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Abstract

Feature attribution (FA) methods are common post-hoc approaches that ex-
plain how Large Language Models (LLMs) make predictions. Accordingly,
generating faithful attributions that reflect the actual inner behavior of the
model is crucial. In this paper, we introduce NOISER, a perturbation-based
FA method that imposes bounded noise on each input embedding and
measures the robustness of the model against partially noised input to
obtain the input attributions. Additionally, we propose an answerability
metric that employs an instructed judge model to assess the extent to which
highly scored tokens suffice to recover the predicted output. Through a
comprehensive evaluation across six LLMs and three tasks, we demonstrate
that Noiser consistently outperforms existing gradient-based, attention-
based, and perturbation-based FA methods in terms of both faithfulness
and answerability, making it a robust and effective approach for explaining
language model predictions.1

1 Introduction

Transformer-based language models (Vaswani et al., 2023) are fundamental to the latest
advancements in natural language processing (Team et al., 2024; Touvron et al., 2023; Bai
et al., 2023; DeepSeek-AI, 2025; OpenAI et al., 2024). However, they are often perceived as
opaque (Rudin, 2019; Doshi-Velez & Kim, 2017; Lipton, 2018), sparking significant interest in
the development of algorithms that can automatically explain the behavior of these models
(Denil et al., 2015a; Sundararajan et al., 2017a; Camburu et al., 2018; Rajani et al., 2019; Luo
et al., 2022).

Feature attribution (FA) techniques are popular post-hoc methods that generate token-level
importance scores to highlight the contribution of each token to a prediction (Denil et al.,
2015b; Jain et al., 2020; Kersten et al., 2021). The top-p% important tokens are typically con-
sidered as the prediction rationale (Zaidan et al., 2007; Sundararajan et al., 2017b; DeYoung
et al., 2020). The quality of a rationale is often evaluated using faithfulness metrics, which
measure to what extent the rationales accurately reflect the downstream task on model
predictions.

Perturbation-based FA methods aim to explore neural networks by modifying the input
of a model and observing the changes in the output to indicate which parts of the input
are particularly important for inference. These methods are widely adopted in computer
vision, leveraging the continuous nature of image inputs, where localized noise or masking
preserves semantic coherence and avoids distribution shifts (Ivanovs et al., 2021). In contrast,
NLP models face inherent challenges due to the discrete structure of the text, where even
minor perturbations—whether token substitutions or embedding modifications—can push
inputs out-of-distribution (OOD), destabilizing predictions and confounding attribution
analysis (Liu et al., 2019).

∗Correspondence to: rezamadani.ai@gmail.com.
1Our code: https://github.com/qasemii/Noiser
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This divergence underscores the need for bounded perturbations in NLP, ensuring perturbed
inputs remain in-distribution. Our work bridges this gap by exploring noise thresholds
that alter token embeddings while preserving the original prediction to limit perturbation-
induced OOD issues. Particularly, we introduce a perturbation-based FA by exploring a
model’s robustness against noisy inputs—examples created by introducing small alterations
to the input embeddings without changing the model’s original prediction—enabling
reliable explanations grounded in the model’s trained operational domain while quantifying
feature importance through robustness to controlled perturbations. Our work makes the
following contributions:

• We empirically show that NOISER is consistently more faithful than nine popular FAs
by conducting comprehensive experiments, covering three tasks and six LMs of varying
sizes from three different model families;

• We propose a new plausibility metric, answerability, which measures the extent to which
the top-p% attributed input tokens sufficiently support the target output. By leveraging
language models, this metric assesses whether a minimal subset of input tokens is
adequate for generating the expected prediction, providing a simulatable alternative to
human plausibility judgments.

2 Background

2.1 Generative Language Modeling

In generative language modeling, the input consists of a sequence of tokens, denoted as
X = [x0, . . . , xT−1]. The objective is to develop a model, Fθ, that estimates the probability
distribution P over the token sequence X. In this context, Fθ represents a specific pre-trained
generative language model characterized by parameters θ.

P(x0, . . . , xT−1) = Fθ(x0)
T−1

∏
t=1

Fθ(xt | x0, . . . , xt−1)

2.2 Input Importance for Generative LMs

Given a model Fθ , our objective is to determine the importance distribution of the input
tokens for each predicted token xT , based on the preceding sequence X = [x0, . . . , xT−1].
A feature attribution method, denoted as eT , applied at position T, yields an importance
distribution ST = [s0, . . . , sT−1] corresponding to the target token xT , where a higher value
of si indicates greater importance of the input token xi in predicting xT .

eT(Fθ , X, xT) → ST

2.3 Bounded Perturbations

Bounded perturbations refer to small, structured uncertainties in mathematical systems
where a specified constraint limits the perturbation magnitude. These are critical for
analyzing system robustness against disturbances while ensuring predictable behavior.

Perturbation is a minor alteration to a system, such as δ added to a nominal matrix A,
resulting in A+ δ. This captures uncertainties or disturbances. If the perturbation magnitude
is bounded as ∥δ∥ ≤ ϵ, where ϵ > 0, it is called a bounded perturbation. Consider the
nominal system ẋ = Ax. Under a perturbation δ, the system becomes:

ẋ = (A + δ)x.

3 Our Method

Let n ∈ Rdmodel denote a noise vector where each component ni ∼ N (0, 1). We form noisy
examples from original inputs by imposing small perturbations to the input embeddings,
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such that the noisy input results in the model outputting an incorrect answer. For this pur-
pose, we first pass a prompt X = [x0, . . . , xT−1] into Fθ to collect the probability distribution,
P, over the model’s vocabulary with xT being the most likely output (i.e., Fθ(X) = xT).

