H = {hC ,hi1 ,hi2 , . . . ,hiN′}. Subse-356

quently, we exclude hC , replace the positions of357

the previously omitted pathway tokens with a com-358

mon learnable token eM , and proceed to decode359

this modified embedding using a decoder.360

Token Scaling and Reconstruction Despite361

pathway tokens being fewer than genes, our scal-362

ing algorithm (Algorithm 3) effectively aligns their363

dimensions through linear interpolation. This ap-364

proach preserves biological fidelity while reduc-365

ing computational complexity, as evidenced by the366

superior clustering performance of hC over gene- 367

averaged baselines in Table 6. The architecture 368

freezes the encoder and quantizer introduced in 369

§3.2, minimizing reconstruction loss between orig- 370

inal and decoded expressions, ensuring stable train- 371

ing while maintaining pathway-aware representa- 372

tions. 373

Contrastive Regularization with Dynamic 374

Pseudo-Labels To enhance cell-specific discrim- 375

inability, we design a contrastive framework lever- 376

aging K-means-derived pseudo-labels. During 377

training, two augmented views (Hi, H′
i) of each 378

cell are generated by masking different pathway 379

token subsets. Embeddings hi,C and h′
i,C from the 380

same cell cluster form positive pairs, while cross- 381

cluster cells serve as negatives (limited to K pairs 382

per batch). The contrastive loss 383

LCL =
∑
i

− log
s(hi,C ,h

′
i,C)/τ

s(hi,C ,h
′
i,C) +

∑
j∈neg(i)

s(hj,C ,hi,C)

(2) 384

maximizes similarity within pseudo-classes 385

through cosine similarity s(·, ·), with temperature 386

τ sharpening distinctions (Chen et al., 2020). A 387

fixed-length queue Q stores recent hC embed- 388

dings, enabling periodic K-means updates to 389

adapt pseudo-labels to evolving representations. 390

This implicit modeling of cell-type relationships 391

enforces topological consistency in the latent 392

space, as visualized in Figures 3-4. The detailed 393

pipeline is in Algorithm 2. 394

4 Experiments 395

In this section, we detail our experimental set- 396

ting and demonstrate the superior performance of 397

scPaLM. A series of experiments are conducted on 398

various downstream tasks, and we have provided 399

ablation studies in §5 to validate the importance of 400

our proposed techniques. 401

4.1 Implementation Details 402

Pretraining Data. scPaLM is pretrained on single- 403

cell RNA-seq data covering different types of cells, 404

having in total 43, 312, 189 cells and 60, 664 genes 405

collected from CELLxGENE platform (Megill 406

et al., 2021). The statistics and description of the 407

pre-training data are in Appendix B. 408

Architectures. The overall architecture of 409

scPaLM can be split into three parts: (1) embedding 410

layers, where we use mainly MLPs as described in 411

Algorithm 1. The N is set to 256 in our experiment; 412
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PCA scPaLM (Ours)Geneformer scGPT
ARI=0.123,NMI=0.435 ARI=0.123,NMI=0.593ARI=0.208,NMI=0.539ARI=0.208,NMI=0.528

UMAP1 UMAP1UMAP1 UMAP1
Figure 3: Unsupervised clustering performance on the CLL dataset.

PCA scPaLM (Ours)Geneformer scGPT
ARI=0.281,NMI=0.512 ARI=0.637,NMI=0.759ARI=0.607,NMI=0.757ARI=0.588,NMI=0.750

UMAP1 UMAP1UMAP1 UMAP1
Figure 4: Unsupervised clustering performance on the COVID dataset.

