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Abstract

As scRNA-seq expands dataset richness and
advances cellular biology, transformer-based
single-cell foundation models have emerged.
Despite their efficacy, they face two key chal-
lenges: (1) Biological Perspective: They over-
look the unordered nature of gene expression
and fail to incorporate pathway priors essen-
tial for capturing functional interactions. (2)
Computational Perspective: The high dimen-
sionality of gene tokens leads to excessive tok-
enization and a lack of an efficient mechanism
for handling long-context sequences. Driven
by these challenges, we propose a novel Single-
cell Pre-trained Language Model via Genetic
Pathway Learning, named scPalM!, that ad-
dresses these challenges through three key in-
novations: @ Permutation-Invariant Embed-
deding where we handle high numer of genes
via patching technique at the same time keeping
permuation-invaraince; ® a Genetic Pathway
Learning module that is designed to learn dis-
crete representations, enabling the modeling
of collective gene behaviors in a data-driven
way; © Cell-level Information Aggregation
that progressively aggregates cell representa-
tions into a designated token during the train-
ing phase, with a tailored masking strategy
and a token-level contrastive regularizer. Com-
prehensive evaluations across four biological
benchmarks demonstrate scPaLM’s superiority:
it achieves average 10.1% improvement in cell
type annotation compared to scGPT across all
datasets, 5.15% increase in drug response pre-
diction correlation compared to scFoundation.

1 Introduction

Single-cell RNA sequencing has emerged as the
state-of-the-art method for elucidating the intri-
cacies and diversity inherent in RNA transcripts
at the individual cell level and providing insights
into the composition of distinct cell types and

!Source code is provided in supplementary.
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Figure 1: Compared to existing works where Ngepe
often reaches tens of thousands, we leverage the inher-
ent functional similarity among gene groups, such as
pathway-level organization (e.g., TREM2, HLA-DRA,
and CD86 within the Immune Response Pathway), to
enable latent pathway learning with an efficiently re-
duced token count K << Ny, in the latent space.

their respective functions within tissues, organs,
and organisms (Jovic et al., 2022). The massive
amount of data generated by scRNA-seq tech-
niques has provided massive information on vari-
ous cells, enabling a better understanding of them,
and hence benefit diverse research areas such as
development (Semrau et al., 2017), auto-immune
diseases (Gaublomme et al., 2015) and cancer di-
agnosis or prognosis (Patel et al., 2014).

To effectively model the scRNA-seq data, vari-
ous computational methods (Cui et al., 2024a; Hao
et al., 2024a) with different architecture designs
have been proposed. Recent progress in deep learn-
ing has inspired the usage of advanced machine
learning techniques, such as transformers (Vaswani,
2017), to scRNA-seq data analysis. These mod-
els, particularly those inspired by the success of



BERT (Devlin et al., 2018) GPT (Radford et al.,
2019), adopt a token-based approach, treating the
expression count of each gene as a “token”, a con-
cept widely embraced in natural language process-
ing (NLP). These tokens are then assembled into
a “‘sentence” representing the genetic expression
profile of a cell. Such models have demonstrated
exceptional performance in capturing the under-
lying structures inherent to scRNA-seq data and
have consistently outperformed conventional algo-
rithms across various downstream tasks, including
cell type annotation and bulk drug response predic-
tion (Cui et al., 2024b; Hao et al., 2024b; Theodoris
et al., 2023; Yang et al., 2022). Despite its effec-
tiveness, several major bottlenecks remain:
Biological Perspective.  Unlike NLP domain,
where the order of words carries semantic mean-
ing, gene expression in sSCRNA-seq does not follow
a strict order. Traditional transformer models as-
sume sequential order (like in sentences), but gene
expression is inherently unordered—what matters
is the presence, absence, and expression levels of
genes (Cui et al., 2024b). This naturally raises the
challenge of efficiently handling the vast number
of genes in single-cell data. Moreover, existing ap-
proaches lack explicit mechanisms to incorporate
pathway prior knowledge - the well-established bi-
ological principle that genes operate in coordinated
functional units to execute cellular processes (Cui
et al., 2024b; Liang et al., 2023). This oversight
limits their ability to model the hierarchical organi-
zation of genetic regulation and discover biologi-
cally interpretable patterns.

Computational Perspective. Considering that
each cell is expressed with vast number of genes,
treating each individual gene as a distinct token
leads to a substantial increase in the overall to-
ken count, resulting in significant computational
demands. Traditional approaches to address this
issue is to select a subset of highly variable genes,
such as the top 2,000 genes, which can notably
reduce the overall gene count (Cui et al., 2024b).
However, this gene exclusion inevitably entails the
loss of valuable biological information, as certain
essential genes, like housekeeping genes, may not
exhibit high variability while maintaining pivotal
regulatory functions (Joshi et al., 2022).