In the next step, we utilize a binary search algorithm to find the maximum scaling factor k
such that if we perturb the embedding of a targeted token with nscaled = k · n the model
wouldn’t change its initial prediction xT . Specifically, we set xi := xi + nscaled and let
Fθ to continue, giving us a set of corrupted probabilities P∗

xi
. Because Fθ partially loses

information about the corrupted token, the probability of xT from the first step would likely
be lower in P∗

xi
.

We repeat the process for each token until we obtain K = [k0, . . . , kT−1] where each ki is the
maximum scaling factor such that if we corrupt the embeddings of xi using nscaled = ki · n,
the model wouldn’t change its original output. The mathematical representation of K is
illustrated below:

K = {ki | ∀k > ki ⇒ Fθ(Xi
perturbed|k) ̸= xT ,Fθ(Xi

perturbed|ki
) = xT}, i ∈ {0, . . . , t − 1}

where Xi
perturbed|k = [x0 . . . (xi + nscaled) . . . xt−1] is the input sequence in which xi is altered

with nscaled = k · nbounded. The equation above indicates that each scale factor ki is such that
for all values k greater than ki if we perturb xi using nsclaed = k · nbounded to create a noisy
input Xi

perturbed|k, Fθ would return a different output from the original one (xT).

In the final step, we find the kmin = min(K) to generate the final noise samples nscaled =
kmin · n to add to each token embedding and obtain the token scores using the following:

S = {si | si = p(X)− p(Xi
perturbed|kmin

)}, i ∈ {0, . . . , t − 1}

Using kmin, we ensure to perturb the input enough to reach a flipping point in prediction to
get the minimal set of features needed to achieve this outcome. The intuition is that tokens
with higher importance are more sensitive to noise injection, resulting in a larger reduction
in the model’s output likelihood.

To show the effectiveness of selecting kmin, we propose different boundings and measure
their faithfulness. We analyse i) using maximum noise across tokens (kmax); ii) individual
token maximum noise where k is different for each input token and is the maximum the
model can tolerate (kmax per token); iii) norm-bounded setting where the noise vector n
is divided by the expected value of the noise vector Lp norm, E

[
∥n∥p

]
; and iv) random k

where k is randomly selected from the uniform distribution. The details of each configuration
are provided in Section 5.

4 Experiment

4.1 Model & Data

In our study, we employ variants of Qwen (Bai et al., 2023), Gemma (Team et al., 2024),
and Llama (Touvron et al., 2023) models. We choose our models to span from hundreds of
millions to a few billion parameters as we want to explore how the model size affects the
faithfulness of each FA. All models used are publicly available. 2

We use KNOWN dataset3 provided by Meng et al. (2023) and LONG-RANGE AGREEMENT
(LONGRA; Vafa et al., 2021) to conduct our analysis. Besides, for long generation we utilize
WIKIBIO (Lebret et al., 2016). The following is an instance from the KNOWN dataset.

2We use checkpoints from the Huggingface library for each model.
3Dataset can be found at: https://rome.baulab.info/data/dsets/known 1000.json
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LeBron James professionally plays the sport of [basketball]

The LongRA dataset consists of word pairs that exhibit either a semantic or syntactic rela-
tionship. Additionally, Vafa et al. (2021) incorporate a distractor sentence, which provides
no relevant information about the word pair, to evaluate long-range agreement. An example
from the LongRA dataset is shown below, with the distractor included in parentheses.

When my flight landed in Japan, I converted my currency and slowly fell asleep.
(I had a terrifying dream about my grandmother, but that’s a story for another
time). I was staying in the capital, [Tokyo]

WIKIBIO is a dataset consisting of Wikipedia biographies. We use the first two sentences as a
prompt, similar to Manakul et al. (2023). The model is then expected to continue generating
the biography. This task is inherently more open-ended compared to the previous two.

Super Mario Land is a 1989 side-scrolling platform video game

The computation of each task’s faithfulness is provided in Section 4.5.

4.2 Baselines

Following previous works, we compare our rationalization method to a variety of gradient-
and attention-based baselines (Vafa et al., 2021). Input×Gradient (Denil et al., 2015b) uses
embedding gradients multiplied by the embeddings; Integrated Gradients (Sundararajan
et al., 2017b) integrate overall gradients using a linear interpolation between a baseline
input (all zero embeddings) and the original input. Gradient SHAP (Lundberg & Lee, 2017)
compute the gradient w.r.t. randomly selected points between the inputs and a baseline
distribution; DeepLIFT (Shrikumar et al., 2019) compares the activation of each neuron to its
‘reference activation’ and assigns contribution scores according to the difference. Sequential
Integrated Gradients (Enguehard, 2023) extends Integrated Gradients by breaking down the
input perturbation into sequential steps, computing gradients at each step, and aggregating
them to provide more stable and interpretable attributions, Last Attention (Jain et al., 2020)
uses the last-layer attention weights averaged across heads; Attention Rollout (Abnar &
Zuidema, 2020) recursively computing the token attention in each layer, e.g., computing the
attention from all positions in layer li to all positions in layer lj, where j < i; LIME (Ribeiro
et al., 2016) trains a linear surrogate model using data points randomly sampled locally
around the prediction. Occlusion (Zeiler & Fergus, 2014) involves systematically occluding
different portions of the input and observing the impact on the output confidence.

