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ABSTRACT

Decentralized constrained optimization problems arise in numerous real-world ap-
plications, where a major challenge lies in the computational complexity of pro-
jecting onto complex sets, especially in large-scale systems. The projection-free
method, Frank-Wolfe (FW), is popular for the constrained optimization problem
with complex sets due to its efficiency in tackling the projection process. How-
ever, when applying FW methods to decentralized constrained finite-sum optimiza-
tion problems, previous studies provide suboptimal incremental first-order oracle
(IFO) bounds in both convex and non-convex settings. In this paper, we propose
a stochastic algorithm named Decentralized Variance Reduction Gradient Track-
ing Frank-Wolfe (DVRGTFW), which incorporates the techniques of variance re-
duction, gradient tracking, and multi-consensus in the FW update to obtain tight
bounds. We present a novel convergence analysis, diverging from previous decen-
tralized FW methods, and demonstrating O(n + /2 Le~') and O(,/Z [?e~?)
IFO complexity bounds in convex and non-convex settings, respectively. To the
best of our knowledge, these bounds are the best achieved in the literature to date.
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results validate the convergence properties of DVRGTEFW and highlight its superior
performance over other related methods.
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1 INTRODUCTION

Decentralized optimization has gained substantial popularity in applications such as coordinated
control, machine learning, and power systems(Latafat et al., [2017; Xin et al., 2020; |Dass et al.,
2019; |Yang et al., 2019). It offers several advantages, including reduced computational burdens
for individual agents, enhanced efficiency for system-wide coordination, and the ability to preserve
privacy for each participant (Yang et al., |2019; [Li et al., 2020b; Xu et al., 2021)). Finite-sum op-
timization problems, which involve minimizing the sum of multiple individual functions, can also
benefit from decentralized computation. By distributing the computational effort across multiple
agents, decentralized finite-sum optimization could alleviate the computational burden on the cen-
tral node, which is particularly important for large-scale models (Xin et al., 2022; [Hendrikx et al.,
20215 [Metelev et al., [2024).

In this paper, we focus on the constrained decentralized finite-sum optimization problem with m
agents that form a connected network:

. 1 &
min f(w):E;ﬂ(x)

n (l)
with fl(l‘) = %Zfi,j(x)’
j=1

where each agent ¢ has a local objective function f;(z), composed of n multiple smooth, potentially
non-convex functions f; ;(z), and X C R? denotes a convex set. The overall objective is to find a
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Table 1: Summary of the results on projection free methods for decentralized stochastic con-
strained minimization problems.

Target case Method #IFO #LMO #Comm.
DeFW (Wai et al.| 2017)® O(Lli};) 0(%) o Lﬁ}:)
DMFW (Hou et al.|[2022)? o) o) o(t=)
convex 1-PDS (Nguyen et al.[2024)  O(Le™! + 02Le~?) O(Le™?) O(Le 1)
DstoFW (Jiang et al {2022/ O(n®/ + n¥iLel) o) o5 )
DVRGTEW (Algorithm[}(z) On+/ZLe™Y)  O(mn+Le™t) O "”Lr\/fL; )
DeFW (Wai et al.|[2017) o(LlfA o( ij; ) o( Lff; )
e L L L
non-convex DMFW (Hou et al.| 2022|( ) O(W)z 0( (1_)\)2&(?5571)) O( (1_A>zcxy§5—1))
DstoF (Jiang et al.| 2022)® O(n'/? + 2—L3—) O(L=) O(lejéz)
DVRGTFW (Algorithm[}(z) O(n+/ZLe?) O(L%7?) O(f/%)

() DeFW is a fully-deterministic algorithm, and the rest are stochastic algorithms.

@ In fact, their bounds concerning ) are worse than those indicated in the table.

Notation: € = accuracy of the solution, n = size of the dataset assigned to single node, o2 is the variance of the
gradient, L = global function’s smoothness, A = the second largest eigenvalue of the communication graph, IFO
= incremental stochastic first-order oracle, LMO = linear minimization oracle, Comm = Communication.

point 2* that minimizes the average of local functions across m agents within the convex set X'. This
formation in Eq.(I) plays a crucial role in various real-world applications, especially those requiring
large-scale, distributed, and privacy-preserving solutions, such as electric vehicle charging (Zhang
et al.| 2016) and traffic assignment (Fukushimal, [1984)).

To solve Eq.(I)), the classical approaches, such as the Projection Gradient Descent (PGD) algo-
rithm, are projection-based methods. However, when dealing with complex constraint sets X or
high-dimensional problems, the projection step becomes computationally intensive, making these
projection-based methods less efficient and costly (Wai et al., [2017). In contrast, the projection-
free methods (i.e., the Frank-Wolfe (FW) algorithm and its variants) address this issue by solving
a constrained linear optimization problem instead of performing direct projections (Jaggi, [2013).
Wai et al.|(2017) propose the first decentralized deterministic FW method based on average consen-
sus. However, this deterministic approach requires a large number of Incremental First-order Oracle
(IFO) calls, which significantly increases computational costs. Consequently, subsequent research
has focused on developing stochastic decentralized FW methods to reduce the number of IFO calls.
For instance, |Gao et al.| (2021)); Xie et al.|(2019) propose decentralized FW methods, incorporating
variance reduction techniques, for the DR-submodular optimization problem to reduce computation
overhead. [Nguyen et al.| (2024) propose a communication-efficient decentralized FW method by
combining with the conditional gradient sliding technique (Lan & Zhou, 2016)). [Hou et al.|(2022)
utilizes the momentum technique (Nesterov, [1983) to improve the convergence rate for the decen-
tralized stochastic FW method. (Jiang et al., 2022) also adopt the variance reduction technique to
develop computation and communication efficient decentralized FW method for both convex and
nonconvex optimization problems. Notably, compared to the best IFO bounds in centralized set-

tings (Beznosikov et al.,[2024) (@(n + %) and @(n + ?‘@) for convex and non-convex optimization,
respectively), the current decentralized FW methods achieve the suboptimal IFO complexity. We
summarize representative decentralized FW methods and their key characteristics in Table

