DISTRIBUTED ALGORITHMS FOR
EUCLIDEAN CLUSTERING

Anonymous authors
Paper under double-blind review

ABSTRACT

We study the problem of constructing (1 + ¢)-coresets for Euclidean (k, z)-
clustering in the distributed setting, where n data points are partitioned across
s sites. We focus on two prominent communication models: the coordinator
model and the blackboard model. In the coordinator model, we design a pro-
tocol that achieves a (1 + £)-strong coreset with total communication complexity

0 (sk + ﬁ + dk log(nA)> bits, improving upon prior work (Chen et
al., NeurIPS 2016) by eliminating the need to communicate explicit point coordi-
nates in-the-clear across all servers. In the blackboard model, we further reduce

dk
min(e?,e2+%)

bits, achieving better bounds than previous approaches while upgrading from
constant-factor to (1 + ¢)-approximation guarantees. Our techniques combine
new strategies for constant-factor approximation with efficient coreset construc-
tions and compact encoding schemes, leading to optimal protocols that match both
the communication costs of the best-known offline coreset constructions and ex-
isting lower bounds (Chen et al., NeurIPS 2016, Huang et. al., STOC 2024), up to
polylogarithmic factors.

the communication complexity to O (s log(nA) + dklog(nA) +

1 INTRODUCTION

Clustering is the process of partitioning a dataset by grouping points with similar properties and sep-
arating those with differing properties. The study of clustering dates back to the 1950s (Steinhaus
et al., 1956; MacQueen, 1967), and its many variants find applications in fields such as bioinfor-
matics, combinatorial optimization, computational geometry, computer graphics, data science, and
machine learning. In the Euclidean (k, z)-clustering problem, the input consists of a set X of n
points 1, ..., x, € R?, along with a cluster count k£ > 0 and an exponent z > 0. The objective is
to find a set C of at most &k centers that minimizes the clustering cost:

n

min cost(X,C):= min min ||z; — /|3
CCR4, |C|<k CCRY, |C| <k = cEC

When z = 1 and z = 2, the (k, z)-clustering problem reduces to the classical k-median and k-means
clustering problems, respectively.

Due to the substantial growth in modern datasets, focus has shifted toward large-scale computational
models that can process data across multiple machines without requiring centralized access to the
full dataset. The distributed model of computation has become a popular framework for handling
such large-scale data. In the distributed setting, the points x1,...,x, of X are partitioned across
s different machines, and given an input accuracy parameter € > 0, the goal is for the machines
to collectively find a clustering C of X with cost that is a (1 + &)-multiplicative approximation of
the optimal clustering of X, while minimizing the total communication between machines. As in
other models, a set C of k centers implicitly defines the clustering, since each point is assigned to
its nearest center. Since transmitting the entire dataset or an explicit cluster label for each point
would incur communication linear in n = | X|, it is more feasible to design protocols that exchange
only succinct summaries, such as small sets of representative points or coresets. We also note that
because of finite precision, input points are assumed to lie within the grid {1, ..., A}¢, which can
be communicated efficiently using a small number of bits per coordinate.

A standard strategy for efficient distributed clustering is to have each machine construct a small
weighted subset of its local points, i.e., a coreset, that preserves the clustering cost for any choice of
k centers. These local coresets can then be merged at a coordinator or hierarchically aggregated to
approximate the clustering objective over the full dataset. Naturally, smaller coresets correspond to
lower communication costs and faster centralized processing. In the offline setting, where the full
dataset X is available on a single machine without resource constraints, coreset constructions are

L s - . kz)) weighted points of X (Cohen-Addad

e2 > min(et,e217)
et al., 2021; 2022a;b; Huang et al., 2024)12. As is common, we assume A = poly(n) so that
each coordinate can be stored in O (log(ndA)) bits, allowing efficient communication and storage.
Thus, offline coreset constructions have size independent of n, an essential feature given that modern
datasets often contain hundreds of millions of points.

known that select O (min (

1.1 OUR CONTRIBUTIONS

We study the construction of (1+e¢)-coresets for Euclidean (k, z)-clustering in the distributed setting,
focusing on the coordinator and blackboard communication models.

The coordinator model. In the coordinator (message passing) model, the s sites, i.e., servers,
communicate only with the coordinator over private channels, using private randomness. Protocols
are assumed without loss of generality to be sequential, round-based, and self-delimiting, i.e., in each
round the coordinator speaks to some number of players and awaits their responses before initiating
the next round and all parties know when each message has been completely sent. Given € > 0, the
goal is a protocol II where the coordinator outputs a (1 + €)-coreset for Euclidean (&, z)-clustering
that minimizes the communication cost, i.e., the total number of bits exchanged in the worst case.
We achieve optimal communication protocols for clustering in this model, matching known lower
bounds from Chen et al. (2016); Huang et al. (2024):

Theorem 1.1 (Communication-optimal clustering in the coordinator model, informal). Given accu-
racy parameter ¢ € (0, 1), there exists a protocol on n points distributed across s sites that produces

a (1 + €)-strong coreset for (k, z)-clustering that uses O (sk + % +dk log(nA)) total

min(et,e2+=
bits of communication in the coordinator model.

We note that our results also yield the optimal bounds for k-median, matching Huang et al. (2024);
Bansal et al. (2024); for clarity, we omit this special case in the remainder of the paper. By com-
parison, the protocol of Balcan et al. (2013), combined with more recent coreset constructions such
as Cohen-Addad et al. (2021; 2022a); Bansal et al. (2024), achieves a (1 + ¢)-strong coreset using

O (% log(nA)) bits of communication. At first glance, one might expect our bounds

to follow by straightforward generalizations of these approaches; however, as we explain in Ap-
pendix A, this is not the case. For example, our result shows that no points need to be communicated
“in the clear” across sites—there is no O (sdlog(nA)) dependence in the communication. This is
surprising, since one might expect the coordinates of a constant-factor approximation to be broad-
cast to all users. Moreover, the % factors in our bounds do not multiply either the number of sites
s or the log(nA) cost of transmitting a single coordinate. Finally, our results extend to arbitrary
connected communication topologies, even when certain pairs of sites are not allowed to interact.
The formal statement is deferred to Theorem E.7 in Appendix E.

The blackboard model. Next, we consider the blackboard model of communication, where each of
the s sites can broadcast messages that are visible to all of the other sites. Formally in the blackboard
model, communication occurs through a shared public blackboard that is visible to all servers. Each
server again has access to private sources of randomness. Unlike the coordinator model, there is no
designated coordinator to relay messages; instead, any server may write messages directly onto the
blackboard. All servers can immediately observe the entire contents of the blackboard at any point
in time. As before, we assume without loss of generality that the protocol is sequential and round-
based, meaning that in each round, one or more servers write to the blackboard, and all servers can

'We write O (f (n,d, k, A, 1)) todenote O (f (n,d, k,A, 1)) - polylog (f (n,d, k, A, L)).
k

. 4 ’
The bound further refines to @ (min k62 ; =5)) for k-median.

Coordinator model [Communication cost (bits) |

Merge-and-reduce, with (Bansal et al., 2024) 19) (W log(nA))
(Balcan et al., 2013), z = 2 (@] (ﬂ log(nA) + sdklog(sk) log(n A))
(Balcan et al., 2013) in conjunction with (Bansal et al., 2024) | O (m log(nA) + sdklog(sk) log(nA))
Theorem 1.1 (this work) o <sk + m +dk log(nA)>
\ Blackboard model [Communication cost (bits) |
(Chen et al., 2016) O ((s + dk)log®(nA))
Theorem 1.2 (this work) 0] <5 log(nA) + dklog(nA) + ﬁ)

Fig. 1: Table of (k, z)-clustering algorithms in the distributed setting. We remark that (Chen et al.,
2016) only achieves a constant-factor-approximation, whereas we achieve a (1 + ¢)-approximation.

then read the newly posted messages before the next round begins. Accordingly, messages must be
self-delimiting so that all servers can correctly parse when a message has been fully posted.

Given an accuracy parameter £, the objective is to perform a protocol II such that a (1+-¢)-coreset for
Euclidean (k, z)-clustering is explicitly written onto the blackboard. The communication cost of IT is
defined as the total number of bits written to the blackboard over the course of the protocol, measured
in the worst case. We note that the blackboard model can sometimes yield lower communication
costs compared to the coordinator model, as messages need only be written once to be accessible to
all servers simultaneously. Indeed we achieve a distributed protocol for the blackboard model with
substantially less communication than our protocol for the coordinator model, tight with existing
lower bounds (Chen et al., 2016; Huang et al., 2024).

Theorem 1.2 (Communication-optimal clustering in the blackboard model, informal). There exists
a protocol on n points distributed across s sites that produces a (1 + €)-strong coreset for (k, z)-

clustering that uses O (s log(nA) + dklog(nA) + dk

nin(ed, 277y) fotal bits of communication in the
blackboard model.

By comparison, the state-of-the-art protocol achieves a constant factor approximation using
o ((s + dk) log? (nA)) total communication (Chen et al., 2016). Thus compared to the work of
Chen et al. (2016), not only do we achieve a (1 + £)-coreset construction in the blackboard setting,
but also we remove extraneous log(nA) factors. Conceptually, the message of Theorem 1.2 is sim-
ilar to that of Theorem 1.1: some amount of exact coordinates need to be communicated (perhaps
only to a small number of sites in the coordinator setting) for a constant-factor communication, but
no further overhead is necessary for improving to a (1 + ¢)-approximation. Finally, we remark that
for both the blackboard model and the coordinator model, our coresets have size O (6) for the
important cases of k-median and k-median due to sensitivity sampling (Bansal et al., 2024) and in
general not only match known lower bounds (Huang et al., 2024) but also can be further optimized
in certain regimes of n and k (Cohen-Addad et al., 2021; 2022a).

Technical and algorithmic novelties. We remark that our work introduces several algorithmic and
technical innovations that may be of independent interest. For instance, we describe a number of
existing approaches and why they do not work in Appendix A.

Traditional sensitivity sampling selects entire data points with probability proportional to their im-
portance. While effective in centralized settings, this approach does not translate efficiently to dis-
tributed environments: transmitting full points or high-dimensional centers incurs prohibitive com-
munication costs, and naive adaptive sampling requires frequent updates from all sites.

To address these challenges, we introduce several novel techniques. First, in the blackboard model,
we show that adaptive sampling is robust to outdated information, leading to a “lazy” adaptive sam-
pling protocol where sites only update the blackboard when their local weight estimates change
significantly. Sampling from this outdated distribution still guarantees a constant-factor approxi-
mation, reducing both the number of transmitting sites per round and the total number of rounds.
An additional L; sampling subroutine further detects significant changes in global weight without
querying all sites, improving communication efficiency.

In the coordinator model, we introduce a communication-efficient subroutine based on coordinate-
wise sampling. Rather than sending full high-dimensional centers, the coordinator and a site perform
a distributed binary search on the site’s sorted coordinates to find the closest match. Only a small
offset is transmitted, decoupling communication from the dimension d.

Overall, we combine these techniques with coordinate-wise sensitivity sampling: each point is de-
composed along its coordinates, and dimensions are sampled based on their significance. This al-
lows the coordinator to send compact summaries to each site, with servers requesting additional
information only when necessary. However, the reconstructed samples may not correspond to any
actual point in the dataset, requiring careful analysis to show that the overall clustering costs are
not significantly distorted. We believe these techniques could also benefit other distributed settings,
such as regression and low-rank approximation. This fits into a general body of work on methods
for quantizing data for better memory and communication efficiency, which is often a bottleneck for
large language and other models.

2 DISTRIBUTED CLUSTERING PROTOCOLS IN THE BLACKBOARD MODEL

Recall that in the blackboard model of communication, each of the s sites has access to private
randomness and can directly broadcast to a public platform in sequential, round-based steps, with
self-delimiting messages immediately visible to all. Throughout this section, we assume without
loss of generality that there is a central coordinator managing the process. Our goal is to design
efficient protocols for (k, z)-clustering in this setting.

2.1 CONSTANT-FACTOR BICRITERIA ALGORITHM

In this section, we present a new algorithm that achieves an (O (1), O (1))-bicriteria approxima-
tion; we will use it to construct a (1 + €)-coreset in Section 2.2. The resulting scheme yields

ﬁ) bits of communication and

a (1 + £)-approximation with o (s logn + dklogn +
O (lognlog k) rounds, with additional optimizations for the case & = O (logn) given in the ap-
pendix. Existing bicriteria algorithms in the blackboard model suffer from communication bottle-
necks, e.g., the classical Mettu—Plaxton protocol (Mettu & Plaxton, 2004) and the subsequent adap-
tations (Chen et al., 2016) sample O (k) points in each of O (log n) rounds, incurring O (dk log® n)

bits of communication. These costs are prohibitive for our target guarantees.

To overcome these barriers, we adapt the adaptive sampling framework originally developed for
k-median in the centralized setting (Aggarwal et al., 2009; Balcan et al., 2013). The procedure
repeatedly samples points in a manner reminiscent of kmeans++ (Arthur & Vassilvitskii, 2007;
Bahmani et al., 2012), but now distributed across s servers. In each iteration, we first sample a server
J with probability proportional to D, the sum of the z-th power of the distances from its points to
the current sample, and then sample points within server j according to the adaptive distribution.
A naive implementation requires reporting each D; after every iteration, leading to O (sklogn)
communication, which is too expensive. To implement this step efficiently, we design the subroutine
LAZYSAMPLING, which draws from the adaptive distribution using only approximate values D
maintained on the blackboard. Our key innovation is to update these estimates lazily: each site
reports a new value only when its true D; changes by more than a constant factor, which we show
suffices for the purposes of adaptive sampling.

Lemma 2.1. There exists an algorithm LAZYSAMPLING that samples from the adaptive sampling
distribution with probability at least 0.99 provided that Y D; < > D; < XY D;j for a fixed
constant A\ > 1. The algorithm uses O (log s + dlogn) bits of communication.

The LAZYSAMPLING algorithm is a communication-efficient subroutine for adaptive sampling in
the blackboard model, formally described in Algorithm 4 in Appendix B. Each server 7 maintains an

approximate weight D; for its local dataset, satisfying D; < D; < AD;, where D; is the sum of the
z-th powers of distances from its points to the current sample. The coordinator first selects a server

j with probability proportional to bvj /> E, then requests a point y € X ;, sampled with probabil-
ity d,/D;. By updating the D lazily, i.e., only when D; changes significantly, LAZYSAMPLING
ensures points are drawn close to the true adaptive distribution while drastically reducing commu-

nication. The algorithm either returns a sampled point or L, and uses only @} (log s + dlogn) bits
per round, enabling scalable execution of the bicriteria algorithm across s servers. This ensures that
each site communicates only O (logn) updates, so the total communication for the constant-factor

approximation is reduced to O (slogn + kdlogn), since each server can only update /DI a total of
O (logn) times assuming all points lie in a grid with side length poly(n). Because lazy updates
rely on approximate values, the protocol must occasionally verify whether the aggregate estimate

> j D is still close to the true sum > j D;. For this purpose, we use the subroutine L1SAMPLING,
which tests whether the two sums differ by more than a constant factor.

Lemma 2.2. There exists an algorithm L1SAMPLING that takes input {bvj}je[s] so that b\; > D
forallj € [s). Let D = > jers Diand D =3,y Dj and let ju > 1 be a parameter. Ifu2D < D,

then L1SAMPLING returns True with probability at least 1 — 6. If uD > D, it returns False with
probability at least 1 — §. The algorithm uses O ((log s+ loglogn) log %) bits of communication.

L1SAMPLING checks whether the sum of approximate site costs D is within a constant factor of the
true total D by sampling a few sites and aggregating the rescaled sampled values. If the aggregate
is sufficiently close to D, the algorithm returns True; otherwise, it returns False, providing a
high-probability guarantee that the lazy estimates remain accurate; the algorithm is presented as
Algorithm 9 in Appendix D.2. While this lazy strategy could require up to O (slogn) rounds, we
further reduce the round complexity by delaying all updates until the global sum j D; decreases
by a constant factor. This event is naturally detected when no new point is sampled in a round,
and synchronizing updates in this way brings the total number of rounds down to O (lognlogk).
Finally, to reduce communication further, we use the subroutine POWERAPPROX, which encodes
each D; to within a constant factor using only O (log log n) bits:

Theorem 2.3. Given m = poly(n) and a constant X > 1, there exists an algorithm
POWERAPPROX (m, \) that outputs m encoded in O (loglog n) bits, such that m < m < Am.