4.3 Faithfulness Metrics

To assess whether a rationale extracted with a given FA is faithful, i.e., actually reflects the
true model reasoning (Jacovi & Goldberg, 2021), various faithfulness metrics have been
proposed (Arras et al., 2017; Serrano & Smith, 2019; Jain et al., 2020; DeYoung et al., 2020).
Sufficiency and comprehensiveness (DeYoung et al., 2020) are two widely used metrics that
effectively capture rationale faithfulness (Chrysostomou & Aletras, 2021; Chan et al., 2022b).
Both metrics use a hard erasure criterion for perturbing the input by entirely removing
(i.e., comprehensiveness) or retaining (i.e., sufficiency) the rationale to observe changes in
predictive likelihood. This hard criterion ignores the importance of each individual token,
treating them all equally for computing sufficiency and comprehensiveness.

We evaluate rationales using soft sufficiency (Soft-NS) and comprehensiveness (Soft-NC)
proposed by Zhao & Aletras (2023) to measure the faithfulness of the full importance
distribution. Using these metrics, instead of entirely removing or retaining tokens from the
input, we randomly mask parts of the token vector representations proportionately to their
FA importance. The summation of Soft-NC and Soft-NS is considered as the final faithfulness
score. For the detailed implementation of these metrics, please refer to Appendix A.

4



Published as a conference paper at COLM 2025

basketball ✅  | Score=0.96
LeBron plays Sport Of

0.45 0.10 0.18 0.23

official language Italy

0.26 0.23 0.31 Italian ✅

the ❌ .             |  Score=0.0

Rate=50%

Score=0.80

Score=0.48

“LeBron James professionally plays the sport of” —> “basketball”

“The official language of Italy is” —> “Italian”

“Leslie Moonves is employed by” —> “CBS”

Leslie Moonves employed

0.41 0.21 0.22

Instruction
Judge

Instruction
Judge

Figure 1: Answerability metrics evaluation. To get the answerability metrics, the judge
model is instructed to predict the completion token given a limited set of tokens from the
original prompt.

4.4 Answerability Metrics

The utilization of LLMs has emerged as a prominent trend across numerous research
domains (Peng et al., 2023; Zhou et al., 2023a; Taori et al., 2023). With any given instructions,
LLMs are expected to generate responses that align with these instructions (Chen et al., 2024;
Li et al., 2024; Xu et al., 2023; Longpre et al., 2023).

This capability, known as the “instruction following” ability, serves as a key metric for
assessing the effectiveness of LLMs (Chen et al., 2024; Zhao et al., 2024; Taori et al., 2023;
Zheng et al., 2023). To facilitate a more thorough assessment, several benchmarks have been
introduced with a focus on instruction following (Zhou et al., 2023b; Qin et al., 2024).

We exploit this progress in our answerability metric by framing attribution evaluation
as an instruction-based completion task. To see whether the attributions illustrate any
meaningful association with a predicted output, we extend our evaluation of FAs through
prompt engineering. For this purpose, we aggregate the attribution scores of each word’s
sub-tokens to derive word-level scores. Then we select the top-p% most important words
w.r.t. their scores and feed these words as input to a judge model along with a task prompt.
The task prompt asks the judge model to predict the completion token using this limited
set of words. Feldhus et al. (2023) offer a complementary perspective—while they leverage
LLMs for generating interpretability-enhancing verbalizations, our approach instead uses
an LLM to directly quantify whether the selected tokens are sufficient for the prediction
task.

We evaluate attributions by computing the number of samples for which the judge model
generates the correct output, which we define as the FAs answerability rate. Additionally,
for these correctly predicted samples, we aggregate the word-level attribution scores to
obtain the so-called answerability score. For both metrics, higher values indicate better
performance. In our evaluation, a higher answerability rate means that a larger proportion
of samples allow the LM judge to correctly predict the output using only the minimal set of
tokens. Likewise, a higher answerability score—reflecting a greater aggregated attribution
mass within that token set—indicates that the attribution method is more effective at
isolating the minimal semantic requirements for prediction.

This evaluation pipeline specifically applies to datasets such as KNOWN where the gold
label is a meaningful word that must be inferred from the input sequence. Figure 1 shows
an answerability evaluation example. The prompt used for this evaluation is shown in
Appendix E.

4.5 Implementation Details

None of our experiments involved training or fine-tuning any language models. All FAs
are built upon Inseq library (Sarti et al., 2023; 2024) except Last Attention and Attention
Rollout, which we used the codebase from Zhao & Shan (2024). For NOISER, we generate 10
different noise vectors during the corrupted run for more consistent results. Binary search is
done in 10 steps, yielding the accuracy of ≈ 0.001 for the scaling factor (k). For KNONW and
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KNOWN

Method Qwen2-0.5B Llama3.2-1B Qwen2-1.5B gemma-2-2B gemma-2-9B Llama3-8B Average

Last Attn -0.0857 -0.0601 0.0607 0.1407 -0.2788 -0.0095 -0.0388
Rollout -0.1161 -0.0471 0.1211 0.4624 -0.3607 -0.2625 -0.0338

SHAP 0.4946 0.3746 0.5390 0.3726 0.9203 0.1925 0.4823
IxG 0.2117 0.7059 0.4612 0.5233 1.0276 0.5891 0.5865

IG 0.2176 0.5428 0.5163 0.2015 1.0355 0.3759 0.4816
DeepLIFT 0.3030 0.5473 0.5323 0.3557 0.8638 0.5174 0.5199

SIG 0.0361 0.3534 0.3003 -0.1879 0.7877 0.2755 0.2609
LIME 0.2439 0.5103 0.3826 0.3567 0.4832 0.6555 0.4392

Occlusion 0.1627 0.5373 0.2477 0.5341 0.5221 0.7831 0.4645
NOISER 2.1854 1.3989 1.4400 1.4433 2.1767 2.2175 1.8103