In this paper, we focus on developing a decentralized stochastic Frank-Wolfe algorithm that is both
computationally and communication efficient, aiming to minimize the computational and commu-
nication overhead in decentralized settings. Inspired by the existing loopless variance reduction
technique (Li et al, 2021} Beznosikov et al., 2024)) and decentralized optimization methods (Wai
et al., 2017; [Pu & Nedic, [2021)), we propose a decentralized variance reduction gradient tracking
method (DVRGTEW) to solve Eq.(I). We present a different proof compared to [Wai et al| (2017);
Jiang et al.| (2022), and demonstrate the best rates of DVRGTFW in both convex and non-convex
settings. The contributions of this paper are summarized as follows:

* The best-known IFO complexity both in the convex case and the non-convex case.
For convex case, DVRGTFW achieves an improved IFO complexity of O(n + /X Le~1),
which represents a significant advancement compared to the decentralized stochastic meth-
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ods proposed by (Jiang et al.| [2022) with respect to the dataset size n. Furthermore, the
theoretical convergence rates of our method outperform those reported in (Hou et al., [2022;
Nguyen et al., 2024)) in terms of the accuracy €. For non-convex case, DVRGTFW attains
an improved IFO complexity of O(y/Z L?c~2). This significantly improves the result re-
ported in (Jiang et al.,2022) with respect to the dataset size n. Additionally, the theoretical
convergence rates of our methodology surpass those reported in (Hou et al.,|2022; [Nguyen
et al.l 2024)) in terms of the accuracy €. When the number of nodes m is set to 1, both
results align with the optimal outcome reported in (Beznosikov et al.l 2024)).

* Nearly optimal in non-convex communication complexity. For non-convex case,
. . . . 2_—2
DVRGTFW has the first near-optimal communication perplexity O(ﬁ) where
— A2
A2 (W) is the second-largest eigenvalues of the gossip matrix W. This result is close to the
Le~?2
1A (W))
for finding an e-stationary point of smooth non-convex function via a first-order algorithm.

lower bound of communication complexity (Lu & De Sa, [2021), which is (

2 RELATED WORK

Below we provide a review of related literature that shapes our study.

Variance Reduction Variance reduction techniques leverage the control variate technique (Rubin-
stein & Marcus) |19835)) to reduce inherent sampling variance in stochastic methods, thereby achiev-
ing the same convergence rate as the deterministic methods. The classic SVRG method (Johnson &
Zhang), 2013)) adopts a double-loop structure, maintaining a snapshot of model parameters to com-
pute the full gradient in the outer loop and constructing an unbiased gradient estimate in the inner
loop. Moreover, Nguyen et al.|(2017); |[Fang et al.|(2018)) admits a simple recursive framework and
demonstrates the best IFO complexity for non-convex optimization problems. Besides, [Li et al.
(2021)) proposes a novel and practical loopless variance-reduced technique.

Gradient Tracking In the decentralized setting, the heterogeneity in agents’ local data distribu-
tions increases the communication cost. To enhance communication efficiency, Nedic et al.| (2017);
Pu & Nedi¢| (2021); |Qu & Li| (2020) propose the gradient tracking technique. This technique
achieves communication efficiency by maintaining the accuracy of first-order information through
tracking the average of local gradients. Moreover, |Ye et al.| (2023a)) demonstrated that combining
gradient tracking with multi-consensus (Arioli & Scott, 2014; |Li et al.| [2020a) makes the analysis
of decentralized algorithms closer to their centralized counterparts, making it particularly useful for
decentralized convex optimization.

Variance Reduction in Frank-Wolfe Building upon variance reduction techniques, an increasing
number of centralized stochastic FW-type methods have been proposed to address the variance intro-
duced by stochastic gradients (e.g., (Hazan & Kale| 2012; |Hazan & Luol [2016; Reddi et al.| 2016;
Yurtsever et al.l [2019; [Weber & Sra, 2022} Beznosikov et al., 2024))). For convex finite-sum opti-
mization, to achieve an e-solution, Beznosikov et al.[(2024) combined a stochastic recursive gradient
technique (Nguyen et al.,[2017) with the classical Frank-Wolfe algorithm to achieve the best-known
IFO complexity O(n + @) and LMO complexity O(y/n + 1). For non-convex finite-sum opti-
mization, [Yurtsever et al.|(2019) utilized a stochastic path integrated differential estimator technique
(Fang et al.,|2018)) with the classical FW method to attain the best IFO and LMO complexity both at

(’)(E—‘/Qﬁ), matching the result of [Beznosikov et al.| (2024).

3  NOTATION AND ASSUMPTIONS

Let (z,y) = Zle x;; denote the standard inner product of vectors z,y € R?, with this notation

we can introduce the standard l>-norm in R? in the following way: ||z|| = /(z, z). The notation
[m] is the abbreviation of the set {1,...,m}. 1 denotes a column vector with all elements of 1.
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Moreover, we define aggregate variables for all agents as

-
X1

. d
x=|1! | eR™,

T

Xm

where each x; € R? are the local variable on the i-th agent. We use the lower case with the bar to
represent the mean vector, such that £ = %n Z;Zl x; € R?. Furthermore, we define the matrix of
aggregate gradients as

Vfi(xi)"

Vi(x) = € R4,

me (X’m ) T

Then we introduce the following assumptions on the constrained decentralized finite-sum optimiza-
tion problem ]

Assumption 1 The global function f is convex. i.e., for any x,y € X,
f@) 2 fly) + (VI (Y),z —y).

Assumption 2 The individual function {f; ; }?:1 on each agent are L-average smooth for some
L >0.ie,foranyz,y € X,

1 n
- D IVfii(@) = Vi )* < Lz =yl
j=1

in addition, the global function f is bounded below, i.e., f* = inf cpa f(x) > —o0.

Assumption 3 The set X is convex and compact with a diameter D, i.e., for any x,y € X,

lz -yl < D.

Note we consider both convex and non-convex cases of the global function f, but even if f is
convex, we do not additionally assume that each individual function is convex, hence, it can be
used in a wider range of applications, for example, the sub-problem of Fast PCA (Gang & Bajwa,
2022) by the shift-invert method is non-convex. Assumption[2]and Assumption [3|are standard in the
optimization literature and widely used in the analysis of Frank-Wolfe-type methods.