In this paper, we propose scPaLM, a transformer-
based model that effectively harnesses massive
scRNA-seq data. scPaLM incorporates multiple in-
novative elements: @ We propose an Permutation-
Invariant Embedding, an efficient embedding

process that condenses the information from all
the genes into a reduced number of tokens by
leveraging a symmetric encoder-decoder architec-
ture while ensuring the nature of permutation-
invariance, substantially mitigates the computa-
tional expenses and facilitates rapid training and
inference; ® Acknowledging the collective nature
of gene functionality, we introduce a genetic path-
way learning, an encoder which seeks to encode
gene tokens into genetically related pathway to-
kens and acquire discrete representations for them
to capture the collective yet distinct functionality
of genes; Finally, ® to aggregate cell-specific infor-
mation, we establish a tailored training framework,
Cell-level Information Aggregation to learn a des-
ignated token to represent cells, with the establish-
ment of a masking strategy and a token-level con-
trastive regularizer. Extensive downstream tasks
including cell type annotation and drug response
prediction, scPaLM achieves greater performance
compared to baseline methods, including Gene-
former (Theodoris et al., 2023), scGPT (Cui et al.,
2023) and scFoundation (Hao et al., 2023).
Our contributions are summarized as follows:

* We propose scPalM, a pretrained foundation
model which incorporates biological pathway
with efficient tokenziation on massive sCRNA-
seq data that achieves state-of-the-art perfor-
mance on various downstream tasks.

* We devise multiple innovative elements that con-
tribute to the success of scPaLM: (1) a novel
permutation-invariant embedding process that ef-
ficiently maps gene expression values into repre-
sentations for subsequent modeling; (2) a genetic
pathway encoder that is designed to model the
collective behaviors of genes by learning discrete
representations for their tokens; and (3) a training
scheme that aggregates cell-specific information
into a designated token, and two techniques that
augment the aggregation process.

* We demonstrate performance superiority of
scPaLM on various downstream tasks. For the
cell type annotation task, we outperform Gene-
former and scGPT by {8.4%,4.9%}/{8.4%,3.0%}
and {6.5%,0.9%1}/{5.4%,0.2%} in terms of the
ARI and NMI scores of two scRNA-seq datasets.
For the drug response prediction task, we outper-
form scFoundation by up to 5.15% in terms of
the correlation of IC50 values. We also achieve



state-of-the-art performance on the drug response
perturbation prediction task.

2 Related Works

Single-cell Data Analysis. Several methods have
been proposed to model transcriptome measure-
ments at the single-cell level that reflect biological
diversity (Lopez et al., 2018). MAGIC (Dijk et al.,
2017) aims to predict the missing measurements,
often referred to as “dropouts”, by propagating in
a graph constructed based on cell-cell similarity.
scImpute (Li and Li, 2018) learns to accurately
and robustly identify dropouts and perform imputa-
tion on these identified positions. SAVER (Huang
et al., 2018) leverages gene-to-gene relationships
to recover the expression level of each individual
cell. Lopez et al. (Lopez et al., 2018) developed
a scalable framework called scVI for probabilistic
representation and analysis of gene expression in
single cells. More recently, there has been a notable
utilization of pretrained transformers in the context
of modeling single-cell RNA sequencing (scRNA-
seq) data. In the realm of encoder-only transform-
ers, sScBERT (Yang et al., 2022) embeds each gene
into a token and leverages an efficient transformer
to model over 16,000 genes for each individual
cell. Subsequently, scFoundation (Hao et al., 2023)
has made advancements in the embedding process
introduced by scBERT, which has resulted in en-
hanced performance. Geneformer (Theodoris et al.,
2023) discards the original measurement of tran-
scriptome and constructs input sequences that ac-
count for the ranking of measurements across the
entirety of the dataset, thereby creating a repre-
sentation that encapsulates the relative expression
levels of all genes within each cell. For decoder-
only models, scGPT (Cui et al., 2023) leverages
the concept of next token prediction in NLP to iter-
atively predict the masked genes, creating a novel
path for scRNA-seq data modeling. A concurrent
work CellPLM (Wen et al., 2023) encodes cell-cell
relations by leveraging spatially-resolved transcrip-
tomic data in pre-training. In this work, our objec-
tive is to deploy a vector quantization technique to
learn discrete genetic pathway representation.

3 Methodology

Overview. A scRNA-seq dataset is usually stored
as a matrix Xy € NVeXNo where N, is the num-
ber of cells and N, is the number of genes. In
X, each row represents the expression values of

genes in a cell. A transformation (e.g., loglp) is
usually applied on X,y to obtain X, i.e. data with
normalized scales (Yeo and Johnson, 2000).

The main components of scPaLM are transform-
ers (Vaswani, 2017). To facilitate the learning pro-
cess, we propose a novel embedding process (§3.1),
referred to as embed(-), that maps each row of X
into NV tokens. Note that our embedding process
can produce a reduced amount of tokens, which
is more memory- and computation-efficient com-
pared to existing works which usually need to con-
struct a large number of tokens (typically equals to
Ngy). The tokens are then fed into the transformers
in scPaLM, which leverage the attention mecha-
nism to capture the interaction between tokens and
learn the biological implications behind the scRNA-
seq data. The transformers have multiple layers and
process the token representations sequentially with
the following formula: h; = Layer;(h;_1), where
h; indicates the token representations generated by
the ¢-th transformer layer.

