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ABSTRACT

In Mobility-on-Demand (MoD) systems, drivers’ order acceptance behaviour di-
rectly influences matching, pricing, and thus overall system efficiency. Traditional
discrete choice models rely on pre-specified utility functions and error structures.
This introduces specification risk and limits their ability to capture complex non-
linear interactions, and correlated choices, reducing effectiveness for modelling
driver decisions. Meanwhile, behavioural data often come from stated-preference
(SP) surveys; these datasets are typically small-scale and based on hypothetical
responses, which can be subjective and limit external validity, reducing predictive
performance and generalisability. This paper proposes LLM-OAP, a novel frame-
work that integrates large language model (LLM)-based data augmentation with
machine learning (ML) to improve the estimation of drivers’ order acceptance be-
haviour. Our method leverages an LLM to generate synthetic samples based on
the real SP data and employs a curation scheme to mitigate implausibility, reduce
bias, and maintain diversity. The augmented dataset is used to train ML models
beyond fixed utility specifications. Evaluations on two types of SP datasets (cov-
ering full- and limited-information settings) show that our framework significantly
enhances the performance of state-of-the-art ML models in order acceptance be-
haviour estimation, while maintaining good generalizability and explainability.

1 INTRODUCTION

Mobility-on-Demand (MoD) services such as ride-hailing and ride-sharing offer flexible access to
transportation, with the potential to improve resource utilization and reduce congestion (Barbosa
et al., 2018). Their operational performance, however, hinges on whether drivers accept the matched
orders, because acceptance behaviour determines how effectively the platform matches riders to
available vehicles. In practice, drivers operate as independent contractors and make choices based
on personal preferences and constraints: they may accept or reject assigned orders, or actively seek
requests they expect to be more profitable or convenient (Ashkrof et al., 2022; Urata et al., 2021).
These behavioural decisions (i.e., choices) can disrupt supply-demand balance, affect service relia-
bility, and complicate downstream optimisation.

Modeling and predicting driver behaviour is therefore essential for designing effective and efficient
operational strategies like matching and pricing (Gao et al., 2022; Ricard & Bierlaire, 2025). Previ-
ous studies have approached this challenge using qualitative methods, e.g., focus group interviews
(Ashkrof et al., 2020), and quantitative tools. e.g., discrete choice models (DCMs) (Ben-Akiva &
Lerman, 1985; Train, 2009; Ashkrof et al., 2022). These models are typically estimated using data
from stated preference (SP) surveys, where respondents are presented with hypothetical choice sets
and asked to indicate their preferred option (Louviere et al., 2000; Ashkrof et al., 2022). This setup
allows researchers to capture driver behavioural decisions under controlled conditions and explore
the influence of specific attributes on choices.

However, DCMs rely on strong assumptions about the functional form of utility, typically linear
relationships between observed variables and choices, which often fail to capture internal nonlinear-
ities or more intrinsic interactions, leading to low prediction accuracy (Sifringer et al., 2020; Wang
et al., 2021). They also inherit the independence of irrelevant alternatives (IIA) property of standard
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models like the multinomial logit, which may not hold in ride-hailing contexts where alternatives
often share similar attributes. In such cases, the unobserved components of utility across choices are
correlated, violating the IIA assumption (Torres et al., 2011; Han et al., 2022; Sifringer et al., 2020).

Machine learning (ML) approaches can address these limitations by capturing complex, nonlin-
ear behavioural patterns without relying on predefined utility functions. However, training strong
ML predictors typically relies on large-scale, high-resolution behavioural datasets, which are rarely
available in MoD. The reason is that conducting large SP surveys is manually costly and time con-
suming, and issues like respondent fatigue and hypothetical bias further limit their utility for data-
hungry ML models (Tjuatja et al., 2024). Although ML models have the potential in learning rich
behavioural patterns, their efficacy is practically constrained by data scarcity and potential distribu-
tional gaps between hypothetical SP responses and operational settings.

To that end, we propose LLM-OAP, an LLM-based data-augmentation framework for enhancing ML
performance in order acceptance prediction. To be specific, we leverage an LLM to generate struc-
tured accept/reject order samples conditioned on feature-aware persona grouping and behavioural
summaries, thereby enriching the original dataset’s coverage and diversity. Then, a curation scheme
is designed to further refine the synthetic data to improve its realism and validity. We train down-
stream ML predictors on the augmented data and evaluate on two types of SP datasets. LLM-OAP
consistently improves predictive performance over strong baselines. Ablation studies further demon-
strate that each key component of the framework contributes critically to these performance gains.

2 RELATED WORKS

This section reviews the relevant literature in two areas: (1) behaviour estimation in MoD, and (2)
data augmentation techniques.

Mobility Behaviour Estimation Discrete choice models (DCMs) are widely used to estimate be-
haviours in MoD systems. Classical forms such as multinomial logit and probit relate observable
attributes (e.g., trip distance, waiting time, dynamic pricing) to accept/reject decisions (Ben-Akiva
& Lerman, 1985; Train, 2009). However, linear-in-parameters utilities and, for logit models, the
independence of irrelevant alternatives (IIA) assumption can be restrictive when alternatives share
latent components or interact nonlinearly, which limits prediction under correlation (Munizaga et al.,
2000). Extensions (mixed/nested logit, latent-class models) relax IIA or add heterogeneity (Train,
2009), yet they still rely on strong utility and error-structure assumptions and struggle with high-
dimensional or unstructured inputs. Tree-based methods (e.g., XGBoost (Chen & Guestrin, 2016))
and deep neural networks such as Tabular ResNet (Kadra et al., 2021) and Ensemble Hypernet (Mai
et al., 2025) avoid fixed utility forms and can capture more intricate interactions. However, their
performance is bounded by data: labels are scarce and imbalanced, and most datasets are small,
hypothetical SP surveys.

Traditional Data Augmentation Oversampling and resampling techniques are two commonly used
techniques in traditional data augmentation, such as SMOTE (Chawla et al., 2002), ADASYN (He
et al., 2008), MGVAE (Ai et al., 2023), and LITO (Yang et al., 2024), which balance class distri-
butions by interpolating between minority samples. Other approaches rely on feature engineering
and perturbation, including noise injection or attribute swapping, to increase data variability without
altering the underlying label distribution. These methods are computationally efficient and easy to
implement, but they often fail to capture complex feature dependencies in high-dimensional datasets.