LONGRA
Method Qwen2-0.5B Llama3.2-1B Qwen2-1.5B gemma-2-2B gemma-2-9B Llama3-8B Average

Last Attn 1.9148 0.3255 -0.0110 -0.2382 -0.2382 1.0762 0.4715
Rollout 1.8517 0.2451 0.0802 -0.2643 -0.2643 1.2283 0.4794

SHAP 3.7970 1.2837 1.6276 1.9746 2.2769 0.7696 1.9549
IxG 3.8972 1.7299 1.5370 2.5803 2.5803 2.0796 2.4007

IG 4.3388 1.3066 1.5498 1.3023 1.3023 3.7190 2.2531
DeepLIFT 4.4991 1.7889 1.5512 2.7428 2.7428 2.1258 2.5751

SIG 3.8645 0.9272 1.1047 0.5412 0.5412 1.1618 1.3568
LIME 1.0765 0.2212 -0.4147 -0.1636 -0.1636 2.2995 0.4759

Occlusion 3.9424 1.9887 1.0145 3.4418 3.4418 4.2240 3.0089
NOISER 6.8055 4.8072 3.1779 4.2727 6.1681 5.1627 5.0657

WIKIBIO

Method Qwen2-0.5B Llama3.2-1B Qwen2-1.5B gemma-2-2B gemma-2-9B Llama3-8B Average

Last Attn 1.0605 0.6304 -0.7054 -0.2579 0.2815 0.5500 0.2598
Rollout -0.6404 0.5591 -0.7066 0.5085 0.3498 0.8785 0.1582

SHAP 1.4702 1.1672 1.1213 0.7966 3.1494 1.4063 1.5185
IxG 3.4273 1.8365 1.3942 1.5816 2.6047 1.3747 2.0365

IG 2.4216 1.5797 0.6975 1.1909 4.1117 0.6876 1.7815
DeepLIFT 3.2207 1.6265 1.4590 1.4607 2.3006 1.2739 1.8903

SIG 3.7656 1.4300 2.0816 1.4256 5.2280 1.3620 2.5488
LIME 3.0009 0.5656 1.1714 0.7180 2.9527 0.8349 1.5406

Occlusion 5.1051 2.0019 3.8916 2.7232 4.9300 3.3885 3.6734
NOISER 8.7624 3.7385 4.9864 4.2527 7.1509 4.6089 5.5833

Table 1: Faithfulness scores across tasks.

LONGRA datasets, where the models must provide a single output, we filter down samples
to the ones that the model can correctly generate the gold output. See Appendix C for the
details. For WIKIBIO, we generate 10 tokens for input completion. To obtain the faithfulness
score in this task, we compute the faithfulness of each next token w.r.t. all the previous
tokens and consider the averaged score as the final faithfulness. The judge model used to
get the answerability metrics is Llama-3.3-70B-Instruct-Turbo. We chose the top-50% of
the most important words from the input prompt to get the answerability score and rate.

5 Results

Table 1 presents the faithfulness scores across different tasks. Following Zhao & Shan
(2024), each score is computed as the logarithm of the ratio between the method’s score
and the random baseline. Consequently, scores below zero indicate less faithful methods
than the random baseline, i.e., unfaithful. As shown in Table 1, faithfulness varies across
different FA methods and generative models. Notably, NOISER consistently achieves higher
faithfulness scores across all tasks and models, outperforming traditional FAs. This suggests
that NOISER provides more reliable attributions, reinforcing its effectiveness in evaluating
model faithfulness.

To demonstrate the effectiveness of selecting kmin, we compare its faithfulness performance
against alternative bounding strategies across different models in Table 2. The results show
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Scaling Factor (k) Qwen2-0.5B Llama3.2-1B Qwen2-1.5B gemma-2-2B gemma-2-9B Llama3-8B Average

random k 1.1519 1.0993 0.7165 1.2287 1.6007 1.4522 1.2082
None (k = 1) 1.0922 1.0219 0.6445 1.1844 1.4726 1.1070 1.0871
E [∥n∥2]

−1 1.4849 1.3031 1.2617 1.7236 2.7905 1.7470 1.7185
E [∥n∥∞]−1 0.8989 0.9515 0.7164 1.1275 1.4300 1.4115 1.0893
kmax per token 1.2230 0.9938 0.5850 1.2897 1.8359 1.0984 1.1710
kmax 1.0962 1.0203 0.6515 1.1824 1.4753 1.1059 1.0886
kmin 2.1854 1.3989 1.4400 1.4433 2.1767 2.2175 1.8103

Table 2: Comparison of different boundings on the faithfulness score on KNOWN dataset.

Method Qwen2-0.5B Llama3.2-1b Qwen2-1.5B gemma-2-2b gemma-2-9b Llama3-8b Average

Rate Score Rate Score Rate Score Rate Score Rate Score Rate Score Rate Score

Last Attn 14% 0.0936 48% 0.2496 10% 0.0670 39% 0.2064 37% 0.1854 39% 0.2081 31% 0.1684
Rollout 8% 0.0527 13% 0.0649 8% 0.0557 9% 0.0457 22% 0.1033 27% 0.1364 16% 0.0812

SHAP 22% 0.1805 29% 0.1890 24% 0.1862 17% 0.1249 11% 0.0764 26% 0.1454 22% 0.1504
IxG 27% 0.2177 33% 0.2412 26% 0.1942 35% 0.2408 35% 0.2537 30% 0.2079 31% 0.2259