The training process for scPaLM consists of two
distinct stages. During the initial stage, we train
both an encoder and a decoder using a reconstruc-
tion loss. Specifically, the encoder is trained to map
the raw gene tokens to tokens that represent ge-
netic pathways (as discussed in §3.2), while the de-
coder’s role is to reverse this mapping, converting
genetic pathway tokens back to the original expres-
sion levels. In the second stage, we train another
encoder with an additional token designed to cap-
ture cell-specific information (as discussed in §3.3).
The two encoders we have trained in these two
stages collectively empower various downstream
tasks, exhibiting superior performance.

3.1 Permutation-Invariant Embedding

The Tokenization Dilemma in scRNA Model-
ing Current tokenization strategies for scRNA-
seq data face a fundamental trade-off: full-gene
tokenization preserves molecular granularity but
incurs prohibitive O(N,) computational complex-
ity (20,000 < N, S 60, 000), while gene filtering
discards critical biological signals. Even advanced
methods like HVG selection (Cui et al., 2024b)
risk eliminating housekeeping genes with low vari-
ability but essential functions (Joshi et al., 2022).
This dilemma severely limits Transformer-based
models’ scalability and biological fidelity.

Pathway-Inspired Patch Construction Draw-
ing inspiration from Vision Transformers (Dosovit-
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Figure 2: The overview of our framework. Three main innovative components are introduced in our frameworks: an
efficient embedding process that is permutation-invariant; a module that captures genetic pathways; and a training

framework for cell information aggregation.

skiy et al., 2020), we reconceptualize gene patches
as functional units analogous to biological path-
ways. However, unlike image pixels with spatial
coherence, genes lack inherent positional relation-
ships. Direct application of ViT-style patching in-
troduces order sensitivity—permuting gene order
alters patch composition, contradicting biological
reality where expression vectors are permutation-
invariant. To resolve this, we develop a symmetric
embedding architecture that dynamically clusters
genes into [NV pathway-aligned patches (N < N,)
through order-agnostic operations.

Symmetric Embedding Pipeline As detailed in
Algorithm 1, our pipeline enforces permutation
invariance through three key stages. First, gene
expressions are projected into d-dimensional vec-
tors via learnable matrices P, € RN9*? gcaled
by gene-specific coefficients ««. A hierarchical
pooling strategy then aggregates these embeddings:
zero-expression genes are replaced by a learnable
embedding and pooled separately, then combined
with active genes through concatenation and linear
fusion. This two-stage process ensures balanced
representation of both silent and active genomic
regions. The final embeddings E € RV*? are
computed through linear interpolation of pooled
features with learnable basis vectors P’, eliminat-
ing positional dependencies. This architecture re-
duces token count by 99.6% (from N, = 60, 664
to N = 256) while achieving 16.1% higher clus-
tering accuracy than gene-wise baselines (Table 6),

demonstrating superior biological fidelity.

3.2 Genetic Pathway Learning

Biologically, most genes do not function in iso-
lation; instead, they function in concert to per-
form biological functions (Alexa et al., 2006; Shas-
try, 2009; Mi et al., 2013). Here, groups of bio-
logically related genes that demonstrate substan-
tial associations with specific biological processes
are commonly referred to as pathways. Recog-
nizing the activated pathways within a cell holds
paramount importance in comprehending its char-
acteristics (Wang and Sherwood, 2011). Despite
such significance of pathways current methodolo-
gies frequently overlook this aspect.

Pathway Modeling through Discrete Represen-
tations Learning. We propose to learn distinct

“pathway” tokens, represented as discrete codes, by

training an encoder and a vector quantizer. To
be more specifically, the encoder, implemented
as a transformer, maps E into hidden represen-
tations, denoted as £ = {ej,eq,...,en}. Sub-
sequently, the quantizer learns a codebook V =
{v1,v9,...,vk}, and associates each e; with the
closest entry in V in terms of distance. More pre-
cisely, for each embedding with index 7, we derive
the corresponding embedding from the codebook
with the following formula: z; = argmin ¢y, ||v—
eil|2. After acquiring Z = {21, z9,...,2N}, We
input it into an additional decoder, which is imple-
mented as another transformer model, and obtain
the output vector o € Rf]\f . These modules are



trained using reconstruction tasks, where a mean-
squared-error (MSE) loss is employed to minimize
the dissimilarity between x and o. Furthermore,
we introduce a commitment loss (Huh et al., 2023)
to minimize the distance between each pair of e;
and z;, which has the following form:

N

Lome =) Bllsg(zi)—eill+(1-5)l|zi—sg (el
i=1

)

where sg indicates the stop-gradient operation. To
mitigate the issue of index collapses in VQ tech-
niques, we follow Huh et al. (2023) to regularly
replace the unused tokens in codebooks with ran-
domly re-initialized tokens, and leverage an affine
parameterization to minimize interval covariate
shifts. More details are provided in Appendix C.

3.3 Cell Information Aggregation

While the pathway encoder encodes gene expres-
sion values into pathway tokens, it does not pro-
vide a cellular-level representation. One possible
approach to constructing cell representations in-
volves concatenating the representation of genetic
pathway tokens. However, this results in a pro-
hibitively high-dimensional representation, leading
to increased computational costs in downstream
tasks. Alternatively, using the average representa-
tion of pathway tokens, while simpler, yields infe-
rior performance as shown in §5.