On the other hand, generative models learn the joint distribution of features to produce synthetic
rows, and often deliver better performance than sampling techniques. Recent tabular generators in-
clude CTGAN (Xu et al., 2019), CTAB-GAN (Zhao et al., 2021), TabGAn (Ashrapov, 2020), and
OCTGAN (Kim et al., 2021), as well as diffusion-based methods such as TabDDPM (Kotelnikov
et al., 2023), TabDiff (Shi et al., 2024), and CausalDiffTab (Zhang et al., 2025), which have ad-
vanced fidelity for continuous features and mixed data. While these methods have achieved progress
in modeling continuous attributes, they typically require extensive fine-tuning and hyperparameter
optimization to remain stable. Moreover, their performance often degrades when handling cate-
gorical variables or improving the representation of minority classes, limiting their effectiveness in
real-world applications.
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LLMs for Data Augmentation Large language models (LLMs) have shown great promise in syn-
thetic data generation (Brand et al., 2023; Mirchandani et al., 2023; Gruver et al., 2023; Xu et al.,
2024). Unlike traditional data augmentation approaches, LLMs can be guided through prompt-based
in-context learning to produce structured data that incorporates semantic knowledge. For instance,
EPIC employs CSV-style prompts, class balancing, and variable mapping to generate high-fidelity
synthetic tables (Kim et al., 2024). CuratedLLM highlights the synergy of generation and curation,
achieving strong performance in ultra low-data regimes (Seedat et al., 2023). Pred-LLM (Nguyen
et al., 2024) further demonstrates the feasibility of LLMs to produce coherent tabular structures
across diverse domains. In mobility choice modeling, Tzachristas et al. (2025) employ personalized
prompts to simulate behavioural preferences at scale, improving realism in synthetic surveys but still
facing challenges in feature-rich datasets.

Despite these advances, current LLM-based augmentation methods face several limitations. First,
most rely on static prompt designs that do not adapt to heterogeneous feature spaces, making them
less effective when handling high-dimensional or imbalanced tabular datasets. Second, quality con-
trol is often limited to one-off post-processing strategies (e.g., similarity checks, re-ranking), which
cannot systematically correct generation biases. Moreover, without mechanisms such as feature-
aware grouping or behaviour summarization, generated samples may lack alignment with underlying
behavioural patterns. Finally, insufficient context diversity often leads to repetitive or logically in-
consistent outputs, including hallucinations (Han et al., 2024; Peykani et al., 2025). In this work, we
propose LLM-OAP, an LLM-based augmentation framework that combines feature-aware persona
grouping, behaviour-informed generation with confidence- and uncertainty-based curation, thereby
overcoming the limitations of static prompting and one-off post-processing strategies while improv-
ing fidelity and robustness of synthetic data.

3 METHODOLOGY

In this section, we first provide an overview of the proposed LLM-OAP framework, and then de-
scribe how an LLM is leveraged to perform group-based data augmentation. Next, we introduce
the designed curation scheme based on confidence and uncertainty evaluation to filter low-quality
samples, yielding an augmented dataset that is reliable and effective for training downstream models.

3.1 OVERALL FRAMEWORK

We use a cross-sectional stated-preference dataset of ride-hailing drivers from the United States
and the Netherlands (Ashkrof et al., 2022). The dataset contains roughly 3,000 order acceptance
records from hundreds of drivers across several cities, each with about 50 features spanning driver
attributes (age, working hours, historical acceptance rate, education) and order context (location,
pick-up distance, estimated fare, waiting time, dynamic tip). Variables are a heterogeneous mix of
continuous and categorical types. The details of this dataset are provided in Appendix A.1.

Figure 1: The illustration of LLM-OAP framework.
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Given the dataset of drivers’ order acceptance, the overall framework (shown in Figure 1) proceeds
as follows. First, the raw dataset is divided into training and testing sets, with the testing set pre-
served for final evaluation and the training set used for augmentation. Second, the LLM performs
group-based data augmentation through four sequential steps: feature-aware persona grouping, be-
haviour summary and order synthesis within each group, consistency check, and decision simulation.
These steps progressively generate synthetic dataset. The synthetic dataset is then evaluated in con-
fidence and uncertainty by a filter trained with the original training set, and low-quality samples are
discarded to further improve the overall quality of the dataset. Finally, we produce an augmented
dataset characterized by both high fidelity and diversity, and use it to train ML models such as
XGBoost for order acceptance prediction.

3.2 GROUP-BASED DATA AUGMENTATION

Before augmentation, we preprocess the data to optimize feature organization, enabling more ef-
fective utilization by the LLM. Let the original feature set be F = {f1, . . . , fd}, where d is the
number of features. We partition features into environmental features Fenv (e.g., spatiotemporal
state, passenger attributes, and order properties) and individual-specific features Find (e.g., driver
age, cumulative working hours, part-time status), with Fenv ∩ Find = ∅. We reorder the records
in the dataset according to the feature values in Fenv and Find, such that Fenv precede Find (see
Appendix A.1 for more details of reordering.). In addition, the irrelevant features (e.g., Block: the
survey block identifier) are removed, since they neither reflect drivers’ behavioural patterns nor pro-
vide meaningful contextual information. The resulting reduced feature set is denoted as F ′ ⊆ F and
the final preprocessed dataset as D = {(xi, yi)}Ni=1, where xi ∈ Rd′

with d′ = |F ′| and yi ∈ {0, 1}
indicates acceptance (1) or rejection (0). Building upon the organized dataset, we propose a group-
based augmentation strategy that progressively generates high-quality synthetic records through four
sequential steps: feature-aware persona grouping, behaviour summary and order synthesis, consis-
tency check, and decision simulation.

Feature-aware Persona Grouping To capture the heterogeneity in drivers’ order acceptance pref-
erence, we first compute permutation feature importance scores I(fj) for each feature fj ∈ F ′ (A
detailed description of feature importance is given in Appendix A.2.). After that, we construct a
small set of four categorical features:

F∗ = {fj1 , fj2 , fj3} ∪ {gage}

where gage = bin(age) is an additional feature column we manually created. bin(·) means grouping
drivers’ ages (ranging from 20 to 90 in the dataset) into 10-year bins. The remaining three features
{fj1 , fj2 , fj3} ⊆ F ′ are randomly selected from the top 10 features ranked by I(fj). The number of
features in F∗ balances their importance (i.e., effects in the order acceptance) and the granularity of
grouping. For example, including more features reduces the number of records within each group,
potentially diminishing the quality of the records generated by the LLM. In this paper, we randomly
select Beginners (indicator of drivers with less than 12 months of experience), NY CA (indicators
of locations, New York or California), and Part (indicator of part-time driver) as the features.