For decentralized optimization, we use the gossip matrix W € R"*™ to characterize the behavior of
agents updating local variables by the weighted sum of information from the neighbors. Moreover,
we use A2(W) to denote its second largest singular value, and we assume the matrix W satisfies

Assumption 4 The gossip matrix W € [0, 1]"*™ is doubly stochastic, thatis W1 = 1, and 1T W =
1T

4 METHOD

Based on the classic Decentralized Frank-Wolfe Algorithm (Wai et al.| (2017)) and SARAH (specif-
ically the loopless version (Li et al.[(2021)))), we propose Decentralized Variance Reduction Frank-
Wolfe Algorithm named DVRGTFW, as outlined in Algorithm|I} The centralized FW algorithm for
constrained problem can be proceeded by the following iteration:

d; = argmin(V f(x),d), (2a)
dex

Xep1 = X + e (dy — %), (2b)

where 1, € (0, 1] is a step size to be determined. Given that x;,1 is a convex combination of x;
and dy, it follows that x; also lies in the convex set X'. We note that the linear optimization in
Eq.(24a) can be solved more efficiently than the projection operation. In the decentralized setting, our
method (i.e., DVRGTFW) follows the spirit and avoids the complex projection operation by having
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each agent perform a linear minimization over the constraint set X. Each agent then takes a convex
combination of the optimal d; ; and x; ;. Finally, agents communicate with neighbours to update
and obtain a feasible variable estimate x; ;11 within the constraint set A’

Algorithm 1 Decentralized variance reduction gradient tracking Frank-Wolfe (DVRGTFW)

1: Input:initial parameter 7, € R, step size {n; }+>o0,
probability p € (0, 1], mini-batch size b, numbers of communication rounds K;,, and K.

2: Xg = 1i’0, Vo = Vf(XQ)
3: Yo = FastMix(vo, Kzn)
4: fort=0,..., T —1do
5: ~¢ ~ Bernoulli(p)
6: d; = arg mingc y (y¢, d)
7: Xt4+1 = FaStMiX(Xt + nt(dt — Xt)7 K)
8: parallelfori =1,... , ndov;
Vfi(Xit1), if v =1,
9: \'A = 1
: i+l Vit + 7 Z (Vf@gj (Xit+1) — Vi, (xi,t)), otherwise,
j=1
where each &; ¢, is uniformly and independently sampled from {1,...,n}
10: end parallel for
11: Yit1 = FastMix(yt + Vig1 — Vi, K)
12: end for

Algorithm 2 FastMix(u(®, K)

1: Initialize: u~Y = u©®, , = % Vti;;‘//i
2: fork=0,1,...,K do

32 u*t) = (1 4 5,)Wu® —p,ul-b

4: end for

To accelerate the decaying rate of consensus error, we use the subroutine FastMix (Algorithm
and gradient tracking, FastMix can help variable communicate with neighbours faster, and gradi-
ent tracking step can take advantage of the gradient information from the last step to estimate the
gradient of global function f, so the update of local variables can be written as

{Xt+1 = FastMix(xt + ’I’}t(dt — Xt), K),

. 3)
Yi+1 = FastMlx(yt + Vit1l — Vi, K)

Lemma [2]in Appendix [A]demonstrates that Z;,1 can be interpreted as a convex combination of z;
and d;. Furthermore, Lemma [3|in the same Appendix indicates that each x; ; and v; ; is approxi-
mately close to z; and v; respectively, and with an increase in the number of communications, the
consensus error is expected to decrease.

To address the variance on gradient caused by random samples, we use a kind of variance-reduced
method named SARAH (Nguyen et al.,[2017)) which changes the deterministic gradient in the condi-
tional gradient method to some stochastic gradient v, as:

Vfi(x¢41), with probability p,
_ 1
Vit1 = (v, + 7 Z (Vfi (x¢41) = Vi (Xt)), with probability 1 — p, )
1€Sk

where S, is a random batch sampled from dataset with size b, as noted in the original paper on
SARAH, this method has better convergence guarantees and smoother convergence paths with fewer
oscillations than SVRG, making SARAH preferred in both theory and practice. As a result, the
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construction of v;; follows the probabilistic recursive way like (Li et al., 2021) which is more
general for DVRGTFW to switch between the exact gradient and batch gradient.

Remark 1 The multi-consensus step in our algorithm can analog the decentralized SARAH Frank-
Wolfe algorithm more efficiently and leads the convergence analysis to be the same as standard
analysis (Beznosikov et al.| |2024), In contrast, Dst oFW (Jiang et al.| |2022) does not have such a

good property and it can not achieve near-optimal computation complexity nor near-optimal com-
munication complexity.

5 CONVERGENCE ANALYSIS

5.1 CONVEX CASE
First, we give the convergence of DVRGTFW in the convex case.

Theorem 1 Under Assumption Bland[| we run DVRGTFW with

b= |3 /2n 20 X log <||Vo — 15|? /LZ) % 3
= m ) p_n+2b7 m 1—)\2(W) ’ - 1—)\2(W) )

and for any T one can choose {1, }1>o as follows:

lngfa 7It227
P 2
2 T
if T>- and t<|—|, 77t:£7
P 2 2
2 2
if T >—- and tz[—‘, = ,
P 2 C @t i— T2

For the setting of b, p, K;,,, K and the choice of 0, we have the following convergence:

(P LG gy (2T 4 S22,

E[f(z") - f(z")] = O

The complete proof is provided in Appendix [C| Since DVRGTFW estimates the gradient recursively
by using the mini-batch gradient with high probability 1 — p and computing the exact gradient with
low probability p, one can note that for each iteration, we on average compute the stochastic gradient
(pn + (1 — p) - 2b) * m times. If we take p close to 1, the guarantees in Theorem [I| gives faster
convergence, but the oracle complexity per iteration increases. For instance, if we take p = 1,
we simply obtain a deterministic method, and the estimates for convergence and the number of
gradient calculations reproduce the results for the classic decentralized Frank-Wolfe algorithm, on
the other hand, if we take p = 0, the number of stochastic gradient calls per iteration decreases,
but the iterative convergence rate drops. It is optimal to choose p based on the condition: pn =
2(1—p)b,i.ep= #bzb’ also it is optimal to set b = (’)(\/%) and set the step size 7, as above. Note
that each agent need to use the same seed to generate the Bernoulli distributed variable +;, which
enforces all agents always share the identical v,. Then we show that under the above settings, we
can obtain the following result.