Additional tokens to aggregate cell informa-
tion. To aggregate gene representations effec-
tively and efficiently at the cellular level, we intro-
duce a learnable token, ec, designed to encapsu-
late cell-specific information. This token is asso-
ciated with a subset, denoted as z;,, ziy, .. -, Zi,,,
randomly selected with monotonically increasing
indices from the set Z, therefore information is
transferred to ec. We employ an encoder to con-
vert these tokens into representations, which we
denote as H = {hc, hi,, hi,, ..., hi}. Subse-
quently, we exclude h¢, replace the positions of
the previously omitted pathway tokens with a com-
mon learnable token ey, and proceed to decode
this modified embedding using a decoder.

Token Scaling and Reconstruction Despite
pathway tokens being fewer than genes, our scal-
ing algorithm (Algorithm 3) effectively aligns their
dimensions through linear interpolation. This ap-
proach preserves biological fidelity while reduc-
ing computational complexity, as evidenced by the

superior clustering performance of h¢ over gene-
averaged baselines in Table 6. The architecture
freezes the encoder and quantizer introduced in
§3.2, minimizing reconstruction loss between orig-
inal and decoded expressions, ensuring stable train-
ing while maintaining pathway-aware representa-
tions.

Contrastive Regularization with Dynamic
Pseudo-Labels To enhance cell-specific discrim-
inability, we design a contrastive framework lever-
aging K-means-derived pseudo-labels. During
training, two augmented views (#;, H,) of each
cell are generated by masking different pathway
token subsets. Embeddings h; ¢ and h; - from the
same cell cluster form positive pairs, while cross-
cluster cells serve as negatives (limited to K pairs
per batch). The contrastive loss

s(hic,hic)/T

Lo = —lo
ct ZZ: . s(hic, b, o) + Z(S_)(hj,a hic)
j€neg(i
()

maximizes similarity within pseudo-classes
through cosine similarity s(-, -), with temperature
7 sharpening distinctions (Chen et al., 2020). A
fixed-length queue () stores recent h¢o embed-
dings, enabling periodic K-means updates to
adapt pseudo-labels to evolving representations.
This implicit modeling of cell-type relationships
enforces topological consistency in the latent
space, as visualized in Figures 3-4. The detailed
pipeline is in Algorithm 2.

4 Experiments

In this section, we detail our experimental set-
ting and demonstrate the superior performance of
scPaLM. A series of experiments are conducted on
various downstream tasks, and we have provided
ablation studies in §5 to validate the importance of
our proposed techniques.

4.1 Implementation Details

Pretraining Data. scPaLM is pretrained on single-
cell RNA-seq data covering different types of cells,
having in total 43, 312, 189 cells and 60, 664 genes
collected from CELLxGENE platform (Megill
et al., 2021). The statistics and description of the
pre-training data are in Appendix B.
Architectures. The overall architecture of
scPalLM can be split into three parts: (1) embedding
layers, where we use mainly MLPs as described in
Algorithm 1. The N is set to 256 in our experiment;
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Figure 4: Unsupervised clustering performance on the COVID dataset.

(2) genetic pathway learning, where we introduce
an encoder, a decoder, and a quantizer. The en-
coder and the decoder are developed based on the
transformer architecture, which contains 12 layers
and a hidden dimension of 768. The quantizer has
the same hidden dimension with a codebook size
of 128; (3) cell information aggregation, where we
introduce another encoder and decoder that have
the same architectures and configuration. More
details on the architectures can be found in Table 4.

Training Settings.  The optimizer we use in
our experiments is AdamW (Loshchilov and Hutter,
2017). In the first stage of training, where we train
the encoder for pathway tokens and the vector quan-
tizer, we adopt a learning rate of 0.001 and a batch
size of 128. In the second stage, we train other
components with a learning rate of 5 x 10~* and
using the same batch size of 128.

Benchmarks. We compare against baseline
methods on various benchmark datasets that are
manually excluded from the pretraining data: (1)
the CLL (GEO: GSE111014) dataset (Rendeiro
et al., 2020), which originally contains 48016 cells
with 33694 genes and 6 types of cells. We further
filter out cells without type annotations, resulting
in 30K cells; (2) the COVID (GEO: GSE150861)
dataset (Guo et al., 2020), which contains 11931
cells; (3) the Jurkat from 10x Genomics dataset?,
which contains 3258 cells. We filter out zero-count
genes and retain 17753 genes. (4) the PBMC-5k
dataset that also comes from 10x Genomics® which

2 Avaiable at https://www.10xgenomics.com/datasets/jurkat-
cells-1-standard-1-1-0

3 Avaiable at https://www.10xgenomics.com/datasets/5k-
human-pbmcs-3-v3-1-chromium-controller-3-1-standard

contains around 5K cells; and finally the Cancer
Cell Line Encyclopedia (CCLE) (Barretina et al.,
2012) and Genomics of Cancer Drug Sensitivity
(GDSC) (Iorio et al., 2016) datasets which are lever-
aged in the drug response prediction task (§4.3).
Baselines. We compare scPaLM with various
baseline methods on different tasks. For cell-
type annotation, we compare with PCA (where
we derive the first 256 principal components
on the log-normalized expression values), Gene-
former (Theodoris et al., 2023), scGPT (Cui et al.,
2023). The latter two are current state-of-the-
art algorithms for this task. For imputation, we
compare with SAVER (Huang et al., 2018), scIm-
pute (Li and Li, 2018), DCA (Eraslan et al., 2019),
which are widely used methods for this task. For
drug response prediction, we compare with Deep-
CDR (Liu et al., 2020) and another transformer-
based algorithm, scFoundation (Hao et al., 2023).