(2) genetic pathway learning, where we introduce413

an encoder, a decoder, and a quantizer. The en-414

coder and the decoder are developed based on the415

transformer architecture, which contains 12 layers416

and a hidden dimension of 768. The quantizer has417

the same hidden dimension with a codebook size418

of 128; (3) cell information aggregation, where we419

introduce another encoder and decoder that have420

the same architectures and configuration. More421

details on the architectures can be found in Table 4.422

Training Settings. The optimizer we use in423

our experiments is AdamW (Loshchilov and Hutter,424

2017). In the first stage of training, where we train425

the encoder for pathway tokens and the vector quan-426

tizer, we adopt a learning rate of 0.001 and a batch427

size of 128. In the second stage, we train other428

components with a learning rate of 5× 10−4 and429

using the same batch size of 128.430

Benchmarks. We compare against baseline431

methods on various benchmark datasets that are432

manually excluded from the pretraining data: (1)433

the CLL (GEO: GSE111014) dataset (Rendeiro434

et al., 2020), which originally contains 48016 cells435

with 33694 genes and 6 types of cells. We further436

filter out cells without type annotations, resulting437

in 30K cells; (2) the COVID (GEO: GSE150861)438

dataset (Guo et al., 2020), which contains 11931439

cells; (3) the Jurkat from 10x Genomics dataset2,440

which contains 3258 cells. We filter out zero-count441

genes and retain 17753 genes. (4) the PBMC-5k442

dataset that also comes from 10x Genomics3 which443

2Avaiable at https://www.10xgenomics.com/datasets/jurkat-
cells-1-standard-1-1-0

3Avaiable at https://www.10xgenomics.com/datasets/5k-
human-pbmcs-3-v3-1-chromium-controller-3-1-standard

contains around 5K cells; and finally the Cancer 444

Cell Line Encyclopedia (CCLE) (Barretina et al., 445

2012) and Genomics of Cancer Drug Sensitivity 446

(GDSC) (Iorio et al., 2016) datasets which are lever- 447

aged in the drug response prediction task (§4.3). 448

Baselines. We compare scPaLM with various 449

baseline methods on different tasks. For cell- 450

type annotation, we compare with PCA (where 451

we derive the first 256 principal components 452

on the log-normalized expression values), Gene- 453

former (Theodoris et al., 2023), scGPT (Cui et al., 454

2023). The latter two are current state-of-the- 455

art algorithms for this task. For imputation, we 456

compare with SAVER (Huang et al., 2018), scIm- 457

pute (Li and Li, 2018), DCA (Eraslan et al., 2019), 458

which are widely used methods for this task. For 459

drug response prediction, we compare with Deep- 460

CDR (Liu et al., 2020) and another transformer- 461

based algorithm, scFoundation (Hao et al., 2023). 462

4.2 Unsupervised Cell Type Annotation 463

Our first set of experiments involves applying com- 464

putational methods on unseen scRNA-seq data and 465

providing type annotations to those unseen cells 466

in an unsupervised manner. We compare the per- 467

formance of scPaLM with three baselines, namely 468

PCA, Geneformer, and scGPT. These experiments 469

are conducted on the CLL and the COVID dataset. 470

Figure 3 and 4 display UMAP visualizations cre- 471

ated from the cell representations, i.e., hC . We 472

use the Leiden (Traag et al., 2019) algorithm with 473

a resolution of 1.0 to cluster the embeddings and 474

assess the clustering performance with the adjusted 475

rand index (ARI) and normalized mutual informa- 476

tion (NMI) scores. Qualitatively speaking, PCA 477
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Figure 5: Comparison of Pearson correlation coefficient
(PCC ↑) between the predicted and the ground-truth
IC50 values using different settings of feature . We
compare scPaLM’s performance with two baseline algo-
rithms, DeepCDR and scFoundation.

