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ABSTRACT

We study full-coverage, printable 3D camouflage attacks on vehicle detectors. Our
pipeline decouples photorealism from attackability by combining a closed-form
Intrinsic Appearance Transfer (IAT) module with an on-manifold StyleGAN tex-
ture prior under Expectation-over-Transformations (EOT) focused on camera and
environment. IAT carries exposure/white balance/tone and veiling from a refer-
ence frame to the render via per-pixel affine carriers and is training-free at test
time; adversarial textures are optimized only through early StyleGAN layers to
preserve material plausibility. On a scene-controlled CARLA corpus spanning 22
weather/time presets, 8 azimuths, 9 elevations, 6 distances, and 3 locations, our
method—optimized white-box on YOLOvV3 and evaluated black-box on Faster
R-CNN, RetinaNet, RTMDet, and DINO—reduces AP@0.5 from 0.75 to 0.11
on YOLOV3 (—85.8%), with corresponding drops to 0.13 (—82.5%) on Faster
R-CNN, 0.22 (—68.7%) on RetinaNet, 0.26 (—67.1%) on RTMDet, and 0.59
(—=31.7%) on DINO. Averaged over detectors, AP@0.5 decreases from 0.7538
to 0.2863 (=~ 62%). Ablations show that (i) SRGB-domain affine fits excel on
unseen colors, while linear-RGB fits excel on unseen fextures; and (ii) cross-color
U-Net training with a content loss yields the best perceptual fidelity among learned
baselines. Overall, a simple, differentiable IAT combined with a layer-restricted
generative prior offers a practical path to robust, photorealistic 3D camouflage that
transfers across models and conditions.

1 INTRODUCTION

Deep neural networks (DNNs) have transformed perception in safety—critical domains such as au-
tonomous vehicles (AVs) (Bojarski et al., 2016} [Chen et al 2017; Kuutti et al., 2020). Yet mod-
ern vehicle detectors remain vulnerable to physical adversarial attacks, where full-coverage tex-
tures applied to the object itself suppress detections or induce misclassification (Goodfellow et al.,
2014; |Carlini & Wagner, |2017; [Zhang et al., 2019} [Huang et al.l [2020; Duan et al.| [2020). Unlike
purely digital perturbations, physical camouflages must survive the entire digital-to-physical (D2P)
pipeline—changes in viewpoint and distance, cast shadows, view-dependent reflections, weather,
and sensor characteristics—while remaining printable and fabricable.

Prior full-coverage pipelines can be grouped into three families. World-aligned (e.g., tripla-
nar/projection) methods optimize textures in world coordinates to encourage universality and cross-
instance transfer, but are sensitive to deployment misalignment and pose/distance shifts, creating
train—deploy gaps (Suryanto et al., 2023 |2022). UV-map methods instead optimize a single full-
body texture in the vehicle’s UV space via differentiable rendering, enabling precise deployment
but historically lacking robust modeling of scene photometry (illumination, shadows, reflections,
weather) and end-to-end UV optimization across weather/time shifts (Wang et al., 2021} 2022;
Zhou et al.l [2025; [Lyu et al. [2024). A third, neural-field family leverages differentiable volu-
metric/splatting renderers (e.g., 3D Gaussian Splatting) to obtain more photorealistic, multi-view-
consistent images without relying solely on mesh+UV assumptions (Lou et al.| 2025). We adopt a
mesh+UYV rasterizer (e.g., PyTorch3D/NMR (Ravi et al.| 2020; Kato et al.| [2018))) because it pro-
vides a stable, printable UV parameterization with deterministic barycentric sampling and direct
gradients to texels—cleanly separating reflectance from illumination—whereas neural splatting is
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often trained per-scene and does not yield a unified UV layout for a single physical wrap (Lou et al.,
2025).

Despite this progress, a central limitation persists: insufficient photorealism in the D2P loop. UV-
based pipelines frequently omit scene-consistent carriers—cast shadows, view-dependent reflec-
tions, veiling/haze, and weather—which hurts realism and attack stability; even environment mod-
ules built with encoder—decoder networks only partially address these effects (Zhou et al.,|[2025). At
the same time, unconstrained pixel-level optimization often produces high-frequency, conspicuous
patterns that overfit a source detector and limit black-box transfer (Wang et al., 2024} |Zhang et al.,
2023)). Orthogonal to the mapping choice, objective-driven works use diffusion or contrastive learn-
ing to encourage naturalness and transfer (Lyu et al.| 2024 [Zhang et al |2025). We also note that
Wang et al.|(2025) focus on transferability using a differentiable renderer with attention-dispersion
and enhanced training strategies—not on world-aligned mappings.