Given the selected categorical features, each driver’s records are assigned to a persona group Gk.
Formally, the dataset D is partitioned into K = 32 disjoint persona groups:

D =

K⋃
k=1

Gk, Gk ∩Gk′ = ∅ ∀ k, k′ ∈ {1, . . . ,K}, k ̸= k′.

where K is determined by the Cartesian product of category values across F∗, such that each group
corresponds to a unique combination of categorical attributes. Groups with no assigned records are
discarded, ensuring that only valid persona groups are retained. For each persona group Gk, we
compute the acceptance rate

rk =
1

|Gk|
∑

(xi,yi)∈Gk

1(yi = 1),

and rejection rate 1 − rk, which together with persona attributes F∗
k , construct the prompt to guide

the subsequent augmentation process.
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Behaviour Summary and Order Synthesis For each persona group Gk, we provide the LLM
with: (1) the group-level acceptance/rejection rates (rk, 1 − rk); (2) persona attributes F∗

k ; (3)
a balanced set of examples Hk = {(xi, yi)}, which is randomly drawn from the current per-
sona group, where the number of accepted and rejected records are approximately equal, i.e.,
|{yi = 1}| ≈ |{yi = 0}|. Through contextual learning, we prompt the LLM to generate natural
language summaries that capture the behavioural tendencies of a group (e.g., ”more likely to accept
short-distance orders with low waiting times” or ”prefers evening and nighttime orders and responds
more positively to peak-hour requests”). At the same time, owing to the complexity and heteroge-
neous constraints of the features such as driver age, cumulative working hours, and guaranteed tips,
we avoid using the LLM completion mode (i.e., provide LLM with some examples and ask it to
automatically continue writing based on the examples without additional instructions), which risks
producing implausible values due to limited example coverage. Instead, we adopt traditional explicit
instructions, such as ”generate n reasonable, realistic ride-hailing orders without labels based on the
above information”, to guide the LLM to synthesize new order records X̃k for each group k, without
labels, i.e., acceptance (1) or rejection (0):

X̃k = {x̃1, . . . , x̃m}, x̃j ∈ R|F ′|.

Such explicit prompting helps avoid infeasible attribute combinations (e.g., long-distance trips
paired with low fares). The complete prompts are provided in Appendix A.5.

Consistency Check To ensure the logical validity and structural consistency of the generated
records, we design an ID-attribute consistency check mechanism to mitigate the inherent instability
of LLM outputs. Specifically, let Ik = {(id, aid)} denote the original set of driver IDs with their
individual-specific attributes (i.e., features) in group Gk. For each synthesized record (ĩd, ãid) ∈ X̃k,
if ĩd /∈ Ik, the record is discarded; if ĩd ∈ Ik but ãid ̸= aĩd, then we update the ãid by replacing
every mismatched individual-specific attribute in ãid with the corresponding value in aĩd.

We predefine a total target number of synthetic records for the training set and the number of records
generated in each group should be proportionally to its record ratio among the training set. We count
the number of valid synthetic records. If it falls short of the target number for a group, we repeat the
augmentation steps until the required number of records are generated.

Decision Simulation Finally, we provide the LLM with both the persona summaries and the syn-
thesized records (without labels), prompting it to simulate acceptance/rejection decisions that are
consistent with the persona’s behavioural tendencies for each group. The simulated decisions (i.e.,
labels) are parsed from the natural language, integrated with attributes, and structured into the train-
ing set. By the group-based data augmentation, the synthesized records preserve consistency with
both attributes and group-level behavioural tendencies.

3.3 DATA CURATION

Although the group-based data augmentation process generates diverse samples, not all of them
are of sufficient quality. To address this issue, we introduce a data curation scheme for further
improving the synthesis. Specifically, we train a filtering model pθ (XGBoost in this paper) on the
original training set, which is subsequently adopted to estimate both the confidence and uncertainty
of each synthetic sample (Kwon et al., 2020; Seedat et al., 2022). For each synthetic sample (x̃, ỹ),
the confidence is defined as:

Conf(x̃) =
1

E

E∑
e=1

p
(e)
θ (ỹ | x̃), (1)

where E denotes the number of checkpoints obtained during the training of the filtering model , and
p
(e)
θ (ỹ | x̃) represents the probability assigned to label ỹ when predicting sample x̃ under the model

p
(e)
θ at checkpoint e. A higher confidence value indicates that the model assigns higher certainty to

its prediction. The uncertainty is estimated by averaging the variance of the derived probabilities
across checkpoints:

Unc(x̃) =
1

E

E∑
e=1

(
p
(e)
θ (ỹ | x̃) · (1− p

(e)
θ (ỹ | x̃))

)
, (2)

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

which reflects the degree of inconsistency or variability in the model’s predictions for a sample. A
higher value indicates that the model is less certain about the assigned label.

With the confidence and uncertainty, synthetic samples are retained only if they satisfy the condition:

Conf(x̃) ≥ τc ∧ Unc(x̃) ≤ τu, (3)

where τc and τu denote the thresholds for confidence and uncertainty, respectively. Using the above
condition, we generally keep high-confidence and low-uncertainty samples. We also preserve a
small fraction of samples a high uncertainty to enhance data diversity.

The proposed data curation ensures that only reliable and representative LLM-generated samples
are preserved, thereby improving the overall fidelity of the final augmented dataset.

4 EXPERIMENTS

4.1 SETUP

Our framework employs the QWEN3-Plus model as the LLM component (Performance under other
LLMs is detailed in Appendix A.3.). All experiments were conducted using three different random
seeds, with results averaged to ensure robustness. Computations were carried out on a laptop con-
figured with an AMD Ryzen 9 7845HX 3.00GHz CPU, 64GB of RAM, and an NVIDIA GeForce
RTX 4060 laptop-grade GPU.

Datasets Following Ashkrof et al. Ashkrof et al. (2022), we use two platform information-sharing
settings for the same order context for predicting drivers’ order acceptance decisions. Under Base-
line Information Provision (BIP), drivers decide to accept or reject an order using only the informa-
tion currently provided by the platform, e.g., their current spatiotemporal status, passenger charac-
teristics, order rating and surge pricing. Under Additional Information Provision (AIP) , the platform
reveals extra information for the same order, e.g., estimated trip fare, guaranteed tips and estimated
delay, giving drivers a second opportunity to decide. We construct two datasets aligned with these
scenarios and evaluate our method on both.

