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Abstract
Recent works have developed a comprehensive picture of gradient-based learning of isotropic
Gaussian single-index models by developing computational lower bounds along with optimal
algorithms. In this work, we demonstrate that the picture can change significantly when the data
covariance is structured and contains some degree of information about the target. Through studying a
spiked covariance model, we show that for the class of Correlational Statistical Query (CSQ) learners,
a simple preconditioning of online SGD already achieves an almost optimal sample complexity.
Unlike the isotropic case, further smoothing the landscape does not improve this complexity. We
prove similar lower bounds in the Statistical Query (SQ) class, where we demonstrate a gap between
the SQ lower bound and the performance of the algorithms that are known to be optimal in the
isotropic setting. Finally, we show a stark contrast in the information-theoretic limit, where the tight
lower bound goes through a sudden phase transition from d to 1 depending on covariance structure,
where d is the dimension of the input. Overall, our analysis provides a clear characterization of
when and how the spike simplifies learning by improving over isotropic covariance.

1. Introduction

The single-index model with isotropic input data has been thoroughly studied in recent years [1, 5, 12],
but it has remained relatively underexplored in the context of structured input data. In practice, data
contain structure that simplifies learning [23, 25]. In this work, we consider the problem of learning
a single-index model in high dimensions under structured input data:

y = f⋆
( ⟨u⋆,x⟩
∥Σ1/2u⋆∥

)
+ ξ, x ∼ N (0,Σ), ξ ∼ N (0, σ2). (1.1)

where f⋆ : R → R is the link function, x ∈ Rd are the inputs with covariance Σ and ξ ∈ R
corresponds to label noise with finite variance σ2 > 0. Learning the model consists in estimating the
target to achieve small population loss. In particular, it can be achieved by approximately recovering
the unknown link function and the hidden dimension u⋆. To avoid identifiability (scaling) issues, we
standardize the projected inputs by

∥∥Σ1/2u⋆
∥∥. To see concretely how covariance structure affects

sample complexity, we focus on the spiked single-index model that was studied in [24]:

Σ =
1

1 + κ
(Id + κθθ⊤), κ ≍ dr2 , ⟨u⋆,θ⟩ ≍ d−r1 , r1 ∈ [0, 1/2], r2 ∈ [0, 1]. (1.2)
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Here, κ ≍ dr2 captures the magnitude of the spike, and ⟨u⋆,θ⟩ ≍ d−r1 the alignment of the signal
direction with the spike. Our main theorems show that it is r := max{r1 − r2/2, 0} that accurately
captures their interplay.

1.1. Contributions

We prove fundamental limits for learning the spiked single-index model with different classes of
algorithms. More precisely:

• Computational lower bounds. We prove two Sta-
tistical Query (SQ) lower bounds. Notably, the
sample complexity of online SGD with squared
loss is captured by the Correlational Statistical
Query (CSQ) framework. Additionally, online
SGD coupled with ”label transformations” falls
within the general SQ framework. Our lower
bounds provide an extension to the recent treat-
ment of the isotropic single-index model in [12].
More precisely, for l⋆, k⋆—the information ex-
ponent, respectively the generative exponent—of
the single-index model, the lower bounds depend
on r as soon as r < 1/4: we get the informal
sample complexity from the CSQ lower bound
n = Ω(d2rl

⋆
) and the SQ lower bound based on

VSTAT n = Ω(d2rk
⋆
). When r ≥ 1/4, our lower
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Figure 1: Sample complexity to learn the
spiked SIM. Smaller r1 denotes a better
spike-target alignment, while larger r2 de-
notes a larger spike magnitude.

bounds coincide with the isotropic ones [11, 12]: for CSQ, n = Ω̃(dl
⋆/2) and for SQ,

n = Ω̃(dk
⋆/2). This suggests that the spike is helpful if and only if r < 1/4.

• Information-theoretic phase transition. We also prove an information-theoretic lower bound,
which is the same for the isotropic and spiked settings as long as r > 0. Namely, n = Ω(d).
Although this bound was already informally known in the isotropic setting, we believe that it
has not been proved before for the single-index model. Note that it matches the information-
theoretic upper bound in [12]. Moreover, for r = 0, and r1 < r2/2, the sample complexity
undergoes a stark phase transition as n = Ω(1) samples are sufficient in this regime.

• Near-matching upper bounds. Finally, we provide upper bounds that nearly match our
statistical query lower bounds by showing how initializing existing algorithms such as online
SGD [5] and tensor power iteration [12] at the covariance spike reduces their sample complexity.
These algorithms require n = Õ(d2r(l⋆−2)+1) samples. In addition, by coupling tensor power
iteration with label transformations to reduce the information to the generative exponent as in
[12], we get the SQ upper bound n = Õ(d2r(k⋆−2)+1).

2. Related work

The problem of learning Gaussian single-index models has been extensively studied, see e.g. [9, 14].
[5] characterized the number of samples needed to learn the model with online SGD in terms of the
information exponent, a single number which encapsulates the hardness of the problem. In [2, 24],
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the authors studied the feature learning mechanism in neural networks for single-index models with
information exponent 1, and higher information exponent was treated in [6] where they analyzed the
behavior of gradient flow. In the context of multi-index models, [13] studied learning polynomials
with one gradient step, while [1] observed saddle-to-saddle dynamics.
A series of works studied variations of the single-index model such as the presence of additional
input structure [3, 4, 19, 30]. In particular, [28] considered sparsity in the input, while [10] studied a
perturbation of the target. Most relevant to our setting, [7, 24] considered a structured covariance.
Although [7] analyzes single-index learning under anisotropic covariance, their spectral assumptions
fail in our spiked-covariance regime, since our eigenvalues decay too quickly.
Finally, there has been marked interest in providing computational lower bounds on learning single-
index models. For isotropic Gaussian inputs, the work [13] constructed a CSQ lower bound depending
on the information exponent, while [12] proved a SQ lower bound in terms of the generative exponent,
as well as a matching upper bound relying on tensor power iteration and partial trace. Very recently,
[21] generalized these lower bounds by considering rotationally symmetric input distributions.
Extensions to multi-index models identified a leap exponent that governs the complexity [1], and
[27] probed the fundamental computational limits of learning with approximate message passing.

3. Preliminaries

3.1. Statistical queries

Given a regression problem where we have a joint distribution PX,Y on (X, Y ) ∈ Rd × R, the goal
is to predict Y given X by choosing a predictor h : Rd → R among a class of predictors H. The
statistical query framework [22] contains the following class of algorithms. At each iteration, the
algorithm can (possibly adaptively) choose a query q : Rd × R→ R from a class of queries Q, and
the oracle returns a response Ê[q] with the following guarantee∣∣∣Ê[q]− EX,Y [q(X, Y )]

∣∣∣ ≤ τ,

where τ is the noise tolerance of the oracle. In particular, note that the tolerance can be chosen
adversarially by the oracle. One widely considered restriction of the class of queries is known as
Correlational Statistical Queries (CSQ) [8], where given some class of real-valued functions on Rd

denoted by Q̃, the class Q is given by

Q = {q(x, y) = q̃(x)y : q̃ ∈ Q̃}.

Example 1. The online SGD update with respect to the squared error loss fits the CSQ framework,
apart from the noise not being adversarial. Indeed, for an estimator fw,w ∈ W (for example a
neural network), the gradient of the population risk admits the decomposition

∇R(w) =
1

2
E[∇(Y − fw(X)2] = E[Y∇fw(X)]− E[fw(X)∇fw(X)],

from which we see that the target and the inputs only interact through a correlational query (the first
term on the right-hand side).
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3.2. Reformulation as an isotropic SIM

Lemma 2 (Single-index model translation). The spiked single-index model defined in Equations
(1.1), (1.2) is equivalent to the isotropic single-index model

y = f⋆(⟨u⋆, z⟩) + ξ, z ∼ N (0, Id), u⋆ ∈ Sd−1 subject to |⟨θ,u⋆⟩| = cd−r,

for some absolute constant c > 0. Furthermore, this imposes a restriction on the unknown direction:

u⋆ ∈ Sθ,r := {u ∈ Sd−1 : |⟨u,θ⟩| = cd−r}.