exhibits the poorest results, whereas the UMAPs478

generated by the other three models demonstrate479

significantly superior clustering quality. We can480

also observe that scPaLM possesses a smoother481

and more clustered latent space with respect to the482

ground-truth cell type labels. Quantitative results483

also confirm scPaLM’s ability to annotate types of484

cells. Notably, our method achieves higher ARI485

and NMI scores compared to the baselines by clear486

margins on both datasets. On CLL, scPaLM out-487

performs the baselines by 0.084 ∼ 0.169 in terms488

of the ARI score and 0.054 ∼ 0.158 in terms of489

the NMI score. Similarly, on COVID, it outper-490

forms the baselines by 0.030 ∼ 0.356 in terms of491

the ARI score and 0.002 ∼ 0.247 in terms of the492

NMI score. These improvements indicate the high493

quality of produced embeddings.494

4.3 Cancer Drug Response Prediction495

Cancer Drug Responses is an important task that496

can help guide the design of anti-cancer drugs and497

also understand the cancer biology (Unger et al.,498

2015). Following the setting in scFoundation (Hao499

et al., 2023), we combine scPaLM with a CDR pre-500

diction framework, DeepCDR (Liu et al., 2020),501

to provide prediction of the IC50 values (i.e., half-502

maximal inhibitory concentrations) of drugs across503

different cells. We adopt the settings from scFoun-504

dation (Hao et al., 2023) to fuse the extracted rep-505

resentations from gene expression values with the506

representations of drugs and fit a graph convolu-507

tion network (GCN) to learn representations that508

encompass information from multiple sources and509

modalities. We follow the settings of DeepCDR510

and experiment with different options: (1) Use Mut,511

which indicates the usage of genomic mutation in-512

formation; and (2) Use Methy, which indicates the513

usage of DNA methylation data.514

From Figure 5, we can observe that both scFoun-515

dation and our method outperform the baseline 516

framework DeepCDR significantly and achieve a 517

stronger correlation between the prediction and the 518

IC50 values. Notably, when using no additional 519

information from the mutation and methylation, 520

our method significantly outperforms scFoundation 521

by 5% in terms of the Pearson Correlation Coef- 522

ficient (PCC). When having additional mutation 523

and methylation information, all methods demon- 524

strate higher PCCs, yet our method remains the top 525

performance among them all. 526

To have a better understanding of the perfor- 527

mance gain, we provide pairwise visualization 528

and case study of the correlation achieved by our 529

method and scFoundation in Figure 6 and 7. De- 530

tailed analysis can be found in Appendix E. 531

4.4 Imputation 532

Imputation is an important task where the model 533

is asked to recover the expression value of genes 534

within individual cells. It has real-world implica- 535

tions because the measurement of expression levels 536

often exhibits noise (Grün et al., 2014) and suffer 537

from dropout events (Kharchenko et al., 2014). We 538

conduct a series of simulated experiments on the 539

Jurkat and the PBMC dataset to assess scPaLM’s 540

ability to accurately predict the expression levels 541

of the missing genes. We randomly sample 10% 542

of genes from each cell with a probability that is 543

proportional to the exponent of negative gene ex- 544

pression values and mask them as 0. 545

Table 1: Imputation performance of various methods on
the Jurkat and the PBMC dataset. We use the rooted
mean square error (RMSE) and the mean absolute error
(MAE) as the measurements.

Method
Jurkat PBMC

RMSE ↓ MAE ↓ RMSE ↓ MAE ↓

SAVER 0.841 0.664 0.779 0.594
scImpute 1.178 0.838 1.528 1.132

DCA 0.937 0.629 0.833 0.638

scPaLM (Zero Shot) 0.494 0.397 0.674 0.539

Table 1 presents the rooted mean square error 546

(RMSE) and the mean absolute error (MAE) be- 547

tween the ground truth and the predicted expression 548

values on the masked genes across different cells. 549

Note that these metrics are calculated based on the 550

log-normalized expression values. Even under a 551

zero-shot setting, scPaLM achieves superior perfor- 552

mance compared to most baselines, which estimate 553

their parameters on the downstream datasets. This 554

experiment confirms scPaLM’s ability in denoising 555

the expression data and capturing the interactions 556
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between cells and genes.557