The two settings represent distinct and practically relevant decision conditions. AIP provides a high
information setting that includes monetary and operational attributes; it shows what our approach
can achieve when extra features are available. BIP removes those added attributes and is therefore a
reduced or limited information setting; it tests whether our approach still improves predictive perfor-
mance when the feature space is restricted. Because AIP contains more features, we report results
for AIP first to establish a high-information reference, and then report BIP to assess robustness when
some important features are withheld.

Evaluation Metrics We evaluate the proposed method on two dimensions: classification perfor-
mance and the uncertainty quantification quality. To account for class imbalance between “accept”
and “reject” decisions, we report overall accuracy (ACC), Area Under the ROC Curve (AUC), and
Area Under the Precision–Recall Curve (AUCPR). These metrics capture predictive performance
across thresholds, with AUCPR being particularly informative under imbalance. We further assess
the quality of the predicted probabilities using Expected Calibration Error (ECE), the Brier Score
(BS), and Negative Log-Likelihood (NLL) Gneiting & Raftery (2007).

Baseline Models Baseline models include a linear model: logistic regression (LR), and nonlin-
ear models, including decision trees (DT), Tabular ResNet (TabResNet) (Kadra et al., 2021), XG-
Boost (Chen & Guestrin, 2016), Ensemble Hypernet (Ens Hyper) (Mai et al., 2025), and Support
Vector Machine (SVM). Among these models, we selected the best-performing ones as backbone
models, and conducted comparisons with Guided Persona-based AI Surveys (GPAIS) (Tzachristas
et al., 2025), CTAB-GAN (Zhao et al., 2021), TabDDPM (Kotelnikov et al., 2023), Curated LLM
(CLLM) (Seedat et al., 2023) and Pred-LLM (Nguyen et al., 2024).

4.2 DATASET AIP: HIGH-INFORMATION SETTING

Comparative Study We begin by evaluating LLM-OAP under dataset AIP, which provides richer
information for each order. This high-information setting provides a strong basis for assessing the

6
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Table 1: Performance comparison of different models on AIP scenario. “Backbone w/ Method”
means the backbone is trained on real data augmented with synthetic samples generated by Method.

Model ACC ↑ AUC ↑ AUCPR ↑ ECE ↓ BS ↓ NLL ↓
LR 0.7991 0.6357 0.2974 0.0359 0.1552 0.4844
DT 0.8121 0.7057 0.4295 0.0494 0.1414 0.4945
TabResNet 0.7929 0.7379 0.4644 0.1038 0.1546 0.4915
Ens Hyper 0.8102 0.7355 0.4439 0.0413 0.1404 0.4467
SVM 0.8246 0.7214 0.4547 0.0363 0.1369 0.4365
XGBoost 0.8146 0.7875 0.5305 0.0466 0.1289 0.4060
TabResNet w/ GPAIS 0.7683 0.6927 0.3915 0.1061 0.1662 0.5324
TabResNet w/ CTAB-GAN 0.7962 0.7458 0.4726 0.0662 0.1456 0.4661
TabResNet w/ TabDDPM 0.8073 0.7435 0.5065 0.0914 0.1445 0.4735
TabResNet w/ CLLM 0.8030 0.7489 0.5016 0.1001 0.1488 0.5006
TabResNet w/ Pred-LLM 0.8054 0.7492 0.4833 0.0886 0.1456 0.4759
TabResNet w/ LLM-OAP 0.8237 0.7765 0.5323 0.0475 0.1310 0.4245
Ens Hyper w/ GPAIS 0.7669 0.7135 0.3843 0.0792 0.1615 0.5026
Ens Hyper w/ CTAB-GAN 0.8112 0.7568 0.4915 0.0714 0.1394 0.4544
Ens Hyper w/ TabDDPM 0.8096 0.7514 0.5018 0.0731 0.1396 0.4597
Ens Hyper w/ CLLM 0.8064 0.7491 0.5070 0.0775 0.1408 0.4611
Ens Hyper w/ Pred-LLM 0.8146 0.7614 0.4962 0.0541 0.1363 0.4309
Ens Hyper w/ LLM-OAP 0.8266 0.7889 0.5435 0.0408 0.1278 0.4105
SVM w/ GPAIS 0.7649 0.6779 0.3348 0.1207 0.1660 0.5099
SVM w/ CTAB-GAN 0.8285 0.7516 0.5144 0.0420 0.1337 0.4211
SVM w/ TabDDPM 0.8232 0.7454 0.5069 0.0464 0.1334 0.4307
SVM w/ CLLM 0.8285 0.7455 0.4861 0.0463 0.1398 0.4455
SVM w/ Pred-LLM 0.8263 0.7534 0.5079 0.0409 0.1329 0.4276
SVM w/ LLM-OAP 0.8372 0.7745 0.5436 0.0309 0.1256 0.4065
XGBoost w/ GPAIS 0.8006 0.7282 0.4471 0.0523 0.1438 0.4487
XGBoost w/ CTAB-GAN 0.8276 0.7940 0.5435 0.0425 0.1269 0.4028
XGBoost w/ TabDDPM 0.8296 0.7967 0.5630 0.0413 0.1230 0.4027
XGBoost w/ CLLM 0.8309 0.7907 0.5484 0.0379 0.1261 0.4032
XGBoost w/ Pred-LLM 0.8304 0.7964 0.5605 0.0410 0.1246 0.3973
XGBoost w/ LLM-OAP 0.8396 0.8198 0.5894 0.0319 0.1194 0.3834

model’s predictive performance. As shown in Table 1, we evaluate LLM-OAP against serveral aug-
mentation baselines, including generative approach (CTAB-GAN), diffusion-based method (TabD-
DPM), and LLM-based methods (GPAIS, CLLM, and Pred-LLM), across four backbone models
(TabResNet, Ens Hyper, SVM and XGBoost). Each method generates 3,000 synthetic samples.
Compared to the strongest LLM-based baseline, such as Pred-LLM, LLM-OAP improves AUCPR
by 0.0289 on XGBoost. The quality of probabilistic predictions also improves, with consistent re-
ductions in ECE, BS, and NLL across all backbones. In fact, LLM-OAP outperforms all baselines
across all six evaluation metrics. These results indicate that LLM-OAP produces higher-quality
synthetic data and delivers stronger downstream gains.

Ablation Study To systematically quantify the contribution of each component of our method LLM-
OAP, we conduct ablation studies by isolating the effects of feature importance, persona grouping,
consistency check across four scenarios: S1: persona grouping is performed without feature impor-
tance; S2: grouping is entirely removed; S3: the consistency check is omitted; S4: the full version
of LLM-OAP.