Proof. The spiked single-index model can be reformulated as an isotropic single-index model by
whitening the data. For this purpose, let

u⋆ :=
Σ1/2u⋆

∥Σ1/2u⋆∥
, which yields

⟨u⋆,x⟩
∥Σ1/2u⋆∥

= ⟨u⋆, z⟩,

where z is a standard Gaussian random vector in Rd. Then, we can relate the constraints on the
alignment between u⋆ and θ and the alignment between u⋆ and θ as follows. For any absolute
constant c1 > 0, there exist absolute constants c2, c > 0 such that

|⟨θ,u⋆⟩| = c1d
−r1 ⇔ |⟨θ,u⋆⟩| = c2

d−r1
√
1 + dr2√

dr2(1 + d−2r1)
= cd−r. (3.1)

Remark. [Invariance of SQ under whitening] For any bounded query q : Rd × R→ R, setting

qx(x, y) = q
(
Σ−1/2x, y

)
and qz(z, y) = q

(
Σ1/2z, y

)
gives a one-to-one correspondence between queries with respect to x and queries with respect to z.
In particular, any SQ algorithm for one model can be simulated with identical query complexity and
tolerance for the other.

4. Main Results: Computational and Statistical Bounds for Learning the Spiked SIM

We prove computational lower bounds for learning the spiked single-index model on algorithms hav-
ing access to statistical queries, which informally include online SGD. We also prove an information-
theoretic lower bound. Additionally, we prove complementary upper bounds, by characterizing the
sample complexity required for online SGD and tensor power iteration to learn the spiked SIM.
The general strategy for constructing these types of lower bounds is to exhibit a class of almost
orthogonal hypotheses and to determine how hard they are to distinguish under our statistical and
computational constraints. In their basic form, statistical query lower bounds are solving an easier
question, which is to quantify the hardness of distinguishing between a hypothesis class with a
planted structure versus a unplanted hypothesis. Instead of describing an estimation problem, they
describe a testing/detection problem. Even though this problem seems much easier and hence unable
to provide tight lower bounds, it turns out that these lower bounds successfully capture most of
the hardness in notorious estimation problems such as Tensor PCA [15] and planted k-SAT [17].
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However, there is a well-documented estimation/testing gap in some of these lower bounds, resulting
in a small gap between the upper bounds and lower bounds. For a more thorough exposition, we
refer the reader to [16]. Our results are subject to such a gap and we hypothesize that it stems from
this estimation/testing discrepancy.
Remark. The bounds we present depend on well-known complexity measures of the single-index
model, namely, the information and generative exponents. We defer their definition to the appendix.

4.1. Lower bounds

Theorem 3 (CSQ lower bound). Consider the class of bounded correlational queries q̃ ∈ Q̃,
E
[
q̃(z)2

]
= 1. For l∗ ≥ 3, to learn the class of functions

Fl⋆,θ,r :=
{
z 7→ g(⟨u, z⟩) : u ∈ Sθ,r, ∥g∥L2(γ) = 1, IE(g) = l⋆

}
,

with squared L2 error at most 1, any correlational statistical query learner with q = poly(d) queries
requires a tolerance of at most

τ ≲

d−rl⋆ if r < 1
4 ,(

log(qd)
d

)l⋆/4
if r ≥ 1

4 .

Remark. Using the informal translation to sample complexity lower bounds via τ ≍ 1/
√
n, we

obtain the sample complexity lower bound n = Ω(d2rl
⋆
) when r < 1/4 and n = Ω̃(dl

⋆/2) when
r ≥ 1/4.

Theorem 4 (SQ lower bound). Any SQ algorithm using poly(d) queries to VSTAT(n) to learn the
spiked single-index model with generative exponent k⋆ ≥ 3 requires at least the following number of
samples:

n =

{
Ω(d2rk

⋆
) if r < 1

4 ,

Ω̃(dk
⋆/2) if r ≥ 1

4 .

Remark. Both the CSQ and SQ lower bounds suggest that the spike only helps when r < 1/4, since
otherwise they coincide with the isotropic setting [11, 13].
Remark. Note that the polylog factors in the lower bounds of Theorems 3 and 4 can be removed by
refining the hypothesis set construction, as done in [12, Lemma E.3].

Theorem 5 (Information-theoretic lower bound). Any algorithm using (possibly) infinitely many
queries to learn the spiked single-index model requires at least the following number of samples:

n =

{
Ω(d) if r1 ≥ r2/2,

Ω(1) if r1 < r2/2.

4.2. Upper bounds

Theorem 6 (CSQ upper bound). A version of online SGD and tensor power iteration learn the spiked
single-index model with n = Õ(d2r(l∗−2)+1) samples, where l⋆ = IE(f⋆) ≥ 3 is the information
exponent of f⋆.
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More precisely this sample complexity is achieved by tensor power iteration initialized at the spike
θ, which directly extends the results of [12] to the spiked setting. However, note that it is not a
SQ algorithm. Interestingly, online spherical SGD initialized at the spike also achieves this sample
complexity, extending the results of [5]. Although not completely formal due to the adversarial noise
in statistical queries, the sample complexity of online SGD on squared loss is widely assumed to be
captured by the statistical query framework. Fundamentally, the added structure in the inputs helps
us boost the initialization from random alignment of order d−1/2 to alignment of order d−r.
Remark. Note that this upper bound coincide with the isotropic upper bound (and lower bound)
for r = 1/4. The fact that both our versions of tensor power iteration and online SGD coincide in
their sample complexity is of particular interest. Indeed, [5] showed that online SGD can only learn
the isotropic SIM with sample complexity Ω(dl

⋆−1), whereas tensor power iteration (with partial
trace warm start) succeeds with O(dl⋆/2) ([12]), which would suggest that online SGD is not an
optimal learning algorithm for the task. However, making the modeling assumptions closer to reality
by adding helpful structure in the inputs enables online SGD to get closer to a theoretically optimal
algorithm. This might help explain the success of gradient-based approaches in practice.
Remark. [Landscape smoothing cannot help] Note that smoothing the loss landscape [11] cannot
be used in conjunction to the initialization at the spike. Informally, smoothing the loss landscape
during the weak recovery phase amounts to boosting the initialization from random to d−1/4 with the
optimal smoothing parameter d1/4. Since the initialization at the spike enjoys an alignment of order
at least d−1/4, further smoothing cannot help. More precisely, by [11, Lemma 14], the smoothing
parameter λ cannot exceed d1/4 for their results to hold, and thus does not allow to further improve
the sample complexity.

Corollary 7 (SQ upper bound). A version of tensor power iteration learns the spiked single-index
model with n = Õ(d2r(k∗−2)+1) samples, where k⋆ ≥ 3 is the generative exponent.

5. Conclusion

In this paper, we have provided a precise description of the fundamental limits of learning single-
index models when the input covariance has a spiked structure. Our work illustrates two broader
insights:

1. Preconditioning suffices. A simple whitening and a spike–based initialization of online SGD
achieves nearly optimal CSQ performance, demonstrating how covariance alignment enables
algorithms to learn more efficiently.

2. Computational-statistical gap behavior. As the covariance structure becomes more informative
about the target, the computational-statistical gap tightens and the sample complexity can
reach the information-theoretic limit irrespective of the information/generative exponent.