Given m and a base A > 1, POWERAPPROX computes the smallest integer 4 such that A\’ approx-
imates m from above, i.e., m < A\’ < Am, and returns i. This allows each site to communicate a
concise representation of its cost using only O (log log n) bits, which can then be decoded to obtain
a constant-factor approximation of the original value; we give the full details in Algorithm 5 in Ap-
pendix B. Combined with LAZYSAMPLING and L1SAMPLING, this ensures accuracy while keep-
ing communication near-linear. The protocol proceeds by sampling points with LAZYSAMPLING,
verifying accuracy with L1SAMPLING, and refreshing estimates via POWERAPPROX only when
necessary. To limit round complexity, sites synchronize updates by reporting only when the global
sum ; Dj decreases by a constant factor, detected whenever a round fails to sample a new point.
This reduces the number of rounds from O (slogn) to O (lognlog k). Figure 2 informally summa-
rizes the procedure, with the formal procedure appearing in Appendix D.3. Altogether, this yields
the first (O (1), O (1))-bicriteria approximation for (k, z)-clustering in the blackboard model with
near-linear communication and polylogarithmic rounds:

Lemma 2.4. There exists an algorithm that outputs a set S such that |S| = O (k) and cost(S, X) <
O (1) - cost(Copr, X) with probability at least 0.98, where Copr is the optimal (k, z)-clustering of

X. The algorithm uses O (slogn + kdlogn) bits of communication and O (log nlog k) rounds of
communication with probability at least 0.99.

2.2 (1 +¢)-CORESET CONSTRUCTION

To achieve a (1 + ¢)-coreset for (k, z)-clustering on an input dataset X given an (O (1),0 (1))-
bicriteria approximation S, we use the following notion of sensitivity sampling. For each center
s; € S,1let C; C X be the cluster centered at s;. For a point 2 € Cj, let A, := cost(C}, S)/|C}]|
denote the average cost of C;. For x € C}, we define

(@)=~ (L4 cost(z,5) cost(z,S5) A,
KO T Feost(Cy, 8) T cost(X,8) T cost(X, 5))

We define sensitivity sampling to be the process where each point x is sampled with probability
proportional to a constant-factor approximation to u(z). Then we have the following guarantees:

Algorithm: Bicriteria Approximation for (%, z)-Clustering (Simplified)
1. Input: Dataset X; for each site i € [s].

2. Output: Set S thatis an (O (1), O (1))-bicriteria approximation.

3. Initialize:

» Sample one point into S and compute approximate distances {B;} for each site.
* Setcounters: N = O (k), M = 0.

4. While M < N (sample roughly % points):
» Sample new points into S using LAZYSAMPLING.

* Check accuracy of approximate distances {bvj} with L1SAMPLING.
« If distances are accurate, sample more aggressively.
* Otherwise, refine approximate distances {bv]} using POWERAPPROX.
* Update M with the number of points successfully added.
5. Return S.

Fig. 2: Informal version of bicriteria approximation through adaptive sampling.

Theorem 2.5. (Bansal et al., 2024) Sampling O (W) points from constant-factor ap-

proximations to the sensitivity sampling probability distribution and then reweighting provides a
(1 + &)-coreset for Euclidean (k, z)-clustering with probability at least 0.99.

We remark that Bansal et al. (2024) obtained optimal bounds for k-median, which immediately
extend to our framework as well; we omit further discussion as it naturally generalizes. To apply the
sensitivity sampling framework, we require constant-factor approximations of the cluster sizes |C}|
and costs cost(C}, S), given a bicriteria solution S. However, directly uploading these quantities
from s servers for O (k) clusters would cost O (skloglogn) bits, which is too high. Instead, we
adapt Morris counters (Morris, 1978) for the purposes of distributed approximate counting:

Lemma 2.6. Suppose each server i holds k numbers n; j and we have |N;| = >°_ n;; =
poly(n). There exists an algorithm DISTMORRIS that outputs {N;} such that N; € [3N;, 2 N;]
for all j € [k), with probability 0.99 using O (s + klogn) bits of communication.

Our Morris counter protocol collectively maintains a counter r; and increments it with probability
% for each item in a cluster C;. This provides a constant approximation to the cluster size |C}|.
Crucially, if a site does not change the global counters {7}, then it only needs to send a single bit to
signal no update. Otherwise, each of the O (k) counters can only increase at most O (log n) times, so
the total upload cost for these approximations is O (k logn) bits. We can perform a similar protocol

to approximate the cost of each cluster cost (C’j, S), so that overall, the total communication for these

approximations is O (s + klogn) bits. Given these approximations, the servers can then perform
sensitivity sampling locally. Finally, we require an efficient encoding of each point z sampled by
sensitivity sampling. Informally, each point z is encoded as 2’ = wg(x) + y’, where 7g(x) is the
nearest center in S to xz, and ¥’ is the offset vector © — wg(x) whose coordinates are rounded to

the nearest power of (1 + '), where ¢’ = poly (5, %, m). The formal details are given in
Appendix B. Putting everything together, Algorithm 1 achieves the guarantees in Theorem 1.2.

3 DISTRIBUTED CLUSTERING PROTOCOLS IN THE COORDINATOR MODEL

We now turn to the coordinator (message passing) model, where each server communicates only
with the coordinator over private channels. A direct simulation of our blackboard protocol would
require O (dsklogn) bits, since O (k) rounds of adaptive sampling would need to be executed
across s servers. To avoid this prohibitive cost, we design a protocol that simulates adaptive sampling
without sending points explicitly to all sites. We first apply a Johnson—Lindenstrauss transformation
to reduce the dimension to d’ = O (log(sk)), preserving pairwise distances up to (1 & ¢). We

Algorithm 1 (1 +)-coreset for the blackboard model

Input: A bicriteria set of centers .S with constant-factor approximation and |S| = O (k)
Output: A (1 + ¢)-coreset A
1: Use DISTMORRIS to get O (1)-approximation for |C;| and cost(C}, S) for all j € [k] on the

blackboard
m <+ O (E% min{e =2, e7%}) >Set coreset size
: for i + 1to s \\ Send local approximations to sensitivities do

Compute ji(x) as an O (1)-approximation of u(x) locally for all x € X;
Upload /i(X;) = >, ¢, fi(z) to blackboard
end for N
. Sample site ¢ with probability %
9: Let m; be the number of times site i is sampled and write m; on blackboard
10: for ¢ < 1to s \\ Iterate through sites to produce samples do

AN A

independently for m times. >Sensitivity sampling

11: A; 0

12: for j € [m;] \\ Sample m, points from site i do

13: Sample z with probability p, = ;(g;g)

14: if x is sampled \\ Efficiently encode each sample then

15: Let 2’ be z efficiently encoded by S and accuracy ¢’ = poly(¢)
16: A A U{(2', 57y} where fi(z) is a (1 + 5)-approximation of fi(x)
17: end if

18: end for

19: Upload A; to the blackboard

20: end for

21 A+ Ui A;

22: return A

can then perform adaptive sampling in the projected space, so that when a point s is selected, only
its projection 7(s) is communicated. To efficiently approximate such locations, we introduce the
subroutine EFFICIENTCOMMUNICATION, which transmits an approximate version y of any point
y using only dlog k polylog (logn, £, %) bits, rather than the O (dlogn) bits required for exact
communication:

Lemma 3.1. Given a point y and a dataset X, there exists an algorithm
EFFICIENTCOMMUNICATION that uses dlogkpolylog(logn, L, %) bits of communication
and sends y such that ||y — y||2 < mingex e||z — y||2 with probability at least 1 — 6.

Intuitively, EFFICIENTCOMMUNICATION allows a site to locate an approximate version of the co-
ordinator’s point y using very little communication. For each coordinate i, the site first identifies

the closest local value 2" to y® via a binary search using the HIGHPROBGREATERTHAN proto-

1s
col. If) does not exactly match, an exponential search determines a small offset Ay(?) so that
xEl) + Ay approximates y*) within a factor of (1 +¢). By doing this coordinate-wise, the site can
efficiently reconstruct a point y that is close to y, guaranteeing |y — y]2 < €|z — y| for any local
point x € X, while sending only a small number of bits. This approach combines the intuition of
searching for the “nearest neighbor” along each coordinate with controlled, approximate refinement,
as illustrated in Figure 3.

Given a bicriteria approximation S obtained from the above efficient implementation of adaptive
sampling, we next perform sensitivity sampling to construct a (1 + €)-coreset. Unfortunately, each
server can now assign a point z to another center s’ instead of the closest center s if cost(z, ') is very
close to cost(z, s). Consequently, the sizes |C};| and costs cost(C;, S) for the purposes of sensitivity
sampling may be incorrectly computed by the servers. However, this does not compromise the
correctness: the sensitivity analysis of Bansal et al. (2024) only requires that each point be assigned
to a center whose clustering cost is within a constant factor of the optimal assignment. Thus, our
procedure still achieves a (1 + §)-coreset by sensitivity sampling. Once points are sampled, each
site encodes the coordinates of its sampled points using the same efficient encoding scheme as in the
blackboard model, c.f., Lemma B.13, ensuring that only a compact representation is sent back to the

Algorithm: EFFICIENTCOMMUNICATION(X, y, ¢, §) (informal)
1. Input:
* A setof points X = {x1,...,x;} owned by one site.
* A point y from the coordinator.
* Accuracy parameter ¢ € (0, 1) and failure probability 4.
2. Goal: Send an approximate location ¥ to the site such that ||y — y||2 < ||z — y||2 for any
x € X with probability > 1 — J.
3. For each coordinate ¢ = 1 to d:
* Sort points in X by their ¢-th coordinate.

* Use a local binary search via HIGHPROBGREATERTHAN to find the closest point =

@ ¢
Y.

o If y() equals xz(-?, set Ay() = 0.
e Otherwise:
o Determine the direction y = sign(y(® — xgl))
o Use exponential search with HIGHPROBGREATERTHAN to find a value Ay(?) so that
wgl) + Ay approximates y(*) within factor (1 4 ¢).
o Set i = 2 + Ay,

4. Returny = (M), ... g(d).

Fig. 3: Informal version of efficient communication in the message-passing algorithm. For full
algorithm, see Algorithm 15.

coordinator. This combination of approximate center assignments and efficient encoding preserves
both accuracy and communication efficiency. We give the algorithm in full in Figure 4, which
achieves the guarantees of Theorem 1.1, deferring full details to Appendix E.

Algorithm: (1 + £)-coreset for the coordinator model (informal)

(1) Each site computes a local (1 + £/2)-coreset P;.

(2) Coordinator broadcasts a JL transform 7 to all sites.

(3) Initialize solution set S = {so} with a random point.

(4) Fori = 1toi = O (k) iterations (for bicriteria solution):
* Using EFFICIENTCOMMUNICATION, send approximation 553_)1 of center s; to site j.
* Sites compute approximate costs /va and send to coordinator.
 Coordinator selects next center s; into .S using LAZYSAMPLING.

(5) Sites compute cluster sizes and costs, send constant approximations to coordinator.

(6) Coordinator computes total approximations and broadcasts to sites.

(7) Sites compute approximate sensitivities fi(z), send total to coordinator.

(8) Coordinator samples m = o (W) points across sites based on sensitivities;
sites sample points and encode with EFFICIENTCOMMUNICATION.
(9) Merge sampled points into final coreset A’ and return.

Fig. 4: Informal version of message-passing algorithm. For full algorithm, see Algorithm 16.

4 EMPIRICAL EVALUATIONS

In this section, we present a number of simple experimental results on both synthetic and real-
world datasets that complement our theoretical guarantees. We consider k-means clustering in the
blackboard setting, using the previous algorithm of Chen et al. (2016) based on Mettu-Plaxton, de-
noted MP, as a baseline. We also implement two versions of our distributed protocol, with varying
complexity. We first implement our constant-factor approximation algorithm based on adaptive sam-
pling, denoted AS. Additionally, we implement our constant-factor approximation algorithm based
on our compact encoding after adaptive sampling, denoted EAS. All experiments were conducted
on a Dell OptiPlex 7010 Tower desktop equipped with an Intel Core 17-3770 3.40 GHz quad-core
processor and 16 GB of RAM. We provide all code in the supplementary material.

1e6 Clustering Costs Communication Costs

—6— MP Comms
6000 - AS Comms
—— EAS Comms

5000
4000 1

3000 —M

2000 1

Cost
Communication (Bits)

0.9 4
—6— MP Costs

AS Costs 1000

0.8 1" EAS Costs

1 12 13 14 15 16 17 18 19 20 1 12 13 14 15 16 17 18 19 20
sampling Coefficient sampling Coefficient

(a) Clustering costs (b) Communication Costs

Fig. 5: Experiments for clustering costs and communication costs on DIGITS dataset

4.1 REAL-WORLD DATASET

To evaluate our algorithms, we conducted our k-means clustering algorithms on the DIGITS
dataset (Alpaydin & Kaynak, 1998), which consists of 1,797 images of handwritten digits (0-9)
and thus naturally associates with k¥ = 10. Each image has dimension 8 x 8, represented by 64 fea-
tures, corresponding to the pixel intensities. This dataset is available both through scikit-learn
and the UCI repository, and is a popular choice for clustering tasks due to its moderate size and well-
defined classes, allowing for a clear evaluation of the clustering performance.

For a parameter c, our baseline MP uniformly selects & initial points and then iteratively discards
candidates over clog, n rounds. Our AS algorithm iteratively samples a single center in each of ck
rounds, with probability proportional to its distance from the previously sampled centers. Finally,
EAS quantizes the coordinates of each chosen center of AS to the nearest power of two, mimicking
low-precision communication. We compare the clustering costs of the algorithms in Figure 5a and
their total communication costs in Figure 5b, both across ¢ € {11,12,...,20}.

Our results indicate that although adaptive sampling (AS) always outperforms Mettu-Plaxton (MP),
when the number of samples is small, the gap is relatively small, so that the rounding error incurred
by our efficient encoding in EAS has similar clustering costs for ¢ = 11 in Figure 5a. Surprisingly,
the communication cost of MP did not seem to increase with ¢, indicating that all possible points
have already been removed and no further samples are possible. Nevertheless, for all ¢ > 11, our
algorithm in EAS clearly outperforms MP and therefore the previous work of Chen et al. (2016) for
both clustering cost and communication cost, c.f., Figure 5b. Our algorithm EAS also exhibits clear
tradeoffs in the clustering cost and the communication cost compared to our algorithm AS, as the
former is simply a rounding of the latter.

4.2 SYNTHETIC DATASET

To facilitate visualization, we generated synthetic datasets consisting of two-dimensional Gaussian
mixtures, where the low dimensionality (2D) was chosen to enable visualization of the resulting

clusters. Specifically, we created k& = 5 Gaussian clusters, each containing n = 100 x 2° points,
for a total of 512,000 data points. Each cluster was sampled from a distinct Gaussian distribution
with a randomly selected mean in the range [—10, 10]? and a randomly generated positive-definite
covariance matrix to ensure diverse cluster shapes.

We implemented the baseline MP by sampling & points uniformly and pruning candidates based on
a distance threshold that doubles each round, across clog, n rounds, where c is a hyperparameter.
We implemented our algorithm AS by iteratively sampling one center per round across ck rounds,
selecting points with probability proportional to their distance from existing centers. EAS then
modifies AS by rounding each selected center’s coordinates to the nearest power of ¢ = 20-25,
simulating low-precision communication.

Clusters and Centers 107 Clustering Costs Communication Costs

2.001 6= MP Costs 1600 { —e— MP Comms
—a— AS Costs —+— AS Comms
175 4 = EAS Costs 1400 § ¢ EAS Comms

(a) (b) (©

Fig. 6: Experiments for clustering costs and communication costs on synthetic dataset

We varied the sampling coefficient ¢ € {11,...,20} and measured the k-means clustering cost (i.e.,
the total squared distance from each point to its assigned center). The results, shown in Figure 6,
highlight the performance trade-offs between sampling strategies as ¢ increases. Communication
costs were also computed (though not plotted), assuming 32 bits per coordinate for MP and AS, and
5 bits per coordinate for EAS due to quantization.

Our results for synthetic data echo the trends for the DIGITS dataset. Namely, for all ¢ > 2, our
algorithm in EAS clearly outperforms MP for both clustering cost and communication cost, c.f.,
Figure 6¢, while also demonstrating clear tradeoffs in the clustering cost and the communication
cost compared to our algorithm AS. We plot the resulting clustering by EAS in Figure 6a.