We decouple environment appearance transfer from adversarial texture design and confine opti-
mization to an on-manifold generative prior. First, we introduce a lightweight Intrinsic Appear-
ance Transfer (Intrinsic Appearance Transfer (IAT)): a closed-form affine radiometry that carries
exposure/white-balance/tone and veiling from the input frame to the rendered vehicle. Unlike U-
Net/DenseNet environment modules, our affine formulation is training-free at test time, fully dif-
ferentiable, and—crucially—generalizes better to unseen textures and scenes. Second, we parame-
terize the UV texture with a StyleGAN prior (Karras et al., |2021)) and restrict updates to physically
meaningful, early-layer edits. This avoids per-pixel “micro-nudges,” produces material-plausible
patterns, and improves physical transfer. Third, we shape the attack loss to operate at the detector
level (objectness/classification/localization aggregated across views and distances), which empiri-
cally yields stronger black-box transfer to held-out detectors. Finally, we train and evaluate on a
scene-controlled CARLA corpus spanning maps, weather, time-of-day, and poses, including paired
cross-reflectance renders (same pose/scene, different base paints) to supervise illumination transfer.

Contributions.

* A simple, closed-form and differentiable IAT that separates illumination from reflectance via per-
pixel affine transfer, outperforming U-Net/DenseNet environment modules in generalization to
unseen colors, textures, and scenes.

* A StyleGAN-prior UV-texture attack with layer-restricted updates, yielding natural, printable
wraps that improve black-box transfer compared with noise-initialized pixel optimization.

* A practical, end-to-end training pipeline (Blender UV remap, PyTorch3D renderer, focused EOT
over camera and environment) that achieves stronger mAP drops on a white-box source and bet-
ter cross-model transfer than texture-only or heavy environment-network baselines—e.g., DAS,
FCA, ACTIVE, RAUCA, CNCA, PhyCamo (Wang et al., [2021; 2022} [Suryanto et al.| 2023
/hou et al., 2025; Lyu et al.l 2024; |[Zhang et al., [2025)—while remaining easy to implement.
Transfer is measured on Faster R-CNN, RetinaNet, RTMDet, and DINO (Ren, 2015}, |Lin, 2017}
Lyu et al.,|2022; |Zhang et al., [2022).

Threat model. We assume white-box access to one source detector during optimization and evaluate
transfer to held-out detectors at test time. The attacker may modify only the vehicle’s UV texture via
a StyleGAN latent; geometry, camera intrinsics/extrinsics, and scene layout are fixed. Expectation-
over-Transformations covers camera pose and CARLA environment (weather/time/map). The de-
fault goal is untargeted suppression (objectness/classification/localization), with optional targeted
variants. Physical constraints include latent-norm bounds and an optional printability prior; no dig-
ital test-time tampering is allowed. Transfer is measured on Faster R-CNN, RetinaNet, RTMDet,
and DINO (Ren| [2015; Lin, [2017; Lyu et al.| 2022} Zhang et al., 2022)).

2 BACKGROUND AND RELATED WORK

Adbversarial vehicle camouflage spans physical attacks, differentiable 3D rendering, and priors for
naturalness and transferability. We group prior art into (i) full-coverage camouflage, (ii) natu-
ral/stealthy generation, (iii) transferability strategies, and (iv) rendering & EOT. Our design departs
via an illumination-consistent appearance module (IAT), a StyleGAN prior with layer restriction,
Blender UV remapping, and a camera/environment-focused EOT.
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Full-coverage camouflage. Physical attacks progressed from EOT-robust digital examples and lo-
calized patches (Athalye et al.| 2018} [Liu et al.| 2018} [Thys et al., |2019) to full-vehicle wraps via
proxy/differentiable optimization (Zhang et al., 2019). Two mappings dominate: world-aligned
(triplanar/projection) favor universality but break under deployment misalignment (Suryanto et al.,
20235 2022); UV-map methods enable precise, printable wraps but historically under-model scene
photometry and end-to-end UV optimization across weather/time (Wang et al.l 2021} 2022} [Zhou
et al.| [2024; 2025} Lyu et al.,[2024). Neural-field renderers (e.g., 3D Gaussian Splatting) offer high-
fidelity multi-view synthesis but are usually trained per scene and lack a unified printable UV lay-
out (Lou et al.,|2025). FCA/ACTIVE strengthen multi-view robustness (Wang et al.,[2022; [Suryanto
et al., 2023)); RAUCA adds an environment feature extractor for cross-weather gains (Zhou et al.,
2024;2025); CamoEnv aligns object/environment with an implicit color module to improve consis-
tency and black-box transfer (Zhu et al.|, |[2025)).