Future directions. Two natural extensions of this work are to consider general covariance structure
(e.g. power-law spectrum) and multi-index models. There also remains to close the gap between the
lower bounds and the upper bounds.
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Notations. For vectors, we use ⟨·, ·⟩ and ∥·∥ to denote Euclidean inner product and norm respectively.
For matrices, ∥·∥ denotes the operator norm. For asymptotic orders with respect to d as d → ∞,
O(·),Θ(·),Ω(·) stand for the standard Big-O notations, and Õ(·), Θ̃(·), Ω̃(·) hide (poly-)logarithmic
factors. We write f(d) ≍ g(d) and f(d) = Θ(g(d)) interchangeably. o(·) and ω(·) correspond to
the standard little-o, respectively little-omega notations. ∇w denotes the Euclidean gradient with
respect to w, and we omit the subscript when it is clear from context. We denote the expectation of
a random variable X ∼ P by EX or EP and we omit the subscript when clear from context. The
s−dimensional Gaussian measure on Rs is denoted by γs, and γ := γ1.

Appendix A. Proof of Computational Lower Bounds

Lemma 8 (Number of almost orthogonal vectors in Sθ,r). For any absolute constant c > 0, there
exists an absolute constant C > 0 such that for any M = O(poly(d)), there exist M elements in
Sθ,r that satisfy, for all i, j ∈ [M ], i ̸= j,

⟨ui,uj⟩ ≤ ϵ+ cd−r, (A.1)

for ϵ =
√

C logM
d .

Proof. Given M > 0, let us construct a subset Sϵ ⊂ Sθ,r of cardinality |Sϵ| = M that satisfies,
for all i, j ∈ [M ], i ̸= j, |⟨ui,uj⟩| ≤ ϵ + c2d−2r. Afterwards, we find an upper bound on M
with the probabilistic method. To construct Sϵ, we use the following procedure. Let {ti}Mi=1 ∼
Unif

(
1√

1−c2d−2r
Sd−2

)
. Suppose {θ,θ2, . . . ,θd} form an orthonormal basis of Rd, and construct

the matrix A = (θ2, . . . ,θd) ∈ Rd×(d−1). Note that ⟨At,θ⟩ = 0 for all t ∈ Rd−1, and that
A⊤A = Id−1. Then, we let ui = Ati + cd−rθ. As a result, we have

⟨ui,uj⟩ = ⟨ti, tj⟩+ c2d−2r, and ⟨θ,ui⟩ = cd−r, for all i ̸= j, i, j ∈ [M ]. (A.2)

Note that for fixed i ̸= j, Hoeffding’s inequality yields P(|⟨ti, tj⟩| > ϵ) ≤ 2e−c1dϵ2 , for some
absolute constant c1 > 0. Thus by a union bound, the probability that |⟨ti, tj⟩| ≤ ϵ for all i ̸= j is at

least 1−M2e−c1dϵ2 . Therefore, if we take ϵ =
√

C logM
d , for some absolute constant C > 0, it is

guaranteed that there exist {ti}Mi=1 such that |⟨ti, tj⟩| ≤ ϵ for i ̸= j. With this construction, we have

|⟨ui,uj⟩| ≤ ϵ+ c2d−2r, for all i ̸= j, i, j ∈ [M ].

Therefore, Sθ,r contains at least M vectors that are well-separated, and to ensure ϵ = o(1), we pick
M to be at most poly(d).

A.1. CSQ lower bound

The Hermite expansion is a central tool enabling the study of the Gaussian single-index model. The
(normalized) Hermite polynomials {hj}j≥0 are defined as

hj(w) :=
(−1)jew2/2

√
j!

dj

dwj
e−w2/2,

and form an orthonormal basis for L2(γ) := {g : R → R :
∫
R g(w)2dγ(w) < ∞} leading to a

measure of complexity of the link function f⋆.

10
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Definition 9 (Information exponent). Given f ∈ L2(γ), with Hermite expansion f =
∑

j≥0 αjhj ,
the information exponent of f is IE(f) := inf{j > 0 : αj ̸= 0}.

The proof of the CSQ lower bound relies on constructing a subclassF ⊆ Fl,θ,r of highly uncorrelated
functions. In particular, we use the following lemma, adapted from Szörényi [26, Theorem 2].

Lemma 10 (Damian et al. [13, Lemma 2]). Let ϵ > 0, and let F be a class of bounded real-
valued functions such that for every pair f, g ∈ F where f ̸= g we have |E[f(X)g(X)]| ≤ ϵ and
E
[
f(X)2

]
= 1 for all f ∈ F . Then, any correlational statistical query learner whose queries are

bounded in L2 norm, i.e. E
[
q̃(X)2

]
= 1, requires at least |F|(τ2−ϵ)

2 queries to learn F up to 2(1− ϵ)
L2 error.

Proof. [Proof of Theorem 3] Let Sϵ ⊂ Sθ,r with cardinality M be defined as in the proof of Lemma
8, and let Fϵ := {z 7→ hl⋆(⟨u, z⟩) : u ∈ Sϵ} ⊂ Fl⋆,θ,r. Recall from the properties of Hermite
polynomials that for every u,u′ ∈ S, we have

EZ∼N (0,Id)

[
hl⋆(⟨u,Z⟩)hl⋆(

〈
u′,Z

〉
)
]
=
〈
u,u′〉l⋆ .

As a result, for f ̸= g, f, g ∈ Fl⋆,θ,r, we have |E[f(Z)g(Z)]| ≤ Cl⋆(ϵ
l⋆ + c2l

⋆
d−2rl⋆), for a

constant Cl⋆ depending only on l⋆. By Lemma 10, any CSQ learner requires a tolerance of at most
τ2 ≤ 2q/M + Cl⋆(ϵ

l⋆ + c2l
⋆
d−2rl⋆), where q denotes the number of queries. Taking M = 2qd, we

obtain τ2 ≤ 1/d+ Cl⋆

((
log(2qd)

d

)l⋆/2
+ c2l

⋆
d−2rl⋆

)
, which completes the proof.

A.2. SQ lower bound

A.2.1. SQ FRAMEWORK

Following [12], we introduce the SQ framework of [18] that enables to capture the complexity of a
great variety of testing and estimation problems with a single number called the statistical dimension,
for algorithms having access to a certain oracle. This framework generalizes the approach used for
CSQ by allowing joint queries over the target and inputs, and we instantiate it in the setting of the
single-index model.

Definition 11 (Search problem over distributions). Let X be a domain, D be a set of distributions
over X ,F be a set of solutions, and Z : D → 2F be a map to the set of valid solutions. The
distributional search problem consists in finding a valid solution f ∈ Z(D) given oracle access to
samples from an unknown distribution D ∈ D. We will also use Zf to denote the set of distributions
D for which f is a valid solution.

Definition 12 (Relative pairwise correlation). Given two distributions D1, D2 and a reference
distribution D,

χD(D1, D2) :=

∫
D1(x)D2(x)

D(x)
dx− 1. (A.3)

Definition 13 ((γ, β)−correlation). We say that a set of m distributions D = {D1, . . . , Dm}
is (γ, β)−correlated relative to a distribution D0 over X if |χD0(Di, Dj | ≤ γ for i ̸= j and
|χD0(Di, Di| ≤ β for all i ∈ [m].

11
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Definition 14 (SQ dimension). Given a search problem Z and parameters γ, β > 0, we define
the statistical query dimension SD(Z, γ, β) to be the largest integer m such that there exists a
distribution D0 over X and a finite set of distributions DD ⊂ D with |DD| ≥ m such that for any
f ∈ F ,Df := DD \ Zf is (γ, β)−correlated relative to D0.