REFERENCES

Ankit Aggarwal, Amit Deshpande, and Ravi Kannan. Adaptive sampling for k-means clustering.
In International Workshop on Approximation Algorithms for Combinatorial Optimization, pp.
15-28. Springer, 2009. 4, 13, 16, 19, 20, 21

E. Alpaydin and C. Kaynak. Optical Recognition of Handwritten Digits. UCI Machine Learning
Repository, 1998. DOI: https://doi.org/10.24432/C50P49. 9, 40

David Arthur and Sergei Vassilvitskii. k-means++: the advantages of careful seeding. In Pro-
ceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA, pp.
1027-1035, 2007. 4, 13

Bahman Bahmani, Benjamin Moseley, Andrea Vattani, Ravi Kumar, and Sergei Vassilvitskii. Scal-
able k-means++. Proc. VLDB Endow., 5(7):622-633, 2012. 4, 13

Maria-Florina Balcan, Steven Ehrlich, and Yingyu Liang. Distributed k-means and k-median cluster-
ing on general communication topologies. In Advances in Neural Information Processing Systems
26: 27th Annual Conference on Neural Information Processing Systems, pp. 1995-2003, 2013.
2,3,4,13, 14, 39,40

Nikhil Bansal, Vincent Cohen-Addad, Milind Prabhu, David Saulpic, and Chris Schwiegelshohn.
Sensitivity sampling for k-means: Worst case and stability optimal coreset bounds. CoRR,
abs/2405.01339, 2024. 2, 3,6, 7, 12, 14, 15, 16, 31

10

Jiecao Chen, He Sun, David P. Woodruff, and Qin Zhang. Communication-optimal distributed
clustering. In Advances in Neural Information Processing Systems 29: Annual Conference on
Neural Information Processing Systems, pp. 3720-3728, 2016. 2, 3,4, 9, 12

Vincent Cohen-Addad, David Saulpic, and Chris Schwiegelshohn. A new coreset framework for
clustering. In STOC: 53rd Annual ACM SIGACT Symposium on Theory of Computing, pp. 169—
182,2021. 2,3, 12

Vincent Cohen-Addad, Kasper Green Larsen, David Saulpic, and Chris Schwiegelshohn. Towards
optimal lower bounds for k-median and k-means coresets. In STOC ’'22: 54th Annual ACM
SIGACT Symposium on Theory of Computing, pp. 1038-1051, 2022a. 2, 3, 12, 15

Vincent Cohen-Addad, Kasper Green Larsen, David Saulpic, Chris Schwiegelshohn, and
Omar Ali Sheikh-Omar. Improved coresets for euclidean k-means. In NeurIPS,
2022b. URL http://papers.nips.cc/paper_files/paper/2022/hash/
120c9ab5c58balfad9dd3a22acelde245-Abstract-Conference.html. 2,12, 15

Vincent Cohen-Addad, David P. Woodruff, and Samson Zhou. Streaming euclidean k-median and
k-means with o(logn) space. In 64th IEEE Annual Symposium on Foundations of Computer
Science, FOCS, pp. 883-908, 2023. 12

Vincent Cohen-Addad, Liudeng Wang, David P. Woodruff, and Samson Zhou. Fast, space-optimal
streaming algorithms for clustering and subspace embeddings. CoRR, abs/2504.16229, 2025. 18,
19

Lingxiao Huang and Nisheeth K. Vishnoi. Coresets for clustering in euclidean spaces: importance
sampling is nearly optimal. In Proccedings of the 52nd Annual ACM SIGACT Symposium on
Theory of Computing, STOC, pp. 1416-1429, 2020. 12

Lingxiao Huang, Jian Li, and Xuan Wu. On optimal coreset construction for euclidean (k, z)-
clustering. In Proceedings of the 56th Annual ACM Symposium on Theory of Computing, STOC,
pp- 1594-1604, 2024. 2, 3, 15

Zachary Izzo, Sandeep Silwal, and Samson Zhou. Dimensionality reduction for wasserstein
barycenter. In Advances in Neural Information Processing Systems 34: Annual Conference on
Neural Information Processing Systems, NeurIPS, 2021. 12, 15

William B Johnson and Joram Lindenstrauss. Extensions of lipschitz mappings into a hilbert space.
conference in modern analysis and probability (new haven, conn., 1982), 189-206. In Contemp.
Math, volume 26, 1984. 15

Daniel M Kane and Jelani Nelson. A derandomized sparse johnson-lindenstrauss transform. arXiv
preprint arXiv:1006.3585, 2010. 16

Yurii Lyubarskii and Roman Vershynin. Uncertainty principles and vector quantization. IEEE
Trans. Inf. Theory, 56(7):3491-3501, 2010. doi: 10.1109/TIT.2010.2048458. URL https:
//doi.org/10.1109/TIT.2010.2048458. 12

J MacQueen. Classification and analysis of multivariate observations. In 5th Berkeley Symp. Math.
Statist. Probability, pp. 281-297, 1967. 1

Konstantin Makarychev, Yury Makarychev, and Ilya P. Razenshteyn. Performance of johnson-
lindenstrauss transform for k-means and k-medians clustering. In Proceedings of the 51st Annual
ACM SIGACT Symposium on Theory of Computing, STOC, pp. 1027-1038, 2019. 12, 15

Ramgopal R. Mettu and C. Greg Plaxton. Optimal time bounds for approximate clustering. Mach.
Learn., 56(1-3):35-60, 2004. 4, 12, 13

Robert Morris. Counting large numbers of events in small registers. Communications of the ACM,
21(10):840-842, 1978. 6, 30

Noam Nisan. The communication complexity of threshold gates. Combinatorics, Paul Erdos is
Eighty, 1(301-315):6, 1993. 16, 33

11

http://papers.nips.cc/paper_files/paper/2022/hash/120c9ab5c58ba0fa9dd3a22ace1de245-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/120c9ab5c58ba0fa9dd3a22ace1de245-Abstract-Conference.html
https://doi.org/10.1109/TIT.2010.2048458
https://doi.org/10.1109/TIT.2010.2048458

Christian Sohler and David P. Woodruff. Strong coresets for k-median and subspace approximation:
Goodbye dimension. In 59th IEEE Annual Symposium on Foundations of Computer Science,
FOCS, pp. 802-813, 2018. 12, 15

Hugo Steinhaus et al. Sur la division des corps matériels en parties. Bull. Acad. Polon. Sci, 1(804):
801, 1956. 1

Xiaoyi Zhu, Yuxiang Tian, Lingxiao Huang, and Zengfeng Huang. Space complexity of euclidean
clustering. IEEE Trans. Inf. Theory, 71(6):4515-4536, 2025. 12

A TECHNICAL OVERVIEW

In this section, we provide a technical overview for our distributed protocols, for both the blackboard
model and the coordinator/message-passing model.

Previous approaches and why they do not work. A natural question is whether simple ap-
proaches could achieve similar communication bounds. One might hope, for instance, that com-
bining the space upper bounds of Zhu et al. (2025) with existing distributed clustering algorithms
would suffice. However, it is not immediately clear how to translate space bounds into better dis-
tributed clustering bounds. For instance, as an application of their space bounds, Zhu et al. (2025)
achieved a distributed protocol with total communication o (s;%k), for appropriate ranges of k
and e, which is actually worse than the third row of Figure 1 and thus worse than our bounds of
O (sk+ % + dklog n) for the same regime.

Another approach might be that each server computes a local coreset, e.g., Huang & Vishnoi (2020);
Cohen-Addad et al. (2021; 2022a;b); Bansal et al. (2024), possibly with the incorporation of dimen-
sionality reduction, e.g., Sohler & Woodruff (2018); Makarychev et al. (2019); 1zzo et al. (2021),
and then either broadcasting these coresets in the blackboard model or sending these coresets to
the coordinator in the message-passing model. However, this uses communication O (s‘&f# log n)

bits, compared to our bounds of O (sk + % + dklog n) Similarly, any approach based on locality
sensitivity hashing, possibly with the aid of dimensionality reduction or other compressions, e.g.,
Kashin representations (Lyubarskii & Vershynin, 2010), would require at least each server comput-
ing a local coreset and thus succumbing to the same pitfalls. These limitations highlight that over-
coming the inherent overheads in naive strategies is far from straightforward, and motivate the need
for new techniques. Our framework is designed precisely to address these challenges by simulating
centralized algorithms through communication-optimal primitives, thereby breaking the bottlenecks
that defeat such strawman approaches.

(1 + e)-coreset for the blackboard model. Our starting point is the distributed protocol of Chen
et al. (2016), which first adapts the central RAM algorithm of Mettu & Plaxton (2004) to publish
a weighted set S of O (klogn) centers that is a constant-factor bicriteria approximation for (k, z)-
clustering. It can be shown that a constant-factor approximation to (k, z)-clustering on S achieves
a constant-factor approximation C' to the optimal clustering on the input set X. Since S is already
available on the blackboard, this step is immediate. The total communication cost of their algorithm
is O ((s + kd) log®n).

We observe that the sites can easily calculate the number of points in X served by each center
¢ € C. We recall that using this information as well as cost(X, C') can be used to find constant-
factor approximations of the sensitivity s(z) of each point z, c.f. (Cohen-Addad et al., 2023).

. ot . 2 . . e .
Thus, the sites can subsequently sample O (mln (’;—27 m>) points of X using sensitivity

sampling to achieve a (1 + ¢)-coreset. We can then use an efficient encoding scheme to express each
sampled point in O (log k + dlog (£, d,log(nA))) bits. This achieves the desired dependency for
the points acquired through sensitivity sampling, but the communication from the constant-factor
approximation is sub-optimal. Thus, it remains to find a more communication-efficient protocol for
the constant-factor approximation.

Constant-factor approximation in the blackboard model. Although there are many options
for the constant-factor approximation in the blackboard model, they all seem to have their various

12

shortcomings. For example, the aforementioned Mettu-Plaxton protocol (Mettu & Plaxton, 2004) re-
quires O (log n) rounds of sampling, which results in O (klog n) points. A natural approach would
be to form coresets locally at each site so that the total number of weighted points is O (sk) rather
than n. Unfortunately, when generalized to weighted points, Mettu-Plaxton requires O (log W)
rounds, where W is total weight of the points, which is poly(n) for our purposes.

Another well-known prototype is the adaptive sampling framework (Aggarwal et al., 2009; Balcan
et al., 2013), which can be used to implement the well-known kmeans++ algorithm (Arthur & Vas-
silvitskii, 2007) in the distributed setting (Bahmani et al., 2012). This approach iteratively samples
a fixed number of points with probability proportional to the z-th power of the distances from the
previously sampled points; adaptive sampling samples O (k) points for O (1)-approximation while
kmeans++ samples & points for O (log k)-approximation. However, since all sites ¢ € [s] must
report the sum D, of the z-th power of the distances of their points to the sampled points after each
iteration, these approaches naively require O (sk log n) bits of communication, which is prohibitive
for our goal.

Instead, we perform lazy updating of the sum D; of the z-th power of the distances of their points

to the sampled points. The blackboard only holds estimates D for D;, based on the last time the
site 7 reported its value. The 51tes then attempt adaptive samphng, where the site 7 is sampled

with a probability proportional to D When sampled, site ¢ uses D to attempt to sample a p01nt

locally, but this can fail because D > D;, which means that a randomly chosen integer in D
may not correspond to an integer in D;. Fortunately, the failure probability would be constant if

D; is a constant approximation of D;, so the total number of rounds of sampling is still O (k) by
the Markov inequality. If the site ¢ fails to sample a point, we expect D; to be a constant fraction

smaller than /D\l , prompting site ¢ to update its value D; on the blackboard. This can happen at most
O (slogn) times. If each site ¢ rounds D; to a power of 2, then D; can be approximated within a
factor of 2 by transmitting only the exponent of the rounding, using O (loglogn) bits. Thus, the

total communication for the constant-factor approximation is O (slogn + kdlogn).

The primary downside is that the total number of communication rounds could reach O (slogn),
since each of the s sites may update its D; value up to O (logn) times.

Communication round reduction in the blackboard model. A natural approach to round re-
duction would be to have all s sites report their updated D; values when we fail to sample a point.
However, because we sample O (k) points, this results in communication complexity O (sk).

Instead, we check whether the global weight > *, cls] D; has decreased by & compared to the amount

> cls) D: on the blackboard. To do this, we first perform the L; sampling in each round. That is,
D.
Z?E[s] D;
expectation this quantity is Y-, D; and its variance is at most (-, () D:)?, up to a constant fac-
tor. Thus, repeating O (1) times and taking the average, we get a Zle[s] D, additive approximation

the blackboard picks the site ¢ with probability p; = . Observe that in

to ZZG[S] D;, which is enough to identify whether the sum has decreased by a factor of 1 from

Diels] D;. We can then take O (loglog n) instances to union bound over O (logn log k) iterations.

Now the other observation is that as long as our sampling probabilities have not decreased by 6%1,
then we can simultaneously take many samples at the same time. Thus, we start at ¢ = 0 and collect
2¢ samples from the s sites usmg the adaptlve sampling distribution. We then check if the total

weight Zze[a] Dj is less than 2 =) Z Dl, and if not, we increment i and sample 2° samples, and
repeat until either 2 > k or the total welght > ies) Di 1s less than &; >, €[s] D;.
Note that this takes O (logn log k) rounds of sampling, which is enough for the failure probability

of the L; sampling procedure. Moreover, since we can use O (loglogn) bits of communication to
approximate L, sampling by rounding the values of D; to a POwWer ¢ of 2 and returning the exponent.

Since each time the total weight Z €[s] D; is less than 2 a1 Zle Dl, we require all s sites to update

their weights, then the communication is O (slogn + kdlogn) across the O (log nlog k) rounds of
communication.

13

Applying sensitivity sampling in the blackboard model. To apply the sensitivity sampling
framework of Bansal et al. (2024), a constant approximation of the number of each cluster |C}]|
and the cost of each cluster cost(C}, S) is necessary, where S is a (O (1) , O (1))-bicriteria approx-
imation of the optimal solution. Each site needs O (log log n) bits to upload such a constant approx-
imation for a cluster. Since there are s sites and O (k) clusters, it would lead to O (sk log log n) bits
of communication, which is prohibitive for our goal. Instead, we adapt Morris counters, which are
used for approximate counting in the streaming model, to the distributed setting. We use a counter r
to store the logarithm of the number/cost of the cluster, and increase the counter by 1 with probabil-
ity 2% for every time we count the number/cost of the cluster. Each site applies the Morris counters
sequentially and only uploads the increment on the blackboard. Similar to Morris counters, such
a subroutine can return a constant approximation of the number/cost of the cluster. If all counters
remain the same after counted by a site, that site needs to use O (1) bits to tell the next site that
nothing needs to be updated, which would use at most O (1). Otherwise, O (loglogn) bits are
needed to update a changed counter. Since each counter can increase at most O (logn) times and
there are O (k) numbers of number/cost of the cluster to be counted, it would use O (k logn) bits
to upload all the updates. Therefore, at most O (s + klogn) bits are needed to upload a constant
approximation of the number of each cluster |C;| and the cost of each cluster cost(C}, S).

Each site can apply the sensitivity sampling locally after knowing a constant approximation of the
number of each cluster |C;| and the cost of each cluster cost(C';, S). Combined with the efficient

encoding for the (1 + ¢)-coreset, we can upload the coreset using O (%) bits, which

achieves our desired bounds for the blackboard model.

Coordinator/message-passing model. For the message-passing/coordinator model, our starting
point is once again adaptive sampling, which can be performed over O (k) rounds to achieve a
constant-factor approximation C' using O (skdlogn) total bits of communication (Balcan et al.,
2013). We can again use sensitivity sampling on C' along with our efficient encoding scheme to
achieve the desired communication for the subsequent (1 + ¢)-coreset. Thus, the main question
again is how to improve the constant-factor protocol.

To that end, we first introduce a subroutine EFFICIENTCOMMUNICATION that can send the location
of the point using low communication cost. The intuition behind EFFICTENTCOMMUNICATION is
similar to the efficient encoding, which uses the points a site owns to encode the point we want to
send. The only difference is that we use different points to efficiently encode the coordinates for
each dimension, rather than just using a single point to encode the point we want to send.

Recall that there exists GREATERTHAN protocol, which given two logn bit integers, figures out
which one is greater with constant probability, using O (loglogn) bits of communication. More-
over, this procedure can be repeated O (log(sk)) times to achieve a failure probability m to

union bound over poly(sk) possible steps. With the help of GREATERTHAN, we can compare the

coordinates of the points in the ¢-th dimension wgz) a site owns with the coordinate of the point to

receive 4y(*). By a binary search, we can find the closest coordinate xy) to (¥, which requires
O (logn) search times, since the site owns at most n points. By another binary search, we can
further find Ay(®) that is a (1 +)-approximation of |x§L) — 4|, Since |:c§z) — 4| = poly(n),
we need O (loglog n) searches to find Ay Since the coordinator needs to send the approximate
coordinates of the points sampled by adaptive sampling to each site, the total communication cost
for adaptive sampling is O (dsk log n) bits, which is still prohibitive for our goal.

To address this, we first generate a (1 + O (g))-coreset for each site, so that the size of the dataset

of each site is O (k), which leads O (log n) searches to find the closest coordinate xgl) to y*). Fur-
thermore, we observe that we only need the approximate cost for each point for adaptive sampling.
Hence, we can apply Johnson-Lindenstrauss to project the dataset down to O (log(sk)) dimensions.
Therefore, the total communication cost for adaptive sampling is sk polylog(log n, s, k) bits.

After achieving an (O (1), O (1))-bicriteria approximation for the optimal solution, we can commu-
nicate a constant approximation of the number and cost of each cluster using a total O (sk log logn)
bits of communication. However, each site may assign the points to an incorrect cluster since
it only has an approximate location of S. Fortunately, the sensitivity sampling procedure of

14

Bansal et al. (2024) still returns a (1 4 ¢)-coreset if we assign each point to a center so that
the distance between them is close to the distance between the point and the center closest to it.
Therefore, combined with EFFICIENTCOMMUNICATION, we can upload the (1 4)-coreset using
W polylog(logn, k, %) bits, which achieves our desired bounds for the blackboard model.