4.5 Genetic Pathway Identification558

We finally conducted an experiment to understand559

the obtained pathway tokens from scRNA-seq560

datasets. We follow the setting from scGPT (Cui561

et al., 2023) where we aim to identify genetic path-562

ways on the Immune Human dataset. To associate563

a gene with a certain pathway token, we first derive564

the V for each gene, and for every v, we calculate565

the associated gene expression vector weighted by566

the occurrence percentage of v for each cell. Fi-567

nally, for every v, we obtain the list of associated568

genes by calculating their relative prevalence. A569

more detailed algorithm is deferred in §D. We as-570

sociate 10 genes to each pathway token and run571

the gene set enrichment analysis (GSEA) algo-572

rithm to search for pathways in Reactome Pathway573

Database (Fabregat et al., 2018). Note that this574

dataset is not included in our training set; therefore,575

it constitutes a zero-shot setting. Nevertheless, our576

method identifies two significant pathways related577

to the immune system, as shown in Table 7. Particu-578

larly, it identifies and clusters the CD1 gene family579

(CD1E and CD1B), which is involved in antigen580

presentation that is related to immune reaction.581

5 Ablation Studies582

Table 2: Clustering performance of different variants
for cell representations on the CLL dataset (Rendeiro
et al., 2020). We compare the adjusted rand index (ARI),
normalized mutual information (NMI), silhouette score
(S-score), and clustering time between models.

Method ARI ↑ NMI ↑ S-score ↑

Mean 0.015 0.059 −0.133
Concatenated 0.181 0.478 0.310
hC (No CL) 0.275 0.573 0.361

hC (Ours) 0.292 0.593 0.376

The effectiveness of the cell information ag-583

gregation process. We conduct a series of exper-584

iments on the CLL dataset to compare two alter-585

natives for building cell representations, where we586

use the average and the concatenated representa-587

tions of pathway tokens to represent cells. Table 5588

presents the performance on the cell type annota-589

tion task, where we can observe that using our cell590

information aggregation technique yields the best591

performance among all the variants. We have also592

conducted an experiment where we do not use the593

token-level contrastive learning framework to train594

the embedding of hC . The decreased scores of595

these experiments demonstrate the importance of 596

the token-level contrastive learning regularizer. 597

The effectiveness of the pathway encoder. We 598

conduct experiments excluding the genetic pathway 599

learning module discussed in §3.2. Instead of our 600

proposed method, we train the embedding layers 601

and also aggregate information directly from the 602

embeddings of genes on a small subset of train- 603

ing data that have around 100K cells. Table 3 604

demonstrates the importance of the encoder and 605

the quantizer. We see that the introduced genetic 606

pathway encoder helps improve the clustering per- 607

formance, improving the metrics by 0.14 and 0.16, 608

respectively. The usage of the quantizer also further 609

improves the performance by an additional 1%. 610

Table 3: Comparisons on COVID dataset (Guo et al.,
2020) with different configurations. The models are
trained on a small subset of the pre-training data.

Configuration
ARI ↑ NMI ↑

Encoder Quantizer
✗ ✗ 0.050 0.120
✓ ✗ 0.191 0.286

✓ ✓ 0.201 0.291

The effectiveness of the embedding process. 611

To evaluate the effectiveness of our embedding 612

process, we explore several alternatives and com- 613

pare them to our proposed embedding process: (1) 614

per-gene, where we directly employs gene-specific 615

embeddings E. This is a widely adopted option in 616

various methods such as scFoundation (Hao et al., 617

2023) and Geneformer (Theodoris et al., 2023); (2) 618

shared-first-layer, where we employ only a shared 619

P for all the genes. The results are presented in Ta- 620

ble 6, where we can observe that these alternatives 621

demonstrate either degraded performance, or suffer 622

from overly high computational cost. The per-gene 623

variant results in out-of-memory (OOM) error even 624

using a batch size of 1. Using a shared first layer 625

requires less amount of GPU memory but yields 626

inferior performance compares to our method. 627

6 Conclusion 628

This work presents scPaLM, a foundation model 629

pre-trained on single-cell RNA-seq data. We devise 630

several novel techniques that efficiently represent 631

gene expression values into tokens, model the col- 632

lective function of genes, and effectively aggregate 633

cell-specific information into a single token. We 634

evaluate scPaLM on a wide range of downstream 635

tasks, and demonstrate it reaches SoTA. 636
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Limitations637