Corollary 1 Under the conditions of Theoreml|l| for each node i € [m], DVRGTFW achieves an ¢
suboptimality with

1 LD?
O(vmnlog — +
€ €

1 [nLD?
(’)(nlogg—i— % ) IFO calls, and

€

vmn log% + LD?

€ ) rounds of communication.
L= (W)

) LMO calls,

o(
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Under the setting in Theorem [I] the required number of the stochastic gradient computations is
O(nlogt + /2 LD* ), and the LMO complexity is O(y/mnlog * + %W), when reduce to cen-

tralized setting (T;Ln < 1), the result match the optimal result in Beznosikov et al| (2024), and the

3
V1=X2(W)
log(||vo—1%0||?/L?)

bining with the initial communication rounds K, = {—‘ , the total communication
V1A (W)

communication rounds K at each iteration is deterministic which equals to —‘ , and com-

e \/mnlogl-&-LD2 . .
complexity is O(~——=——) in expectation.
plexity is O(F=7= 75— inexp

Remark 2 According to the setting in Theorem || increasing the batch size b leads to a higher
probability p of obtaining the full gradient. Guaranteed by Theorem|l| this enhancement results in
faster convergence, thereby reducing communication costs. However, it also leads to an increase in
the oracle complexity per iteration. Therefore, it is essential to select an appropriate batch size b to
balance computational complexity with communication complexity.

5.2 NON-CONVEX CASE

Then we give the convergence of DVRGTFW in the non-convex case. Note that in the centralized
setting, Jaggi| (2013) gives the Frank-Wolfe gap function as a criterion for convergence:

gap(y) = glg;Wf (y),y — ),

Lacoste-Julien| (2016) notes that the Frank-Wolfe gap is a meaningful measure of non-stationarity
and serves as an affine-invariant generalization of the more standard convergence criterion ||V f (y)||
which is used for unconstrained non-convex problems. In the decentralized setting, Frank-Wolfe gap
is slightly modified which is defined as follows:

gap(7') = max(V f(z"), 2" — ),

from the definition, when gap(fct) = 0, the iterate Z¢ will be a stationary point to Eq.(I), thus we
regard gap (') as a measure of the stationarity of the iterate Z'. Follow the assumption in (Wai et al.,
2017), we define the set of stationary point to (I) as:

X* = {x € X :max(VF(z),z — x) = o} .

zeX

We consider the following technical assumption:

Assumption 5 The set X* is non-empty. Moreover, the function f(x) takes a finite number of values
over X*, i.e., the set f(X*) = {f(x) : x € X*} is finite.

It is reasonable to assume that Eq.(I) has a finite number of stationary points since the set X is
bounded, thus Assumptionﬁ]is satisfied. Then the following theorem is valid.

Theorem 2 Under Assumption ) B|and ] we run DVRGTFW with

; % tog (|[vo — 150]l* /22) 3
b= |34/=— ) p= ’ Kin = ) K=|———= )
2m 2b+n 1— (W)

and if we set 1y = %, we have the following convergence:

0 * 2v2
VT VT
The proof can be found in Appendix [D] When the set X* satisfy Assumption [5] like proof in [Wai
et al. (2017), according to we can apply Nurminskii’s sufficient condition (Theorem 1 from|[Zangwill

(1969)) to prove that for DVRGTFW, every limit point of {ft}tzl belongs to X*. Similar to the
analyse in convex case, under the setting of p, b, 7, in Theorem [2] we now have

. _t -
E {Kggl;llgap(:v )} =0(

).
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Corollary 2 Under the conditions of Theorem [2| for each node i € [n|, DVRGTFW achieves an €
suboptimality with

LD27?
(’)([ + [ } LMO calls,
2 2
O( n g—o] + n {LD ] IFO calls, and
Vm Le m
o) + 2]
O( i ) rounds of communication,
— A2

where go = f(z°) — f(z*) + %
Under the setting in Theorem [2] the required number of the stochastic gradient computations is

2 2
O/ [%0]2 + /o [Lqu ), and the LMO complexity is O([%‘)]Q + [LDQ] ), when reduce to

€

centralized setting (m = 1), the result match the optimal result in (Beznosikov et al.|[2024), and the

communication rounds K at each iteration is deterministic which equals to {\/KW—‘ , and com-
—A2

log([[vo—1%ol|?/L?)

1—a (W)

bining with the initial communication rounds K, = { -‘ , the total communication

[m]2+[LD2]2
— (;V) ) in expectation.
—A2

complexity is O(
Remark 3 Corollary[I]and Corollary 2| shows that FastMix can eliminate IFO complexity’s de-
pendence on Ao(W), which means that the structure of the communication graph will not influence
the IFO complexity and LMO complexity. Compared with the existing decentralized Frank-Wolfe al-
gorithms, our algorithm obtain the optimal bound in IFO and LMO complexity, and for non-convex

“ ferm, icati o e is nearly Optimal to the lower bound
— 1—X (\/]/)
2
_ Le”? N C
( 1 )\2(W>) in ( Olollal V ], 1114 (Q De Sa (2021))

6 EXPERIMENT

We evaluate the performance of our algorithms on logistic regression with different settings, in-
cluding the situation in which each f;(x) is convex and the local function f;(x) is non-convex. In
our experiment, the constrained set is set as an [; norm ball constraint w = {z|||z|; < R}, for
simplicity, we constantly take R = 20 of the constrained set in the following experiments.

6.1 EXPERIMENT SETTINGS
6.1.1 THE SETTING OF NETWORKS

In our experiments, we consider random networks where each pair of agents has a connection with
a probability of p. We set W = I — L/\{(L), where L is the Laplacian matrix associated with
a weighted graph, and A\ (L) is the largest eigenvalue of L. We also set the number of agents as
n = 100. In our experiments, we run the algorithms on the setting of p = 0.1 and p = 0.5, which
correspond to 1 — Ao (W) = 0.05 and 1 — Ay (W) = 0.81 respectively.