B PRELIMINARIES

For a positive integer n, we denote by [n] the set {1,...,n}. We use poly(n) to represent an
arbitrary polynomial function in n, and polylog(n) to denote a polynomial function in logn. An
event is said to occur with high probability if it holds with probability at least 1 — 1/ poly(n).

Throughout this paper, we focus on Euclidean (k, z)-clustering. Given vectors z,y € R?, we let
dist(, y) denote their Euclidean distance, defined as ||z — y||2, where ||z — y||3 = Zle (i — i)
For a point x and a set S C RY, we extend the notation dist(z,.S) := mingeg dist(x, s). We also
use ||z||, to denote the L, norm of x, given by ||x||Z = Zle xZ. Given a fixed exponent z > 1 and
finite sets X, C' C R? with X = {x1,...,x,}, we define the clustering cost cost(X, C') as

cost(X, C) Zdlst z;, C

We now recall generalized versions of the triangle inequality.
Fact B.1 (Generalized triangle inequality). For any z > 1 and any points x,w,y € R?, it holds that

dist(z,y)? < 277 (dist(x,w)? + dist(w,y)?).
Fact B.2 (Claim 5 in Sohler & Woodruff (2018)). Suppose z > 1, z,y > 0, and € € (0, 1]. Then

22\°
(x+y)2§(1+s)-xz+(l+€) T

Next, we define the notion of a strong coreset for (k, z)-clustering.

Definition B.3 (Coreset). Let € > 0 be an approximation parameter, and let X = {x1,...,2,} C
R be a set of points. A coreset for (k, z)-clustering consists of a weighted set (S, w) such that for
every set C C R? of k centers,

(1—¢) idist(mt, Z q)dist(q,C)* < (1+¢) idist(xt, C)*.

q€eSs t=1

We will use the following known coreset construction for (k, z)-clustering:

Theorem B.4. (Cohen-Addad et al., 2022a; Huang et al., 2024; Cohen-Addad et al., 2022b) For
any ¢ € (0,1), there exists a coreset construction for Euclidean (k, z)-clustering that samples

9] (min (E%kj_ 72

Kk
> min(et,e2+=

))) weighted points from the input dataset.

We also recall the classical Johnson-Lindenstrauss lemma, which enables dimensionality reduction
while approximately preserving pairwise distances:

Theorem B.5 (Johnson-Lindenstrauss lemma). (Johnson & Lindenstrauss, 1984) Let ¢ € (0,1/2)
and m = O (E% log n) Given a set X C R? of n points, there exists a family of random linear
maps I1 : R — R™ such that with high probability over the choice of m ~ 11, for all z,y € X,

(1 =&)llz =yl < 7z —mylla < (L + &)z =yl

We remark that exist more efficient dimensionality reduction techniques for (k,z)-
clustering (Makarychev et al., 2019; Izzo et al., 2021) though for the purposes of our guarantees,
Johnson-Lindenstrauss suffices.

Finally, we recall Hoeffding’s inequality, a standard concentration bound:

15

Theorem B.6 (Hoeffding’s inequality). Let X1, ..., X, be independent random variables with a; <
X; < b; for eachi. Let S,, = >, X;. Then for anyt > 0,

P (1S, — E[S,]| >) < 2exp (—Hi)) |

We next recall the following formulation of sensitivity sampling paradigm, given in Algorithm 2.

Algorithm 2 SENSITIVITYSAMPLING

Input: Dataset X = {z1,...,2,} C [A]? and integer k
Output: Weighted set A = {(a;, wq,)}
1: Compute an O (1)-approximation S = {s1, s2,--- , s }. Let C; C X be the cluster centered at
s;. For a point x € Cj, let A, := cost(C}, S)/|C;| denote the average cost of C;
2: Forz € Cj, let

(@) _ 1 1 n cost(x, S) +cost(x,S) . Ay
PE= 4 \RICH] T Eeost(C, S) T cost(X, 8) cost(X,8))

m <+ O (k/e? -min(e™2,e77)), A+ 0
for i <+~ 1tomdo
Sample point a; independently from the distribution p, A < A U {(a;, ﬁ(a))}
end for
return A

AN A s

Theorem B.7. (Bansal et al., 2024) Sensitivity sampling, c.f., Algorithm 2, outputs a (1+ ¢)-coreset
of size @) (%) Sor Euclidean (k, z)-clustering with probability at least 0.99.

min(et,e2+>

We next recall the following distributed protocol for determining the larger of two integers.

Theorem B.8. (Nisan, 1993) Given two O (logn) bit integers X and Y, there exists a protocol

GREATERTHAN rhat uses O (loglogn) total bits of communication and determines whether X =
Y, X<YorX>Y.

We recall the following protocol for applying the Johnson-Lindenstrauss transformation using low
communication cost.
Theorem B.9. (Kane & Nelson, 2010) For any integer d > 0, and any 0 < €,0 < %, there exists a
family A of matrices in R with £ = © (5*2 log %) such that for any © € R?,

Pr [||A 1— 1 < 4.

Pr (llAzl2 € [(1 = €)llzllz, (1 + e)fl]l]]
Moreover, A € A can be sampled using O (log (%) log d) random bits and every matrix A € A has

at most « = © (e_l log (%) log (%)) non-zero entries per column, and thus Ax can be evaluated in
O (a - ||x||o) time if A is written explicitly in memory.

Adaptive sampling. We now introduce the adaptive sampling algorithm from Aggarwal et al.
(2009) and generalize the analysis to (k, z)-clustering.

(Aggarwal et al., 2009) showed that adaptive sampling achieves a bicriteria approximation for k-
means, i.e., z = 2. For completeness, we shall extend the proof to show that it works for weighted
case and any z > 1, though we remark that the techniques are standard.

Theorem B.10. There exists an algorithm, c.f., Algorithm 3 that outputs a set S of O (k) points
such that with probability 0.99, cost(S, X) < O (1) - cost(Copr, X), where Copr is an optimal
(k, z)-clustering of X.

As stated, the version of adaptive sampling in Algorithm 3 requires updating cost(z, S) after each

update, leading to a high cost of communication. We will introduce the lazy sampling algorithm.
The combination of our updated adaptive sampling algorithm and the lazy sampling algorithm can

16

Algorithm 3 ADAPTIVESAMPLING

Input: Dataset X = {z1,...,2,} C [A]%; approximation parameter v > 1

Output: Bicriteria approximation S for (k, z)-clustering on X

S+ 0,N <« O(k),v+ 6(1)

fort < 1to N do
Choose s to be z; € X with probability gidi, where = - d; < cost(z;,5) <~ - d;
S+ SuU {St}

end for

return S

A A A

provide a lower number of updates required, and thus a lower overall communication cost, while
still guaranteeing the result of the (O (1), O (1))-bicriteria approximation.

Suppose that we have s sites, every site has a local dataset X; and every data point = has a sampling
weight d. Let Di = e x,dz and D = >, D;. Our goal is to sample a point z with prob-
ability p, = 5%. In the case of adaptive sampling, d, is just cost(1 S). To avoid a high cost of
commumcatlon our strategy is that the coordinator only holds D,, an approximation of real D; that
D; < D < AD;, and only updates D when it deviates far from D;. Then we can use 4= =z to sample

the point, where D = S D;.

Algorithm 4 LAZYSAMPLING

Input: {d.}.cx, the sampling weight; {E}ie[s], a constant approximation to {D; } ;¢4 that D; <
D; < \D;, where D, = > reX, d,, for every site ¢
OutpNut: Either {L or a point sampled under distribution %ﬂ”, where D =3 ¢ d,
1: D <+ Zle D, x <+ L
D;

The coordinator generates an index ¢ with probability = 5

The coordinator sends sampling request to site ¢
x < y with probability %
return

Since D may be larger than D, the site ¢ will send L with probability %. Fortunately, the

probability of returning 1 is constant, and the probability that we sample 2 conditioned on not
returning L is Just . Therefore, by Markov’s inequality, we can sample at least N points under
the distribution 5 w1th probability at least 0.99 after repeating LAZYSAMPLING a total of O (N)
times.

Lemma B.11. Let x be the resylt returned by Algorithm 4 and £ be the event that Algorithm 4 does
not return L. If > D; < Y- D; < AY.Dj, Pr[f] > 1 and Pr [z = y|€] = d—g. Furthermore,
there exists some constant v > 1 such that after running Algorithm 4 a total of YN times, it will
return at least N points sampled by the dzstrzbutz()n < with probability at least 0.99.

D;

Proof. Let F; be the event that the result is sampled by the site 7. Since Pr[F;] = fi and
Pr(&|Fi] =3 cx, % = g L, then by the law of total probability,

Pr(€]=> Pr[€|F] Pr[F] =

i=1

For any y € X, we have

_ e Prle=yl 1 Dy dy D
Prle=vlfl=—=S & ~mr@g D D, D

17

Furthermore, let

0,if LAZYSAMPLING returns L
i= .
1, otherwise.

After running LAZYSAMPLING for yN times, the number of times LAZYS AMPLING does not return
Lis just 277 Zi. Since E[Z;] = Pr[€] > 1, we have E {2751 ZZ} > IN. By Markov’s

oy b
inequality, there exists some v > 1 such that Pr [2751 Z; < N] < 0.01. Hence, LAZYSAMPLING
will sample at least NV points with probability at least 0.99. O

Finally, in Algorithm 5 we recall the standard algorithm that provides an efficient approximate en-
coding of a number by storing the exponent of the number after rounding to a power of a fixed base
A

Algorithm 5 POWERAPPROX

Input: Number to be encoded m, base A > 1

Output: An integer i that A’ is a \ approximation of m
1: Let i be the integer such that m < A\’ < Am
2: return:

Theorem B.12. The output from Algorithin 5 can be used to compute a number m such that m <
m < Am.

Efficient encoding for coreset construction for (%, z)-clustering. We recall the following effi-
cient encoding for a given coreset for (k, z)-clustering given by Cohen-Addad et al. (2025). Given a
dataset X, which may represent either the original inputs or a weighted coreset derived from some
larger dataset, we begin by computing a constant-factor approximation C” for the (k, z)-clustering
problem on X. For every z € X, let mo/(x) denote the nearest center in C’ to x. Each point z
can then be decomposed as = ¢ (x) + (x — e (), separating it into its closest center and a
residual vector.

To obtain a (1 + &)-approximation for (k, z)-clustering, it suffices to round each coordinate of the

offset vector — ¢ () to the nearest power of (1 + £’), where ¢’ = poly (5, i m). Lety’

denote this rounded vector.

We then encode each point as 2’ = w¢er (x) + 3/, storing both the index of the center ¢/ (2) and the
exponent values of the rounded offset. T his representation uses O (log k + dlog (1, d, log(nA)))
bits per point. The full algorithm is detailed in Algorithm 6.

Algorithm 6 Compact Encoding for Coreset Generation in (k, z)-Clustering

Input: Dataset X C [A]? with weights w(-), accuracy parameter ¢ € (0, 1), number of clusters k,
parameter z > 1, failure probability § € (0,1)
Output: (1 + ¢)-approximate coreset for (k, z)-clustering
C el poly(e*)
poly (k,log(ndA))
Compute a constant-factor (k, z)-clustering solution C’ on X
for each z € X do
Set ¢/ (x) as the nearest center to 2 in C”
Compute the residual vector y' = x — ¢/(x)
Round each coordinate of ¢ to the nearest power of (1 + £’) to obtain y
Define 2’ = (¢/(z), y), where y stores the exponent for each coordinate
Add 2’ to the new set: X’ «+ X' U {z'}
end for
return (C’, X')

YR NhR2N 7

—

We have the following guarantees for the efficient encoding from Cohen-Addad et al. (2025):

18

Lemma B.13. Cohen-Addad et al. (2025) Let € € (0,), and let X' be the weighted dataset S,
constructed using the offsets from the center set C' as defined in Algorithm 6. Then, for any set of
centers C C [A]? with |C| < k, the following holds:

(1 —¢)-cost(C, X) < cost(C, X") < (1+¢) - cost(C, X).

Lemma B.14. Cohen-Addad et al. (2025) Let X be a coreset where the point weights lie within the
range [1, poly(ndA)|. Then the transformed set X' forms a (1 + ¢)-strong coreset for X, and its
total space requirement is O (dklog(nA)) + | X| - polylog (k, ,log(ndA),log 3) bits.

C ADAPTIVE SAMPLING FOR (k, z)-CLUSTERING

We first give a high-level overview of why ADAPTIVESAMPLING returns a bicriteria approxima-
tion. Let {A; }§:1 be the clusters that correspond to an optimal (k, z)-clustering. Then we can

achieve an O (1)-approximation to the optimal cost if the cost for every cluster A; induced by S
is already an O (1)-approximation for cost(A4;, Copr), Where Copr is the set of centers for the op-
timal solution. We define a cluster A; as a good cluster if its cost is an O (1)-approximation to
cost(A;, Copr), and otherwise we call A; a bad cluster. We can show that with constant probability,
ADAPTIVESAMPLING samples a center that can transform a bad cluster to a good one. Then, by
Markov’s inequality, it follows that we can eliminate all bad clusters in O (k) rounds of sampling,
resulting in a constant-factor approximation.

We use the following definition of good and bad clusters.

Definition C.1. Let S; be the sampled set S in the i-th round in Algorithm 3 and let Copr =
{c1,ca," -+, cx} be an optimal solution for (k, z)-clustering.

For j € [k], let Aj be the points in X assigned to c; in the optimal clustering, breaking ties arbi-
trarily, i.e., A; = {x € X : dist(z, c;) < dist(z, c;),Vl € [k]}. We define
Good; = {A; : cost(A;,S;) <. - cost(A;, Copr)}
Badi = {Al, AQ, LR ,Ak} \ GOOdi

where v, = 2 + (3 + 62).

By definition, if every cluster is a good cluster, we can guarantee that S is an (O (1),0 (1))-
bicriteria approximation. We will prove that either S is already an (O (1), O (1))-bicriteria approx-
imation, or else we will reduce the number of bad clusters after every sampling with some constant
probability, which would imply that we can achieve an O (1)-approximation after sampling O (k)
points.

Lemma C.2. Suppose cost(X,S;) > 2v2 - v, cost(X, Copr), then
Pr [|Bad¢+1\ < |Bad,|} >0
for some constant § > 0.

Lemma C.2 is the generalization of Lemma 5 in Aggarwal et al. (2009). We will prove Lemma C.2
by breaking the proof into several lemmas. We first consider a specific parameterization of the
generalized triangle inequality.

Lemma C.3. Forany x,y, i € RY,
dist(z,y)® < 2-dist(x,n)? + (1 + 22)* - dist(y, p)*.

Proof. The claim follows from applying Fact B.2 with ¢ = 1, so that by the triangle inequality,
dist(z, y)* < (dist(zx, p) + dist(y, p))* < 2 - dist(z, u)* + (1 + 22)* - dist(y, p)*. O

We first show that we will sample a point from a bad cluster with constant probability every round.
This statement is analogous to Lemma 1 in Aggarwal et al. (2009).

Lemma C.4. In the i-th round of our algorithm, either cost(X, S;) < 272 - v, cost(X, Copr) or
else the probability of picking a point from some cluster in Bad; is at least %

19

Proof. Suppose cost(X,S;_1) > 2v% - 7, cost(X, Copr). Then the probability of picking from
some bad cluster is

ZA €Bad; ZILEA _ 1 - ZAjEGOOdi ZZE;EA]' d
ZCELGX dl ZmleX dl
Here, we remark that d; is the distance from x; to S;_; as defined in Algorithm 3. Since

cost(A;, Si—1) < v, cost(A;, Copr) if A; € Good;, and cost(X, S;—1) > 272, cost(X, Copr)
by the condition we hold,

Pr[z € Bad;] =

2
Y VDA, ~cost(Aj, Copr 1 1
Pr[acGBadi]zl— ZA_7€G00d7, (J) 21_7:7.
272 - v, cost(X, Copr) 2 2

O

Consider a fixed bad cluster A € Bad,. Let m = w(A) = >___ , w(x), where w(x) is the weight

z€A
1/z

of z, and define r = (‘Mt(‘fnico"ﬂ) . Denote p as the center in Copr corresponding to A. Let y
be the point closest to 1 in S;_1. We will show that y (and thus every sampled point in S;_1) is far
from p.

Lemma C.5. dist(y, pn) > 3r.

Proof. Because A is a fixed bad cluster,

v cost(A, Copr) < cost(A4,S;—1) = Z w(z) min dist(z,¢)® < Z x)dist(z, y)*.