4.2 Unsupervised Cell Type Annotation

Our first set of experiments involves applying com-
putational methods on unseen scRNA-seq data and
providing type annotations to those unseen cells
in an unsupervised manner. We compare the per-
formance of scPaLM with three baselines, namely
PCA, Geneformer, and scGPT. These experiments
are conducted on the CLL and the COVID dataset.
Figure 3 and 4 display UMAP visualizations cre-
ated from the cell representations, i.e., ho. We
use the Leiden (Traag et al., 2019) algorithm with
a resolution of 1.0 to cluster the embeddings and
assess the clustering performance with the adjusted
rand index (ARI) and normalized mutual informa-
tion (NMI) scores. Qualitatively speaking, PCA
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Figure 5: Comparison of Pearson correlation coefficient
(PCC 1) between the predicted and the ground-truth
IC50 values using different settings of feature . We
compare scPaLM’s performance with two baseline algo-
rithms, DeepCDR and scFoundation.

exhibits the poorest results, whereas the UMAPs
generated by the other three models demonstrate
significantly superior clustering quality. We can
also observe that scPaLM possesses a smoother
and more clustered latent space with respect to the
ground-truth cell type labels. Quantitative results
also confirm scPaLM’s ability to annotate types of
cells. Notably, our method achieves higher ARI
and NMI scores compared to the baselines by clear
margins on both datasets. On CLL, scPaLM out-
performs the baselines by 0.084 ~ 0.169 in terms
of the ARI score and 0.054 ~ 0.158 in terms of
the NMI score. Similarly, on COVID, it outper-
forms the baselines by 0.030 ~ 0.356 in terms of
the ARI score and 0.002 ~ 0.247 in terms of the
NMI score. These improvements indicate the high
quality of produced embeddings.

4.3 Cancer Drug Response Prediction
Cancer Drug Responses is an important task that
can help guide the design of anti-cancer drugs and
also understand the cancer biology (Unger et al.,
2015). Following the setting in scFoundation (Hao
et al., 2023), we combine scPaLM with a CDR pre-
diction framework, DeepCDR (Liu et al., 2020),
to provide prediction of the IC50 values (i.e., half-
maximal inhibitory concentrations) of drugs across
different cells. We adopt the settings from scFoun-
dation (Hao et al., 2023) to fuse the extracted rep-
resentations from gene expression values with the
representations of drugs and fit a graph convolu-
tion network (GCN) to learn representations that
encompass information from multiple sources and
modalities. We follow the settings of DeepCDR
and experiment with different options: (1) Use Mut,
which indicates the usage of genomic mutation in-
formation; and (2) Use Methy, which indicates the
usage of DNA methylation data.

From Figure 5, we can observe that both scFoun-

dation and our method outperform the baseline
framework DeepCDR significantly and achieve a
stronger correlation between the prediction and the
IC50 values. Notably, when using no additional
information from the mutation and methylation,
our method significantly outperforms scFoundation
by 5% in terms of the Pearson Correlation Coef-
ficient (PCC). When having additional mutation
and methylation information, all methods demon-
strate higher PCCs, yet our method remains the top
performance among them all.

To have a better understanding of the perfor-
mance gain, we provide pairwise visualization
and case study of the correlation achieved by our
method and scFoundation in Figure 6 and 7. De-
tailed analysis can be found in Appendix E.

4.4 Imputation

Imputation is an important task where the model
is asked to recover the expression value of genes
within individual cells. It has real-world implica-
tions because the measurement of expression levels
often exhibits noise (Griin et al., 2014) and suffer
from dropout events (Kharchenko et al., 2014). We
conduct a series of simulated experiments on the
Jurkat and the PBMC dataset to assess scPaLM’s
ability to accurately predict the expression levels
of the missing genes. We randomly sample 10%
of genes from each cell with a probability that is
proportional to the exponent of negative gene ex-
pression values and mask them as 0.

Table 1: Imputation performance of various methods on
the Jurkat and the PBMC dataset. We use the rooted

mean square error (RMSE) and the mean absolute error
(MAE) as the measurements.

Method Jurkat PBMC
RMSE| MAE| RMSE| MAE]
SAVER 0.841 0.664 0.779 0.594
scImpute 1.178 0.838 1.528 1.132
DCA 0.937 0.629 0.833 0.638
scPalM (Zero Shot)  0.494 0.397 0.674 0.539

Table 1 presents the rooted mean square error
(RMSE) and the mean absolute error (MAE) be-
tween the ground truth and the predicted expression
values on the masked genes across different cells.
Note that these metrics are calculated based on the
log-normalized expression values. Even under a
zero-shot setting, scPaLM achieves superior perfor-
mance compared to most baselines, which estimate
their parameters on the downstream datasets. This
experiment confirms scPaLM’s ability in denoising
the expression data and capturing the interactions



between cells and genes.