Natural and stealthy camouflage. Generative priors aim for on-manifold, less conspicuous tex-
tures: diffusion-guided CNCA produces customizable natural wraps (Lyu et al.| 2024)), while Phy-
Camo couples diffusion augmentation with a contrastive objective to boost multi-view robustness
and transfer (Zhang et al., 2025). We pursue naturalness via a StyleGAN prior with layer-restricted
edits, avoiding heavy diffusion at optimization time (Karras et al., 2021).

Transferability and universality. Cross-model transfer remains hard. Attention suppres-
sion/redistribution and training recipes improve transfer for physical attacks (Wang et al., 2021}
Zhang et al., [2023; Wang et al. 2024)); “highly transferable” camouflage combines attention dis-
persion with enhanced training atop a differentiable renderer (Wang et al., 2025)); gradient calibra-
tion/regularization stabilizes view sensitivity (Liang et al., |2025). Our coupling of a StyleGAN
prior with illumination-consistent IAT reduces dependence on paint/lighting statistics and supports
cross-condition, cross-detector generalization.

Rendering, compositing, and EOT. Differentiable rasterization (Kato et al.,2018};Ravi et al.,[2020)
passes detector gradients to texels; EOT samples pose, distance, and environment to promote ro-
bustness (Athalye et al) [2018). We adopt a mesh+UV rasterizer (PyTorch3D) for deterministic
barycentric sampling and direct texel gradients, then explicitly inject scene photometry via a closed-
form IAT before compositing over CARLA (Dosovitskiy et al., [2017). Neural splatting improves
fidelity but typically bakes lighting from training imagery and does not yield a single printable UV
layout (Lou et al., 2025).

GAN-based adversarial generation. Generators have been trained to output adversarial per-
turbations (e.g., GAP) and to blend adversarial signals with plausible styles via conditional
GANGs/perceptual losses (Poursaeed et al., 2018 |Isola et al.,[2017; Johnson et al., 2016; |Gatys et al.}
2016). Most, however, target the digital image domain or patches and do not provide a single, print-
able UV texture or explicit handling of illumination (shadows, view-dependent reflections, weather).
We instead constrain optimization with a pre-trained StyleGAN prior and early-layer restriction,
while a closed-form IAT enforces scene-consistent photometry (Karras et al.|[2021).

3 METHOD

3.1 FRAMEWORK OVERVIEW

We couple a differentiable renderer PyTorch3D, an illumination-consistent image-formation module
(Intrinsic Appearance Transfer (IAT)), and a generative texture prior (Fig. . From a CARLA frame
I, with mask Mg, € {0, 1}*W and camera ¢eam, we form

Bbg =1 © (1_Mfg)a Len =1 © Mfg'

Let e denote the environment preset (weather, time-of-day, map); we write ¢ = (¢cam, €)-

Generative texture & UV coating. We sample a StyleGAN latent z (initialized at zy) and decode
a 256 x 256 texture P = G(z). With our Blender-remapped UV atlas, PyTorch3D rasterizes the
textured mesh (native UV sampling) under ¢, to produce I,..

Intrinsic Appearance Transfer (IAT). Intrinsic Appearance Transfer (IAT) transfers scene illu-
mination/veiling from the input vehicle region onto the render via per-pixel, channel-wise carriers
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Figure 1: Framework. A StyleGAN-prior UV texture is rendered via PyTorch3D on a Blender-
remapped atlas; Intrinsic Appearance Transfer (IAT) (closed-form affine) transfers illumina-
tion/veiling from the input frame; detector losses backpropagate through renderer — IAT — early
StyleGAN layers under EOT over camera and environment.

(A, V) (RGB gains and offsets),
I=1AT(I,; L) = AO L. +V, I = Mg @I+ (1—Mjy) © Bg.

During attacks, Intrinsic Appearance Transfer (IAT) is pretrained and frozen but differentiable,
so gradients backpropagate through PyTorch3D, UV sampling, and Intrinsic Appearance Trans-
fer (IAT) into the StyleGAN latent. We use the closed-form affine IAT by default; the U-Net variant
appears only in ablations.