6.1.2 THE CHOICE OF DATASET

We conduct our experiments on two real-world binary classification datasets from LIBSVM data
. 1 . .

rep051t0 one of the two datasets we deliberately selected have more data points and fewer fea-

tures, leading to high computation complexity, while the other has relatively fewer data points but

more features, making it more challenging to converge. We summarize it in Table

'"https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
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Table 2: Real Datasets For Binary Classification

Dataset d mn
real-sim 20959 72309
covtype.binary 54 581014

6.2 EXPERIMENTS ON CONVEX LOGISTIC REGRESSION

We consider the convex logistic regression model in which the local objective function of logistic
regression is defined as

Filw) = = > log(1 + exp(~ls5{as5,2))) ©

Jj=1

where a; ; € R? is the feature vector of the jth local sample of agent i, ; ; € {—1,1} is the
classification value of the jth local sample of agent 7, we compare our algorithm (DVRGTFW) with
Decentralized Frank-Wolfe algorithm (DeFW) in|Wai et al.|(2017) and Decentralized Spider Frank-
Wolfe algorithm (DstoFW) in Jiang et al.| (2022), The parameters of all algorithms are well-tuned
to achieve their best performances, and we set the batch size b as (9(\/% ) level and number of
communications per step K as O(1) level in DVRGTFW, note that in the experiment, we do not use a
extreme graph structure with a significantly big A2 (W), so such communication setting accord with
our theoretical analyze. Futhermore, we initialize xo = O for all the compared methods. In a convex
setting, we report the experimental results in Figure|[T]

— DeFw 1 — DeFw - — DeFw - — DeFw
DstoF W DstoFW DstoFW — DstoFW
i — DVRGTFW - — DVRGTFW - — DVRGTFAW - —— DVRGTFW

R m )
MW‘.“; bt

3000 20000 40000 o0 s0000 100000
#umber o Gradient Computations

ACL Wy

00 oot
#Number of Gradient Computations.

— Defw — Defw — Derw
_ —— DstoFW —— DstoFw N —— DstoFW
T _— — DVRGTFW . — DVRGTFW S o R —— DVRGTFW

i

s — perw
—— DstoFw
61 — DVRGTFW

Figure 1: Comparisons with convex logistic regression and random networks. Each local objective
fi(z) may be non-convex. In the top row, experiments on real-sim dataset for the agent i =
1..., m. In the bottom row, experiments on covtype .binary dataset for the agenti =1...,m.
Random networks have 1 — A2(W) = 0.05 in the left two columns and 1 — Ay (W) = 0.81 in the
right two columns. Objective Gap is defined as f(Z;) — f(z*), where f(x*) is obtained by the PGD
algorithm (Bubeck et al., 2015).

Compared to DsgFW, DVRGTFW demonstrates superior computational efficiency across both
datasets, irrespective of the random graph’s structure. This advantage is particularly evident in
the covtype .binary dataset, which contains a larger number of data points, aligning well with
the theoretical computational complexity results of our algorithm. Moreover, our algorithm almost
achieves lower communication costs than both Dst oFW and DeFW in all cases.

6.3 EXPERIMENTS ON NONCONVEX LOGISTIC REGRESSION

We consider the non-convex logistic regression model in which the local objective function of logis-
tic regression is defined as
n

1 1
fL(.T) = ﬁ Z 1+ exp(li’j <ai,ju (E>) 7 ©

j=1

where a; ; and [; ; are same as those in Eq.(3). The step size of DeFW, DstoFW and DVRGTFW
are ﬁ As same as the convex setting, the parameters of all algorithms are well-tuned to achieve
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their best performances, and in DVRGTFW, we set batch size b as O(4/ %) level and number of

communications K as O(1) level. Moreover,we initialize xo = 0 for all the compared methods. In
a non-convex setting, we report the experimental results in Figure 2]
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Figure 2: Comparisons with non-convex logistic regression and random networks. Each local
objective f;(x) may be non-convex. In the top row, experiments on real-sim dataset for the
agent ¢ = 1...,m. In the bottom row, experiments on covtype.binary dataset for the
agent ¢ = 1...,m. Random networks have 1 — Ao(W) = 0.05 in the left two columns and
1 — Ao(W) = 0.81 in the right two columns. Objective Gap is defined as f(Z;) — f(2min ), Where
f(xmin) is the minimum value of the function obtained from multiple runs of PGD.

From Figure [2] it is clear that our algorithm demonstrates superior computational complexity for
the non-convex problem, aligning well with our theoretical findings. However, our algorithm per-
forms significantly worse than the DstoFW algorithm on the real-sim dataset, which contradicts
our theoretical expectations. Perhaps the large number of features in the real-sim dataset makes it
challenging for the Frank-Wolfe algorithm to converge. Additionally, the bounds analyzed by the
compared algorithms might not be sufficiently tight. Nonetheless, by increasing the batch size, com-
parable results can be achieved. Thus, for non-convex problems, adjusting the batch size allows us
to balance communication complexity and computation complexity. It is important to note that this
adjustment is made at a constant level.

7 CONCLUSION

In this paper, we propose DVRGTFW, a novel decentralized projection-free algorithm tailored for
constrained decentralized finite-sum optimization problems. Compared to existing decentralized
stochastic projection-free algorithms, our method eliminates the need for large batch computations,
thereby improving efficiency. Notably, DVRGTFW achieves the best-known IFO complexity for both
convex and non-convex scenarios, and it effectively reduces communication complexity to approach
theoretical lower bounds for non-convex problems. Besides, it can reduce to the optimal result in
a centralized setting. Comprehensive numerical experiments validate our theoretical analysis and
demonstrate the practical effectiveness of DVRGTEFW.

The design of DVRGTFW is grounded in an innovative framework that integrates loopless variance-
reduced iteration, gradient tracking, and multi-consensus techniques. The proof of DVRGTFW uti-
lizes a Lyapunov function that captures the function value, global and local gradient estimation
errors, and consensus errors, yielding an intuitive and easy-to-follow analysis framework.
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A TECHNICAL LEMMAS

In this section, we will introduce several useful lemmas that will be used in our proofs. They are
easy to check or prove, so we omit the details of these lemmas.