4.5 Genetic Pathway Identification

We finally conducted an experiment to understand
the obtained pathway tokens from scRNA-seq
datasets. We follow the setting from scGPT (Cui
et al., 2023) where we aim to identify genetic path-
ways on the Immune Human dataset. To associate
a gene with a certain pathway token, we first derive
the V for each gene, and for every v, we calculate
the associated gene expression vector weighted by
the occurrence percentage of v for each cell. Fi-
nally, for every v, we obtain the list of associated
genes by calculating their relative prevalence. A
more detailed algorithm is deferred in §D. We as-
sociate 10 genes to each pathway token and run
the gene set enrichment analysis (GSEA) algo-
rithm to search for pathways in Reactome Pathway
Database (Fabregat et al., 2018). Note that this
dataset is not included in our training set; therefore,
it constitutes a zero-shot setting. Nevertheless, our
method identifies two significant pathways related
to the immune system, as shown in Table 7. Particu-
larly, it identifies and clusters the CD1 gene family
(CDIE and CD1B), which is involved in antigen
presentation that is related to immune reaction.

5 Ablation Studies

Table 2: Clustering performance of different variants
for cell representations on the CLL dataset (Rendeiro
etal., 2020). We compare the adjusted rand index (ARI),
normalized mutual information (NMI), silhouette score
(S-score), and clustering time between models.

Method ARIT NMIT S-score T
Mean 0.015  0.059 —0.133
Concatenated 0.181  0.478 0.310
hco (NoCL) 0.275 0.573 0.361
hc (Ours)  0.292  0.593 0.376

The effectiveness of the cell information ag-
gregation process. We conduct a series of exper-
iments on the CLL dataset to compare two alter-
natives for building cell representations, where we
use the average and the concatenated representa-
tions of pathway tokens to represent cells. Table 5
presents the performance on the cell type annota-
tion task, where we can observe that using our cell
information aggregation technique yields the best
performance among all the variants. We have also
conducted an experiment where we do not use the
token-level contrastive learning framework to train
the embedding of hc. The decreased scores of

these experiments demonstrate the importance of
the token-level contrastive learning regularizer.
The effectiveness of the pathway encoder. We
conduct experiments excluding the genetic pathway
learning module discussed in §3.2. Instead of our
proposed method, we train the embedding layers
and also aggregate information directly from the
embeddings of genes on a small subset of train-
ing data that have around 100K cells. Table 3
demonstrates the importance of the encoder and
the quantizer. We see that the introduced genetic
pathway encoder helps improve the clustering per-
formance, improving the metrics by 0.14 and 0.16,
respectively. The usage of the quantizer also further
improves the performance by an additional 1%.

Table 3: Comparisons on COVID dataset (Guo et al.,
2020) with different configurations. The models are
trained on a small subset of the pre-training data.

Configuration

ARI1T NMI 1t
Encoder Quantizer
X X 0.050 0.120
v X 0.191  0.286
v v 0.201 0.291

The effectiveness of the embedding process.
To evaluate the effectiveness of our embedding
process, we explore several alternatives and com-
pare them to our proposed embedding process: (1)
per-gene, where we directly employs gene-specific
embeddings E. This is a widely adopted option in
various methods such as scFoundation (Hao et al.,
2023) and Geneformer (Theodoris et al., 2023); (2)
shared-first-layer, where we employ only a shared
P for all the genes. The results are presented in Ta-
ble 6, where we can observe that these alternatives
demonstrate either degraded performance, or suffer
from overly high computational cost. The per-gene
variant results in out-of-memory (OOM) error even
using a batch size of 1. Using a shared first layer
requires less amount of GPU memory but yields
inferior performance compares to our method.

6 Conclusion

This work presents scPaLM, a foundation model
pre-trained on single-cell RNA-seq data. We devise
several novel techniques that efficiently represent
gene expression values into tokens, model the col-
lective function of genes, and effectively aggregate
cell-specific information into a single token. We
evaluate scPaLM on a wide range of downstream
tasks, and demonstrate it reaches SoTA.



Limitations

Implicit Pathway Modeling. While our genetic
pathway learning module captures collective gene
behaviors through discrete representations, it cur-
rently relies on data-driven discovery rather than ex-
plicit integration of established pathway databases
(e.g., Reactome or KEGQG). Future work could en-
hance biological interpretability by incorporating
curated pathway knowledge through hybrid archi-
tectures that combine learned codebooks with prior
biological constraints.

Human-Centric Data Bias. Our pre-training
dataset primarily focuses on human single-cell
transcriptomes from Tabula Sapiens. While this
enables strong performance on human biological
tasks, the cross-species generalizability of our path-
way representations remains uncertain. The evo-
lutionary divergence of gene regulatory networks
across species may require specialized adaptation
mechanisms when applying scPaLM to model non-
human organisms.