Attack objective. Over an Expectation-over-Transformations (EOT) sampler, we draw (deam, €) ~
T and optimize only the StyleGAN latent (all other parameters fixed):

H‘%n E(ducam,e)wT[Eattack(D(I))] + Ay Ru,

where D is the detector and R,, is a latent-space regularizer acting only on the trainable (coarse)
styles (Sec.[3.4]3.3). We do not use pixel TV by default (rationale in Sec. [3.4).

3.2 DIFFERENTIABLE 3D PIPELINE

We use a scene-controlled CARLA corpus in which, for each fixed pose, we generate paired
frames—identical geometry/camera with different base appearances (17 colors/textures)—to super-
vise cross-reflectance transfer; for attacks we vary map locations and standard weather/time presets,
since environment effects (cast-shadow geometry, interreflections, veiling) are location-dependent.
To enable seamless coating, we re-unwrap the vehicle in Blender to merge large panels into con-
nected UV islands, equalize texel density, and align seams with low-salience edges.Rendering uses
PyTorch3D with native UV sampling and hard rasterization (e.g., faces_per_pixel=1); the ren-
dered foreground is composited over the CARLA background with My,. Under EOT, we randomize
camera pose ¢.,m (azimuth/elevation/distance) and environment e (weather/time, map); environ-
ment variation enters via the CARLA background and Intrinsic Appearance Transfer (IAT), not the
forward renderer, and camera intrinsics remain fixed unless noted.

3.3 INTRINSIC APPEARANCE TRANSFER (IAT)

Prior pipelines attach a learned “environment module” to inject illumination and weather before
compositing (e.g., EFE/NRP in RAUCA, DTA/ACTIVE, diffusion-guided CNCA) (Zhou et al.,
20255 Suryanto et al.l 2022; 2023 |[Lyu et al., 2024). Reimplementations in this style (using ren-
der—vehicle pairs from CARLA) generalized poorly to unseen colors/textures when evaluated under
matched viewpoint/environment. We therefore replace heavy encoder—decoders with a fully differ-
entiable radiometric model that carries better out of distribution.
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Row 1: ClearNoon — solid color (Orange)

Rendered Affine (A1, linear) Affine (A2, SRGB) U—Net (CC) U—-Net (SC)

Row 2: HardRainSunset — textured wrap

Rendered Affine (A1, linear) Affine (A2, SRGB) U-Net (CC) U-Net (SC)

Figure 2: IAT qualitative comparison on a solid color (Orange) and a held-out texture. Columns:
ground truth, bare renderer, best closed-form affine in linear RGB (A1), best closed-form affine in
sRGB (A2), best U-Net with cross-color training (CC), and best U-Net with same-color training
(SC). All selections follow vehicle-masked metrics.

Given I, and I, IAT predicts per-pixel, per-channel multiplicative/additive carriers (A, V) and

outputs I = A ® I, + V, with gradients flowing through the renderer, UV sampling, and IAT into
the StyleGAN latent.

We consider two realizations (both differentiable). Closed-form affine (default): (A,V) are es-
timated at each pixel/channel by robust, regularized regression over cross-reflectance samples
taken at the same pose ¢ and environment e but different base paints/textures. For samples

{(zey0)}s = {1, 1EDY,
min Zws pg(a Te+vV— ys) + )\(a2 + «02)’

where ps is the Huber loss, wy are mask-normalized inverse-area weights (equalizing small/large
vehicles), and )\ is an /5 shrinkage. Practical guards—minimum support, gain floors, coefficient
clipping, optional robust reweighting, and an optional local low-pass—stabilize estimates; fits can
be performed in linear RGB or sRGB. U-Net carrier predictor (ablation): a compact U-Net hg
takes a masked reference vehicle crop and predicts six channels, passed through a sigmoid to yield
(A, V) € (0,1)T*Wx3 after which I = A ® I, + V. Training covers same-color (SC) and cross-
color (CC) pairings. For the U-Net variant we use a configurable objective family: masked ¢ /5
(LL1-m; £MsE-m), unmasked 1 /¢y (L1, Lmsg), inverse-ratio variants, and perceptual/style terms
(LLp1ps-m» Leontent-my Lstyle-m); SSIM/PSNR are reported for monitoring. Mask normalization and
inverse-area weighting are used throughout to balance object sizes.