Lemma 1 Forany x,,...,xy € R in the following inequality holds:

2 m
2
SNl
i=1

Lemma 2 (Lemma 2 from|Ye et al.|(2023b)). For Frank-Wolfe update in DVRGTFW, we have y; =
O

m

D

=1

Lemma 3 (Lemma 2 from |Liu & Morse|(2011)). Under Assumption 4} FastMix holds that

T = and o 1T < (1= VT R00) [ - 1))
where u® = 21Tu".

Lemma 4 (Lemma 3 from|Ye et al.|(2023b)). For any s € R™*%, we have ||s — 13| < ||s||, where
5=21Ts

Lemma 5 (Lemma 4 from|Luo & Ye|(2022)).Under Assumption 2] we have || VE(z) — VE(y)|| <
L||z — y|| for any x,y € R"*¢

Lemma 6 (Lemma 1.2.3 from|Nesterov|(2013)). Suppose that f is L-smooth. Then, for any x,y €
R,

7(@) < F&) + (VS (w)x— )+ 2z~ I
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Lemma 7 (Lemma 3 from |Stich| (2019)). Let {r)}r>0 is a non-negative sequence, which satisfies
the relation

rep1 < (1 —mg)re + cn,%.

Then there exists stepsizes N < é, such that:

K c
rk =0 (dro exp <_2d> + K) .

In particular, the step size are chosen as follows:

if K<d, N =

)

if K>d and k < ko, Nk =

)

ISHE Sy

2

if K>d and k> ko, T d 1+ k — ko)’

where ko = [57].

B IMPORTANT LEMMAS RELATED TO OUR ALGORITHMS

First we define the variables p = (1 —+/1 — Aa(W))¥ to characterize the effect of FastMix. Note
that the setting of K™ in Theorem|[I]and 2] means

Then we introduce the following quantities:

m 2

1
o the global gradient estimation error: Uy = H — E (vip — Vfi(xit))
m
i=1

)

1
e the local gradient estimation error: V; = — ||v; — Vf(x;)||%;
m

1
e the consensus error: Cy = ||x¢ — 17¢||> and Y; = —|y¢ — 19>
m

At last we define two Lyapunov functions

2cr 4o 16p%a
Sy =h+ ——=Y, + —=U, V;.
R VAT A R v Py A
o 2a 4p%a
U, =hi+ ——=Y: + — — V.
k et (1-2p2)L terLUt+ (1—2p2)mLVt

where h; is defined as h; := f(z;) — f(2*). We describe the decrease of function value in following
lemma.

Lemma 8 Suppose that each of f; and x € X satisfy Assumption[l} 2] and[3] DVRGTFW holds that:

n2LD*(a + 2)

%0 )

o 2a 2aL
hita S(l_nt)ht+z}/t+fUt+ m Cy +
where a is some positive constant and hy is defined as hy = f(Z;) — f(x*).

Proof. From the L-smoothness of global function f, we have:

f(@e1) < (@) +(VF(Zt), Tegr — T) + g”ﬂftﬂ —Z%,

where we use Lemma
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We subtract f(z*) in both sides, and by using the boundness of C we obtain the following inequality

m 2LD2
hit1 < by + % D V@), iy — 7)) + nt >

i=1
< h+ % ;<yi,ta di — ) + % ;(Vf(ft) — i dig — 3 + 5

i i 21.D?
Sht+?’i;<vf(l’t)’$*—$t %gvfxt =it di t—$>+mT

m ) . ) 1 m o ) \/* . 2LD2
<ot eSS ) ;N;(v,f(xt) ~ i T g -ty + P
<ho+ 2 im@m T E) 4 i V4 =yl + 2 i Idie "I +
- m ’ 2mL ’ mo =

m 2 2
_ * o - 2, M LD*(a+2)
< h, — _ = v == A=A
< he = me(f(Ze) = f27)) + 5+ ¢71(Vf(xt) Yit)” + 0
o « 2LD%*(a +2

< (= nhe+ SIVF@E) Bl + -y, - 1g, )7 + BT,

where we use the boundness of X" and Lemma [3in the first inequality; through the optimal choice

of d; which means that for each i € [m], (y;¢,di¢ — %) < (yi1, 2" — Ty), and rearrange terms we

get the third inequality; in the fifth inequality, we apply the Cauchy-Schwartz inequality to deduce
2

(V@) = yin) Lm(diy — %) < V@) = yiul® + 22 [ldiy — 2|2 with some

positive constant «; in the sixth inequality we use the boundness of X’ and Assumpition [T} we apply

Lemma|[I]and Lemma[2in the last inequality.

Now we consider decomposing the term ||V f(Z;) — ¥;||?. From the defination of V f(Z;) and %,
the following inequality holds

IVf(z:) - 5t||2

2

Z vfz th Vi,t)

(Vfi(xie) —vir)|| + % SOV filxin) — Vi)
=1

2
1 m
<2|| > (Vfilxin) = Vie) Z xis — ||
1 ¢ Y
=2 m Z: (Vfi(xit) = vig)|| +— ||xt — 1z,

the first inequality uses Young’s inequality; the second inequality uses Lemmal[T} the third inequality
based on the Assumption|2|; in the last line we use the defination of U; and C;. ([l

Now we consider describe the decrease of Cy, Y;, Uy, V; respectively. First, we provide the recursion
for variable consensus error.
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Lemma 9 Under the setting of Theorem when p* = %6, the following inequality holds

Ci < i”i”;f)jnf- ®)
Proof. From the update of x;41 in Algorithmm the following inequality holds
Cor1 = [Ixe1 = 12412
= ‘ FastMix((1 — n¢)x; + mdy, Ky) — %11TFastMix(xt — mdy, Ky) i
1 2
<P (1= me)xe — medy) — EHT (1 = ne)xe — nedy) 9)

_ 02
=p*||(L = ne)xe — medy — (1 — ) 1(Z¢ — medy) ||
< 202 (1 —1m0)?[|xe — L24||* + 20707 ||dy — 1dy||
< 20%Cy + 2mp*ni D?,
where we use Lemma [3] in the third inequality; in the fifith inequality we use Lemma [T} the last
inequality based on the boundness of X and the defination of Cy.
From the setting of DVRGTFW, the following equality holds
Cy= ||X0 - ].i'o”z =0,
which satisfy Eq.(8), for the induction step, now we assume that V¢ > 0, Eq.(8) still holds, then we
have the following inequality:
Ct+1 S 2p20t + Zmensz
< 2mp? Dt
— 1-—8p?
_ 2mp? D2y
1 —8p? 77152+1
< 8mp2D277t2+1
1—8p% 7

2
the last inequality is because from setting in Theorem we can easily obtain max ng—f < 4, then
t+1

we finish the proof. (]

Now we provide the recursion for gradient-tracking consensus error.