Ethics Statement

This work adheres to ethical research practices
in computational biology. All datasets used for
pre-training and evaluation are publicly available
through GEO/SRA archives or 10x Genomics, with
proper ethical approvals obtained in their origi-
nal studies. Our framework processes only de-
identified genomic data, containing no protected
health information. While foundation models like
scPaLM could theoretically accelerate therapeutic
development, we emphasize that any clinical appli-
cation requires rigorous validation through estab-
lished biomedical research protocols.
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A Related Work

Vector Quantization (VQ). In terms of tok-
enizaiton, VQ (Gray, 1984) is a classical quan-
tization technique in various fields. VQ operates
by utilizing a codebook, which consists of multiple
representations referred to as codes, and associat-
ing an input vector with the code within the code-
book that is closest in proximity. This approach
can be viewed as a form of discrete representa-
tion learning since typically only a single token
is activated. Researchers have demonstrated that
the usage of discrete representation in computer
vision can improve the robustness of models. VQ
techniques have found application in diverse fields,
such as image generation (Van Den Oord et al.,
2017; Razavi et al., 2019; Esser et al., 2021), video
generation (Yan et al., 2021), and speech recogni-
tion (Baevski et al., 2019). In this work, we take a
pioneering step by applying the concept of VQ to
the field of biosciences, to learn discrete represen-
tations capturing genetic pathways.

B Dataset Description

Our pretraining data comes from CELLx-
GENE (Megill et al., 2021), which has 43, 312, 189
cells from more than 8 tissues.

C More Details on Methodology

Algorithm 1 Permutation-Invariant Embedding

1: Input: A batch of normalized expression value
vectors X € RB*Ng where B is the batch size,
learnable gene embeddings FEgeqe, learnable
projection matrix Py € RNoXd Py ¢ R4*d
P’ ¢ R¥xP,

2: Output: Embedding E of X, f(-) is a sym-
metric pooling function.
3: X < einsum("bi,ij->bij", X, P;)

4: X + leaky_relu(X)

5: Eyae < einsum(”ij,bij->bij", a, X)
+MLP(X)
6: Fill positions of zeros in E with a learnable

embedding e,
7. E < concat(Eyae, Fgene)
8: E + einsum("bj,jl->bjl", f(E), P')
9: return E

Permutation-Invariant Embedding. Algo-
rithm 1 transforms gene expression vectors into
permutation-invariant embeddings. It projects
input values into latent features via learnable

12

matrices, combines them with gene embeddings,
applies symmetric pooling to aggregate features,
and produces final embeddings through linear
transformation. This approach reduces computa-
tional costs while maintaining invariance to gene
order. The einsum operation denotes the Einstein
summation convention, performing element-wise
operations and summation along specified axes
indicated by the letters (Rogozhnikov, 2022).

Genetic Pathway Learning. Algorithm 2 out-
lines the training pipeline for cell representation
learning. It first encodes gene expressions into path-
way tokens Z and aggregates cell-level information
via a learnable token ec appended to masked rep-
resentation. When contrastive learning is enabled,
K-Means periodically updates pseudo-labels using
stored embeddings in queue (), and Equation 2
optimizes cluster consistency. The model trains
ec, ey, and networks using reconstruction loss
for masked tokens while updating h¢ in Q.

Algorithm 2 Training Pipeline (One Step)

1: Input: A batch of gene expression vectors
X € NB*Ng_ current time step 7', an interval
for re-fit 7)., a K-Means classifier K, a queue
Q.

2: Obtain E € RBXNXd according to §3.1.

Obtain Z € RB*N*d according to §3.2.

Randomly select p% tokens from Z for each

sample and prepend a token ec. Obtain H and

assign clusters.

if use token-level contrastive learning then
if T%T,. == 0 then

Run K-means based on embeddings in Q.
end if
Randomly select p% tokens from Z for each
sample and prepend ec. Obtain H'.
Calculate the contrastive learning loss ac-
cording to Equation 2.

end if

Fill eyps into H at positions previously ex-

cluded during sampling.

Train ec, e)s, and the two networks with

reconstruction loss for excluded tokens (i.e.,

e M)

Store h¢ in ).

L X D

10:

11:
12:

13:

14:

Mask Construction and Output Reshaping. In
Algorithm 3, we introduce a simple way to make
the shape of the output from the decoder introduced
in §3.3 consistent with the original gene expression



vector. Essentially, we flatten the hidden represen-
tations, and we assign a region according to the
indices of leave-out tokens in which we calculate
the MSE loss.

VQ-Techniques For Stable Training. To ad-
dress the potential index collapse when applying
VQ techniques in training neural networks, we fol-
low the pipeline introduced in Huh et al. (Huh et al.,
2023). Firstly, they introduce an affine transfor-
mation to reparameterize the representation in the
codebook with the following formula:

V; = Cmean T Cstd X C;

where the ¢; represents the original code vector,
and cpean and cgyq indicate the shared affine pa-
rameters. Moreover, they introduce several minor
modifications to the codebook update process to
enhance the stability.

D More Details on Experiments

Model Configurations. Table 4 presents the hy-
perparameters of our scPaLM.

Table 4: Configurations of our scPaLM.

Hyperparameters Value
Hidden Size 768
Intermediate Size 3072
Number of Layers 12
Number of Attention Heads 8
Dropout Probability 0.0
Attention Dropout Probability 0.0

Algorithm 3 Reshaping Masks and Outputs For
Loss Calculation.