Empirically, environment networks in the style of RAUCA/FCA/ACTIVE/DTA/CNCA underper-
formed on unseen colors/textures at matched (e, ¢). In contrast, the closed-form affine IAT—fit once
from training colors and applied to held-out colors/textures—achieved consistently lower masked re-
construction error and stronger cross-condition stability, while remaining training-free at test time
and fully differentiable for end-to-end attacks.

3.4 GAN-PRIOR CONSTRAINED TEXTURE ATTACK

As in Fig.[I] gradients traverse renderer — Intrinsic Appearance Transfer (IAT) — early StyleGAN
layers. We adopt a pre-trained StyleGAN2-ADA prior G and optimize in W™ at coarse layers only.
Let f be the mapping network and S the synthesis network with L style injection points. We sample

Zo N./\/‘(O,I)7 Wo :f(Zo), Wq = [Wo,...,WQ] ERLXd,
—_——

L copies

Py = S(Wo; &) € [0,1]2°0X203 T = Py,
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Table 1: IAT quality (masked, vehicle-only) on unseen color (C) and unseen textures (T). Bold =
best within block (U-Net vs. Affine). Underline = best overall. We report PSNR, SSIM, LPIPS, plus
masked L, and masked MSE. Affine symbols: (A1) Linear RGB; Huber+/5. (A1-") Linear RGB;
Huber+/¢5 with 3x3 low-pass. (A2) sRGB; Huber+¢>. (A0) Linear RGB; simple /5. (AOs) sRGB;
simple /5. U-Net rows use CC=C20C and SC=C2SC with masked losses (L1/MSE/CONTENT).

Unseen color (C) Unseen textures (T)
Method  Setup PSNRT SSIMT LPIPS| L; | MSE| | PSNRT SSIMt LPIPS| L; | MSE|
U-Net  CC/LI1 (masked) 20.650  0.725 0.247  0.068 0.011 | 20.559 0.636 0.346  0.070 0.011
U-Net  CC/MSE (masked) 20.508  0.704 0261  0.072 0.011 | 20.614  0.636 0.292  0.071 0.010
U-Net CC/CONTENT (masked) | 20.564  0.753 0.193 0.071 0.011 | 21.108 0.661 0.235  0.067 0.010
U-Net  SC/LI (masked) 18.441  0.699 0.327 0.085 0.017 | 19.184 0.671 0.327 0.078 0.014
U-Net  SC/MSE (masked) 18.313  0.673 0.334  0.088 0.017 | 19.001  0.642 0.330  0.081 0.014
U-Net  SC/CONTENT (masked) | 18.142  0.685 0.298 0.090 0.018 | 18.701  0.660 0.311  0.085 0.015
Al Closed-form 25948  0.838 0.137  0.039 0.004 | 24.829 0.736 0.214  0.040 0.004
AP Closed-form 24410  0.759 0.233  0.049 0.005 | 23.629  0.668 0.283  0.050 0.006
A2 Closed-form 26.164  0.842 0.130  0.035 0.003 | 24.391  0.730 0.212  0.043 0.005
A0 Closed-form 25926  0.844 0.137  0.038 0.004 | 24.627  0.730 0.218  0.041 0.004
AOs Closed-form 26.104  0.841 0.131  0.036 0.003 | 24.304 0.728 0.214  0.044 0.005

To bias toward macro-material edits (palette, large-scale structure) that are physically reproducible,
we restrict updates to a coarse layer set L = {0,...,k} and freeze finer layers. Writing W =
W, + AW, we enforce the hard constraint Aw® =0 vy ¢ L via masked updates

W< W - W(M © Vwﬁattack)a M[e] = %[6 S ,C],

followed by gradient clipping. Generator weights and noise remain frozen; the synthesized UV is
re-computed each step, P = S(W; &), and passed to the renderer. We regularize the trainable
styles toward the pre-trained average style w via

Ru =17 2 [w = wl;,
e

weighted by \,, (see Sec.[3.5). Pixel-space TV is disabled by default because early-layer latent
updates already produce smooth, band-limited textures; we only ablate TV or Fourier penalties
when explicitly stated.

3.5 LOSSES AND OPTIMIZATION

Our detection-side objective follows the standard structure used in full-coverage attacks (e.g., FCA,
ACTIVE, RAUCA): suppress objectness, confuse classification, and degrade localization under
EOT. Our distinct (but not novel) choices are an entropy-based classification term for untargeted
confusion and an explicit GIoU penalty for localization, which we found to yield stable gradients in
our StyleGAN-IAT pipeline.