IG 20% 0.1638 28% 0.1827 18% 0.1426 16% 0.1197 12% 0.0875 27% 0.1360 20% 0.1387
DeepLIFT 21% 0.1753 34% 0.2279 26% 0.1991 32% 0.2225 30% 0.2107 31% 0.2019 29% 0.2062

SIG 21% 0.1583 21% 0.1271 20% 0.1520 9% 0.0617 26% 0.1978 12% 0.0627 18% 0.1266
LIME 37% 0.2986 25% 0.1692 41% 0.3308 45% 0.3003 50% 0.3291 36% 0.2423 39% 0.2784

Occlusion 53% 0.3689 49% 0.3223 54% 0.4224 48% 0.3152 52% 0.3323 50% 0.3726 51% 0.3556
NOISER 55% 0.5063 37% 0.3665 43% 0.4099 43% 0.4102 49% 0.4497 41% 0.4858 45% 0.4381

Table 3: Answerability metrics on KNOWN dataset w.r.t. judge model top-1 predition.

that kmin consistently yields the highest faithfulness scores, confirming its superiority in
preserving model behavior under noise perturbation.

Since kmin is model-dependent, we introduce norm-bounding as a flexible alternative, where
the noise vector n is scaled based on the model’s embedding size (see Appendix D). We
further compare our approach with kmax, which applies the maximum k across all input
tokens (max(K)), and a variant, kmax per token, which applies a per-token maximum scaling
factor. The latter performs slightly better, as it results in a less aggressive perturbation than
the global kmax, reducing the likelihood of extreme changes in model behavior.

Additionally, we analyze the effects of unbounded scaling (k = 1) and random k, where
k is sampled from a uniform distribution for each input sample. The consistently lower
faithfulness scores in these settings highlight the necessity of proper bounding strategies to
maintain faithfulness.

Overall, kmin is the only configuration that guarantees the model does not change its
prediction under noise, making it the most reliable choice. The detailed computation of
expected norm values is provided in Appendix D.

In addition to faithfulness, we monitored the runtime efficiency of NOISER and compared it
with other FA methods. As expected, attention-based methods were the fastest, followed by
gradient-based methods. On the other hand, perturbation-based techniques are generally
more computationally demanding. However, the runtime of NOISER can be further reduced
by decreasing the number of binary search steps (e.g., from 10 to 5), which yields a noticeable
speed-up with only a slight trade-off in faithfulness.

The answerability rate and score are reported in Table 3. While NOISER achieves the highest
answerability score in most cases and on average, Occlusion attains the highest answerability
rate. This indicates that when NOISER attributions are deemed answerable (rate), the
importance scores assigned to the top-p% tokens are significantly high, which is desirable.
In contrast, Occlusion produces a higher number of answerable attributions but with lower
scores, implying that it does not assign as much weight to key tokens.

To provide a more flexible analysis of answerability metrics, we examine cases where
the gold prediction appears within the top-5 predictions of the judge model. Under this
evaluation, the gap between NOISER’s answerability score and those of other baselines
widens, while its answerability rate also improves and approaches that of Occlusion, which
achieves the best rate.
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To further contextualize the answerability metrics, we also analyzed the answerability rate
when all tokens (top-100%) are provided to the judge model. This represents an upper bound
on the judge model’s performance, offering insight into how often the judge model itself
can recover the gold prediction using the full input. In our case, using all tokens, the judge
model achieves approximately 84% accuracy when considering only the top-1 prediction,
and around 92% accuracy when allowing for the gold output to appear among the top-5
predictions. This highlights the intrinsic limitations of the judge model and provides a
reference point when interpreting answerability rates obtained from top-p% subsets.

Another aspect regarding the FA methods’ efficiency that we evaluate is their ability to
identify the minimal set of tokens most relevant to the output. We visualize the importance
scores assigned by each method to critical tokens in the LONGRA “country-capital” category.
Additionally, we examine the distribution of importance scores across the distractor and
main parts in Figure 2. As shown in Figure 2, NOISER assigns the highest importance to
critical tokens while effectively disregarding the distractor section, demonstrating a stronger
focus on the main part compared to the best-performing baselines.

Figure 2: The aggregated score that each FAs put different parts of inputs from the “capital-
world” subclass in LONGRA dataset. The red indicates the score assigned to the undesired
part (e.g., distractor). The left image illustrates the aggregated score on “country”+“capital”
token. The right image indicates the overall score on the main part against the distractor.

Finally, we analyzed the minimum proportion of top attributions required for each FA
method to ensure that the judge model correctly predicts the original output. To determine
this value, we first computed attributions for each sample using a given FA method. Then,
starting with the full set of tokens, we iteratively removed the least important tokens one
by one until the judge model produced an incorrect prediction. We repeated this process
across all samples, averaging the proportion of retained tokens to obtain the final minimum
top-p% required for accurate prediction. A lower value indicates a more effective FA method
in identifying the most relevant attributions. In this regard, Occlusion requires the least
number of tokens overall, which aligns with the results in Table 3, while Lime and NOISER
take the second and third best place with minimal difference.

6 Related Works

Post-hoc explanation methods, such as FA techniques, are applied retrospectively by seeking
to extract explanations after the model makes a prediction. Most FAs have been proposed
in the context of classification tasks, where a sequence input X = [x0, . . . , xt−1] is associated
with a true label y and a predicted label ŷ. The underlying goal is to identify which parts
of the input contribute more toward the prediction ŷ (Atanasova et al., 2020; Wallace et al.,
2020; Madsen et al., 2022; Chrysostomou & Aletras, 2022; Lei et al., 2016; Chan et al., 2022a;
Ghasemi Madani & Minervini, 2023). Most FAs generally fall into gradient, attention, and
perturbation-based categories.
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Figure 3: Minimum top-p% attribution required for the judge model to retain the correct
prediction across different feature attribution methods. Lower values indicate higher attri-
bution accuracy, as fewer tokens are needed to maintain the original output.