1: Input: a gene expression vector z € RV9, the
hold-out indices I = {i1,...,in}, number of
tokens V.

2: Calculate the scaling factor s <— [N, /N1.

3: Initialize a mask vector m « 0Vs.

4: forj=1,2,... , mdo

5: Mgsigisx(ij+1) 1°.

6: end for

7: Flatten the output from the decoder which also
has the shape of N x sto 1 x (N x s), and
store it as o.

8: Crop both o and m to have the length of

N,. Calculate the MSE loss as Lysg =
lo — |3/ [lm]:.
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Association of Genes with Pathway Tokens. In
this section, we describe the methodology em-
ployed for associating genes with specific pathway
identifiers through an algorithmic approach. The
process involves the utilization of a matrix with a
dimension of K by N,, where K represents the
number of tokens and IV, the number of genes. For
each vector of gene expression, we obtain the set
of tokens that are activated within the codebook.
Upon activation of the K;-th token, the correspond-
ing raw gene expression vector is scaled by the
frequency of K; token occurrences among the ac-
tivated tokens and subsequently aggregated to the
K;-th row of the matrix. This procedure is iterated
across the entire gene dataset. Subsequent to the
completion of this iterative process, we perform a
normalization step on each column, which corre-
lates to individual genes. Following normalization,
for each row, we identify and select the genes that
exhibit the most significant values (Colonna, 2023).

Table 5: Clustering performance of different variants for
cell representations on the CLL dataset. We compare
the adjusted rand index (ARI), normalized mutual infor-
mation (NMI), silhouette score (S-score), and clustering
time between models.

Method ARIT NMI1T S-score
Mean 0.015 0.059 —0.133
Concatenated 0.181  0.478 0.310
hc NoCL) 0.275 0.573 0.361
hc (Ours) 0.292 0.593 0.376

E More Experimental Results

Additional Drug Response Prediction Result
Analysises. In these experiments, we follow the
setting of scFoundation and disable the mutation
and the methylation features, to focus on the benefit
brought by the incorporation of embeddings from
gene expression values. From Figure 6 and 7, we
can observe that scPaLM achieves better PCCs on
all but one cancer type and improves the metrics on
a majority of cell lines. Following the analysis, we
further visualize the best prediction case of the can-
cer type, namely the low-grade gliomas (LGG) in
Figure 7, where we observe both methods achieve
high PCC values despite that the IC50 values have
a large range from —6 to 6. scPaLM outperforms
scFoundation by 2% and 4% in terms of the PCC
and the Spearman correlation coefficient. These
results showcase the effectiveness of scPaLM. It
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Figure 6: Pairwise visualization of the Pearson correlation coefficient of scFoundation and scPaLM based on
different grouping strategies. Left: grouping with respect to the cell lines; Middle: grouping with respect to the
cancer type; Right: grouping with respect to the drug type. The red lines indicate the relationship of y = z.

is also noteworthy that the embeddings generated
by scPalLM are smaller in dimension compared to
those of scFoundation, which implies that scPaLM
is more efficient in modeling scRNA-seq data.
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Figure 7: Scatter plots of the predicted and the observed
IC50 values on the samples with the cancer type of low-
grade gliomas.

Genetic Pathway Results. We present the iden-
tified significant genetic pathway in Table 7.
Two pathways with p-values that are significantly
smaller than 1 x 10~° are identified, which are all
related to immunological reactions.

Table 6: Comparison between different embedding pro-
cesses. The models are trained on a subset of the pre-
training data and evaluated on the COVID dataset.

Embedding Algorithm Memory Usage | ARIT NMI?T

Per-gene >80G - -
Shared-first-layer 42378MiB 0.167 0.251
Permutation-invariant (Ours) 43678MiB 0.201  0.291

Comparison of Different Embedding Processes.
We conduct an experiment to compare the memory
usage and the subsequent clustering performance
of models with different embedding processes on
the COVID dataset. The results are presented in
Table 6.

F Potential Risks

While scPalM demonstrates promising capabili-
ties for therapeutic discovery and cellular analy-
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Table 7: Significant pathways identified by GSEA (p-
value < 1 x 1075 ). Two pathways related to the im-
mune system are selected.

Gene Lists (To- | Term P-value
ken ID)

CDIE, Immunoregulatory  Interac- | 2.8 x 107
TREM2, tions Between A Lymphoid

ICAMS, And A non-Lymphoid Cell

CDI1B (25)

BTNIAL, Adaptive Inmune System 4.4 %1077
MRCI, CDIE,

TREM2,

ICAMS,

CDI1B (25)

sis, we acknowledge the dual-use potential inher-
ent in any foundational biomedical Al technology.
The model’s ability to predict cell-drug interac-
tions could theoretically be misapplied to screen
compounds with harmful biological activity. To
mitigate this risk, we emphasize that any clinical
translation of our method must occur within es-
tablished regulatory frameworks requiring rigor-
ous safety evaluation and ethical oversight. Re-
searchers utilizing this technology should adhere
to institutional bio-safety review processes and ex-
isting chemical/biological weapons conventions to
prevent misuse.
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