Definition 15 (VSTAT Oracle). Let D be the input distribution over the domain X . Given n
samples from D, for any query function h : X → [0, 1], VSTAT(n) oracle returns a value

v ∈ [Ex∼D[h(x)]− τ,Ex∼D[h(x)] + τ ], where τ = max

{
1
n ,

√
Ex∼D[h(x)](1−Ex∼D[h(x)])

n

}
.

The VSTAT oracle corresponds to the response to a query having access to n i.i.d. samples with the
noise tolerance τ corresponding to at most the concentration bound.

Lemma 16 (General SQ lower bound, Corollary 3.12 in [18]). For any γ′ > 0, an SQ algorithm
requires at least SD(Z, γ, β) · γ′

β−γ queries to VSTAT( 1
3(γ+γ′)) to solve Z.

Corollary 17. For any β, γ, τ ≥ 0, any algorithm requires at least SD(Z, γ, β) ·
3
n
−γ

β−γ queries to
VSTAT(n) to solve Z .

A.2.2. INSTANTIATION FOR SINGLE-INDEX MODEL

We follow the exposition in [12] and apply it to our specific setting to get the SQ lower bound for the
spiked single-index model.

Definition 18 (Isotropic Gaussian single-index model). We say that a joint distribution P ∈ P(Rd ×
R) follows an isotropic Gaussian single index model if there exists a probability measure P ∈ G ⊂
P(R2) and v ∈ Sd−1 such that P = [Rv⊗ I2]♯[γd−1⊗P ], where Rv ∈ Od is any orthogonal matrix
whose last column is v, i.e. of the form Rv = [R⊥v], and

G := {ν(w,y) ∈ P(R× R); νw = γ1; Eν [Y
2] <∞; χ2(ν(w,y)||γ1 ⊗ νy) > 0}. (A.4)

Having restated the problem as an isotropic single-index model in Subsection 3.2 enables us to use
the lower bound from [12] and apply it to our more general setting. Let W := ⟨u,Z⟩, for u ∈ Sθ,r

and Z ∼ N (0, Id) so that W ∼ N (0, 1). Then the search problem Z is of the following form:

• Domain: X = Rd × R (it represents the (Z, Y ) pair),

• Distributions: D = {Pu : u ∈ Sθ,r},

• Solution Set: F = Sθ,r,

• Valid Solutions: Z(Pu⋆) = {u ∈ F : |⟨u,u⋆⟩| = Θ(1)},

• Reference Distribution: D0 = γd ⊗ Py.

Then, we can use Corollary 17 to obtain a SQ lower bound in our setting. In order to do this, we
must find a lower bound on SD(Z, γ, β) for some suitable γ, β.

12
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A.2.3. PROOF OF SQ LOWER BOUND

Definition 19. For a distribution P ∈ G, let

ζk(Y ) := EP [hk(W )|Y ]. and λk := ∥ζk∥Py =
(
E[ζk(Y )2]

)1/2
. (A.5)

Definition 20. The generative exponent of P in G is defined as GE(P ) := inf{k > 0 : λk ̸= 0}.

Remark. The generative exponent admits a variational form that makes its relationship with the
information exponent clearer. By reformulating the information exponent as

IE(P ) = inf{l > 0 : βl ̸= 0} where βl := EP [Y hl(W )],

we have that the variational formula for the generative exponent:

GE(P ) := inf
T∈L2(Py)

IE((Id ⊗ T )♯P ).

We introduce [12, Lemma 3.1] without proof.

Lemma 21 (Relative pairwise correlation expansion). Let u,u′ ∈ Sθ,r, and let m = ⟨u,u′⟩. Then
we have

χ0(Pu,Pu′) = EP0

[
dPu

dP0
· dPu′

dP0

]
− 1 =

∑
k≤k∗

λ2
km

k. (A.6)

Lemma 22 (SQ dimension lower bound). Given a positive integer M = O(poly(d)), and ϵ =√
C log(M)

d for some absolute constant C > 0, the statistical dimension of the search problem Z
satisfies the following:

SD(Z, 2Ck⋆(λ
2
k⋆ϵ

k∗ + c2k
⋆
d−2rk⋆), 1) ≥M, (A.7)

for some constant Ck⋆ > 0 that only depends on k⋆.
Proof. Let M = O(poly(d)). Let ϵ > 0 and let Sϵ be defined as in the proof of Lemma 8. By
construction, the cardinality of Sϵ is M . Let D = {Pui : ui ∈ Sϵ}. For any i ̸= j,

χ0(Pui ,Puj ) =
∑
k≥1

λ2
k⟨ui,uj⟩k ≤ λ2

k⋆⟨ui,uj⟩k
⋆

+
⟨ui,uj⟩k

⋆+1

1− ⟨ui,uj⟩

≤ λ2
k⋆(ϵ+ c2d−2r)k

⋆
+ 2(ϵ+ c2d−2r)k

⋆+1

≤ Ck⋆

(
λ2
k⋆ϵ

k⋆ + (c2d−2r)k
⋆
+ 2(ϵk

⋆+1 + (c2d−2r)k
⋆+1)

)
,

where Ck⋆ > 0 is a constant depending only on k⋆. Therefore, for λ2
k⋆ ≥ 2max{ϵ, c2d−2r}, we can

upper bound the right-hand side by 2Ck⋆(λ
2
k⋆ϵ

k⋆ + c2k
⋆
d−2rk⋆)). Therefore, SD(Z, 2Ck⋆(λ

2
k⋆ϵ

k∗ +
c2k

⋆
d−2rk⋆), 1) ≥M.

Proof. [Proof of Theorem 4] By Lemma 22 and Corollary 17, the number of queries q to VSTAT(n)
satisfies the following:

q ≥M ·
3
n − 2Ck⋆(λ

2
k⋆ϵ

k∗ + d−2rk⋆)

1− 2Ck⋆(λ
2
k⋆ϵ

k∗ + d−2rk⋆)
≥ M

2
·
(
3

n
− 2Ck⋆(λ

2
k⋆ϵ

k∗ + d−2rk⋆)

)
, (A.8)

13
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which implies
3

n
≤ 2q

M
+ 2Ck⋆(λ

2
k⋆ϵ

k∗ + c2k
⋆
d−2rk⋆). (A.9)

Setting M = 2qn = poly(d) yields

n ≥ 1

Ck⋆(λ
2
k⋆ϵ

k⋆ + c2k⋆d−2rk⋆)
,

which implies that

n =

{
Ω̃(dk

⋆/2) if r ≥ 1
4 ,

Ω(d2rk
⋆
) if r < 1

4 .

Appendix B. Proof of Information-Theoretic Lower Bound

In order to provide an information-theoretic lower bound, we introduce the framework and some
results from Wainwright [29, Chapter 15]. By reyling on Fano’s inequality and Yang-Barron’s
method, we can lower bound the minimax risk by using the packing number of the set of parameters
S ∈ {Sd−1, Sθ,r} (depending on whether we tackle the isotropic case or the spiked covariance case),
as well as the covering number of the parameterized set of joint probabilities P := {Pu : v ∈ S}
associated with single-index models.