As shown in Table 2, performance degrades noticeably when either feature-aware grouping or the
consistency check is removed, with S2 showing the most pronounced drop due to the loss of be-
havioural heterogeneity modeling. S1 performs better than S2 but still lags behind S4, indicating
that feature importance is crucial for forming balanced and informative persona groups. Similarly,
excluding the consistency check (S3) reduces sample reliability, leading to less stable results. By
contrast, the full framework (S4) consistently achieves the strongest outcomes across all metrics and
models, confirming that each component contributes meaningfully to the effectiveness of LLM-OAP.
Furthermore, we investigate the role of the curation scheme by varying the proportion of curated
samples retained. As shown in Figure 2(a), using all generated data without curation yields subop-
timal performance, while overly aggressive filtering reduces data diversity. Retaining around 30%
of high-confidence samples consistently achieves the best trade-off between fidelity and diversity,
leading to the strongest performance across metrics.
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Figure 2: Performance of various models with different curation proportions on AIP (a) and BIP (b).

Table 2: Ablation Studies on AIP scenario. S1: grouping without feature importance, S2: without
grouping, S3: without consistency check, S4: full version of LLM-OAP

Study Models ACC ↑ AUC ↑ AUCPR ↑ ECE ↓ BS ↓ NLL ↓

S1
TabResNet 0.8169 0.7517 0.5098 0.0581 0.1377 0.4384
Ens Hyper 0.8213 0.7621 0.5090 0.0603 0.1363 0.4386
SVM 0.8266 0.7490 0.5155 0.0602 0.1328 0.4333
XGBoost 0.8362 0.7955 0.5545 0.0432 0.1244 0.4015

S2
TabResNet 0.8015 0.7552 0.4761 0.0683 0.1450 0.4561
Ens Hyper 0.8044 0.7674 0.4883 0.0658 0.1403 0.4387
SVM 0.8030 0.7548 0.4787 0.0603 0.1396 0.4386
XGBoost 0.8141 0.7891 0.5235 0.0435 0.1294 0.4051

S3
TabResNet 0.8169 0.7517 0.5098 0.0581 0.1377 0.4384
Ens Hyper 0.8213 0.7621 0.5090 0.0603 0.1363 0.4386
SVM 0.8266 0.7490 0.5155 0.0602 0.1328 0.4333
XGBoost 0.8362 0.7955 0.5545 0.0432 0.1244 0.4015

S4
TabResNet 0.8237 0.7765 0.5323 0.0475 0.1310 0.4245
Ens Hyper 0.8266 0.7889 0.5435 0.0408 0.1278 0.4105
SVM 0.8372 0.7745 0.5436 0.0309 0.1256 0.4065
XGBoost 0.8396 0.8198 0.5894 0.0319 0.1194 0.3834

4.3 DATASET BIP: LIMITED-INFORMATION SETTING

Comparative study Compared to the AIP, which provides complete contextual information, the BIP
setting omits critical features such as trip fare, guaranteed tip, and traffic congestion, substantially
increasing the difficulty of learning drivers’ order acceptance preferences. This limited-information
setting presents a more challenging and realistic scenario, testing whether LLM-OAP can maintain
performance when important features are unavailable. As shown in Table 3, LLM-OAP achieves
the best or second-best performance across models and metrics in the more challenging BIP setting.
Compared with other methods, our approach yields larger gains, particularly in ECE, BS, and NLL,
confirming its sharper probability estimates under partial information.

Ablation Study The ablation setup follows the same design as the AIP, where we selectively remove
different components of LLM-OAP to assess their contributions. As shown in Table 4, removing
persona grouping (S2) causes the most significant degradation across all backbones. Excluding
feature importance guidance in grouping (S1) or skipping the consistency check (S3) also weakens
performance, though the impact is less severe. The full method (S4) consistently outperforms all
ablated versions. For the curation ratio, the results in Figure 2(b) show a trend consistent with AIP:
using the entire set of generated samples leads to inferior performance, whereas retaining about 30%
of the high-confidence data achieves the most favorable trade-off across metrics.
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Table 3: Performance comparison of different models on BIP scenario.
Model ACC ↑ AUC ↑ AUCPR ↑ ECE ↓ BS ↓ NLL ↓
LR 0.7086 0.6996 0.5062 0.0370 0.1889 0.5613
DT 0.7293 0.7321 0.5439 0.0573 0.1822 0.5927
TabResNet 0.7432 0.7525 0.5866 0.1159 0.1883 0.6100
Ens Hyper 0.7466 0.7644 0.5972 0.0594 0.1721 0.5203
SVM 0.7567 0.7521 0.6017 0.0442 0.1714 0.5211
XGBoost 0.7678 0.8034 0.6353 0.0501 0.1607 0.4919
TabResNet w/ GPAIS 0.6927 0.6710 0.4712 0.1220 0.2155 0.6500
TabResNet w/ CTAB-GAN 0.7433 0.7551 0.5864 0.0927 0.1833 0.5754
TabResNet w/ TabDDPM 0.7548 0.7633 0.5919 0.1027 0.1821 0.5882
TabResNet w/ CLLM 0.7562 0.7807 0.6074 0.1214 0.1873 0.6010
TabResNet w/ Pred-LLM 0.7600 0.7824 0.6062 0.1089 0.1823 0.5872
TabResNet w/ LLM-OAP 0.7698 0.8030 0.6469 0.0697 0.1655 0.5158
Ens Hyper w/ GPAIS 0.6999 0.6832 0.4735 0.1030 0.2095 0.6314
Ens Hyper w/ CTAB-GAN 0.7563 0.7738 0.6064 0.0775 0.1741 0.5409
Ens Hyper w/ TabDDPM 0.7519 0.7653 0.5920 0.1026 0.1803 0.5666
Ens Hyper w/ CLLM 0.7544 0.7818 0.6090 0.0510 0.1735 0.5232
Ens Hyper w/ Pred-LLM 0.7677 0.7862 0.6108 0.0596 0.1729 0.5239
Ens Hyper w/ LLM-OAP 0.7808 0.8137 0.6629 0.0556 0.1592 0.5031
SVM w/ GPAIS 0.6980 0.6881 0.4924 0.0610 0.1916 0.5657
SVM w/ CTAB-GAN 0.7646 0.7570 0.6086 0.0577 0.1687 0.5209
SVM w/ TabDDPM 0.7625 0.7608 0.6165 0.0528 0.1703 0.5186
SVM w/ CLLM 0.7720 0.7747 0.6143 0.0517 0.1724 0.5245
SVM w/ Pred-LLM 0.7717 0.7794 0.6145 0.0515 0.1705 0.5205
SVM w/ LLM-OAP 0.7857 0.7973 0.6733 0.0424 0.1556 0.4878
XGBoost w/ GPAIS 0.7081 0.7074 0.5020 0.0535 0.1913 0.5640
XGBoost w/ CTAB-GAN 0.7670 0.8091 0.6610 0.0481 0.1543 0.4770
XGBoost w/ TabDDPM 0.7741 0.8122 0.6638 0.0485 0.1559 0.4741
XGBoost w/ CLLM 0.7682 0.8087 0.6579 0.0524 0.1590 0.4832
XGBoost w/ Pred-LLM 0.7759 0.8185 0.6710 0.0469 0.1578 0.4788
XGBoost w/ LLM-OAP 0.7900 0.8399 0.7065 0.0389 0.1471 0.4518