‘We optimize against a white-box detector D (YOLOV3 in our main experiments) and evaluate black-
box transfer to YOLOVS, Faster R-CNN, and Deformable DETR. For a frame I rendered under an
EOT sample ¢ = (¢cam, €), the detector emits, per anchor/cell i, an objectness score p‘i)bJ €10,1],
class probabilities gq; € A°~!, and a box b;. Let H(q) = — Y, ¢q(c) log g(c) denote entropy. With
ground-truth by from CARLA (assigned by the detector’s matching rule), we define

N

Lo = % »_BCE@R™,0), L& =—% > H(a),
=1 i=1
N N

L8 =55 [~logai(c)], Lie =% (1—GloU(b;,b})).
1=1 =1

We aggregate across scales/anchors and EOT:
Eattack = )\obj E(i)NT[Lobj] + )\cls EqbwT[ﬁcls] + )\loc ]EquT[‘Cloc} .

The latent regularizer acts only on trainable styles (Sec. : Ry = ﬁ e W —wlj3.
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Table 2: Comparative performance of adversarial camouflage methods against five object detectors.
AP@0.5 values (lower is better) are reported; parentheses show percentage change relative to No
Camouflage.

Method DINO FRRCN RetinaNet RTMDet YOLOv3
No Camouflage 0.86 (0%) 0.72 (0%) 0.72 (0%) 0.79 (0%) 0.75 (0%)
DAS |Wang et al.|(2021) 0.85(-1.44%)  0.59 (-17.84%)  0.67 (-6.02%) 0.72 (-8.17%) 0.69 (-7.48%)
FCA |Wang et al.|(2022) 0.81 (-5.58%)  0.37 (-47.94%) 0.50 (-29.90%) 0.54 (-30.83%) 0.33 (-55.50%)
RAUCA [Zhou et al.|(2024)  0.64 (-25.29%)  0.13 (-82.20%) 0.24 (-65.86%) 0.26 (-66.34%) 0.11 (-84.61%)
Ours 0.59 (-31.73%) 0.13 (-82.46%) 0.22 (-68.66%) 0.26 (-67.12%) 0.11 (-85.78 %)

The overall attack objective under EOT is

oL
with I produced by renderer — Intrinsic Appearance Transfer (IAT) — composite (Sec. [3.1). We
use Adam with masked gradients for the layer cap, mini-batch EOT sampling over ¢, and stan-
dard gradient clipping. Pixel-TV on P is not used by default; anti-aliasing is handled in rendering
(mipmaps/area sampling). The IAT module is trained offline with masked pixel/perceptual/style
losses and cross-reflectance supervision.

min Egor [Lauc(DUI(W,9))] + Ay R st

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Dataset. We render a grid over weather/time presets (|W| = 22: Clear/Cloudy x {Noon, Sunset,
Night}, Wer x {Noon, Sunset, Night}, WetCloudy x {Noon, Sunset, Night}, SoftRain/HardRain
x {Noon, Sunset, Night}, MidRainy x {Noon, Sunset, Night}, and DustStorm), camera azimuths
(JA| = 8: 0:45:315°), elevations (|€| = 9: [5:10:85]°), distances (|D| = 6: {5, 10, 15, 20, 25,
30} m), and map locations (|£| = 3). For each configuration we render one body appearance drawn
from 11 uniform colors and 6 textured wraps (|[S| = 17). This yields [W| - |A| - |€] - |D| - |£] =
22-8-9-6 -3 = 28,512 unique camera—environment configurations and 28,512 - 17 = 484,704
images per vehicle. We form cross-reflectance pairs at fixed (¢, €) for Intrinsic Appearance Transfer
(IAT) and drive EOT during attack optimization. IAT split: we train Intrinsic Appearance Transfer
(IAT) on 8 uniform colors; the remaining 3 colors and all 6 textured wraps are held out and used
only for evaluation.

Baseline methods. We benchmark against three full-coverage, renderer-driven pipelines under
CARLA settings comparable to ours: DAS (Wang et all [2021), FCA (Wang et al.| |2022), and
RAUCA (Zhou et al., 2024} 2025). In addition, to isolate the contribution of our appearance-
transfer module, we reimplement a U-Net environment-transfer baseline (“U-Net EFE”) in the
RAUCA style but trained with our cross-reflectance recipe and masked, area-normalized losses
(L1/MSE/Content/Style/LPIPS variants; see Sec. . All methods use the same EOT distributions,
camera sampling, weather presets, UV atlas, and detector protocols for fair comparison.