Setup Given the class of isotropic Gaussian single-index models K, we will derive a sample
complexity lower bound on the hardness of learning P ∈ K, by constructing a minimax lower
bound for the subset of distributions P := {Pv : v ∈ S} ⊂ K consisting of the joint distributions
corresponding to the single-index model

y = f(⟨x,v⟩) + ξ, x ∼ N (0, Id), ξ ∼ N (0, σ2),

for a fixed f ∈ L2(γ) with ∥f∥L2(γ) = 1 and IE(f) = l⋆. Now, given a family S̄ ⊂ S of cardinality
M , let P̄ := {Pv : v ∈ S̄} be a family of single-index hypotheses, also of cardinality M. Let
Z ∈ Rd × R be a sample generated by uniformly sampling an index J ∼ Unif([M ]) and then
generating data (X, Y ) according to PvJ . In this way, the observation Z follows the mixture
distribution QZ = Q̄ := 1

M

∑M
j=1 Pvj , which is the average over all hypotheses. Then the mutual

information between the random variables Z and J is defined as

I(Z, J) := KL(QZ,J ||QZQJ),

where QZ,J denotes the joint distribution of (Z, J) and QJ is the distribution of J .

Definition 23. The minimax risk in our setting is defined as

R⋆ := inf
û

sup
u∈S

EPu(∥û− u∥2),

where the infimum ranges over all possible estimators.

We present two lemmas that we will use for our minimax lower bounds, and whose proofs can be
found in [29, Chapter 15].

14



FUNDAMENTAL LIMITS OF LEARNING SINGLE-INDEX MODELS UNDER STRUCTURED DATA

Lemma 24 (Fano’s inequality). Given δ > 0, let {v1, . . . ,vM} ⊂ S be a 2δ−packing of S in
the Euclidean norm ∥·∥, and suppose that J is uniformly distributed over the index set [M ], and
(Z|J = j) ∼ Pvj . Then the minimax risk is lower bounded as

R⋆ ≥ δ2 ·
(
1− I(Z, Jδ) + log 2

logM

)
.

Lemma 25 (Yang-Barron method). LetNKL(η,P) denote the η−covering number of P with respect
to the square-root KL divergence. Then the mutual information is upper bounded as

I(Z, Jδ) ≤ inf
η>0
{η2 + log(NKL(η,P))}.

Lemma 26. Given v,v′ ∈ S, the KL divergence between Pv and Pv′ satisfies

KL(Pv∥Pv′) ≍ 1

σ2
(1−

〈
v,v′〉l⋆), (B.1)

where k⋆ denotes the information exponent of the single index.
Proof. The conditional probability distribution of Y |X for (Y,X) ∼ Pv is given by the Gaussian
distribution N (f(⟨X,v⟩), σ2). Hence, by standard computations of the KL for the normal location
model (see e.g. [29][Example 15.13]),

KL(Pv∥Pv′) =
1

2σ2
EX [

(
f(⟨X,v⟩)− f(

〈
X,v′〉))2]

=
1

σ2
(1− (α2

k⋆
〈
v,v′〉l⋆ + o(

〈
v,v′〉l⋆+1

)) ≍ 1

σ2
(1−

〈
v,v′〉l⋆),

where f admits the Hermite expansion f =
∑

l≥l⋆ αlhl.

Assuming that Cϵ(S) is an ϵ−covering, that is, ∥v − v′∥ ≤ ϵ for all distinct v,v′ in Cϵ(S), then
1− ⟨v,v′⟩ ≤ ϵ2

2 . Thus,

KL(Pv∥Pv′) ≲
1

σ2
(1−

〈
v,v′〉) ≤ 1

2σ2
· ϵ2. (B.2)

Consequently, for an i.i.d. sample of n data points, we get the bound√
KL(P⊗n

v ∥P⊗n
v′ ) ≲

√
n

σ
ϵ =: η. (B.3)

Therefore, log(NKL(η,P)) ≤ log(Cϵ(S)).
By standard properties of coverings and packings, for P2δ(S) a 2δ−packing of size M , that is,
∥v − v′∥ ≥ 2δ for all distinct v,v′ in P2δ(S),

log(P2δ(S) ≍ log(Cδ(S)). (B.4)

In order to get a bound on the minimax risk that only depends on δ, we must select a value of δ for
which

I(Z, Jδ) + log 2

logM
≥ 1/2.

15
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By following the recipe in [29], we first prescribe η > 0 such that

η2 ≥ log
(
C σ√

n
η(S)

)
. (B.5)

Then we pick the largest δ > 0 that satisfies the lower bound

log(M(δ)) ≥ 4η2 + 2 log 2. (B.6)

Fact 27. For ϵ > 0, the covering number of the sphere of radius ρ in Euclidean norm is given by

N (ϵ, ρSd−1, ∥·∥) ≍
(ρ
ϵ

)d−1
.

Let us focus on the case S = Sd−1 first. In that case, Equation (B.5) yields the inequality

η2 ≳ d log
(√n

η

)
, (B.7)

which is fulfilled by setting η ≍
√
d. We immediately see from Equations (B.4)-(B.6) that the pair

(δ, ϵ) must satisfy δ ≲ ϵ. Since we must pick the largest such δ, taking δ ≍ ϵ ensures that Equations
(B.5)-(B.6) are satisfied. Hence, R⋆ ≳ δ2 ≍ η2/n ≍ d/n, which yields the sample complexity lower
bound

n = Ω(d).

Proposition 28. For r = 0, there are two cases for the constraint ⟨u,θ⟩ ≍ d−r. If r1 = r2/2, then
|⟨u,θ⟩| = c, for some absolute constant c ∈ (0, 1]. However, if r1 < r2/2, it further holds that
|⟨u,θ⟩| = c ≈ 1.

Proof. For r1 < r2/2,

|⟨u,θ⟩| =
∣∣〈Σ1/2θ,Σ1/2u

〉∣∣∥∥Σ1/2u
∥∥ =

√
1 + κ|⟨θ,u⟩|√
1 + κ⟨θ,u⟩2

≈
√
κ|⟨θ,u⟩|√
κ|⟨θ,u⟩|

= 1,

where the approximation comes from

κ⟨θ,u⟩2 = c21c2d
r2−2r1 = ω(1), which implies

√
1 + κ⟨θ,u⟩2 ≈

√
κ|⟨θ,u⟩|.

Remark. We will prove below that Proposition 28 implies that the information-theoretic lower
bound undergoes a sharp transition from n = Ω(d) to n = Ω(1) at r1 = r2/2. Moreover, when
r1 < r2/2, taking θ as our estimator for u⋆ is enough to learn the single-index model’s unknown
direction.

Lemma 29 (Covering number of Sθ,r). For ϵ > 0, the covering number of Sθ,r = {u ∈ Sd−1 :
⟨u,θ⟩ = cd−r} satisfies

logN (ϵ, Sθ,r, ∥·∥) ≍

{
d log(1/ϵ) if r1 ≥ r2

2

1 if r1 < r2
2

16
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Proof. For r1 < r2
2 , by Proposition 28, Sθ,r = {u ∈ Sd−1 : ⟨u,θ⟩ ≈ 1}. For r1 ≥ r2

2 , given the
orthonormal basis {θ1, . . . ,θd} where θd = θ,

⟨u,θ⟩ =
d−1∑
i=1

⟨u,θi⟩+ cd−rθ,

and thus the covering number of Sθ,r satisfies

logCϵ(Sθ,r) ≍ logCϵ

(
1√

1− c2d−2r
Sd−2

)
≍ (d− 2) log

(
1√

1− c2d−2rϵ

)
≍ d log

(1
ϵ
(1 + c2d−2r)

)
≍ d log(1/ϵ).

In the case of S = Sθ,r and r1 ≥ r2/2, Equation (B.6) yields the inequality

η2 ≳ d log
(√n

η

)
.

Thus, we must pick η ≍
√
d. Hence R⋆ ≥ δ2 ≍ η2/n, which yields the sample complexity lower

bound
n = Ω(d).

However, when r1 < r2/2, we can pick η2 ≍ 1 to obtain R⋆ ≳ 1/n, which yields the sample
complexity lower bound n = Ω(1).