Lemma 10 Under the setting of Theorem([I} we have

4 18 2(1 — 2(1 —
E [Yo1] < 20°E [Yil+—p*pE Vi +— (,)(bp) + 2p2p) L’E[C]+18 (”(b”) + 2p2p> L2 D2,

Proof. From the update of v; ; in Algorithmm the following inequality holds
E [Ivier = viul?]

1—
UG |9, o1 0) — Thog, o)

< 2E |V fi(%i,041) — sz'(Xi,t)H2 + 2pE ||V fi(x4¢) — V'i,tHQ

< pE ||V fi(xie1) — viell” +

1—p)L?
+ %E 5,01 — 40| (10)
< 2pL*E 1%, 641 — Xi,t||2 + 2pE ||V fi(xi,6) — Vi,tH2

1—p)L?
L T

(1-p)
b

= O [V (i) — Vi + ( T 2p) L2E 01 — xa?,
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the second inequality based on Young’s inequality and the last inequality is due to Assumption[2]

Summing over Eq.(10) over i € [m], we obtain

EIvis = vi?]

(1-p)
b

< 2E | VE(x;) — v + ( + 2p> L?E ||xe1 — x|
< 2E | VE(x;) — vi?

(1 —P) 2 _ 2 _ 2 _ 2
+3 (5 20 ) LE | [xer1 = 126" + (1041 — 12" + [|xe — 12¢]

S QPEHVf(Xt) 7Vt||2 (11)

1—
+3p? (( 3 P) + 2p> L?(2E [||lx; — 124||%] + 2mn; D?)

1—
+3 <( r) + 2p> L? (mnED2 +E|x; — 1@“2)

b
]_i
<2V, +9 <(bp) + 2p> L2C,

1—
rom (U2 ) 222

where the second inequality based on Young’s inequality; the third inequality uses the result of
Eq.([©) and the boundness of X.

From the update of v, in DVRGTFW, we have

1 _
Yiy1=_E [lye+1 — LGesr ]

1] 1 2
= _—F ‘ FastMix(y; + vit1 — v, K) — —llTFastMix(yt + v — v, K) ]
m

- ) )
< —E |p? —vy— —117 —
s = p ‘ Yt + Virl — Vi m (Yt + Vie1 — Vi) 1
2 [ 1 2 (12)
< ZE |p?|ly: — 15:]|* + p? —v;——11" -
R L lly: Gell” 4 p7 || Vi1 — Vi m (Vi1 — Vi)
2 1 _ 2 2 2
< B[ Iy = 13| + B [0 v - vil |
m L m
4 18 [ p?(1 —
<20’V + —p’pVi + — (p(p) + 2p2p) L*Cy
m m b

21_
+18 (P ( ; p) +2p2p) LQntzDz7

where we use Lemma [3|in the first inequality; in the second inequality we use Young’s inequality;
we apply Lemma 4] in the third inequality; combine the result in Eq.(IT) and the defination of Y7,
then we finish the proof. (]

Now we provide the recursion for local and global error of gradient estimation.
Lemma 11 Under the setting of Theorem[l} we have

3L2(1+ 2p?)
mb

3L*(1 +2p°)n; D*
b

Vier <(1-pE | Vi + Cy +
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Proof. The update of v; , means

E||vii — Vfi(xie1)]
=pE vai(xi,t+1) - Vfi(xi,t+1)||2
2

b
Z sz &5 Xz t+1) Vfi,gj (Xi,t)) - vfi(xi,t+1)

j=1

=(1 —p)EHV -V} Xz,t)ll

+ (1 —pE|vie+

@M—l

, (3

b
+(1-pE %Z (Vfie,(Xips1) = Vi, (%i1)) — Vfi(%i41) + V fi(%i1)
j:

< (1= p)E |viy — Vfilxio)|I +—E|\vm (Xier1) = Ve, (xi0)||”
(1-p)L?

< (L=pE|vis = Vilxio)|* +

E [|%,41 — Xil?,

where the first inequality based on the update of v, ; in DVRGTFW; the second equality uses the
property of Martingale (Proposition 1 from |[Fang et al.| (2018)); the first inequality use the property
of variance and independence of &1, . .., &; the last step based on Assumption 2}

Taking the average over on above result over ¢ = 1,...,m, we obtain

1
ElVin] = —Ellver: - VE(xi10)|

1—p 1—p)L?
< 228 (v~ vie) 7] + S P R s - xl?]
1—
< —LE|v, - VE(x)|* (14)
3(1 —p)L?
+ %E[ [xe+1 — 1Zer1]|* + E 101 — 13)|* + E ||x; — 1@”2}
3L2(1 4 2p? 3L%(1 + 2p*)n?D?
<(1-pE|v+ (+p)CtJr (+2p%)niD* ]
mb b
O
Lemma 12 Under the setting of Theorem([I} we have
3L2(1 + 2p?%) 3(1 + 2p%)L?*n2 D?
< — .
EUt1] < (1 —p)E {Ut + m2b Cit mb ]
Proof. The update of v; ; means
E[Ut41]
1 & ’
=pE m Zl (Vfi(Xi,H-l) - Vfi(xi,t+1)))
2
1 m 1 b
+(1-pE o Z Vit + 3 Z Vfie,(Xip1) = Viie, (%in)) — V fi(X5,041)
i=1 j=1 (15)
1 m 2
=(1-pkE m Z; (Vz‘,t - Vfi(xi,t))
. 2
+ ZZ sz,fj Xi t+1) vfz,§J (Xz t)) sz(xz t+1) +vfz(xz t))
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2
< (1-p)E[ sz ZZEHVﬁ ¢ (Xijtr1) Vf@sj(xi,t)H
i=1 j=1
< (1 -pE[U]+ 2b2 ZZEH& t+1 — X4 t||
=1 j=1
1—p)L?
= - B + D (16)