Target detectors. For strict comparability with prior full-coverage pipelines, we perform white-
box optimization only on YOLOv3 (COCO-pretrained). Black-box transfer is evaluated—without
any test-time finetuning—on Faster R-CNN (Ren, 2015)), RetinaNet (Lin, 2017), RTMDet (Lyu
et al.l 2022), and DINO (Zhang et al.l 2022)). All detectors use the same preprocessing pipeline
(resize/letterbox), single-scale inference, and identical confidence/NMS thresholds as the white-box
model; we report COCO mAP@[.5:.95] and A mAP for all methods.

Training details. Unless noted, we jointly optimize the StyleGAN latent (early layers only) and
Intrinsic Appearance Transfer (IAT) with Adam; EOT samples K =2 views per step over camera
elevation/azimuth/distance and environment e. We use a latent-norm prior and a UV band-limit.
Tiling 7 is set to 1 by default and appears only in ablations.

4.2 1AT EVALUATION (STANDALONE)

Table [1| summarizes Intrinsic Appearance Transfer (IAT) fidelity on unseen colors (C) and unseen
textures (T) using vehicle-masked metrics, and Fig. [2shows representative qualitative results. Within
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Table 3: IAT qualitative comparison on a solid color (Orange, ClearNoon) and a held-out texture
(HardRainSunset). Columns: ground truth, bare renderer, best affine in linear RGB (A1), best affine
in SRGB (A2), best U-Net (CC), and best U-Net (SC).

Method DINO FRRCN RetinaNet RTMDet YOLOVv3
No Camouflage 0.86 (0%) 0.72 (0%) 0.72 (0%) 0.79 (0%) 0.75 (0%)
DAS Wang et al.|(2021) 0.86 (+0.00%)  0.63 (-12.50%)  0.69 (-4.17%) 0.74 (-6.33%) 0.71 (-5.33%)
FCA |Wang et al.|(2022) 0.83 (-3.49%)  0.45(-37.50%) 0.55(-23.61%) 0.60 (-24.05%) 0.40 (-46.67%)
RAUCA Zhou et al.|(2024)  0.68 (-20.93%) 0.20 (-72.22%) 0.30 (-58.33%) 0.33 (-58.23%) 0.16 (-78.67%)
Ours 0.61 (-29.07%) 0.15(-79.17%) 0.24 (-66.67%) 0.28 (-64.56%) 0.12 (-84.00%)

the U-Net family, cross-color (CC) training consistently generalizes better than same-color (SC):
CC/CONTENT achieves the strongest perceptual/structural match (best SSIM/LPIPS) on both C
and T, and it also gives the lowest masked L; and MSE on T. CC/L slightly edges CC/CONTENT
on C for distortion metrics (PSNR, L, MSE), but trails on SSIM/LPIPS; CC/MSE is competi-
tive on MSE yet weaker perceptually. In short, if the goal is generalization to textured wraps and
human-perceived fidelity, CC/CONTENT is our preferred U-Net training recipe; if one exclusively
optimizes radiometric error on solid colors, CC/L; offers a small PSNR/L; advantage.

For closed-form affine variants, trends are complementary. The sRGB-domain Huber+/5 fit (A2)
is best on unseen colors (highest PSNR, lowest L;/MSE, best LPIPS), suggesting that estimating
multiplicative/additive carriers in the gamma-encoded space preserves color/tonal relationships most
faithfully for uniform paints. Conversely, the linear-RGB Huber+/, fit (A1) yields the strongest
unseen texture performance (best PSNR/SSIM/L{/MSE, with LPIPS essentially tied), indicating
that operating in a linear radiometric space better handles illumination—reflectance interactions once
high-frequency texture is present. Simple ¢ baselines (A0/AOs) remain close but slightly behind,
while adding a 3x 3 low-pass (A1) harms detail (LPIPS/SSIM). Taken together, we adopt A2 as
the default (more color-accurate and best overall on C), and note that A1 is a strong drop-in when
texture generalization or SSIM/PSNR on wraps is prioritized.