Appendix C. Proofs of Upper Bounds

We derive upper bounds on learning the spiked single-index model by initializing existing algorithms
at the covariance spike. Our upper bounds only consider learning the unknown direction u⋆ of the
isotropic formulation of the spiked single-index model; they do not include the sample complexity to
learn the link function f⋆. However, once u⋆ (or u⋆) is approximately recovered, recovering f⋆ is a
simple convex optimization problem. A more detailed exposition of how this is can be done with
two-layer neural networks and gradient descent is provided in [13].

C.1. Tensor Power Iteration

We use the tensor power iteration algorithm from [12] initialized at the covariance spike. By simply
plugging in the initial alignment m0 = Θ(d−r) in [12], we obtain the upper bound on the sample
complexity

n = Õ(d2r(l⋆−2)+1) (C.1)

to learn the spiked single-index model.
Proof. By [12, Lemma F.4], for any initial alignment m0 = Θ(d−r), for any r ∈ [0, 1/4] and until
the alignment reaches 1/4, each step of tensor power iteration with Θ(d1+2r(l⋆−2)) samples achieves
an alignment m1 ≥ 2m0 with high probability. Therefore, taking s = O(log d) steps of tensor
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power iteration yields ms = Θ(1) with high probability. Hence, n = Õ(d1+2r(l⋆−2)) are sufficient
to weakly learn the hidden dimension u⋆. By taking another step of tensor power iteration with
n ≳ d/ϵ, where ≳ can hide dependence on k, we can furthermore achieve the strong recovery of u⋆,
that is, we can reach an alignment greater than 1− ϵ with high probability.

This upper bound coincides with the one we obtain below with Online SGD initialized at the covari-
ance spike.

For the SQ upper bound, we can analogously use [12, Algorithm 2] with initialization at θ. At
a high level, the algorithm finds a label transformation with a denoiser T ∈ L2(Py) such that
IE(T (P )) = GE(P ). This yields the sample complexity upper bound

n = Õ(d1+2r(k⋆−2)),

depending on the generative exponent k⋆.

C.2. Online SGD

By extending the work of [5] to consider the case where the initial alignment between the weight and
the hidden direction is of order d−r, for r ∈ [0, 1/2], we can derive a sample complexity bound for
online SGD initialized at the spike of the covariance matrix. This contrasts with the uninformative
weight initialization which achieves an alignment of order 1/

√
d with high probability. In the

analysis performed in [5], the alignment at timestep t is decomposed into four components: the initial
alignment, a drift term, a martingale term corresponding to the sample-wise error, and higher-order
terms in the learning rate, corresponding to the projection onto the sphere. Then, the game consists
of finding the appropriate learning rate and number of samples, so that the initial alignment and
the drift term dominate the dynamics and make online SGD achieve weak recovery of the hidden
direction. Therefore, starting with a better initialization yields a better sample complexity as it allows
the selection of a larger learning rate. There is no technical innovation in the proof and the improved
sample complexity has been described in a concurrent work [20] in a different context and without
proof, but we show here how the proof of [5] generalizes for completeness. We only adapt the weak
recovery proof, as it is the phase where the information exponent appears. The descent phase/strong
recovery always takes O(d) samples.

Setup We study the isotropic single-index model y = f⋆(⟨z,u∗⟩) + ξ, z ∼ N (0, Id), ξ ∼
N (0, σ2). We denote the loss by L : Sd−1 × Rd × R→ R, and study the case where the population
loss is of the form

Φ(w) := EZ,Y [L] = ϕ(m(w)) where m(w) := ⟨w,u∗⟩,

for some ϕ : [−1, 1]→ R. Moreover, we define the sample-wise error

Ht(w) := L(w; zt, yt)− Φ(w).

In this subsection, we denote the information exponent by k, and we follow the more general
definition of [5].
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Algorithm 1: Spherical Online SGD Initialized at Covariance Spike

Data: (zi, yi)ni=1 ∼ Pu⋆ , θ ∈ Sd−1 with |⟨θ,u⋆⟩| = cd−r, step size η > 0
Result: Final iterate w on the sphere
w ← θ;
for t ∈ [n] do

w ← w − η
d (Id −ww⊤)∇L(w; zt, yt);

w ← w/∥w∥;
end
return w;

Definition 30 (Information exponent). The population loss Φ has information exponent k if ϕ ∈
Ck+1) and there exist C, c > 0 such that

dlϕ
dml (0) = 0 1 ≤ l ≤ k
dkϕ
dmk (0) ≤ −c < 0∥∥∥ dk+1ϕ
dmk+1 (m)

∥∥∥
∞
≤ C.

Definition 31. For a population loss of the form Φ(w) := E[L] = ϕ(m(w)) where m(w) :=
⟨w,u⋆⟩, for some ϕ : [−1, 1]→ R, we say that Assumption Aϱ for some ϱ in (0, 1] holds if

1. ϕ is differentiable, and

2. ϕ′ is strictly negative on the interval (0, ϱ).

When ϱ = 1, we say that Assumption A holds.

Definition 32. For a data distribution and loss pair (P,L), Assumption B holds if there exist
C1, ι > 0 such that the following two moment bounds hold for all d :

1. We have that

sup
w∈Sd−1

E
[
|⟨∇H(w),u⋆⟩|2

]
≤ C1,

2. and that

sup
w∈Sd−1

E
[
∥∇H(w)∥4+ι

]
≤ C1d

2+ι/2.

For every µ, define the hitting times

τ+µ := min{t ≥ 0 : m(Wt) ≥ µ}, and τ−µ := min{t ≥ 0 : m(Wt) ≤ µ}.

Fix ι given in Assumption B and define

L̄ := sup
w

E

[∥∥∥∥ 1√
d
∇H(w)

∥∥∥∥4+ι
]
∨ sup

w
E

[∥∥∥∥ 1√
d
∇H(w)

∥∥∥∥2
]
∨ 1. (C.2)

Additionally, let ak = ck, ak+1 = C(k + 1), where C, c are as in the definition of the information
exponent, and let mt denote m(Wt).
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Theorem 33. Suppose there exists ϱ > 0 such that Assumptions Aϱ and B hold and that the
population loss has information exponent k. Let (αd, ηd) be as in Proposition 34. Then there exists
ν > 0 such that if Wt = W d,η

t is the online SGD with step size η, we have for every γ > 0,

lim
d→∞

inf
w0:m(w0)≥γ/dr

Pw0

(
τ+ν < αd

)
= 1.

where, we recall, τ+ν is the stopping time inf{t : mt > ν}.

Proposition 34. Suppose that Assumptions Aϱ and B hold and that the population loss has infor-
mation exponent k ≥ 3. Let D = Dd and ϵ = O(d1+(k−3)r), and suppose α = αd is of at most
polynomial growth in d, and η = ηd is such that αη2 ≤ ϵ and for some K > 0,

η ≤ η̄d(k) :=
akγ

k−2

KL̄dr(k−2) log d
. (C.3)

Then for every γ > 0 and every T ≤M := αd satisfying

T ≤ d2(1−r)γ2

D2η2
=: t̄ , (C.4)

online SGD with step-size η satisfies the following as d→∞ for some ν > 0, uniformly over the
choice of D, ϵ,K: there exists a constant C(C1, ak, ak+1) > 0 such that

inf
w0∈Eγ/dr

Pw0

(
mt ≥

m0

2
+

ηak
8d

t−1∑
j=0

mk−1
j ∀t ≤ τ−γ/2dr ∧ τ+ν ∧ T

)
≥ 1− C

D2
− o(1) . (C.5)

Proposition 35 (Weak recovery). Under the assumptions of Proposition 34, for α ≳ d2r(k−2) log d
and η ≤ η̄(k) satisfying αη2 ≤ ϵ for ϵ = O(d1+(k−3)r), there exists ν0(ϱ, ak, ak+1) > 0 such that
for every ν < ν0, for every γ > 0, we have

lim
d→∞

inf
w0∈Eγ/dr

Pw0

(
τ+ν ≤ t̄ ∧M

)
= 1 .