€S;
zEA eeimt zEA

By Lemma C.3,
> w(a)dist(z,y)* < > (2-w(x) - dist(z, 1) + (1 +22)7 - w(z) - dist(y, p)*)

€A TEA
= 2cost(A, Copr) + (1 + 22)% - m - dist(y, u)*.

Hence
(14 22)7 -m - dist(y, u)* > (v, — 2) cost(A, Copr).
Since v, = 3%(1 4 22)* + 2,

P 2 cost(A, Copr)
(1+22)? m

1/z
) < dist(y, p).
O

Define B(a) = {x € A : dist(z,) < ar} as the points in the fixed bad cluster A that are within
distance ar from p. We will show that the bad cluster A can be transformed into a good cluster if

we sample some point z close to the center p. This statement is analogous to Lemma 2 in Aggarwal
et al. (2009).

Lemma C.6. Let A be any fixed bad cluster defined by Copr and let b € B(a), for 0 < a < 3.
Then
cost(A, Si—1 U{b}) <, - cost(A, Copr).

Proof.

cost(A, S;_1 U {b}) = w(x min dist(z,c)® < - dist(z, b
(4 S VD = 3 wlo)_goin, 3wt .

By Lemma C.3,
> w(x) - dist(w,)7 < Y (2 w(x) - dist(z, p)7 + (14 22)° - w(x) - dist(b, p)) .

z€A z€A

20

Since b € B(a) and 0 < o < 3, dist(b, u) < ar < 3r. Hence
cost(4, S;—1 U{b}) < 2cost(4, Copr) + m(1 + 22)*(3r)*
= 2cost(A, Copr) + 3°(1 + 22)7 cost (A, Copr)
=Yz (30813(147 COPT)~
O

We next show that most of the weights of the points of the fixed bad cluster A fall into B(«). Recall
that we define m = w(A) = > .y w(x). Let w(B(®)) = >, cp(q) w(z). This statement is
analogous to Lemma 3 in Aggarwal et al. (2009).
Lemma C.7.

w(B(«a)) > m(l — ;),forl <a<3.

Proof.
cost(A, Copr) > cost(A\B(a), Copr) = g w(x) mén dist(z, ¢)®.
ceCopr
z€A\B(a)

Since for any « € A, is the nearest center to x in Copr, then

Z w(z) min dist(x,c)” = Z w(x)dist(x, p)?.

2€A\B(a) c€Corr 2€A\B(a)

Since for any z € A\ B(«), dist(x, 1) > ar, then

> wleisto) = w(\B(@)- (o) = (1= X2 iy
c€A\B(a)
Since r = (%)1/
cost(A, Copr) > (1 - w(B;n(a))>m(ar)z = (1 — w(?n(o‘))>az cost(A, Copr).
Therefore,
w(B(a)) > m (1 - al)

O

We next show that the cost of points in B(«) is at least a constant fraction of the cost of the bad
cluster A and thus we will sample a point near ; with constant probability if we sample a point from
A. This statement is analogous to Lemma 4 in Aggarwal et al. (2009).

Lemma C.8.

1 1 —)
Prz € B(a)|z € Aand A € Bad;] > 2(1 -)M

Proof. Recall that y is the point closest to x4 in .S;_1. We have
cost(A, Si—1) = Z w(zr) min dist(z,c)® < Z w(x)dist(x, y)*.

ceS;—
T€EA ! €A

Let d = dist(y, p). By Lemma C.3,

cost(A4, Si—1) < Z (2w(sc)dist(:c,,u)z+(1+22)2w(x)dist(y,u)z) = 2cost(A, Copr)+m(1+22)*d”.
€A

1/z
Since r = (M) , then cost(A4, S;—1) < 2mr® + m(1 + 2z)*d?.

m

21

On the other hand, cost(B(a), Si—1) = >, ¢ p(o) w(z) minces,_, dist(z, ¢)*. By triangle inequal-
ity, dist(x, ¢) > dist(c, p) — dist(z, p) > dist(y,) —dist(x, p1). Since € A and A is a bad cluster,
then dist(y,) — dist(x,) > 0, so that

cost(B(a), Si1) > > w(x)(dist(c, p) —dist(z, 1))* > > w()(dist(y,) - dist(x, p1))*.
z€B(a) z€B(a)

For z € B(a), we have dist(z,) < ar, so that cost(B(a), Si—1) = >, c p(a) w(@)(dist(y, p) —

ar)?. By Lemma C.7, w(B()) > m (1 — L), so cost(B(a), S;—1) > m(l - O}z> (dist(y, p) —

ar)?.

Since % -d; < cost(x;, S) <~ -d;,cf. Algorithm 3, therefore

> zieB(a) G - %cost(B(a), Si—1)
Dpeadi — ycost(4, 1)

m 1 (dist(y, u) — ar)®
>M-). : .
2 o) m(2r® 4+ (14 2z)*dist(y, p1)?)

Prz € B(a)|z € Aand A € Bad;] =

By computing the derivative, we can observe that

(dist(y, u) — ar)*
2rz + m(1 4 2z)=dist(y, pn)*

is an increasing function of dist(y, x¢) for dist(y, p) > 3r > ar. Hence

(3r — ar)?
m(2r% 4+ (1 4 22)#(3r)?)

1 (1)(3—&)2
= — 1—7 — .
72 % o

Therefore, we will transform a bad cluster A into a good cluster if we sample a point in B(«) C A
for a < 3, and we will sample such a point in A with constant probability, which means that we will
reduce the number of bad clusters with constant probability.

Prz € B(a)|z € Aand A € Bad;] > m(l) .

O

Lemma C.9. Suppose the point x picked by our algorithm in the i-th round is from A € Bad; and
Si = Sq;_l U {;E} Then

Pr [cost(A, S;) < 7, - cost(A4, Copr)|x € Aand A € Bad,)] > 6,

where
1 1\6B—a)
(5:max2<1—)(oz)
Y a® V2
Proof. The claim follows from Lemma C.6 and Lemma C.8. O

If cost(X, S;) > 272 - 7. cost(X, Copr), we will sample a point from a bad cluster with constant
probability, and a point sampled from a bad cluster will transform it to a good one with probability.
Hence, we will reduce the number of bad clusters with probability.

We have proven that we will sample a point from a bad cluster with constant probability. We also
proved that a sampled center from a bad cluster will transfer that bad cluster to a good one with
constant probability. These two facts lead us to the conclusion that we will transfer a bad cluster to
a good one with constant probability for every sampling, which is what Lemma C.2 claimed.

Lemma C.2. Suppose cost(X,S;) > 2v2 - v, cost(X, Copr), then
Pr [|Badi+1\ < |Badz|] > 0

for some constant § > 0.

22

Proof. If cost(X,S;) > 272 - . cost(X, Copr), by Lemma C.4, we will sample a point 2 from
some bad cluster with probability at least % By Lemma C.9, if x € A is from some bad cluster,
cost(A, S;) < 7, - cost(A, Copr) with probability at least 6. Hence A will become a good cluster
in Good,; with probability at least 3. Therefore, Pr [|Bad; 1| < [Bad;|] > $. O

Now we justify the correctness of adaptive sampling for general z > 1.

Theorem B.10. There exists an algorithm, c.f., Algorithm 3 that outputs a set S of O (k) points
such that with probability 0.99, cost(S,X) < O (1) - cost(Copr, X), where Copr is an optimal
(k, z)-clustering of X.

Proof. By Lemma C.3, the number of bad clusters will decrease with constant probability every
round, unless cost(X, S;) < 292 - v, cost(X, Copr). Thus, by Markov’s inequality, with probabil-
ity 0.99, the number of bad clusters will be reduced to 0 after O (k) rounds unless cost(X,.S;) <
2v2 . ~, cost(X, Copr). Consequently, either there are no bad clusters or cost(X,S;) < 272 -
7. cost(X, Copr). Both of these cases mean that we have cost(A;, S) < 2v2 -, - cost(A4;, Copr)
for all j € [k], so S becomes a constant approximation to the optimal (k, z)-clustering. O

D BLACKBOARD MODEL OF COMMUNICATION

D.1 BICRITERIA APPROXIMATION IN THE BLACKBOARD MODEL

We first give the initialization algorithm for (k, z)-clustering of blackboard model in Algorithm 7,

which generates a point x and uploads an 2-approximation D; of the total cost D; of every site on
the blackboard.

Algorithm 7 INITIALIZATION

Input: Dataset X; given to each site i € [s]

Output: A set S with one sampled point x, approximate cost D; for every site on blackboard
1: The coordinator samples a point 2 and upload it on blackboard, S + {z}
2: fori < 1tosdo
3: 1; < POWERAPPROX(cost(X;, S),2)
4: Write r; on the blackboard
5: end for
6: Dl < 2m N
7: return S, D;

After INITIALIZATION, we use LAZYSAMPLING to sample O (k) points to get an (O (1), 0 (1))-
bicriteria approximation for the (k, z)-clustering.

Algorithm 8 Lazy Adaptive (k, z)-Sampling for k£ = O (logn)

Input: The dataset X; every site i owns, i € [s]
Output: A set S thatis an (O (1), O (1))-bicriteria approximation for the (k, z)-clustering

1: Run INITIALIZATION to get S and D;

2: N+ O (k)

3: fori < 1to N do N

4: < LAZYSAMPLING({cost(z,S)},{D,}), and upload = on blackboard

5. S« Su{z}

6: Every site j computes D; = cost(X}, S)

7: r; « POWERAPPROX(D,,2), every site j update r; on the blackboard if r; # log, D;
8 D;« 27
9: end for
10: return S

23

We first show that Algorithm 8 returns an (O (1), O (1))-bicriteria approximation for the (k, z)-
clustering with O (skloglogn + kdlogn) bits of communication and O (k) rounds of communi-
cation.

Lemma D.1. Algorithm 8 outputs a set S with size O (k) using O (sk + kdlogn) bits of communi-
cation and O (k) rounds of communication, such that with probability at least 0.98, cost(S, X)) <
O (1) - cost(Copr, X), where Copr is the optimal (k, z)-clustering of X.

Proof. We show the correctness of the algorithm, i.e., that the clustering cost induced by S is a
constant-factor approximation of the optimal (k, z)-clustering cost. We also upper bound the number
of points in S.

Bicriteria approximation guarantee. Since we update bvj every round, we meet the condition
D; < D; < 2D every time we run LAZYSAMPLING({cost(z, S)}, {D;}) in the algorithm. Thus,

by Lemma B.11, we sample a point x with probability % if LAZYSAMPLING does not return
L, and we can get O (k) points which are not | with probability at least 0.99 after N = O (k)
rounds of lazy sampling. Therefore, we will get O (k) sampled points that satisfy the required con-
ditions for adaptive sampling in ADAPTIVESAMPLING (Algorithm 3). Therefore, by Lemma C.2,
we reduce the size of Bad; with some constant probability p every round. It follows from Theo-
rem B.10 that Algorithm 8 produces a constant approximation for (k, z)-clustering with probability
at least 0.99.

Communication complexity of Algorithm 8. INITIALIZATION uses O (sloglogn + dlogn)
bits of communication. Uploading the location of a sampled point x requires O (dlogn) bits be-
cause there are d coordinates that need to be uploaded, and each needs O (logn) bits. Every site
needs O (1) bits to return L to the coordinator. Then, all s sites need to write 7; on the blackboard.
Since r; = O (logn), and encoding r; requires O (loglog n) bits, it leads to O (sloglogn) bits of
communication. Since we will repeat the iteration for O (k) times, the total communication cost
would be O (skloglogn + kdlogn) bits. Finally, we remark that since we will use two rounds of
communication for each iteration of the N = O (k) rounds of sampling, the total number of rounds
of communication is O (k). O

D.2 L; SAMPLING SUBROUTINE

In this section, we introduce an L; sampling algorithm in Algorithm 9. The main purpose of the L;
sampling algorithm is to ultimately improve the communication complexity and the round complex-
ity of the adaptive sampling approach for & = Q(logn), c.f., Appendix D.3.

The sampling algorithm L1SAMPLING can detect whether Disa good approximation of D. When
w?D < D which means that D is far from a good approximation, L1SAMPLING will return True

to notify us to update the value of D. On the other hand, when uD > D, which means D is a good
enough approximation of D, LISAMPLING will return False, so we can save communication cost
by avoiding unnecessary updates.

We now justify the correctness of Algorithm 9, i.e., we show that if the total mass has decreased
significantly, then the algorithm will return True with probability 1 — § and similarly if the total
mass has not decreased significantly, then the algorithm will return False with probability 1 — 4.

Lemma D.2. Suppose B; > Dj forall j € [s], and D > D. If i?’D < D, Algorithm 9
L1SAMPLING({D;},{D;j}, p, 8) will return True with probability at least 1 — §. If pD > D,
L1SAMPLING({D,},{D;}, i,) will return False with probability at least 1 — 4.

Proof. Let B\] = \"3. Since r; is returned by POWERAPPROX(D;, A), then by Theorem B.12, we
have Dj <\ = Dj <)\D]
Define the random variable

1~ D;
Z; = — D, with probability p; = —=.
pj D

24

Algorithm 9 L, -Sampling: L1SAMPLING({D,}, {D;}, i,)

Input: D; = cost(X;, S), the cost of points in site i; total cost D = >°°_, D;; {D;}5_; and D
written on blackboard, which are approximations to {D;}?_, and D; p > 1, the distortion
parameter; § > 0, the failure probability

Output: A boolean indicator for whether D is a p2-approximation of D

i N+ O(log$), T+ 0,A+ & a+2u

: fori <+ 1to N do .

Sample a site j with probability Pr [j] = %, update r; < POWERAPPROX(D;, \) on
blackboard
T« T+ gy A
end for _
ifa-T <N -D then
return True
else

return False
end if

N =

el

YR n

We will evaluate the range of Z; and E[Z;] so that we can apply Hoeffding’s inequality later. We
have D; > D; and D; < AD;. Hence,

1~ D~ _D ~
Z;=—Dj==D; <—AD; = AD.
Pj D, D
On the other hand, Z; must be non-negative by definition, so Z; € |0,)\IN)].

For the range of E[Z;], we have

1 ~ '~

j=1

Since l/); € [Dj, AD;], then we have E[Z;] € [D, AD]. Similarly by linearity of expectation, since
T = Zi\il Z;, then we have E[T] = N - E[Z;] € [ND, NAD]. We perform casework on whether
2D < D or u2D > D, corresponding to each of the two cases in the stated guarantee.

Case 1: u’D < D. We first analyze the case u?D < ? We define the event N that
L1SAMPLING({D,},{D;}, j1,6) returns False when p?D < D as the false negative event. Ob-
serve that this occurs in the algorithm if and only if 7 > N D when p?D < D.
Notice that o7 > ND is impossible if [T — E[T]| < AND since y2D < D and |T — E[T]| <
AN D imply

2N~ 1.~ o~

oT < o(E[T] +|T — E[T]|) < a(AND + AND) < =2ND = ~ND < ND.
1 1t

The first inequality is due to the triangle inequality. The second inequality comes from the fact
that E[T] € [ND,NAD] and |T — E[T]| < AND. The third inequality is due to the condition

2D < D. The equality is because of v = 2y and A = £. The last inequality is due to 1 > 1.

Hence under the condition that 42D < D, the false negative A" can only occur if |T — E[T]| >
AN D. Therefore,

Pr[\] =Pr [aT > ND|u?D < f)} <Pr [|T _E[T]| > AND|i2D < D] .
Then by Hoeffding’s inequality, c.f., Theorem B.6,
(AND)?

i=1

) :26Xp(7N) §57

25

because we have N; € [0,AD] and N = O (log 1). Since we have shown the probability of the
event AV of getting a false negative is no more than §, then LISAMPLING({D;},{D,}, u1,d) will
return True when ;2D < D with probability at least 1 — 6.

We next analyze the case pD > D.

Case2: D > D. We define the event P that L1 SAMPLING({B}}, {Dj}, p, 0) returns True when
pD > D, i.e., afalse positive event. Observe that this can happen if and only if o' < ND when
uD > D.

Notice that o7 < N D is impossible if |T — E[T]| < iND. In fact, if D > Dand |T — E[T]| <
LND, then

oT > o(E[T] - |T — E[T]]) > a(ND — %ND) = %ND > ;Nf) — ND.
I

The first inequality is due to the triangle inequality. The second inequality comes from the fact that
E[T] € [ND,NAD] and |T — E[T]| < N D. The third inequality is due to the condition D > D.
The second equality is because of o = 2.

Hence under the condition that D > D, a false positive P can only occur if |T' — E[T7]| > iND.
Therefore,

Pr[P] = Pr [aT < ND|uD > [7} < Pr [|T —E[T)] > %ND“LD > 5} .