Finally, the metric suite is complementary: PSNR/L;/MSE quantify radiometric fidelity inside the
vehicle mask, SSIM emphasizes structural luminance/contrast, and LPIPS measures perceptual
similarity in deep feature space. Cross-color supervision (CC) forces color-invariant, illumination-
consistent carriers, explaining the observed robustness on textured wraps; SC variants, trained on
identical colors, overfit chroma/tonal statistics and degrade under color/texture shift.

Table 4: Average AP@0.5 across five detection models (from Table . Lower is better.

Camouflage Average AP@0.5
no_camouflage 0.7538
DAS [Wang et al.|(2021) 0.6825
FCA |Wang et al.| (2022) 0.4788
RAUCA [Zhou et al.|(2024) 0.2975
Ours 0.2863

4.3 CAMOUFLAGE ATTACK EVALUATION

Main results (no IAT at evaluation). Table [2]reports AP@0.5 (lower is better) across five detector
families. Relative to the No Camouflage baseline (mean 0.768 across detectors), our method yields
the lowest average AP (0.262), a 66% reduction, outperforming DAS Wang et al.|(2021) (avg 0.704;
8% reduction), FCA Wang et al.[(2022) (avg 0.510; 34% reduction), and RAUCA |[Zhou et al.| (2024)
(avg 0.276; 64% reduction). Per detector, we reduce AP from 0.75—0.11 on YOLOV3 (—85.8%),
0.72 — 0.13 on Faster R-CNN (—82.5%), 0.72 — 0.22 on RetinaNet (—68.7%), 0.79 — 0.26 on
RTMDet (—67.1%), and 0.86 — 0.59 on DINO (—31.7%). Against the strongest prior (RAUCA),
we match or improve on all five models, with the largest margins on DINO (0.64 — 0.59; —6.4 points
vs. baseline) and RetinaNet (0.24 —0.22; —2.8 points), and near-parity on YOLOv3/RTMDet.

With IAT applied at evaluation. To assess robustness when appearance transfer is present at test
time, we apply IAT to all methods (Table[3). As expected, AP values rise slightly for every method,
yet ours remains best on every detector (e.g., YOLOv3 0.12 vs. RAUCA 0.16; Faster R-CNN 0.15
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Figure 3: Performance comparison of different camouflage methods across viewing angles, dis-
tances, weather conditions, and time of day. Lower AP@0.5 values indicate stronger effectiveness.

vs. 0.20; RetinaNet 0.24 vs. 0.30; RTMDet 0.28 vs. 0.33; DINO 0.61 vs. 0.68). Averaged over
detectors, our AP increases modestly from 0.262 to 0.280 (still a 63.6% drop vs. baseline), indicating
that the combination of UV-first rendering, EOT over camera+environment, and latent-constrained
textures transfers well even when evaluation includes illumination/veiling adjustment.

Average summary. Table 4| aggregates AP@0.5 across detectors (lower is better). Our method
achieves the best average (0.2863), improving over RAUCA (0.2975), FCA (0.4788), and DAS
(0.6825), and far below the no-camouflage baseline (0.7538). These gains reflect both stronger
source-model suppression and improved cross-model transfer.

Sensitivity to viewpoint and environment. Figure [3|breaks down AP@0.5 across azimuth, eleva-
tion, distance, weather, and time of day. Our curve is consistently the lowest (i.e., strongest attack)
across bins, with clear margins at longer ranges and under adverse weather. This aligns with our
design: (i) a Blender-remapped UV atlas and PyTorch3D renderer that stabilize gradients to texels;
(ii) an EOT that emphasizes physically dominant factors (camera pose and environment); and (iii)
a StyleGAN prior restricted to coarse layers, yielding material-like textures that avoid overfitting to
any single detector or condition.

5 CONCLUSION

We presented an environment-aware, on-manifold approach to physical camouflage for vehicle de-
tection. By enforcing illumination consistency with a closed-form affine IAT and constraining op-
timization to early layers of a StyleGAN prior, the method delivers realistic, printable wraps while
achieving strong white-box suppression and black-box transfer across detector families. The end-
to-end pipeline (Blender UV remap, PyTorch3D rasterization, camera + environment EOT) consis-
tently lowers AP@0.5 versus prior full-coverage methods, and retains performance even when IAT
is applied at evaluation.

Limitations and future work. We did not conduct full real-world print trials or evaluate beyond
the vehicle class. Future directions include multi-object scenes, broader materials (e.g., metal-
lic/pearlescent finishes), richer sensor/codec models, and controlled physical studies to further close
the sim-to-real gap.
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