Corollary 36. We can weakly recover the single-index model with online SGD initialized at θ with
sample complexity

n = αd = Õ(d2r(k−2)+1).

C.2.1. PROOFS OF PROPOSITIONS 34 AND 35

We need to adapt the proofs of the bounds of all the different components appearing in the decompo-
sition of the alignment mt. Without loss of generality, we assume that u⋆ = e1, the first vector of
the canonical basis. From [5], we have the inequality

mt ≥ mt−1 −
η

d
⟨∇Φ(Wt−1), e1⟩ −

η

d

〈
∇Ht(Wt−1), e1

〉
− η2

d
Lt1{Lt<L̂}|mt−1| (C.6)

− η2

(
A

d2
+

1

d
Lt1{Lt≥L̂}

)
|mt−1| − η3

(
A

d2
+

Lt

d

)(∣∣∣∣⟨∇Φ(Wt−1), e1⟩
d

∣∣∣∣+
∣∣∣∣∣
〈
∇Ht(Wt−1), e1

〉
d

∣∣∣∣∣
)
,

(C.7)
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where A is a constant depending only on ak, ak+1 and Lt :=
∥∥∥ 1√

d
∇Ht(Wt−1)

∥∥∥2. Let us start by
controlling the higher order corrections that arise from the projection on the sphere of the parameters
at each iteration of the algorithm. The bounds do not change much, except carefully pick L̂.
Observe that for every ν < 1/2, for every w ∈

{
w : m(w) ∈ [0, ν]

}
,

⟨∇m(w), e1⟩ = (e1 − ⟨w, e1⟩w) = 1−m(w)2 ≥ 1− ν2 ≥ 1/2.

Then there exists ν0(ϱ, ak, ak+1) > 0 such that for all ν < ν0, for all x ∈
{
w : m(w) ∈ [0, ν]

}
,

1

4
akm(w)k−1 ≤ −⟨∇Φ(w), e1⟩ ≤

3

2
akm(w)k−1.

Lemma 37. Let ν, γ > 0 with ν < 1/2. For all K > 0, for all η < η̄d(k), for k ≥ 2,

∀w ∈ A :=
{
w : m(w) ∈

[ γ

2dr
, ν
]}

,
η2

d
|m(w)| ≤ η

d
2k−2ak

|m(w)|k−1

KL̄ log d
.

Proof. Since w ∈ A and given Equation (C.3), we have

η2|m(w)| ≤ ak
KL̄ log d

· η|m(w)| ·
( γ

dr

)k−2
≤ ak

KL̄ log d
η|m(w)|k−1,

where the last inequality follows from the fact that |m(w)| > γ
2dr .

Lemma 38. Suppose that αη2 ≤ ϵ for some ϵ = O(d1+(k−3)r), and let L̄ be as in Equation (C.2).
There exists C = C(L̄, A,C1, C2) > 0 such that the following holds uniformly over w0 ∈ Sd−1 :

Pw0

(
sup
t≤M

η3
t−1∑
j=0

(A
d2

+
Lj+1

d

)(∣∣∣∣⟨∇Φ(Wj), e1⟩
d

∣∣∣∣+
∣∣∣∣∣
〈
∇Hj+1(Wj), e1

〉
d

∣∣∣∣∣
)

>
γ

10dr

)
≤ Cϵη

γd1−r
,

(C.8)

Pw0

(
sup
t≤M

η2
t−1∑
j=0

(A
d2

+
Lj+11{Lj+1<L̂}

d

)
|m(Wj)| >

γ

10dr

)
≤ Cϵdr

L̂1+ι/4γ
. (C.9)

Proof. We start by proving the first bound, by using Markov’s inequality and Cauchy-Schwarz
inequality.

Pw0

(
sup
t≤M

η3
t−1∑
j=0

(A
d2

+
Lj+1

d

)(∣∣∣∣⟨∇Φ(Wj), e1⟩
d

∣∣∣∣+
∣∣∣∣∣
〈
∇Hj+1(Wj), e1

〉
d

∣∣∣∣∣
)

> λ

)

≤ Mη3

λd2
sup
w

E

[
|∇H(w)|2

d
+

A

d

](
|⟨∇Φ(w), e1⟩|+ |⟨∇H(w), e1⟩|

)

≤ αdη3

λd2

√√√√sup
w

E

[∣∣∣∣∇H(w)

d

∣∣∣∣4
]√

sup
w
|⟨∇Φ(w), e1⟩|2 + sup

w
|⟨∇H(w), e1⟩|2

≤ αdη3

λd2

√
L̄+

A2

d2
·
√

A+ C1.
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Take λ = γ
10dr and use αη2 ≤ ϵ, which yields the upper bound

dr−1ηϵ

γ

√√√√(L̄+
A2

d2

)
(A+ C1).

For the second bound, we also use Markov’s and Cauchy-Schwarz inequalities. To ease notations,
denote Lj+11{Lj+1<L̂} by L̃j+1.

Pw0

(
sup
t≤M

t−1∑
j=0

η2

(
A

d2
+

L̃j+1

d

)
|mj | > λ

)
≤ Pw0

(
η2

M−1∑
j=0

L̃j+1

d
> λ− Aϵ

d

)
.

By Markov’s inequality,

Pw0

(
M−1∑
j=0

L̃j+1

d
> Λ

)
≤ M

Λ
sup
j≤M

Ew0

[
L̃j+1

]

≤ M

Λ

√√√√sup
w

E

(∣∣∣∣ 1√
d
∇H(w)

∣∣∣∣4
)
· sup

w
P

(∣∣∣∣ 1√
d
∇H(w)

∣∣∣∣2 > L̂

)

≤ αd

Λ

√√√√√√
L̄ sup

w

E

(∣∣∣ 1√
d
∇H(w)

∣∣∣4+ι
)

L̂2+ι/2
≤ αd

Λ

L̄

L̂1+ι/4
.

By setting Λ = d
η2

(
λ− Aϵ

d

)
with λ = γ

10dr , the left-hand side in Equation (C.9) is bounded by

Cϵdr

L̂1+ι/4γ
,

for some C(A, L̄) > 0.

By setting L̂ = d1+(k−2)r, we can ensure that the term in Equation (C.9) vanishes as d goes
to infinity. By summing over all times t ≥ 1, and plugging Lemma 37, as well as Lemma 38 into
the inequality given by Equations (C.6) and (C.7), we obtain that uniformly over w0 ∈ Sd−1, with
probability 1− od(1),

mt ≥
4

5
m0 +

t−1∑
j=0

ηak|mj |k−1

4d

(
1−

Lj+11{Lj+1<L̂}

KL̄ log d

)
− η

d

t−1∑
j=0

〈
∇Hj+1(Wj), e1

〉
, ∀t ≤ τ−γ

2dr
∧ τ+ν .

(C.10)

Proposition 39. Let L̂ = d1+(k−2)r. For k ≥ 2, if αη2 ≤ ϵ for some ϵ > 0, η ≤ η̄d(k), and α is at
most polynomial in d, then for every γ > 0,

lim
d→∞

inf
w0

Pw0

( t−1∑
j=0

ηak|mj |k−1

4d

(
1−

Lj+11{Lj+1<L̂}

KL̄ log d

)
≥ − γ

10dr
+

t−1∑
j=0

ηak|mj |k−1

8d
, ∀t ≤M

)
= 1.