Implicit Pathway Modeling. While our genetic638

pathway learning module captures collective gene639

behaviors through discrete representations, it cur-640

rently relies on data-driven discovery rather than ex-641

plicit integration of established pathway databases642

(e.g., Reactome or KEGG). Future work could en-643

hance biological interpretability by incorporating644

curated pathway knowledge through hybrid archi-645

tectures that combine learned codebooks with prior646

biological constraints.647

Human-Centric Data Bias. Our pre-training648

dataset primarily focuses on human single-cell649

transcriptomes from Tabula Sapiens. While this650

enables strong performance on human biological651

tasks, the cross-species generalizability of our path-652

way representations remains uncertain. The evo-653

lutionary divergence of gene regulatory networks654

across species may require specialized adaptation655

mechanisms when applying scPaLM to model non-656

human organisms.657

Ethics Statement658

This work adheres to ethical research practices659

in computational biology. All datasets used for660

pre-training and evaluation are publicly available661

through GEO/SRA archives or 10x Genomics, with662

proper ethical approvals obtained in their origi-663

nal studies. Our framework processes only de-664

identified genomic data, containing no protected665

health information. While foundation models like666

scPaLM could theoretically accelerate therapeutic667

development, we emphasize that any clinical appli-668

cation requires rigorous validation through estab-669

lished biomedical research protocols.670
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A Related Work901

Vector Quantization (VQ). In terms of tok-902

enizaiton, VQ (Gray, 1984) is a classical quan-903

tization technique in various fields. VQ operates904

by utilizing a codebook, which consists of multiple905

representations referred to as codes, and associat-906

ing an input vector with the code within the code-907

book that is closest in proximity. This approach908

can be viewed as a form of discrete representa-909

tion learning since typically only a single token910

is activated. Researchers have demonstrated that911

the usage of discrete representation in computer912

vision can improve the robustness of models. VQ913

techniques have found application in diverse fields,914

such as image generation (Van Den Oord et al.,915

2017; Razavi et al., 2019; Esser et al., 2021), video916

generation (Yan et al., 2021), and speech recogni-917

tion (Baevski et al., 2019). In this work, we take a918

pioneering step by applying the concept of VQ to919

the field of biosciences, to learn discrete represen-920

tations capturing genetic pathways.921

B Dataset Description922

Our pretraining data comes from CELLx-923

GENE (Megill et al., 2021), which has 43, 312, 189924

cells from more than 8 tissues.925

C More Details on Methodology926

Algorithm 1 Permutation-Invariant Embedding

1: Input: A batch of normalized expression value
vectors X ∈ RB×Ng where B is the batch size,
learnable gene embeddings Egene, learnable
projection matrix P 1 ∈ RNg×d, P 2 ∈ Rd×d,
P ′ ∈ Rd×h.

2: Output: Embedding Ē of X , f(·) is a sym-
metric pooling function.

3: X ← einsum("bi,ij->bij",X,P 1)
4: X ← leaky_relu(X)
5: Evalue ← einsum("ij,bij->bij",α,X)

+ MLP(X)
6: Fill positions of zeros in E with a learnable

embedding ezero
7: E ← concat(Evalue,Egene)
8: Ē ← einsum("bj,jl->bjl", f(E),P ′)
9: return Ē

Permutation-Invariant Embedding. Algo-927

rithm 1 transforms gene expression vectors into928

permutation-invariant embeddings. It projects929

input values into latent features via learnable930

matrices, combines them with gene embeddings, 931

applies symmetric pooling to aggregate features, 932

and produces final embeddings through linear 933

transformation. This approach reduces computa- 934

tional costs while maintaining invariance to gene 935

order. The einsum operation denotes the Einstein 936

summation convention, performing element-wise 937

operations and summation along specified axes 938

indicated by the letters (Rogozhnikov, 2022). 939

Genetic Pathway Learning. Algorithm 2 out- 940

lines the training pipeline for cell representation 941

learning. It first encodes gene expressions into path- 942

way tokensZ and aggregates cell-level information 943

via a learnable token eC appended to masked rep- 944

resentation. When contrastive learning is enabled, 945

K-Means periodically updates pseudo-labels using 946

stored embeddings in queue Q, and Equation 2 947

optimizes cluster consistency. The model trains 948

eC , eM , and networks using reconstruction loss 949

for masked tokens while updating hC in Q. 950

Algorithm 2 Training Pipeline (One Step)

1: Input: A batch of gene expression vectors
X ∈ NB×Ng , current time step T , an interval
for re-fit Tr, a K-Means classifier K, a queue
Q.