Table 4: Ablation Studies on BIP scenario.
Study Models ACC ↑ AUC ↑ AUCPR ↑ ECE ↓ BS ↓ NLL ↓

S1
TabResNet 0.7644 0.7769 0.6149 0.0814 0.1692 0.5195
Ens Hyper 0.7630 0.7780 0.6169 0.0553 0.1692 0.5200
SVM 0.7760 0.7678 0.6331 0.0472 0.1641 0.5052
XGBoost 0.7736 0.8190 0.6749 0.0413 0.1536 0.4717

S2
TabResNet 0.7293 0.7581 0.5569 0.0870 0.1848 0.5582
Ens Hyper 0.7351 0.7775 0.5919 0.0815 0.1778 0.5341
SVM 0.7370 0.7737 0.5749 0.0629 0.1739 0.5218
XGBoost 0.7428 0.7888 0.6160 0.0478 0.1660 0.4951

S3
TabResNet 0.7692 0.7985 0.6348 0.0794 0.1759 0.5289
Ens Hyper 0.7719 0.7946 0.6422 0.0616 0.1631 0.5206
SVM 0.7819 0.7781 0.6582 0.0460 0.1600 0.4974
XGBoost 0.7824 0.8074 0.6760 0.0509 0.1540 0.4651

S4
TabResNet 0.7698 0.8030 0.6469 0.0697 0.1655 0.5158
Ens Hyper 0.7808 0.8137 0.6629 0.0556 0.1592 0.5031
SVM 0.7857 0.7973 0.6733 0.0424 0.1556 0.4878
XGBoost 0.7900 0.8399 0.7065 0.0389 0.1471 0.4518

5 CONCLUSION

In this paper, we proposed LLM-OAP, an LLM-based data augmentation framework that integrates
feature-aware persona grouping, behaviour-informed generation with confidence- and uncertainty-
based curation for enhancing ML performance in order acceptance prediction. Experiments on real-
world datasets with both full-information and limited-information settings show that our approach
consistently outperforms GAN, diffusion, and LLM-based baselines, generally achieving the best or
second-best results across all metrics. Ablation studies confirm the importance of each component,
with moderate curation yielding the best trade-off between fidelity and diversity. In the future, we
plan to enhance LLM-OAP with a reflection mechanism to further improve its performance and
extend its applicability to broader predictive tasks.
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Thomas Louail, Ronaldo Menezes, José J Ramasco, Filippo Simini, and Marcello Tomasini. Hu-
man mobility: Models and applications. Physics Reports, 734:1–74, 2018.

Moshe E Ben-Akiva and Steven R Lerman. Discrete choice analysis: theory and application to
travel demand, volume 9. MIT press, 1985.

James Brand, Ayelet Israeli, and Donald Ngwe. Using llms for market research. Harvard business
school marketing unit working paper, (23-062), 2023.

Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip Kegelmeyer. Smote: synthetic
minority over-sampling technique. Journal of artificial intelligence research, 16:321–357, 2002.

Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of the
22nd acm sigkdd international conference on knowledge discovery and data mining, pp. 785–794,
2016.

Jie Gao, Xiaoming Li, Chun Wang, and Xiao Huang. A pricing mechanism for ride-hailing systems
in the presence of driver acceptance uncertainty. IEEE Access, 10:83017–83028, 2022.

Tilmann Gneiting and Adrian E Raftery. Strictly proper scoring rules, prediction, and estimation.
Journal of the American statistical Association, 102(477):359–378, 2007.

Nate Gruver, Marc Finzi, Shikai Qiu, and Andrew G Wilson. Large language models are zero-shot
time series forecasters. Advances in Neural Information Processing Systems, 36:19622–19635,
2023.

Songyue Han, Mingyu Wang, Jialong Zhang, Dongdong Li, and Junhong Duan. A review of
large language models: Fundamental architectures, key technological evolutions, interdisciplinary
technologies integration, optimization and compression techniques, applications, and challenges.
Electronics, 13(24):5040, 2024.

Yafei Han, Francisco Camara Pereira, Moshe Ben-Akiva, and Christopher Zegras. A neural-
embedded discrete choice model: Learning taste representation with strengthened interpretability.
Transportation Research Part B: Methodological, 163:166–186, 2022.

Haibo He, Yang Bai, Edwardo A Garcia, and Shutao Li. Adasyn: Adaptive synthetic sampling ap-
proach for imbalanced learning. In 2008 IEEE international joint conference on neural networks
(IEEE world congress on computational intelligence), pp. 1322–1328. Ieee, 2008.

Arlind Kadra, Marius Lindauer, Frank Hutter, and Josif Grabocka. Well-tuned simple nets excel on
tabular datasets. Advances in neural information processing systems, 34:23928–23941, 2021.

Jayoung Kim, Jinsung Jeon, Jaehoon Lee, Jihyeon Hyeong, and Noseong Park. Oct-gan: Neural
ode-based conditional tabular gans. In Proceedings of the Web Conference 2021, pp. 1506–1515,
2021.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Jinhee Kim, Taesung Kim, and Jaegul Choo. Epic: Effective prompting for imbalanced-class data
synthesis in tabular data classification via large language models. Advances in Neural Information
Processing Systems, 37:31504–31542, 2024.

Akim Kotelnikov, Dmitry Baranchuk, Ivan Rubachev, and Artem Babenko. Tabddpm: Modelling
tabular data with diffusion models. In International conference on machine learning, pp. 17564–
17579. PMLR, 2023.