Dataset Input Output

Known LeBron James professionally plays the sport of basketball

LongRA When my flight landed in Japan , I converted my

currency and slowly fell asleep . ( I had a terrifying

dream about my grandmother , but that ’ s a story for

another time ) . I was staying in the capital ,

Tokyo

WikiBio Super Mario Land is a 1989 side-scrolling platform video

game developed and published by

Nintendo

Table 4: Example of NOISER attributions on different inputs.

Gradient-based methods derive the importance for each token by computing gradients w.r.t.
the input (Denil et al., 2015b). The resulting gradient captures intuitively the sensitivity of the
model to each element in the input when predicting token w. While attribution scores are
computed for every dimension of input token embeddings, they are generally aggregated at
a token level to obtain a more intuitive overview of the influence of individual tokens.

Building upon this, Denil et al. (2015b) takes the input token vector and multiplies by the
gradient (Input×Gradient), while Sundararajan et al. (2017b) compares the input with a
null baseline input when computing the gradients w.r.t. the input (Integrated Gradients).
Nielsen et al. (2022) offers a comprehensive overview of other propagation-based FAs.

Attention-based methods are applied to models that include an attention mechanism
to weigh the input tokens. The assumption is that the attention weights represent the
importance of each token. These FAs include scaling the attention weights by their gradients,
taking the attention scores from the last layer, and recursively computing the attention in
each layer (Serrano & Smith, 2019; Jain et al., 2020; Abnar & Zuidema, 2020).

Perturbation-based methods measure the difference in model prediction between using
the original input and a corrupted version of the input by gradually removing tokens
(Lei et al., 2016; Nguyen, 2018; Bastings et al., 2019; Bashier et al., 2020). The underlying
idea is that removing important tokens will lead the model to flip its prediction or a
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significant drop in the prediction confidence. For instance, the input token at position i can
be removed, and the resulting probability difference Fθ(X)−Fθ(X \ xi) can be used as an
estimate for its importance. If the logit or probability given to the original output does not
change, we conclude that the i-th token has no influence. Differently, some perturbation-
based techniques utilize a modified model or a separate explainer model to learn feature
attributions (Ribeiro et al., 2016; Lundberg & Lee, 2017; Bashier et al., 2020; Hase et al., 2021).
LIME (Ribeiro et al., 2016) and SHAP (Lundberg & Lee, 2017) fall into this category.

7 Conclusion

In this paper, we introduced NOISER, a perturbation-based input attribution method that
employs bounded noise to address the distribution shift problem arising from the discrete
nature of text, aiming to explain language model predictions in generation tasks. Fur-
thermore, we proposed answerability metrics, a novel automatic plausibility evaluation
metric that leverages an LLM to evaluate the relevance of attributed rationales to the target
output in the absence of gold rationales or human evaluation. Through comprehensive
experiments across three tasks and six LLMs, we demonstrated that NOISER consistently
surpasses existing baselines in terms of both faithfulness and answerability rate. Notably,
our approach requires no supervision, positioning it as a promising direction for improving
model interpretability and efficiency.
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A Soft-NC and Soft-NS Metrics

The Soft-NC and Soft-NS metrics are defined as follows:

Soft-C(X, ŷ, X′) = max(0, p(ŷ | X)− p(ŷ | X′)) (1)

Soft-S(X, ŷ, X′) = 1 − Soft-C(X, ŷ, X′) (2)

where X′ is soft-perturbed versions of X given the following instruction. For the embedding
vector xi ∈ X and its FA score si, we modify the elements of xi using Equation (3).

x′i = xi ⊙ ei, ei ∼ Bernoulli(q) (3)
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where e is a binary mask vector of size n (embedding size) and Bernoulli is parameterized
with probability q:

q =

{
s, if retaining elements
1 − s, if removing elements

(4)

The normalized sufficiency and comprehensiveness are then computed using the following
equations:

Soft-NC(X, ŷ, X′) =
Soft-C(X, ŷ, X′)

1 − S(X, ŷ, 0)
(5)

Soft-NS(X, ŷ, X′) =
Soft-S(X, ŷ, X′)− S(X, ŷ, 0)

1 − S(X, ŷ, 0)
(6)

However, in generation tasks, the absence of a predictive likelihood for the predicted label
makes applying Soft-NS and Soft-NC challenging. Zhao & Aletras (2023) proposed using
the Hellinger distance between prediction distributions over the vocabulary as a measure of
changes in model predictions. They substitute p(ŷ | X)− p(ŷ | X′) in Equation (1) with the
Hellinger distance. Given two discrete probability distributions, PX,t = [p1,t, . . . , pv,t] and
PX′ ,t = [p′1,t, . . . , p′v,t], the Hellinger distance is formally defined as:

∆PX′ ,t = H(PX,t, PX′ ,t) =
1√
2
·
√

v

∑
i=1

(√
pi,t −

√
p′i,t

)2

where PX,t is the probability distribution over the entire vocabulary (of size v) when prompt-
ing the model with the full-text X. PX′ ,t is for prompting the model with soft-perturbed text.
For a given sequence input X and a model of vocabulary size v, at time step t, the model
generates a distribution PX,t for the next token xT . The final Soft-NS and Soft-NC at step t
for text generation are formulated as:

Soft-NS(X, xt,R) =
max(0, ∆P0,t − ∆PX′ ,t)

∆P0,t
(7)

Soft-NC(X, xt,R) =
∆PX′\R,t

∆P0,t
(8)

where ∆P0,t is Hellinger’s distance between a zero input’s probability distribution and full-
text input’s probability distribution. X′ \ R is the case of “if removing elements” described
in Equation (4).