2: Obtain Ē ∈ RB×N×d according to §3.1.
3: Obtain Z ∈ RB×N×d according to §3.2.
4: Randomly select p% tokens from Z for each

sample and prepend a token eC . ObtainH and
assign clusters.

5: if use token-level contrastive learning then
6: if T%Tr == 0 then
7: Run K-means based on embeddings in Q.
8: end if
9: Randomly select p% tokens fromZ for each

sample and prepend eC . ObtainH′.
10: Calculate the contrastive learning loss ac-

cording to Equation 2.
11: end if
12: Fill eM into H at positions previously ex-

cluded during sampling.
13: Train eC , eM , and the two networks with

reconstruction loss for excluded tokens (i.e.,
eM ).

14: Store hC in Q.

Mask Construction and Output Reshaping. In 951

Algorithm 3, we introduce a simple way to make 952

the shape of the output from the decoder introduced 953

in §3.3 consistent with the original gene expression 954
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vector. Essentially, we flatten the hidden represen-955

tations, and we assign a region according to the956

indices of leave-out tokens in which we calculate957

the MSE loss.958

VQ-Techniques For Stable Training. To ad-959

dress the potential index collapse when applying960

VQ techniques in training neural networks, we fol-961

low the pipeline introduced in Huh et al. (Huh et al.,962

2023). Firstly, they introduce an affine transfor-963

mation to reparameterize the representation in the964

codebook with the following formula:965

vi = cmean + cstd × ci966

where the ci represents the original code vector,967

and cmean and cstd indicate the shared affine pa-968

rameters. Moreover, they introduce several minor969

modifications to the codebook update process to970

enhance the stability.971

D More Details on Experiments972

Model Configurations. Table 4 presents the hy-973

perparameters of our scPaLM.974

Table 4: Configurations of our scPaLM.

Hyperparameters Value

Hidden Size 768
Intermediate Size 3072
Number of Layers 12

Number of Attention Heads 8
Dropout Probability 0.0

Attention Dropout Probability 0.0

Algorithm 3 Reshaping Masks and Outputs For
Loss Calculation.

1: Input: a gene expression vector x ∈ RNg , the
hold-out indices I = {i1, . . . , im}, number of
tokens N .

2: Calculate the scaling factor s← ⌈Ng/N⌉.
3: Initialize a mask vector m← 0Ng .
4: for j = 1, 2, . . . ,m do
5: ms×ij :s×(ij+1) ← 1s.
6: end for
7: Flatten the output from the decoder which also

has the shape of N × s to 1 × (N × s), and
store it as o.

8: Crop both o and m to have the length of
Ng. Calculate the MSE loss as LMSE =
∥o− x∥22/∥m∥1.

Association of Genes with Pathway Tokens. In 975

this section, we describe the methodology em- 976

ployed for associating genes with specific pathway 977

identifiers through an algorithmic approach. The 978

process involves the utilization of a matrix with a 979

dimension of K by Ng, where K represents the 980

number of tokens and Ng the number of genes. For 981

each vector of gene expression, we obtain the set 982

of tokens that are activated within the codebook. 983

Upon activation of the Ki-th token, the correspond- 984

ing raw gene expression vector is scaled by the 985

frequency of Ki token occurrences among the ac- 986

tivated tokens and subsequently aggregated to the 987

Ki-th row of the matrix. This procedure is iterated 988

across the entire gene dataset. Subsequent to the 989

completion of this iterative process, we perform a 990

normalization step on each column, which corre- 991

lates to individual genes. Following normalization, 992

for each row, we identify and select the genes that 993

exhibit the most significant values (Colonna, 2023). 994

Table 5: Clustering performance of different variants for
cell representations on the CLL dataset. We compare
the adjusted rand index (ARI), normalized mutual infor-
mation (NMI), silhouette score (S-score), and clustering
time between models.