Yongchan Kwon, Joong-Ho Won, Beom Joon Kim, and Myunghee Cho Paik. Uncertainty quan-
tification using bayesian neural networks in classification: Application to biomedical image seg-
mentation. Computational Statistics & Data Analysis, 142:106816, 2020.

Jordan J Louviere, David A Hensher, and Joffre D Swait. Stated choice methods: analysis and
applications. Cambridge university press, 2000.

Weiming Mai, Jie Gao, and Oded Cats. Learning personalized utility functions for drivers in ride-
hailing systems using ensemble hypernetworks. arXiv preprint arXiv:2506.17672, 2025.

Suvir Mirchandani, Fei Xia, Pete Florence, Brian Ichter, Danny Driess, Montserrat Gonzalez Are-
nas, Kanishka Rao, Dorsa Sadigh, and Andy Zeng. Large language models as general pattern
machines. arXiv preprint arXiv:2307.04721, 2023.

Marcela A Munizaga, Benjamin G Heydecker, and Juan de Dios Ortúzar. Representation of het-
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A APPENDIX

A.1 DETAILS OF ORIGINAL DATASET

The original dataset is derived from a stated preference (SP) survey designed to capture the ride
acceptance behaviour of ride-sourcing drivers in both the United States and the Netherlands. The
survey experiment was implemented under two information provision settings: Baseline Informa-
tion Provision (BIP) and Additional Information Provision (AIP). In the BIP scenario, only infor-
mation currently available to drivers on existing platforms (e.g., Uber) is displayed, whereas in the
AIP scenario, additional hypothetical information (e.g., guaranteed tip, traffic congestion, estimated
fare) is revealed, allowing drivers to reassess the same request. This design enables comparison of
behavioural responses to both existing and augmented information environments.

The features of the original dataset are summarized in Table 8, where we reordered the features such
that environmental features precede driver-specific features. The table grouped them into decision
variables, order attributes (BIP), additional attributes available in the AIP setting, driver-specific
attributes and irrelevant features.

The BIP attributes replicate the current industry practice, such as the blind acceptance of trips with-
out knowing fare or destination, while the AIP attributes introduce new monetary and contextual
variables (e.g., guaranteed tip, traffic delay) to test their impact on drivers’ acceptance probability.

A.2 FEATURE IMPORTANCE

Table 5: Feature importance scores computed by permutation importance.
Feature Mean Std Feature Mean Std

Pickup 0.0315 0.0079 Partner 0.0014 0.0014
ID 0.0168 0.0039 Afternoon 0.0010 0.0017
Degree 0.0048 0.0033 Time1 0.0010 0.0018
Morning 0.0043 0.0020 Experienced 0.0010 0.0013
EarnInc 0.0043 0.0011 Workhr 0.0009 0.0029
Acceptance 0.0039 0.0023 Cong 0.0009 0.0032
Beginners 0.0033 0.0026 NY 0.0004 0.0007
Fare 0.0027 0.0039 Midday 0.0003 0.0017
ExpInc 0.0025 0.0030 Full 0.0001 0.0004
Loc 0.0025 0.0033 Sat Fri 0.0000 0.0018
Peak 0.0022 0.0024 Rate 0.0000 0.0030
Time2 0.0022 0.0026 Night 0.0000 0.0000
Gender 0.0019 0.0020 NY CA -0.0003 0.0017
Evening 0.0014 0.0011 Weekend -0.0003 0.0017
Peak morning 0.0014 0.0021 Sat -0.0006 0.0017
Weekend Friday -0.0007 0.0019 CA -0.0007 0.0010
Time -0.0010 0.0035 Peak evening -0.0012 0.0018
Satisfied -0.0013 0.0028 Part -0.0016 0.0025
Long -0.0020 0.0022 Taxi -0.0020 0.0032
Age -0.0020 0.0036 Thu Fri Sat -0.0020 0.0030
Dec -0.0022 0.0023 Wait -0.0032 0.0029
Tip -0.0043 0.0022 Surge -0.0045 0.0033
Req -0.0049 0.0013

To identify the most influential features for order acceptance prediction, we trained a classifier model
on the dataset and evaluated feature importance using permutation importance (Altmann et al.,
2010).

For each feature f , its importance score was computed as the average decrease in model accuracy
when the values of f were randomly permuted while keeping other features fixed. Formally, let Acc
denote the baseline accuracy of the trained model on the test set, and Accperm(f) denote the accuracy
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after permuting feature f . The importance of feature f is given by:

I(f) = Acc− E[Accperm(f)] (4)

where the expectation is estimated by averaging across multiple random permutations. The resulting
scores were aggregated into a ranked table (see Table 5), from which the top-k features were selected
for further analysis.

A.3 PERFORMANCE UNDER OTHER LLMS

To assess the robustness of our framework under different backbone LLMs, we further evaluated
LLM-OAP with DeepSeek-V3, DeepSeek-R1, and Qwen3-plus on AIP and BIP (see Tables 6 and 7).
Across models, all three LLMs deliver consistent improvements over the non-augmented baselines,
with Qwen3-plus yielding overall balanced performance in both accuracy and predictive reliability.
DeepSeek-V3 and DeepSeek-R1 also achieve competitive results, particularly in certain metrics
such as AUC and AUCPR. These results suggest that the proposed group-based augmentation and
curation scheme is largely agnostic to the choice of LLM, while the specific backbone may influence
trade-offs across metrics. For the main paper, we report results with Qwen3-plus as it provides stable
and strong performance across both datasets.

Table 6: Performance under different LLM models on AIP.
LLM Models ACC ↑ AUC ↑ AUCPR ↑ ECE ↓ BS ↓ NLL ↓

DeepSeek-V3

TabResNet 0.8222 0.7697 0.5287 0.0487 0.1320 0.4253
Ens Hyper 0.8237 0.7637 0.5124 0.0389 0.1333 0.4280
SVM 0.8338 0.7640 0.5243 0.0325 0.1304 0.4203
XGBoost 0.8352 0.8020 0.5641 0.0332 0.1241 0.3982

DeepSeek-R1

TabResNet 0.8300 0.7866 0.5489 0.0607 0.1285 0.4171
Ens Hyper 0.8280 0.7836 0.5458 0.0687 0.1298 0.4308
SVM 0.8406 0.7765 0.5611 0.0309 0.1235 0.4041
XGBoost 0.8348 0.8314 0.6085 0.0474 0.1174 0.3748