3(1 —p)L?
< (-] + P R, v |2 4 L L) 4 — L))

6p2 L2 6p°L*n?D?> 3L _ .2 3L2
g(l—p)E[Ut+ oy Ot + [T - +m0t]

3L2(1 4 2p2 3(1 + 2p2)L2n2 D?
S(l_p)E[Ut+ ( p)ot+( p°)L*n; }
m2b mb

where the second equality use the property of Martingale; the first inequality based on the prop-
erty of variance and independence of &1, . .., &; the second inequality based on Assumption [2} the
third inequality use Young’s inequality; the fourth inequality use Eq.(9), the last two steps use the
boundness of X" and the defination of C}, then we finish the proof. O

C PROOF OF THEOREMI]

Proof. From the defination of ¢, and combing results of Lemma|[g] and [12] we have
E [®¢41]

2a 16p%a
=E |h o7 Vt
[ t+1 1 2—p—d)L + Ut+1 2-p —4p2)mLVt+1
2a P 16p%a
<E|(1—m)h 1-by 2y 1—7
2aL 36aL pPP(l—p 3(1 — p)L(1 + 2p?)(8a — 4par — 16p%a + 16p%par
+ (UZD) gy 4 3 i) prye

m +(27p74p2)n b
L(a+2) n 36aLl ,p*(1—p)

(2 —p—4p?)m?bp
3(1 — p)L(1 + 2p?)(8a — 4pa — 16p% + 16p2par)

9,2 D22
+ 2c¢ 2—p—4p2( b +20°p) + (2 —p—4p?)mbp )D"n;
P 20 1 a 5 o LD?n}
< 1—n,1—=}E |+ ———=Yi + Ui + ————V, 16aLD —_
< max{l =, 1=5) [t+(7—4p)L ROt T T gy TR

The second mequahty based on Lemma[9]and the settings of p, b and K in Theorem[T} If we choose
ny < 5 and a = 7, then we will have

E[®¢ 1] < (1 —n)E[®,] + 8LD*n]

It remains to use Lemrnawith ¢c=8LD?% d= % and then we obtain

1 1
2(7 — 4p)mL (7 —4p)mL

—0 (; <f(a‘:0) ) + WE [Y0]> exp (]f) + 8sz) .

From DVRGTFW, it is easy to obtain E [V5] = 0 and E [Uy] = 0. Using the setting of K, in
Theorem[T] we can deduce
1 1

2(7 — 4p)LIE Yol < 2(7 — 4p)L

E[f(z:) — fa")+ Y + im + V)

(1 — /1= Xg(W))?Ein ||v0 — 1592
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Then we obtain

y 1 _ w1 T 8LD?
Blf(en) ~ ] =0 (5 (e~ 1)+ § e (<21 ) + 552
([l
D PROOF OF THEOREM
Proof. According to Assumption[2]and Lemmal6] we have
L
F@er1) < f(20) +{VF(@0), Tear = Te) + S l|Te41 — ol
Subtracting f(z*) from both sides, we get
hist < h +@§:<Vf(5:) d — )+ HED”
t+1 < Iy m 2 t),dit — Ty 5
m m 2 2
Nt Nt — n; LD
< h - 2,t - 7 adi -
< t+m;<}’t +m;Vf$t — Vit dip — Ty) + 5
m . 2LD2
<hi+ 2 ;(Vf(xt),x - &) + & ;(Vf(xt) Viordig — %) + 12
Nt ~— ~ ~ 1 < Vo B AT . n? LD?
<h 4 ;(Vf(:ct),x @)+ ;<ﬁ(vf($t) = Yit), W(di,t )+
m m 2 m 2 2
Ui - - o - o, Ly w2, LD
< ht+ - ;<Vf($t),$ — ) + oL ; IVf(z¢) = yiell” + prp ; i — 2™ + 5
Q@ Q@ 2LD%*(a +2
< o4 VI @), w — 7 + TIVHE) — P+ Sy — 1+ HEZOTD)
2 L ZLD?*(a+ 2
< b+ e (VF(@), 0 — &) + T Yo+ T Ui+ 2oL mED (0 12)
m 2a (17)

We omit the explanation of the proof because it’s similar to the proof of Lemma|g] then we rearrange
the term in Eq.(T7), we obtain

2 2aL 21,02 2
oy 2o 2L (o + ).

Me(VF(@e), 2 = @) She —her + 7 L m 2a

Maximizing over all x € X and take the full mathematical expectation, we get
E | max(Vf(Z:), 2 — x) | < E [t — hi41]
zeX

3(1 — p)L(1 4 2p)(4p*ap — 4p*a + 2a)

2 2 )]E [Ct]
m2bp(1 — 2p?)

3(1—p)L(1 +2p%)(4p*ap — 4pa + 2a)

mbp(1l — 2p?)

= <E[¢s — ¢p41] + TLD?n;

2oL 18aL p*(1—p)

+ m (1- 2p2)m( b

L(a+2) n 18« L (p2(1 -p)
2a 1—2p? b

+2p°p) +

+

+ 2p%p) +

LD2 2
U +
(%

)D*n;.

< E[ps — ¢i41] +8aLD?*n? +

In the first inequality we use the defination of ¢;; the second inequality based on Lemma 9] and the
settings of p, b and K in the Theorem [2; We obtain the last inequality with the choice of o = 3 f
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Summing over all ¢ from 0 to 7" — 1, we have

T-1 T-1

> nkE [r&a§<v f(&), 2 — x)] <E[tho — ¥r] +7LD* > n}
t=0 - t=0
<E[¢o] + 7LD* Y n}
t=0
T-1
<E lf(fo) — f@") + ¥ +TLD* Y 1.
t=0

The last inequality based on the setting of K, in Theorem If we take 1, = % and devide both
sides by \/T, then

LN~ =\ f(fo)—f(x*)-kﬂ 7LD?
E T;glea%Wf(xt),xt—x)] < o T 8
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