Then by Hoeffding’s inequality, c.f., Theorem B.6,

1 ~ (3ND)? N
Pr |[T —E[T]| > ;ND[uD > D| <2exp | ——x7———— | =2exp | ——5) <46,
2 2i=1(AD)? 4

because N; € [0, AD] and N = O (log }). Since we have shown the probability of the event P is

no more than §, then it follows that LlSAMPLING({ij}7 {D,}, u,6) will return False if uD > D
with probability at least 1 — 4. O

D.3 BICRITERIA APPROXIMATION WITH COMMUNICATION/ROUND REDUCTION

In this section, we will introduce another protocol that uses O (logn log k) rounds of communica-

tion and O (slogn 4 kdlogn) bits of communication cost. The protocol will use fewer rounds of
communication and total communication than Algorithm 8 when k = Q(logn).

We first apply the L1 sampling subroutine L 1SAMPLING to estimate D, which uses a low communi-
cation cost. We then update D if the estimation of D from the L, sampling procedure has decreased
significantly. Using such a strategy, we only need to update bvj in very few rounds, saving the
communication cost of updating DNJ

However, the communication rounds are still O (k), which would be too expensive in some settings.
To further decrease the rounds of communication, we use the batch sampling strategy. We double the
number of points to be sampled in every round until the total cost D drops significantly. D can only
decrease significantly for at most O (log n) rounds, so we can reduce the rounds of communication
to O (lognlogk).

Another issue that must be addressed is that we may sample some invalid points because the total
cost D may decrease significantly during a round of batch sampling. A sampled point is valid only if
it is sampled under the condition that D is a O (1)-approximation of D, so some sampled points may
be invalid if D drops significantly during that sampling round. To ensure that we sample enough
valid points, we need to count the number of valid samples during the sampling procedure. Rather
than setting a fixed number N = O (k) of points to sample, we count the number of valid samples
and only terminate sampling after we get at least NV valid samples. Fortunately, although we may

26

sample more than N points in such a strategy, we can prove that the total number of points we
sample is still O (k).

The algorithm appears in full in Algorithm 10.

Algorithm 10 Bicriteria approximation algorithm for (k, z)-clustering

Input: Dataset X; for each site i € [s]
Output: A set S thatis an (O (1), O (1))-bicriteria approximation for the (k, z)-clustering
1: Uniformly sample a point into .S and compute constant-factor approximations {D,} to D; =
cost(X;, S)
2: N<—O(k),M<—O,M<—8,6+O(IOg%n)

3: while M < N \\ Sample roughly k& points do

4: bool + False,i <1 .

5: while bool = False \\ Approximate distances {D, } are accurate do

6: for [+ 1to 2% \\ Attempt to sample points into S do

7 x; <~ LAZYSAMPLING({cost(x, S)}, {D;}), upload z; on blackboard

8: end for . '

9: S SUUL {m}), L+ #{x, # L, 1<1<2%} >Add successful samples to S
10: M—M+L
11: Every site j computes D; = cost(X;, S) >Update distances to closest center
12: bool <— L1SAMPLING({D, },{D;}, i, d) >Check approximate distances {D; }
13: if bool = False then
14: 1—1+1 >More aggressive number of samples to reduce number of rounds
15: else —
16: r; <~ POWERAPPROX(D)j, 2), every site j update r; on the blackboard if r; # log, D;
17: bvj — 2" >All sites update approximate distances
18: end if

19: end while
20: end while
21: return S

Algorithm 10 uses LISAMPLING to detect whether D decreases significantly and needs to be up-
dated. Under the condition that D is a O (1)-approximation of D, it uses batch sampling to sample
points, and verify whether D is still a O (1)-approximation of D after batch sampling. If D is still a

O (1)-approximation of D, it means that all the sampled points are valid, and we count them. If D
is no longer a O (1)-approximation of D, it means the O (1)-approximation condition breaks dur-
ing the batch sampling, which leads some sampled points invalid. However, the first sampled point

must be valid, since we sample it under the condition that D is an O (1)-approximation. Hence,
we can add 1 to our valid sampled points count. We repeat the sampling until we have counted at
least N = O (k) valid sampled points. Then the returned set .S will have O (k) points and is an
O (1)-approximation. Furthermore, by using L1 SAMPLING and batch sampling, we can guarantee
a low round complexity and total communication for Algorithm 10.

We split the proof into three parts. First we will prove that S is an O (1)-approximation and |S| =
O (k). Secondly, we will prove that the algorithm uses O (log nlog k) rounds of communication.
Lastly, we will prove that the algorithm uses O (slogn + kdlogn) bits of communication with
probability at least 0.99.

For the purposes of analysis, we define the concept of valid sample. Suppose z is a point sampled
by LAZYSAMPLING({cost(z, S)}, {B;}) Then we define x to be a valid sample if it is sampled
under the condition D < D < v - D; for some constant .

Lemma D.3. Algorithm 10 will return S such that |S| = O (k) and cost(S,X) < O(1) -
cost(Copr, X) with probability at least 0.98, where Copr is the optimal (k, z)-clustering of X.

27

Proof. Suppose z is a point sampled by LAZYSAMPLING({cost(x, S)},{D;}). If x is a valid
sample, it will reduce the size of Bad; with constant probability by Lemma C.2. If we sample
N = O (k) valid points by our algorithm, by Theorem B.10, we will get a constant approximation
S with probability at least 0.99. We will show that our algorithm indeed samples at least N valid
samples for v = 2.

According to the algorithm, D is always a 2—appr0ximati0n of D; that D; < D < 2D; after we
update D Between two updates of D], D is fixed, but D; may only decrease. This means that
D; < D always holds in Algorithm 10. Since D; < D always holds, D < D always holds, too.

IfD < u2D after we sample L points, it means that all these L points are valid. We will either
add L to the counter M if L1SAMPLING returns False, or add 1 to the counter M if L1SAMPLING
returns True. In either case, the number of valid points we sample is at least the number we add to
the counter M.

IfD > u2D after we sample L points, it means that some points we sample are invalid. How-

ever, the first point we sampled must be valid, as it is sampled under the condition D < u?D. If
L1SAMPLING returns True, we will only add 1 to the counter M. Then the number of new valid
samples in this round is at least the number we add to the counter M.

Therefore, the number of valid points we sample is at least the number we add to the counter M
if LISAMPLING returns True every time D > u2D. Since D = poly(n) when we have only one
point in .S, and every time we update D in Algorithm 10, it holds that D < D <2D,D > w>D
can only occur at most O (logn) times. We know L1SAMPLING will return True if D> u2D with

probability at least 1 —§. Since § = O (

log%n), then by a union bound, L 1SAMPLING returns True

every time D > 12D with probability at least 0.99.

Therefore, with probability at least 0.98, we will sample at least O (k) valid points and they form an
O (1)-approximation for the optimal solution.

Upper bound on the size of S. We will evaluate the number of sampled points that are not counted

as valid samples, and show the total number of such points is O (k). Suppose that we update ,Di for
m times for total.

Let N, be the total number of sampled points that are not counted as valid samples, and p; as the
number of points that are not counted as valid samples between the (i — 1)-th and i-th update.
Then N, = > " p;. Let Ny be the total number of sampled points that are counted as valid
samples, and ¢; as the number of points that are counted as valid samples between the (i — 1)-
th and i-th update. Then N, = Z;Zl q;- Since we will terminate the algorithm if we count for
N = O (k) valid samples, N, = O (k). Since the number of points sampled before the i-th
update is p; + 1, and the number of point sampled before these p; + 1 points is 2L 5, therefore,
p; < 2q;. Hence N <2N,=0 (k). The points in S are either counted as valid samples or not, so
|S| =N, + N, = O(k:)

O

We next upper bound the round complexity of our algorithm.

Lemma D.4. Algorithm 10 uses O (lognlog k) rounds of communication with probability at least
0.99.

Proof. We need O (1) communication rounds in the initial stage Algorithm 7. For the communica-
tion rounds in the remaining part of Algorithm 10, we evaluate how many rounds of batch sampling
occurs between two update, and evaluate the times of update. Then the product is just the rounds of
total sampling.

For the rounds of batch sampling that occurs between two update, it must be at most O (log k) rounds
since we double the number of points to be sampled for every other round if we do not update D and
the total points to be sampled is O (k). For the times we update D, there are two cases: we update an

28

‘unnecessary update’ under the condition that D < 1D, and we update a ‘necessary update’ under
the condition that D > puD. By Lemma D.2, LISAMPLING will return True and we will have an
‘unnecessary update’ under the condition that D < 1D with probability at most J. Since there are at
most O (log k) successive batch sampling without an update, we will make an ‘unnecessary update’
between two ‘necessary update’ with probability at most O (6 log k). For the ‘necessary update’,
we will update Dsothat D < D < 2D. Since © = 8, it means every time we make a ‘necessary
update’ under the condition that D> uD, D decreases by at least a factor of 4. Hence, such update
can occur at most O (logn) times.

Since the probability that we will make an ‘unnecessary update’ between two ‘necessary updates’ is
at most O (dlog k), and the times of ‘necessary update’ is at most O (log), we will make an ‘un-

necessary update’ in Algorithm 10 with probability at most O (§ log nlog k). Since § = O (log%n) ,
we will have no ‘unnecessary update’ in Algorithm 10 with probability at least 0.99. Since ‘neces-
sary update’ will occur at most O (log n) times, it means we will have at most O (log n) updates of

D with probability at least 0.99.

Therefore, with probability at least 0.99, Algorithm 10 has O (lognlog k) rounds of batch sam-
pling. Then we need to evaluate how many communication rounds we need for a round of batch
sampling. For each round of batch sampling, the coordinator can send the request of 2¢ lazy sam-
pling at the same time, and every site can respond afterwards. Hence there will be two rounds of
communication for each iteration of sampling. To get the result returned by L1SAMPLING, the
O (log $) = O (loglogn) requests can be made simultaneously, so that there are O (1) rounds of
communication. Hence, the total rounds of communication in Algorithm 10 is O (logn log k).

Finally, we upload r; when we update D;. All the sites can update the values of r; in the same
round. Since we will update at most O (logn) times, we needs O (log n) rounds of communication
for total. Summing the rounds of communication across each part of our algorithm, it follows that
the total rounds of communication is O (log n log k) with probability at least 0.99. O

Finally, we analyze the total communication of our algorithm.

Lemma D.5. Algorithm 10 uses O (slogn + kdlogn) bits of communication with probability at
least 0.99.

Proof. The Algorithm 7 subroutine INITIALIZATION induces O (dlogn + sloglogn) bits of com-
munication because we only write the sample point z and r; on the blackboard, and r; =
O (loglog cost(X;,.5)) = O (loglogn).

We will update O (k) samples, which will use O (kdlogn) total bits of communication.

Moreover, we will run L1SAMPLING at most O (lognlogk) times. For each time it runs, the
coordinator will choose O (log 3) = O (loglogn) sites. It uses O (logs) bits to represent a
site on the blackboard, so that site knows it is chosen. Each chosen site needs O (loglogn)
bits to reply. Hence the total communication cost for running L1SAMPLING in Algorithm 10 is
O (lognlog k(log s + loglogn)) bits.

Updating the values {r;} costs O (sloglogn) bits for each iteration. Since the value will be up-
dated O (logn) times with probability at least 0.99, the total cost for updating the values {r;} is
O (slognloglogn) bits.

Therefore, by adding the communication cost for all parts of Algorithm 10 and ignore all the poly-
logarithm terms for s, k, log n, the total communication is just O (slogn + kdlogn). O

We have the following full guarantees for Algorithm 10.
Lemma D.6. Algorithm 10 will return S such that |S| = O (k) and cost(S,X) < O(1) -
cost(Copr, X) with probability at least 0.98, where Copr is the optimal (k, z)-clustering of X. The

algorithm uses O (slogn + kdlogn) bits of communication and O (log nlog k) rounds of commu-
nication with probability at least 0.99.

29

Proof. The proof follows immediately from Lemma D.3, Lemma D.4, and Lemma D.5. O

D.4 (14 ¢)-CORESET VIA SENSITIVITY SAMPLING IN THE BLACKBOARD MODEL

To achieve a (1 + ¢)-coreset for X with the (O (1), O (1))-bicriteria approximation S, we use sen-
sitivity sampling. The challenge lies in determining C; and cost(C}, S) to calculate p(z), as com-
municating the exact values of C; and cost(C}, S) requires O (sklogn) bits, which is impractical
for our purposes. However, a constant approximation of C; and cost(C';, S) suffices to approximate
() for the sensitivity sampling, and this can be achieved efficiently with minimal communication
through Morris counters.

Algorithm 11 MORRIS(7, n)

Input: Initial count index 7, and elements number n
Output: New count index m

1I: m<+<r

2: fori <+ 1tondo

3: With probability 5, m < m + 1

4: end for

5: return r

Theorem D.7. (Morris, 1978) Let X = MORRIS(0,n). Then E [2X — 1] = n. Moreover, there
exists a constant y > 0 such that ifl > % log 3 andY = } 22:1 (2% — 1), where X1, Xs,..., X,
are | independent outputs of MORRIS(0, n), then

Y € [n—en,n+en),
with probability at least 1 — 0.

We can adapt MORRIS to a distributed version DISTMORRIS to reduce the communication cost.

Algorithm 12 DISTMORRIS(¢):

Input: Precision parameter ¢, every site S; owns k numbers n; ;, j € [k]
Output: Approximation (N1, Na, - -+, Ni,) for sums N; = 37 n; ;, j € [K]
1: 1« O (% log(100k))
2: mj, < Oforall j € [k] and ¢ € [I]
3: fori < 1tosdo
m’; , < MORRIS(my ¢, n; ;) forall j € [k] and ¢ € []
if m’, = m;, forall j € [k] and € [I] then
Site ¢ uploads L on blackboard
else
Site i uploads (m/; , — my s, j,t) forall j € [k] and ¢ € [I] that m/; , # my
9: endif
102 myy < m)
11: end for
12: Nj < 150 (2mie — 1) forall j € [K]
13: return (Ny, N, -, N)

A A

Lemma D.8. Let every site i own k numbers n; j, and |N;| = >°7_ n; j = poly(n). With prob-
ability at least 0.99, DISTMORRIS() returns constant approximations N that N; € [3N;, 2 N;]
for all j € [k] using O (s + klogn) bits of communication.

Proof. Although we split the process of MORRIS into a distributed version, its accuracy does not
matter. This is because every step of MORRIS only needs to know the status of the previous step,
and every time a site uses a step of MORRIS, it knows the status of the previous step either because
both of these steps occur at this site, or because the status of previous step is accurately uploaded by

30

the previous site. Hence, the statement of the original MORRIS in Theorem D.7 still holds for our
distributed version.

By Theorem D.7, N; € [2N;, 2N;] with probability at least 1 — 5 for any j € [k] if we set
I = O (log(100k)). Then, by a union bound, N; € [2N;, 2] forall j € [k] at the same time with
probability at least 0.99.

To evaluate the total communication cost, we introduce M; and M; ; as follows to facilitate the
analysis. We set M; as 0 if site 7 uploads L on the blackboard and M; as the cost of communication
to update all (m; , —m; 4, j,t) forall j € [k] and ¢ € [I] that m; , # m;; otherwise. We set M; ; ;
to be the communication cost required to update (m/; , — my ¢, j,t).

Every site with M; = 0 only needs O (1) bits to upload L. Since there are s sites in total, the number
of sites with M; = 0 is at most s. Therefore, the total communication for these sites is O (s).

For the sites with M; # 0, the communication cost used is

l

SRTES SIVED 9 9 LA

M;#0 j=11t=1 i=1

Note that the first equality holds because we only add more terms that all have value zero, whereas
the second equality is obtained by dividing M; into M ; ;.

Since N; = 1370 (2™ —1) € [2N;, 2N;], then 27 cannot be greater than 2/ - N; =
O (log kpoly(n)). Therefore m;; < O (lognloglogk). Since M; ;, must be at least 1 if it is
nonzero, there are at most m;; nonzero M, ;. for given j,t. For every non-zero M; ;;, since
the site uploads m’ , — m;; which is at most the final m;;, then the site will use no more than

O (logm;) bits to update mj; , —m;;, and O (log k + log) bits to express j and ¢. Thus,
Z M; ;= Z M; i+ <mj,-O(logm;; +logk +logl).
i=1 ’L’G[S],Ml‘_j,t?ﬁo

Since m;; < O (lognloglogk) and I = O (log k), then 3, _, M; ;; < O (logn). Therefore,

l
S M=) > M <kl-O(logn) = O (klogn).

k
M;#0 j=1t=1i=1

<.

By summing the communication cost of the sites that upload L and the communication cost of the
other sites, the total communication will be no more than O (s + klogn). O

Since |C;] = >0, |C;NX;| and cost(C;, S) = Y7, cost(C;NX;, S) forany j € [k], we can use
DISTMORRIS to approximately evaluate these terms using low communication cost. Since both |C}|
and cost(C}, S) are at most poly(n), the total communication is at most O (s 4 k log n) bits. Every
site 4 can compute cost(z, S) for € X; locally. Then with the constant-factor approximations for
|C;| and cost(C}, S), each site can evaluate a constant-factor approximation of the sensitivity u(x)
locally.