Method ARI ↑ NMI ↑ S-score ↑

Mean 0.015 0.059 −0.133
Concatenated 0.181 0.478 0.310
hC (No CL) 0.275 0.573 0.361

hC (Ours) 0.292 0.593 0.376

E More Experimental Results 995

Additional Drug Response Prediction Result 996

Analysises. In these experiments, we follow the 997

setting of scFoundation and disable the mutation 998

and the methylation features, to focus on the benefit 999

brought by the incorporation of embeddings from 1000

gene expression values. From Figure 6 and 7, we 1001

can observe that scPaLM achieves better PCCs on 1002

all but one cancer type and improves the metrics on 1003

a majority of cell lines. Following the analysis, we 1004

further visualize the best prediction case of the can- 1005

cer type, namely the low-grade gliomas (LGG) in 1006

Figure 7, where we observe both methods achieve 1007

high PCC values despite that the IC50 values have 1008

a large range from −6 to 6. scPaLM outperforms 1009

scFoundation by 2% and 4% in terms of the PCC 1010

and the Spearman correlation coefficient. These 1011

results showcase the effectiveness of scPaLM. It 1012
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Figure 6: Pairwise visualization of the Pearson correlation coefficient of scFoundation and scPaLM based on
different grouping strategies. Left: grouping with respect to the cell lines; Middle: grouping with respect to the
cancer type; Right: grouping with respect to the drug type. The red lines indicate the relationship of y = x.

is also noteworthy that the embeddings generated1013

by scPaLM are smaller in dimension compared to1014

those of scFoundation, which implies that scPaLM1015

is more efficient in modeling scRNA-seq data.1016

Figure 7: Scatter plots of the predicted and the observed
IC50 values on the samples with the cancer type of low-
grade gliomas.

Genetic Pathway Results. We present the iden-1017

tified significant genetic pathway in Table 7.1018

Two pathways with p-values that are significantly1019

smaller than 1× 10−5 are identified, which are all1020

related to immunological reactions.1021

Table 6: Comparison between different embedding pro-
cesses. The models are trained on a subset of the pre-
training data and evaluated on the COVID dataset.

Embedding Algorithm Memory Usage ↓ ARI ↑ NMI ↑

Per-gene >80G - -
Shared-first-layer 42378MiB 0.167 0.251

Permutation-invariant (Ours) 43678MiB 0.201 0.291

Comparison of Different Embedding Processes.1022

We conduct an experiment to compare the memory1023

usage and the subsequent clustering performance1024

of models with different embedding processes on1025

the COVID dataset. The results are presented in1026

Table 6.1027

F Potential Risks1028

While scPaLM demonstrates promising capabili-1029

ties for therapeutic discovery and cellular analy-1030

Table 7: Significant pathways identified by GSEA (p-
value < 1 × 10−5 ). Two pathways related to the im-
mune system are selected.

Gene Lists (To-
ken ID)

Term P-value

CD1E,
TREM2,
ICAM5,
CD1B (25)

Immunoregulatory Interac-
tions Between A Lymphoid
And A non-Lymphoid Cell

2.8× 10−7

BTN1A1,
MRC1, CD1E,
TREM2,
ICAM5,
CD1B (25)

Adaptive Immune System 4.4× 10−7

sis, we acknowledge the dual-use potential inher- 1031

ent in any foundational biomedical AI technology. 1032

The model’s ability to predict cell-drug interac- 1033

tions could theoretically be misapplied to screen 1034

compounds with harmful biological activity. To 1035

mitigate this risk, we emphasize that any clinical 1036

translation of our method must occur within es- 1037

tablished regulatory frameworks requiring rigor- 1038

ous safety evaluation and ethical oversight. Re- 1039

searchers utilizing this technology should adhere 1040

to institutional bio-safety review processes and ex- 1041

isting chemical/biological weapons conventions to 1042

prevent misuse. 1043
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