B More Results

Table 5 provides the detailed Soft-NS and Soft-NC scores of our experiments.

Table 6 illustrates the answerability metrics on top-50% of feature attributions given the
judge model top-5 predictions.

We also analyzed the correlation between the faithfulness score and the answerability
metrics on KNOWN in Figure 4. The results show that IG, SHAP, DeepLIFT, IxG, LIME,
and Occlusion exhibit similar faithfulness scores, with Occlusion achieving the highest
answerability rate and score among them. Meanwhile, NOISER surpasses all baselines
in both faithfulness and answerability score but falls short in answerability rate, trailing
Occlusion by 5%.
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KNOWN

Method Qwen2-0.5B Llama3.2-1b Qwen2-1.5B gemma-2-2b gemma-2-9b Llama3-8b

Soft-NS Soft-NC Soft-NS Soft-NC Soft-NS Soft-NC Soft-NS Soft-NC Soft-NS Soft-NC Soft-NS Soft-NC

Last Attn 0.0372 -0.1229 -0.0301 -0.0301 0.0023 0.0584 0.1617 -0.0211 0.0321 -0.3109 -0.1148 0.1052
Rollout -0.2567 0.1406 -0.0426 -0.0045 -0.0264 0.1475 0.3582 0.1042 0.0114 -0.3721 -0.5818 0.3194

SHAP -0.2714 0.7660 -0.1643 0.5388 -0.0809 0.6199 -0.0050 0.3776 0.1933 0.7270 -0.3386 0.5310
IxG -0.5373 0.7490 0.0079 0.6980 -0.0843 0.5455 -0.1152 0.6384 -0.0265 1.0541 0.0750 0.5141

IG -0.6136 0.8312 -0.1202 0.6629 -0.1209 0.6372 -0.1328 0.3343 0.1540 0.8815 -0.3386 0.7144
DeepLIFT -0.5430 0.8460 -0.0801 0.6274 -0.0826 0.6149 -0.1296 0.4853 -0.0109 0.8747 0.0147 0.5027

SIG -0.4989 0.5350 -0.0841 0.4375 -0.0964 0.3969 -0.1494 -0.0385 0.1730 0.6147 -0.1886 0.4640
LIME -0.0221 0.2660 0.2210 0.2920 0.0678 0.3149 0.1336 0.2230 0.2100 0.2732 0.5459 0.1096

Occlusion 0.1138 0.0489 0.2267 0.3105 0.0606 0.1872 0.1830 0.3510 0.2119 0.3102 0.8302 -0.0470
NOISER 0.6785 1.5068 0.2248 1.1741 -0.0264 1.4664 0.1805 1.2627 -0.0233 2.2001 0.8043 1.4133

LONGRA

Method Qwen2-0.5B Llama3.2-1b Qwen2-1.5B gemma-2-2b gemma-2-9b Llama3-8b

Soft-NS Soft-NC Soft-NS Soft-NC Soft-NS Soft-NC Soft-NS Soft-NC Soft-NS Soft-NC Soft-NS Soft-NC

Last Attn 1.8502 0.0645 0.2522 0.0733 0.0828 -0.0938 -0.1583 -0.0799 -0.1583 -0.0799 0.0888 0.9874
Rollout 1.8541 -0.0025 0.0894 0.1557 0.0927 -0.0126 -0.1790 -0.0853 -0.1790 -0.0853 0.1052 1.1231

SHAP 1.5203 2.2767 -0.3437 1.6274 -0.0323 1.6599 0.1364 1.8382 0.1444 2.1325 -0.4277 1.1972
IxG 1.3174 2.5798 -0.1419 1.8718 -0.0682 1.6052 0.2919 2.2883 0.2919 2.2883 0.1390 1.9406

IG 1.5378 2.8010 -0.3141 1.6207 -0.1039 1.6537 0.3475 0.9548 0.3475 0.9548 0.0639 3.6551
DeepLIFT 1.6777 2.8214 -0.0546 1.8435 -0.1606 1.7118 0.2430 2.4998 0.2430 2.4998 0.0657 2.0600

SIG 2.4897 1.3749 -0.3132 1.2404 -0.0297 1.1344 0.1009 0.4404 0.1009 0.4404 0.1895 0.9723
LIME 0.9895 0.0870 0.1343 0.0869 -0.4042 -0.0106 -0.0112 -0.1524 -0.0112 -0.1524 0.0923 2.2071

Occlusion 2.2561 1.6862 0.1370 1.8517 -0.4008 1.4153 0.5531 2.8887 0.5531 2.8887 -0.0124 4.2364
NOISER 2.0935 4.7119 0.3242 4.4831 -0.9588 4.1367 0.5164 3.7563 1.1446 5.0235 0.4705 4.6922

WIKIBIO

Method Qwen2-0.5B Llama3.2-1b Qwen2-1.5B gemma-2-2b gemma-2-9b Llama3-8b

Soft-NS Soft-NC Soft-NS Soft-NC Soft-NS Soft-NC Soft-NS Soft-NC Soft-NS Soft-NC Soft-NS Soft-NC

Last Attn 0.8145 0.2459 0.1041 0.5263 0.0126 -0.7181 -0.1474 -0.1105 0.2246 0.0569 -0.0905 0.6405
Rollout -0.6789 0.0385 0.0254 0.5336 0.0424 -0.7490 -0.0168 0.5253 0.2655 0.0843 -0.2114 1.0899