Finally, we give an algorithm producing a (14-¢)-coreset for X with O (% (log k + log 2 loglogn))
bits of communication, given our O (1)-approximation with O (k) points and sensitivity p(z).
We now justify the correctness and complexity of the communication of Algorithm 13.

Lemma D.9. Algorithm 13 returns A such that A is a (1 + €)-coreset for X with probability at
least 0.98 if we already have an (O (1), O (1))-bicriteria approximation S. The algorithm uses

@) (5 + klogn + W bits of communication.

Proof. By Lemma D.8, we can get an O (1)-approximation for |C;| and cost(C}, S) with prob-

ability at least 0.99. Every site can also get the precise value of cost(z,S) locally. Since
L cost(z,S cost(z,S AL I

M(.’B) T % ’ (k\é’ﬂ + kcostECj,)S) + cost((X,S)) + cost(X,S)) and AP . COSt(Cj7S)/|Cj

evaluate an O (1)-approximation zi(x) of u(x). Although Bansal et al. (2024) proves Theorem B.7

, We can

31

Algorithm 13 (1 +)-coreset for the blackboard model

= O (k)
Output A (1 + ¢)-coreset A
1: Use DISTMORRIS to get O (1)-approximation for |C;| and cost(C}, S) for all j € [k] on the
blackboard

20 m <+ O (L min{e2,e7%})

3: fori + 1to s do

4. Az $— @

5 Compute i(x) as an O (1)-approximation of p(z) locally for all x € X;

6 Upload ji(X,) = ¥, ey, fi()

7: end for

8: Samples site ¢ with probability % independently for m times. Let m; be the time site ¢

are sampled. Write m,; on blackboard

9: fori <+ 1tosdo
10: A+ 0
11: forj € [m;] do
12: Sample = with probability p, = ~((;))
13: if zis sampled then
14: Let 2’ be x efﬁc1ently encoded by S and accuracy ¢’ = poly(¢)

15: A+ A, U{(2, m)} where fi(z) is a (1 + §)-approximation of fi(x)
16: end if

17: end for

18: Upload A; to the blackboard

19: end for

20: A+ UZ'-SZIAZ'
21: return A

in the setting that | S| = k and sample points with probability u(x), they only need |S| = O (k) and
cost(zx,S cost(zx,S

u(m) <O0()- max{kléjl, kcosttECj,?S')’ COS;((X’S)), g X S)} in their proof. Therefore, Themem B.7

is still valid under the condition that |S| = O (k) and pJ()=0(1)-pu(z). Let B = {(=, mu(x) N}

then B is an (1 + 5)-coreset for X with probability at least 0.99 if we have O (1)-approximation for

|C;| and cost(C}, S).

We have A = {(2/, ﬁ(m))} Since B is a (1 + §)-coreset for X, by Lemma B.13, Aiis a (1 + ¢)-

coreset for X. Therefore, Algorithm 13 returns an (1 + £)-coreset for X with probability at least
0.98.

We need O (s + klogn) bits to get the O (1)-approximation for |C;| and cost(C}, S). We need
O (slogm) = O (s) bits to write m; on the blackboard. We need O (log k + dloglogn) bits to up-
load 2/, because we need to point out which center in S is closest to x, which needs O (log k)
bits, and we need to upload the power index, which needs O (log £ loglogn) bits. We need

O (log log n) bits to upload A(I) because we only need to upload fi(x), which is a (1 + §5)-

approximation of fi(x). Since |A| = (W) we need O (s + klogn + Wlﬁszﬂ))
bits in total.

We complete this subsection by claiming that we can get a (1+¢)-strong coreset with communication
cost no more than O (s log(nA) 4 dklog(nA) + ﬁ) bits.

Theorem D.10. There exists a protocol on n points distributed across s sites that produces a (1+¢)-
strong coreset for (k, z)-clustering with probability at least 0.97 that uses

O <5 log(n) + dklog(n) + dk)

min(g4, 2+%)

total bits of communication in the blackboard model.

32

Proof. We can use Algorithm 10 to generate an (O (1), O (1))-bicriteria approximation S, and then
use Algorithm 13 to get an (1 + &)-strong coreset. By Lemma D.6 and Lemma D.9, the returned
set A is a (1 + ¢)-strong coreset with probability at least 0.97 and uses a communication cost of

o (s log(n) + dklog(n) +)) bits for total. O

dk
min(et,e2t>

E COORDINATOR MODEL OF COMMUNICATION

In this section, we discuss our distributed algorithms for the coordinator model of communication.
Note that if all servers implement the distributed algorithms from the blackboard setting, the re-
sulting communication would have O (dsklogn) terms simply from the O (k) rounds of adaptive
sampling across the s servers.

E.1 EFFICIENT SAMPLING IN THE COORDINATOR MODEL

To avoid these O (dsklogn) terms in communication cost, we need a more communication ef-
ficient method so that we can apply adaptive sampling and upload coreset with low communica-
tion cost. We propose an algorithm called EFFICIENTCOMMUNICATION, which can send the lo-
cation of a point with high accuracy and low cost. Suppose that a fixed site has a set of points
X = {z1, -+ ,2}, and another site has a point y. To simulate adaptive sampling while avoiding
sending each point explicitly to all sites, our goal is to send a highly accurate approximate location
of y to the first site with low cost. To that end, EFFICIENTCOMMUNICATION approximates and
sends the coordinate of a point in every dimension. For the i-th dimension, we use a subroutine

HIGHPROBGREATERTHAN, which can detect whether y(%) is greater than :r;i) with high probabil-
(4)

ity, where y(*) is the coordinate of the i-th dimension of y and x; " is the coordinate of the i-th

dimension of z; € X.

Algorithm 14 HIGHPROBGREATERTHAN(z, y, §)

Input: Integer x, y, failure parameter §
Output: A boolean bool that shows whether z is greater than y
: Ne@(log%),reO
: fori < 1to N do
r; < 0 if GREATERTHAN(z, y) tells us = < y, and r; < 1 otherwise
rr+r;
end for
if = < 1 then
return False
else
return True
end if

PORIADIUN RN

Ju—

The subroutine HIGHPROBGREATERTHAN is an adaptation of GREATERTHAN by (Nisan, 1993).
The main purpose of the subroutine is that by using a binary search, we can find the relative location

(2) m
5+ (L4e)™, we

can find the best z\” and m to approximate 3(*). Our algorithm for the coordinator model appears
in full in Algorithm 15.

of y(® to {w(li), e ,xl(i)} within log ! comparisons. Then, comparing y*) with z

We first show correctness of HIGHPROBGREATERTHAN, running multiple times and taking the
majority vote if necessary to boost the probability of correctness.

Lemma E.1. If HIGHPROBGREATERTHAN(z, y, 8) returns False, then © < y with probability at
least 1 — §. If HIGHPROBGREATERTHAN(x,y, §) returns True, then x > y with probability at
least 1 — §. Furthermore, the protocol uses O (log log n log %) bits of communication provided that

x,y € [—poly(n), poly(n)].

33

Algorithm 15 EFFICIENTCOMMUNICATION(X, y, £,)

Input: A set X = {x1,---,2;} owned by one site; a point y owned by another site; &, accuracy
parameter; ¢, the failure probability
Output: The second site sends ¥ to the first site, which will be an approximate location of y that
lly — yll2 < ellx — y||2 for any x € X, with probability at least 1 — §
1: fori <~ 1toddo

2: Sort X = {z;,, - ,x; } such that xx) <. < a:l(-f), where xEj) is the i-th coordinate of z;,
. @, _ (@) / $
3 ‘rio — A’ miH—l = A’ 0"+ O (d(logl—HOg log n+log i))

4: Use binary search and HIGHPROBGREATERTHAN(y(i’),xg:),(sl) to find JUEZ) that \wf-? -
Y] < |x§] —y@| foranyi; € {0,1,2,--- 1,1+ 1}

5: Use HIGHPROBGREATERTHAN test whether y(?) = z{")

6. ifyl) = xEZ) then

7: Ay 0

8: else ‘)

9: 7 < sign(y® — sz))

10: Use binary search and HIGHPROBGREATERTHAN (y(*), .IEZ) +v-(1+¢),d) to find m

that [+ - (1 + &)™ —y@| < &l + 7~ (1 +&)" —yD|forany t € N

11: Ay — ~. (14e)™

12 endif

13 g« m(z) + Ay®

%

14: end forreturn j = (7,7 ... 7(¥)

Proof. We define random variable E; = r;. By Theorem B.8, GREATERTHAN will give a wrong
answer with probability at most p < 1, so

E[Eiz <yl =0-Pr[E; =0z <y|+1-Pr[E; =1z < y] <p,
E[Eilx >y =0-Pr[E; =0{z >y]+1-Pr[E;, =1z >y] >1—p.
Since E; € [0, 1], by Hoeffding’s inequality, c.f., Theorem B.6,

ol N N N
Pr ;Ei>5:ﬂ§y =Pr iglEi>Np+2Np:c§y]
N N
<P E; — NE[Ej]| > — — Nplz <
<Pr ; [Bi)| > 5 — Nplz y]
(5 —np)*
2
§26XP(—W)
and
N N
Pr E, < —lz> =Pr E, <NA-p)+—=——-—N1—-p)|lx>
; S |7 > ; (1-p) (1-p) y]
<Pr || E, —N-E[E] >pr>y]
i=1
(5 -np)°
2
SQeXP(—W)
=J.

Hence HIGHPROBGREATERTHAN(z, y, §) is correct with probability at least 1 — 6.

34

For the communication cost, since GREATERTHAN uses O (log log n) bits of communication, pro-
vided that z,y € [~ poly(n), poly(n)], and we run GREATERTHAN for N = O (log %) times, then
the total communication cost is O (loglog nlog %) bits in total. O

EFFICIENTCOMMUNICATION(X, y, £, d) in Algorithm 15 will send g, a good approximation loca-
tion of y with probability at least 1 — 6. In addition, it only uses dlog!polylog(logn,logl, %, 1)
bits. To formally prove these guarantees, we first show ||y — g||2 < €||z — y||2 with probability 1 —§
and then upper bound the total communication of the protocol.

Lemma E.2. EFFICIENTCOMMUNICATION(X, y, €, d) will send y to the first site such that ||y —
Ull2 < el|lz — yl|2 with probability at least 1 — 6.

Proof. We condition on the correctness of HIGHPROBGREATERTHAN. We will prove that ||y —
7ll2 < gllz — y||2. First, we will prove |y — ()| < 5|x(-l) —y@|forany j € [d] and z; € X.
Let X0 = {—A, 2" 25 ... 27 A} Assume 287 € X that [z — y@| < |x§l) —y@| for
any xéi) e X0 If @ = 2, y(%) is just 4(*), which means |y — ()| = |a:§” —y@]| =0.
1f y@ # 217, we have 7 = 20 + Ay(® and Ay® =~ - (1+¢)™, where v = sign(y® — xgl))
Assume y(*) — g) =7 (1+ g)’”+m . Then

=59 - o) = G =) = (L4 = 14

Since |x§l) +y-(14e)m—y®| < |a: +7-(1+e)t —y@| forany ¢t € N, |m/| must be less than
1. Hence

=g = @)™ L= (L) el)™ = efal) -y).

Since |l‘(z;2) _ y(i)I < |$§ y(z)| for any j, and |y(z) _ y(1)| < E\x(l _ y(z)| thus ‘y(z) _ y(1)| <
g|x§l) —)|, Therefore, for any z;€X,

d d
ly =33 =D 1y = 5D <32l -y D =22l -yl
=1 =1
Hence ||y — 7|2 < ¢|lx — yl|2 for any x € X.

Analysis of the failure probability. It remains to upper bound the failure probability by counting
how many times HIGHPROBGREATERTHAN(+, -, §’) is run in the algorithm. For every dimension

i, we run HIGHPROBGREATERTHAN(-, -, ¢) to find the closest JTEZ) to 4 and m to approximate

y@ — srgl) To find the closest x(i) to y(*), we can use binary search to find 3351) <yl < xl(.i) ,and
() 42®

then compare their midpoint % with y(?) to determine which one is closer to 3y(*). Since there

are [+ 2 elements in {"Bw ;1, e 7:5”,95““} we need to run HIGHPROBGREATERTHAN(+, -, §')

for log(l + 2) + 1 times in this stage.

To find m that |x§z) - (14e)™ —yD| < |x£l) +v-(14¢)t —y® | forany t € N, we can use binary
search to find (1+¢)? < |y _951('? | < (14¢)7*+*, and then compare their midpoint with |y(*) _951('? |
EZ) |. Since we already have xE;) < y(i) < :EE;)H

to determine which one is closer to |y — z and

|a:£j)| < Aforall j € {0,1,---,1+ 1}, we only need to search ¢ among {0,1,--- ,log, . A}.

logn

Since A = poly(n), we can use binary search to find ¢ in at most O <log) rounds. Thus

we need to run HIGHPROBGREATERTHAN(-, -,0") for O (log logn + log g) times in this stage.
Therefore, we will apply HIGHPROBGREATERTHAN for at most O (d (log ! + loglogn +log 1))
times. Since HIGHPROBGREATERTHAN(+, -, §’) will return correct result with failure probability

at most ¢’ and &' = O 9 — |, EFFICIENTCOMMUNICATION(X, y,&,0) has a
d(log l+log log n+log g)

failure probability at most d. O

35

Next, we analyze the communication complexity of our algorithm.

Lemma E.3. EFFICIENTCOMMUNICATION(X, y,¢,6) uses dlog ¢ polylog(logn,log/, L, %) bits
of communication for total, where { = | X | is the number of points owned by the first site.

Proof. We need to run HIGHPROBGREATERTHAN(-, -, d’) for at most
O (d (log ¢ + loglogn +log 1)) times. Since HIGHPROBGREATERTHAN(-,-,4") cost
O (loglognlog 3;) bits for a single running, it takes dlog{polylog(logn,log?, 1, §) bits to
run HIGHPROBGREATERTHANY(+, -, ¢") for total.

We also need communication to send 7 = (71,7, --- ,5(9) to the first site. However, we
()

only need to send z; * and Ay® to the first site. Since the first site already has the location of

all z € X, we only need to send i, to identify #\”, which takes O (log) bits. Since Ay(®) =
- (1 + €)™, we only need to send y and . Sending ~ requires O (1) bits since v € {—1,0,1}.
Sending m requires O (loglogn + log 1) bits since (1 + &)™ = poly(n). Therefore, it takes at
most dlog £ polylog(logn,) bits to send § = (51, 5@, -+ 5(¥).

Hence Algorithm 15 takes at most d log £ polylog(log n,log ¢, 1, 1) to send § to the first site. ~ [J

Putting together Lemma E.2 and Lemma E.3, we have:

Lemma E.4. EFFICIENTCOMMUNICATION(X,y,&,d) will send y to the first site such that
ly — glla < ellx — yl|l2 with probability at least 1 — §. Furthermore, it only uses
dlog ¢ polylog(logn, log ¢, é, %) bits of communication for total, where { = |X| is the number

of points owned by the first site.

E.2 (1 + ¢&)-CORESET VIA SENSITIVITY SAMPLING IN THE COORDINATOR MODEL

Given the analysis in Appendix E.1, it follows that we can effectively perform adaptive sampling to
achieve a bicriteria approximation at the coordinator. It remains to produce a (1 + ¢)-coreset, for
which we again use sensitivity sampling.

EFFICIENTCOMMUNICATION(X, y, &, §) can send the location of y using low communication cost.

However, its communication cost is dlog ¢ polylog(logn,log?, 1, §), where £ = |X|. For the
coordinator model, suppose that each site ¢ € [s] has a dataset X;. Since |X;| = O (n), and

the coordinator needs to send the approximate location of all O (k) samples to each site to apply
adaptive sampling, which would still require dsk log n polylog(log n, é, %) bits to send the location
of samples using EFFICIENTCOMMUNICATION(X, y, €, §). Fortunately, we can generate a (14 5)-

coreset P; for every X;, which has a size of @) (m) Since adaptive sampling also works

for the weighted case, it is enough to generate an (O (1), O (1))-bicriteria approximation for the
weighted coreset P = U;c[, P;. Therefore, only dsk polylog(logn, k, %, %) bits are necessary to
send the location of the samples to each site.

To further eliminate the multiple dependency of d, we notice that only the distance between the data
point x € P; and the center generated by adaptive sampling s € S is necessary to apply adaptive
sampling and sensitivity sampling. Hence, we can use the Johnson-Lindenstrauss transformation to

map P to 7(P) C R¥, where d’ = O (log(sk)). As a result of the JL transformation, 7(P) is
located in a lower-dimensional space, but the pairwise distance is still preserved by the mapping.
Therefore, we can further reduce the communication cost needed to send the location of the samples
to each site, which is now sk polylog(logn, s, k, é, %) bits. Hence, we can apply adaptive sampling
and send the exact location of the sampled point s to the coordinator. The coordinator can then
use EFFICIENTCOMMUNICATION(7(P;), 7(s),€,d) to send the approximate location of 7(s) to
every site, which is accurate enough for every site to update a constant approximation for the cost
of points. Thus, we can repeat adaptive sampling using a low cost of communication and get an
(O (1),0 (1))-bicriteria approximation S for the optimal (%, z)-clustering.