QWEN3-plus

TabResNet 0.8237 0.7765 0.5323 0.0475 0.1310 0.4245
Ens Hyper 0.8266 0.7889 0.5435 0.0408 0.1278 0.4105
SVM 0.8372 0.7745 0.5436 0.0309 0.1256 0.4065
XGBoost 0.8396 0.8198 0.5894 0.0319 0.1194 0.3834

Table 7: Performance under different LLM models on BIP.
LLM Models ACC ↑ AUC ↑ AUCPR ↑ ECE ↓ BS ↓ NLL ↓

DeepSeek-V3

TabResNet 0.7692 0.7985 0.6515 0.0561 0.1626 0.5155
Ens Hyper 0.7717 0.8013 0.6467 0.0483 0.1601 0.4906
SVM 0.7823 0.7871 0.6615 0.0427 0.1587 0.4907
XGBoost 0.7827 0.8341 0.6926 0.0509 0.1494 0.4584

DeepSeek-R1

TabResNet 0.7794 0.8209 0.6921 0.0747 0.1583 0.4975
Ens Hyper 0.7890 0.8085 0.6729 0.0783 0.1567 0.5071
SVM 0.7953 0.8047 0.6929 0.0656 0.1520 0.4826
XGBoost 0.7919 0.8495 0.7282 0.0640 0.1432 0.4450

QWEN3-plus

TabResNet 0.7698 0.8030 0.6469 0.0697 0.1655 0.5158
Ens Hyper 0.7808 0.8137 0.6629 0.0556 0.1592 0.5031
SVM 0.7857 0.7973 0.6733 0.0424 0.1556 0.4878
XGBoost 0.7900 0.8399 0.7065 0.0389 0.1471 0.4518

A.4 CONFIDENCE AND UNCERTAINTY DISTRIBUTION OF SYNTHETIC DATA

Figure 3 presents the distribution of confidence and uncertainty for the LLM-generated synthetic
samples before the curation scheme. As shown, the confidence values exhibit a bimodal distribution,
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Figure 3: Confidence distribution of synthetic samples generated by LLM.

Figure 4: A prompt example of our method LLM-OAP.

with many samples clustered near both low and high extremes, while the uncertainty scores are
skewed towards the upper bound. This indicates that a substantial portion of raw synthetic data lacks
reliability and may introduce noise if used directly. These observations highlight the necessity of
our confidence- and uncertainty-based curation scheme, which systematically filters out low-quality
samples to improve the fidelity and robustness of the augmented dataset.

A.5 PROMPT DESIGN

Figure 4 illustrates an example of the prompts used in LLM-OAP. The prompt is structured in three
stages: (1) behaviour summary, where the LLM is instructed to summerize the order acceptance
tendencies of a given persona group based on its attributes, acceptance/reject rate, and representative
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records; (2) order sythesis, where the LLM generates a set of realistic ride-hailing orders conditioned
on the same persona attributes and examples, along with the allowable driver IDs and their associated
attributes; and (3) decision simulation, where the LLM is provided with the preceding dialogue
history and tasked with assigning decision labels (accept/reject) to the sythesized orders according
to the summerized behavioural patterns. This staged design ensures that the generated data remain
logically consistent and aligned with observed driver preferences.

A.6 USE OF LLM IN MANUSCRIPT PREPARATION

We acknowledge that an LLM was employed to assist in polishing the writing of this manuscript.
The LLM was used exclusively for language refinement (e.g., grammar, clarity, and style).
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Table 8: Feature descriptions of the original dataset.
Field Description

Decision Variables

Choice1 Order acceptance in BIP scenario (2=accept, 1=reject)
Choice2 Order acceptance in AIP scenario (2=accept, 1=reject)

Order Attributes (BIP)

Req Request type (0=Uber X, 1=Uber Pool)
Time Period within shift (1=start, 2=middle, 3=end)
Time1 Whether it is the beginning of a shift (1=yes, 0=no)
Time2 Shift length (0=4h, 1=8h)
Wait Waiting time between orders (minutes: 0/5/15)
Dec Previous order rejected (1=yes, 0=no)
Rate Average passenger rating of driver (3/4/5)
Pickup Travel time to passenger pickup location (minutes: 5/10/15/20)
Loc Driver location (0=suburb, 1=city center)
Surge Surge bonus (0/1.5/3)
Long Whether trip duration exceeds 30 minutes (1=yes, 0=no)

Additional Attributes (AIP only)

Cong Estimated traffic delay (minutes: 0/15/30)
Tip Guaranteed tip (0/1.5/3)
Fare Estimated fare (8/16/24)

Driver Attributes

Acceptance Above historical average acceptance rate (1=yes, 0=no)
Workhr Working hours
Part Part-time driver (1=yes, 0=no)
Full Full-time driver (1=yes, 0=no)
Age Driver’s age
ID Driver identifier
Beginners Driver with less than 12 months of experience (1=yes, 0=no)
Experienced Experienced driver (1=yes, 0=no)
Satisfied Fully satisfied with platform (rating ≥4.5/5, 1=yes, 0=no)
Taxi Taxi driving experience (1=yes, 0=no)
Gender Gender (1=male, 0=female)
Partner Marital/partner status (1=partner, 0=single)
Degree Education (1=college or above, 0=no)
NY Located in New York (1=yes, 0=no)
CA Located in California (1=yes, 0=no)
NY CA Located in NY or CA (1=yes, 0=no)
EarnInc Perceived income change during pandemic
ExpInc Perceived workload/order change during pandemic
Morning Shift starts in morning (5–11h) (1=yes, 0=no)
Midday Shift starts at midday (11–15h) (1=yes, 0=no)
Afternoon Shift starts in afternoon (15–19h) (1=yes, 0=no)
Evening Shift starts in evening (19–23h) (1=yes, 0=no)
Night Shift starts at night (23–5h) (1=yes, 0=no)
Weekend Typical working day is weekend (1=yes, 0=no)
Weekend Friday Typical working day is weekend or Friday (1=yes, 0=no)
Sat Fri Typical working day is Saturday or Friday (1=yes, 0=no)
Sat Typical working day is Saturday (1=yes, 0=no)
Thu Fri Sat Typical working day is Thursday, Friday, or Saturday (1=yes, 0=no)
Peak morning Working during morning peak hours (1=yes, 0=no)
Peak evening Working during evening peak hours (1=yes, 0=no)
Peak Working during peak hours (1=yes, 0=no)

Irrelevant Features (Removed)

Block Survey block ID
Fac1000 Sliding-window factor (1000-unit fatigue/system feature)
Fac2000 Sliding-window factor (2000-unit fatigue/system feature)
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