SHAP 0.6624 0.8078 0.0470 1.1202 -0.0263 1.1476 0.0071 0.7895 0.4254 2.7240 -0.0304 1.4368
IxG 1.1577 2.2695 0.0991 1.7374 0.2109 1.1833 0.0320 1.5496 0.4097 2.1950 0.2509 1.1238

IG 0.5209 1.9008 0.0047 1.5749 -0.0232 0.7207 -0.0408 1.2318 0.5993 3.5124 -0.4283 1.1159
DeepLIFT 0.9232 2.2975 -0.0490 1.6755 0.0495 1.4096 0.0574 1.4033 0.3253 1.9753 0.1346 1.1393

SIG 1.4616 2.3040 -0.1815 1.6114 0.3493 1.7323 0.1572 1.2684 0.9031 4.3250 0.6571 0.7049
LIME 1.6490 1.3519 0.1118 0.4537 0.1616 1.0099 0.1260 0.5920 0.7893 2.1634 0.3183 0.5166

Occlusion 2.6100 2.4950 0.3736 1.6283 0.9353 2.9564 0.4595 2.2637 1.3045 3.6255 1.5924 1.7961
NOISER 4.3005 4.4619 0.6959 3.0427 0.9847 4.0016 0.7941 3.4586 1.5671 5.5837 1.4975 3.1114

Table 5: Soft-NS and Soft-NC Scores Across Datasets.

Method Qwen2-0.5B Llama3.2-1b Qwen2-1.5B gemma-2-2b gemma-2-9b Llama3-8b Average

Rate Score Rate Score Rate Score Rate Score Rate Score Rate Score Rate Score

Last Attn 26% 0.1722 58% 0.3037 21% 0.1432 55% 0.2917 51% 0.2529 48% 0.2568 43% 0.2368
Rollout 21% 0.1445 37% 0.1836 23% 0.1604 23% 0.1086 36% 0.1621 40% 0.1980 30% 0.1595

SHAP 47% 0.3904 52% 0.3440 47% 0.3662 31% 0.2188 28% 0.2051 43% 0.2427 41% 0.2945
IxG 51% 0.4087 58% 0.4299 40% 0.3057 55% 0.3792 47% 0.3369 44% 0.3062 49% 0.3611

IG 48% 0.4004 54% 0.3586 43% 0.3367 31% 0.2308 25% 0.1847 42% 0.2172 41% 0.2881
DeepLIFT 49% 0.4138 60% 0.4067 40% 0.3159 48% 0.3271 45% 0.3164 44% 0.2898 48% 0.3450

SIG 40% 0.3025 44% 0.2759 40% 0.3091 24% 0.1644 36% 0.2698 28% 0.1584 35% 0.2467
LIME 49% 0.3936 49% 0.3315 53% 0.4307 61% 0.4021 60% 0.3916 48% 0.3230 53% 0.3787

Occlusion 67% 0.4666 61% 0.4001 65% 0.5093 64% 0.4204 63% 0.4043 57% 0.4241 63% 0.4375
NOISER 65% 0.5996 58% 0.5435 57% 0.5474 66% 0.6245 60% 0.5400 54% 0.5962 60% 0.5752

Table 6: Answerability metrics on KNOWN dataset w.r.t judge model top-5 predictions.

C Datasets Statistics

Appendix C shows the number of true predictions by each model given KNOWN and
LONGRA datasets.

Dataset Qwen2-0.5B Llama3.2-1b Qwen2-1.5B gemma-2-2b gemma-2-9b Llama3-8b

Known (1208) 661 828 774 830 822 875
LongRA (573) 140 160 170 209 148 165

Table 7: Number of true predictions captured by each model.
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Figure 4: Comparison of average faithfulness score with (a) average answerability score and
(b) answerability rate.

D Bounding Computations

Since kmin is dependent on the model, we introduce norm-bounding as the norm value
of the noise vector n is different based on the model’s embedding size (dmodel). To avoid
different norm values for each sample in a given data, we use the expected norm value of
the noise vector, E

[
∥n∥p

]
, and use k = 1

E[∥n∥p]
as the final bounding for the noise vector.

In the following, we show the expected value of each norm given a model with dmodel
embedding dimensions.

Let n ∈ Rdmodel be a random vector where each component ni ∼ N (0, 1). Below, we derive
the expected values of different norms and compare their properties.

The L2 norm (Euclidean Norm) is defined as follows:

∥n∥2 =

√√√√dmodel

∑
i=1

n2
i

where each n2
i follows a chi-squared distribution with 1 degree of freedom, which results in

the following:

E
[
∥n∥2

2

]
= dmodel

By Jensen’s inequality and the Law of Large Numbers, for large dmodel:

E [∥n∥2] ≈
√

E
[
∥n∥2

2
]
=

√
dmodel

The L∞ norm (Maximum Norm) is defined as follows:

∥n∥∞ = max
1≤i≤dmodel

|ni|

The cumulative distribution function (CDF) for |ni| is F(x) = erf
(

x√
2

)
. The CDF for the

maximum of dmodel samples is Fmax(x) = [F(x)]dmodel . Using extreme value theory, the
expected maximum for large dmodel approximates:

E [∥n∥∞] ≈
√

2 ln dmodel

E Answerability Evaluation Prompt

Below, we provide the prompt used for evaluating FAs’ answerability.
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Answerability Evaluation Prompt

# Task:
Given a set of words extracted from a prompt for a completion task, return a single word as
the most probable completion for the unseen prompt WITHOUT providing any explanation.
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