Since every site has an approximate copy of 7(.S), they can send a constant approximation of |C; N
P;| and cost(C; N P;, S) to the coordinator. However, the site may assign a point to a center in .S’ that
is not nearest to it. This is because the site only has an approximate location of 7 (,S), and therefore

36

can assign z to another center s’ if cost(z, s') is very close to cost(z, s), where s is the center closest
to x. Fortunately, the proof of Theorem B.7 does not require that all points x be assigned to its
closet point. Theorem B.7 is still valid if cost(x, s") < O (1) - cost(z, s). Hence, we can generate a
(1 + §)-coreset for P by sensitivity sampling.

After applying sensitivity sampling to sample the points, each site can send the sampled points to
the coordinator using EFFICIENTCOMMUNICATION(S, z, ¢’, §). By a similar discussion of efficient
encoding in Lemma B.13, we can prove that the sampled points form a (1 + 5)-coreset A’ for
P = Uje[q Pi. Therefore, A" would be a (1 + €)-coreset for X = Uj¢[5 X, and the coordinator

can solve the (k, z)-clustering based on the coreset A’. Since |P;| = O W) we can

run EFFICIENTCOMMUNICATION(PZ,y,&? §) using polylog(logn, k,

3) bits of communication
to send each sampled point. We give the algorithm in full in Al gonthm 16

Algorithm 16 (1 + ¢)-coreset for the coordinator model

Input: The dataset X; every site ¢ owns, ¢ € [s]
Output: A (1 + &)-coreset A’ sent to the coordinator

1: Every site 7 generates a (1 + §)-coreset P; of X

2: The coordinator send random seed to every site that generate Johnson-Lindenstrauss m, such
that || () — 7(y)]l2 € [3llz = yll2, 31l — yllo] forany 2,y € P = Usefq)p, and m(z) € RY
where d' = O (log(sk))
S <+ {so}, where s is a point sampled by the coordinator
S« 0 for j € [s]
N O (k)2 < 0(),m O (b) .0+ 0 (525)
for i < 1to N do

Use EFFICIENTCOMMUNICATION(7(P}), m(s;—1),€’,d) to send "f])l, an approximation of

7(s;—1) to every site j. S; < S; U {“fi)l}
8: Every site updates the cost cost(m(P;),S;) and sends D;, a constant approximation of
cost(m(P;), S;) to the coordinator
9: s, < LAZYSAMPLING({cost(m(z), S;)},{D;})
10: end for _ _ .
11: Every site j computes |C\”)| and cost(r(C), 5;) for I < |S|, where C¥) = {z € P; :
dist(w(z),5”)) < dist(r(x),5), ¥p < [S]}
12: Every site j sends a constant approximation of |C’l(j)| and cost (7r (C’l(j)> , Sj) to the coordina-
tor _ _
13: The coordinator computes 3, g |Cl(3)| and 3, g cost (77 (Cl(j))) Sj), and sends constant
approximation of them to every site
14: Every site computes fi(x) as an O (1)-approximation of x(z) locally for all € P;, and send

1i(P;), a constant approximation of ii(P;) = >, p. fi() to the coordinator

15: The coordinator samples site j with probability % independently for m times. Let m;

A A

be the time site j are sampled. Sends m; to site j
16: fori <— 1to s do
17: A+ 0,A, <0
18: for j € [m;] do
i)

19: Sample = with probability p, = P

20: if x is sampled then

21: A; + A; Uz, m#(m } T < EFFICIENTCOMMUNICATION(S, z,¢’,d), A, + A, U
{Z. 577y} Where fi(z) is a (1 + §)-approximation of /i(x)

22: end if

23: end for

24: end for

25: A+ Us_ Al
26: return A’

37

We now show that Algorithm 16 will return a (1 + ¢)-coreset of X with constant probability and
uses low communication cost. We will first show that A is a (1 + ¢)-coreset of X.

Lemma E.5. Algorithm 16 returns a (1 + €) coreset of X with probability at least 0.96 in the
coordinator model.

Proof. Since we use EFFICIENTCOMMUNICATION(7(P;),m(si—1),€’,d) to send fefi)l by
Lemma E4, ||7(s;_1) — 3§1)1||2 < ¢'||m(z) — m(s;—1)||2 for any x € P;. Hence ||m(z) — S’fj_)
would be a (1 4 ¢’)-approximation of ||m(x) — 7(s;—1)]2.

112

Since is a Johnson-Lindenstrauss mapping, by Theorem B.9, ||7(z) =7 (y) |2 € [z —y|l2, 3[|z—
yll2] with probability at least 1 — &y, Therefore, [[7(z) — 7(y)ll2 € 3]z — yll2, 5]z — yll2]
holds for any z,y € P = U,¢[gP; with probability at least 0.99. Since ||7(x) — 7(y)l2 is a
constant approximation of any z,y € P, and |7 (z) — Tsfj_)l ||2 is a (1 +¢’)-approximation of || (x) —

- Eﬁ)l |> would be a 4-approximation of ||z — s;_1]|2.

(si-1) |2, thus [|7(z)

By sending bvj an O (1)-approximation of cost(w(P;),S;), the coordinator owns a O (1)-
approximation of cost(P;, S). Thus, we can apply adaptive sampling, and by Theorem B.10, S
would be an (O (1), O (1))-bicriteria approximation of the optimal solution for (k, z)-clustering of
P = Uj_, P; with probability at least 0.99.

Since Cl(j) ={z € P : dist(w(x)7§§j)) < dist(w(x)jy)),Vp < |S|} and § - dist(z, s,) <
dist(w(z),55) < 4 - dist(z, s,,), therefore, - - dist(z, S) < dist(r(z),5") < 16 - dist(x, S if
T € CZ(J). Hence, if we apply sensitivity sampling with

() = 1 1 cost(m(x), S;) cost(m(x), S;) A,
T4 s j (4 €) @ |’
4\ ‘Uj:l Cz(])‘ F s DF Sigisigem P Cigisiger OF
() _ () _ _ s 27 €
where D}’ = cost(m (C};77),S;) and A, = 7 it would return a (1 + §)-coreset for
§=1 Czj

P = Uj_, P; with probability at least 0.99.

Since we send ¥ to the coordinator by EFFICIENTCOMMUNICATION(S, z,¢’,d), thus ||Z — z|2 <
¢’||s — x||2, where s is the point in S closest to x. Since ||Z — x||2 < €'||s — z]|2, by the proof of
Lemma B.13, (1 — §) - cost(C, A) < cost(C, A") < (1+ §) - cost(C, A) for any solution |C| = .

Since P is a (1 + 5)-coreset of X, Aisa (1 + £)-coreset of P, and A’ is a (1 + §)-coreset of A,
therefore, A’ is a (1 + €)-coreset for X.

Evaluation of the success probability. To apply adaptive sampling, we need to apply
EFFICIENTCOMMUNICATION(7(P;), m(s;—1),¢’,) for every P; and s;_1, which would be O (sk)
times of running in total. Since we need to apply EFFICIENTCOMMUNICATION(S, z,¢’,§) for
every point sampled by sensitivity sampling, it would be m times of running in total. Since

0+ O (ﬁ) , the probability that all instances of EFFICIENTCOMMUNICATION returns an ap-

proximate location accurate enough is at least 0.99.

Since the Johnson-Lindenstrauss would preserve the pairwise distance up to a multiple constant
factor with probability at least 0.99, the probability that adaptive sampling returns an (O (1), O (1))-
bicriteria approximation is at least 0.99, and sensitivity sampling returns a coreset with probability
at least 0.99, therefore, the total probability that Algorithm 16 returns a coreset for X is at least
0.96. O

Lemma E.6. Algorithm 16 uses O (sk + % + dk log n) bits of communication.

min(e4,e2+>

Proof. Since we apply Johnson-Lindenstrauss to map P to RY where d = O (log|P|) =
O (log(sk)), by Theorem B.9, the coordinator needs to send an O (log (sklog(sk)) - logd) bits
random seed to each site so that every site can generate the map . It uses s polylog(s, k, d) bits.

38

By Lemma E .4, since |P;| = O (k) and d’ = O (log(sk)), we need to use polylog(logn sk, 5, %)
bits to apply EFFICIENTCOMMUNICATION((Pj),m(si—1),€’,0). Since |S| = (), we need to
use d polylog(logn, s, k, %, 5) bits to apply EFFICIENTCOMMUNICATION(S x,e’,0). Since we
need to apply EFFICIENTCOMMUNICATION((Pj),m(si—1),€’,0) for O (sk) times to send location

of 7(s;_1) to each site, and apply EFFICIENTCOMMUNICATION(S, z, &', §) for O (W)

times to send location of points sampled by sensitivity sampling to the coordinator, then the total
cost to apply EFFICIENTCOMMUNICATION, in bits, is

1 dk 1
sk polylog (logn, s, k, — | + —————— polylog (logn, s, k,— | .
€ min(et, e2+7) €

We need to send the exact location of s;_; to the coordinator, which takes O (dklogn)
bits. Every site j sends a constant approximation of |C’l(])\ and cost <7r (CZ(J)) ,Sj) to the

coordinator, and the coordinator needs to send constant approximation of ZK‘ S| |C’l(j)| and

21<|s) cost (7r (Cl(j)> 7Sj) to every site, which costs O (skloglogn) bits for total. Every site

needs to send fi(P;) to the coordinator, which costs O (sloglogn) bits. The coordinator needs to
send m;, the number of points to be sampled to every site, which costs O (slog k) bits. We need
O (£ loglogn) bits to send the weight 7i(x) to the coordinator.

Therefore, the total communication cost for Algorithm 16 is

bits. O

We now give our full guarantees of our algorithm for the coordinator model.
Theorem E.7. There exists an algorithm that returns a (1 +¢) coreset of X with probability at least

0.96 in the coordinator model and uses O (sk‘ + 52 = + dk log n) bits of communication.

min(64
Proof. The proof follows immediately from Lemma E.5 and Lemma E.6. O

E.3 CLUSTERING ON GENERAL TOPOLOGIES

We provide a formal definition of distributed clustering under general topologies. Let V =
{v1,...,v,} be aset of n nodes connected via an undirected graph G = (V, E'), where each edge
(vi, vj) € FE represents a direct communication link between sites v; and vj. Each node v; holds a
local dataset X;, and the global dataset is X = UZ ; X;. Communication is allowed only along the
edges of G.

The objective is to compute a set of &k centers C = {cy, ..., i} that minimizes the global clustering
cost for a given norm parameter z > 1:

cost(X,C) ZdﬂcC

zeX

where d(x,C) = min,,cc d(z, c;) is the distance from point x to its closest center in C. The goal is
to compute an approximate set of centers C while minimizing communication over the edges of G.
In Balcan et al. (2013), the clustering problem is studied under this general-topology setting.
They assume s sites are connected by an undirected graph G = (V, E) with m = |E| edges.
Their algorithm constructs a (1 4 ¢)-coreset, with communication O (m (g—f + sklog sk)) words
for k-means and O ((% + sk)) words for k-median. Since a word requires O (dlogn) bits
in their model, the corresponding costs are O (mdk logn(+ slog sk‘)) bits for k-means and
O (mdklogn (% + s)) bits for k-median.

39

Our coordinator-model algorithm can be naturally extended to general topologies: each message to
the coordinator traverses at most m edges, multiplying total communication by m. The resulting
communication cost, in bits, becomes

o dk
—_— 1 .
(@) (m (sk—|— min(eh, 2277) +dk ogn))

Compared to Balcan et al. (2013), our approach improves the dependency on n by replacing a mul-
tiplicative log n factor with an additive term, while preserving the same approximation guarantees
for general (k, z)-clustering.

F ADDITIONAL EMPIRICAL EVALUATIONS

In this section, we perform additional empirical evaluations on both synthetic and real-world datasets
to further support our theoretical guarantees. Unlike the experiments in the blackboard model pre-
sented in Section 4, we now focus on assessing our algorithms in the coordinator model. As a
baseline, we use the constant-factor approximation algorithm based on adaptive sampling, denoted
AS. The second applies a standard dimensionality reduction approach to each of the points, using
shared randomness, which can be acquired from public randomness, corresponding with the more
communication-efficient variant AS—JL. In particular, for a dataset with d features, we generate
a random matrix of size d’ x d, where each entry is drawn from the scaled normal distribution

\/1? -N(0,1) and d' is set to be a constant factor smaller than d, i.e., d' = g ord = %. Finally, we

apply our compact encoding scheme to the sampled points, centers produced by adaptive sampling,
representing our coordinator model algorithm, denoted by EAS—-JL.

1e6 Clustering Costs Communication Costs

—e— AS Costs —e— AS Comms

400000

1.05 1 —&— AS-JL Costs —&— AS-JL Comms
—— EAS-JL Costs

350000 4~ EASL Comms

300000 A

250000

Cost

200000

150000 4
100000 W
50000 -

11 12 13 14 15 16 17 18 19 20 11 12 13 14 15 16 17 18 19 20
Sampling Coefficient Sampling Coefficient

Communication (BIts)

(a) Clustering costs (b) Communication Costs

Fig. 7: Experiments for clustering costs and communication costs on DIGITS dataset

F.1 REAL-WORLD DATASET

We first evaluated our algorithms on the DIGITS dataset (Alpaydin & Kaynak, 1998), as previously
described in Section 4. As before, we use the parameters n = 1797, d = 64, and kK = 10. We set
d = % = 16 for AS—JL and EAS—-JL. We compare the clustering costs in Figure 5a and commu-
nication costs in Figure 5b for ¢ € {11,12,...,20}. Our results show that the clustering costs of
the centers returned by our algorithm EAS—JL is consistently competitive with the centers returned
by the other algorithms AS and AS-JL, while using significantly less communication across all
settings of ¢ € {11,12,...,20}. For example Figure 7 shows that at ¢ = 11, the clustering cost
of EAS—-JL is roughly 1.07 times the clustering cost of AS while using 9x less communication.
This trend seems to continue throughout the range of the sampling coefficient c, e.g., at ¢ = 20, the
clustering cost of EAS—JL remains roughly 1.07 times the clustering cost of AS while still using
roughly 9% less communication.

40

F.2 SYNTHETIC DATASET

We next evaluated our algorithms on synthetic datasets consisting of Gaussian mixtures, as in Sec-
tion 4. Specifically, we generated k£ = 3 clusters, each containing 640 points for a total of 1920
points, each with 8 features, for a total dataset size of 15360. Each cluster was drawn from a distinct
Gaussian distribution whose mean was selected uniformly at random from the range [—10, 10]%, and
whose covariance matrix was generated as a random positive-definite matrix, producing clusters of
varying orientations and shapes.

We compare clustering costs and communication costs across a sampling coefficient of ¢ €
{1,2,...,10}, and find that EAS—JL consistently achieves clustering performance competitive with
both AS and AS-JL while using substantially less communication. For instance, at ¢ = 5, the clus-
tering costs of EAS—JL and AS are almost equal, while the communication cost of EAS-JL is more
than a factor of 4x better. Similarly, at ¢ = 10, the clustering costs of EAS—-JL and AS are al-
most equal, while the communication cost of EAS—JL is a factor of almost 8 x better. These results
parallel our findings on real-world data, demonstrating that our algorithm effectively preserves the
clustering quality while significantly reducing communication in the coordinator model.

Clustering Costs Communication Costs
8000
=—e— AS Costs =e— AS Comms
—4— AS-JL Costs 7000 4.~ ASJL Comms
—#— EAS-JL Costs —#— EAS-JL Comms.

100000
6000 +
80000 1 5000 1

4000

Cost

60000 3000 |

Communication (Bits)

2000

1000 /M

20000 4 0

40000 4

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
Sampling Coefficient Sampling Coefficient

(@ (b)

Fig. 8: Experiments for clustering costs and communication costs on synthetic dataset

41

	Introduction
	Our Contributions

	Distributed Clustering Protocols in the Blackboard Model
	Constant-Factor Bicriteria Algorithm
	(1+eps)-Coreset Construction

	Distributed Clustering Protocols in the Coordinator Model
	Empirical Evaluations
	Real-World Dataset
	Synthetic Dataset

	Technical Overview
	Preliminaries
	Adaptive Sampling for (k,z)-Clustering
	Blackboard Model of Communication
	Bicriteria Approximation in the Blackboard Model
	L1 Sampling Subroutine
	Bicriteria Approximation with Communication/Round Reduction
	(1+eps)-Coreset via Sensitivity Sampling in the Blackboard Model

	Coordinator Model of Communication
	Efficient Sampling in the Coordinator Model
	(1+eps)-Coreset via Sensitivity Sampling in the Coordinator Model
	Clustering on General Topologies

	Additional Empirical Evaluations
	Real-World Dataset
	Synthetic Dataset