Moreover, this limit holds uniformly over choices of ϵ > 0.
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Proof. The strategy of the proof is to define a submartingale, and control its conditional second
moment, as well as its martingale increments, to use a martingale inequality due to Freedman. To ease
notations, denote Lj+11{Lj+1<L̂} by L̃j+1. It suffices to prove the following: for L̂ = d1+(k−2)r,
and α at most polynomial in d with αη2 ≤ ϵ for some ϵ > 0, we have for every γ > 0,

lim
d→∞

sup
w0∈Sd−1

Pw0

(
inf
t≤M

t−1∑
j=0

ηak|mj |k−1

4d

(1
2
− L̃j+1

KL̄ log d

)
< − γ

10dr

)
= 0.

Fix any w0 ∈ Sd−1.

Pw0

(
inf
t≤M

t−1∑
j=0

ηak|mj |k−1

4d

(1
2
− L̃j+1

KL̄ log d

)
< − γ

10dr

)

≤M sup
t≤M

Pw0

( t−1∑
j=0

ηak|mj |k−1

4d

( 1

log d
− L̃j+1

KL̄ log d

)
< − γ

10dr

)
.

Let Zt :=
∑t−1

j=0
ηak|mj |k−1

4d

(
1

log d −
L̃j+1

KL̄ log d

)
. Since for all j,mj is Fj−measurable and

E[L̃j+1|Fj ] ≤ sup
w

E

[∣∣∣∣ 1√
d
∇H(w)

∣∣∣∣2
]
≤ L̄,

we have that for all K ≥ 1, Zt is an Ft−submartingale. The martingale increments are bounded as
follows.

|Zt − Zt−1| =
ηak|mt−1|k−1

4d

∣∣∣∣∣ 1

log d
− L̃t

KL̄ log d

∣∣∣∣∣ ≤ ηak
4d log d

(1 ∨ L̂

KL̄
) ≤ ηak

4d log d

(
1 +

L̂

L̄

)
.

For the conditional variances, we have

E[(Zt − Zt−1)
2|Ft−1] =

( ηak
4d log d

)2
E

[
|mt−1|2(k−1)

(
1− L̃t

KL̄

)2∣∣∣∣∣Ft−1

]

≤
( ηak
4d log d

)2(
1 +

1

L̄2
E

[
L̃2
t

∣∣∣∣∣Ft−1

])
≤
( ηak
4d log d

)2(
1 +

1

L̄2
E

[
L2
t

∣∣∣∣∣Ft−1

])

=
( ηak
4d log d

)2(
1 +

1

L̄2

[∣∣∣∣ 1√
d
∇Ht(Xt−1)

∣∣∣∣4
∣∣∣∣∣Ft−1

])
≤
( ηak
4d log d

)2(
1 +

1

L̄

)
≤
( ηak
4d log d

)2
a.s.

Therefore, by Freedman’s inequality:

sup
t≤M

Pw0

( t−1∑
j=0

ηak|mj |k−1

4d

( 1

log d
− L̃j+1

KL̄ log d

)
≥ − γ

10dr

)
≤ exp

(
−γ/100d2r

M
(

ηak
4d log d

)2
+ 1

3
ηak

4d log d ·
γ

10dr

(
1 + L̂

L̄

)).
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Now there remains to choose L̂ appropriately, to ensure that the bound is o( 1
M ), so that the overall

bound is o(1). This constrains us to take either ϵ = Ω(d1−2r+µ log d) or ηL̂ = Ω(d1−r+µ), for some
µ > 0. Assuming we take the largest η = Θ(d−r(k−2)/ log d), taking L̂ = d1+(k−2)r ensures we
have the right bound, irrespective of ϵ > 0.

Proposition 40. If C1 is as in Assumption B, for every λ > 0, we have

sup
T≤M

sup
w0∈Sd−1

Pw0

max
t≤T

1√
T

∣∣∣ t−1∑
j=0

〈
∇Hj+1(Wj), e1

〉∣∣∣ ≥ λ

 ≤ 2C1

λ2
, (C.11)

Proof. Let M̃t =
dMt
η . It is a martingale with variance

sup
w0∈Sd−1

Ew0

[ t−1∑
j=0

(〈
∇Hj+1(Wj), e1

〉)2]
≤ t sup

w
E
[(
⟨∇H(w), e1⟩

)2]
≤ C1t.

By Doob’s maximal inequality,

sup
w0

Pw0

(
sup
t≤T

∣∣∣M̃t > λ
√
T
∣∣∣) ≤ 2 supw0

Ew0 [M̃
2
t ]

λ2t
≤ 2C1

λ2
.

Therefore, by Proposition 40, for all b > 0,

sup
T≤M

sup
w0∈Sd−1

Pw0

max
t≤T

η

d

∣∣∣ t−1∑
j=0

〈
∇Hj+1(Wj), e1

〉∣∣∣ ≥ ηb
√
T

10d

 ≤ 200C1

b2T
. (C.12)

We can now prove Proposition 34 by combining Equation (C.10), Proposition 39, and Proposition 40.
For every γ > 0 and ν > ν0(ϱ, ak, ak+1),

lim
d→∞

inf
w0∈Eγ/dr

Pw0

(
mt ≥

7

10
m0 +

t−1∑
j=0

ηak|mj |k−1

8d
− η

d

t−1∑
j=0

〈
∇Hj+1(Wj), e1

〉
, ∀t ≤ τ−γ

2dr
∧ τ+ν ∧M

)
= 1.

Furthermore, if D = Dd, η ≤ η̄d(k) and t̄ are as in Proposition 34, for all w0 ∈ Eγ/dr , if T ≤ t̄,
then

ηD
√
T

10d
≤ γ

10dr
≤ m0

10
.

Therefore, by applying the directional error martingale bound (Equation (C.12)) with b = D, we
obtain the desired bound.
Proof. [Proof of Proposition 35] Observe the following discrete analogue of Bihari-LaSalle inequality:
suppose that (mt)t∈N is a sequence satisfying, for some k ≥ 3 and a, b > 0,

mt ≥ a+

t−1∑
j=0

bmk−1
j then mt ≥

a

(1− (k − 2)bak−2t)1/(k−2)
.
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Therefore, for a = m0
2 , b = ηak

8d , we obtain

mt ≥
m0

(1− (k − 2)ηak8d mk−2
0 t)1/(k−2)

=: gk(t).

gk(t) ≥ ν provided

νk−2
(
1− (k − 2)

ηak
8d

( γ

dr

)k−2
t
)
= o
(( γ

dr

)k−2)
.

Thus, for t ≥ t⋆ =
⌈

8d
ηak(k−2)γk−2d

r(k−2)
(
1− K

dr(k−2)

)⌉
, for K large enough, we get that gk(t) ≥ ν.

The only remaining thing is to ensure t⋆ ≤ t̄ ∧M. t⋆ ≤ t̄ always holds for η ≤ η̄(k). To ensure
t⋆ ≤M = αd, we must have

α ≳ dr(k−2)/η.

By optimizing over the values for η, and taking into account the constraint that αη2 ≤ ϵ =

O(d1+(k−3)r), we must pick η = Θ
(
d−r(k−2)

log d

)
, and hence,

α ≳ d2r(k−2) log d.

Corollary 41. Under Assumptions A and B, for η = η̄(k), α ≳ d2r(k−2) log d there exists ν0(ak, ak+1),
such that for all ν < ν0, for every γ > 0, we have

lim
d→∞

inf
w0∈Eγ/dr

Pw0

(
τ+ν ≤ t̄ ∧M

)
= 1.

Hence the sample complexity M = O(d2r(k−2)+1 log d) is sufficient for weak recovery of the single-
index model.
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