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Abstract

Effective text-to-image generation must synthesize images that are both realistic in appear-
ance (sample fidelity) and have sufficient variations (sample diversity). Diffusion models have
achieved promising results in generating high-fidelity images based on textual prompts, and
recently, several diversity-focused works have been proposed to improve their demographic
diversity by enforcing the generation of samples from various demographic groups. However,
another essential aspect of diversity, sample diversity—which enhances prompt reusability
to generate creative samples that reflect real-world variability—has been largely overlooked.
Specifically, how to generate images that have sufficient demographic and sample diver-
sity while preserving sample fidelity remains an open problem because increasing diversity
comes at the cost of reduced fidelity in existing works. To address this problem, we first
propose a bimodal low-rank adaptation of pretrained diffusion models which decouples the
text-to-image conditioning, and then propose a lightweight bimodal guidance method that
introduces additional diversity to the generation process using reference images retrieved
through a fairness strategy by separately controlling the strength of text and image condi-
tioning. We conduct extensive experiments to demonstrate the effectiveness of our method in
enhancing demographic diversity (Intersectional Diversity (Shrestha et al., 2024)) by 2.47×
and sample diversity (Recall (Kynkäänniemi et al., 2019)) by 1.45× while preserving sample
fidelity (Precision (Kynkäänniemi et al., 2019)) compared to the baseline diffusion model.

1 Introduction

Diffusion models have made significant progress in generating high-fidelity content across various applications
(e.g., Text-to-Image (T2I) Generation) (Guo and Chen, 2024; Ho et al., 2020; Rombach et al., 2022; Dhariwal
and Nichol, 2021). Despite the advancements in achieving better control over these models to produce high-
fidelity content, there remains a lack of sufficient control in generating both high-fidelity and diverse content,
particularly in terms of demographic diversity and sample diversity. Demographic diversity aims to address
societal biases and ensure fair representation across diverse demographic groups (Wan et al., 2024a; Xu et al.,
2018; Friedrich et al., 2023; Li et al., 2024b) while sample diversity seeks to improve prompt reusability to
avoid monotonous or overly similar outputs and ensure that generated samples capture the variability of real-
world samples (Zhang and Schomaker, 2022; Miao et al., 2024; Sadat et al., 2023; Li et al., 2021; Xia et al.,
2021; Liu et al., 2020; Wang et al., 2024). Recently, several diversity-focused works (Friedrich et al., 2023;
Esposito et al., 2023; Li et al., 2023a; Zhang et al., 2023a; Bansal et al., 2022; Luccioni et al., 2023; Perera and
Patel, 2023; Bianchi et al., 2023) have been proposed to improve demographic diversity. However, enhancing
sample diversity in diffusion models, particularly improving both aspects of diversity, remains overlooked.

Insufficient sample diversity in diffusion models hinders their further advancements in producing more pho-
torealistic large-scale images (Marwood et al., 2023; Zameshina et al., 2023; Rassin et al., 2024; Li et al.,
2024a). As shown in Fig. 1 (left, first row), images generated by state-of-the-art (SOTA) diffusion model
(Stable Diffusion 3.5-Large (Esser et al., 2024)) appear repetitive, formulaic, and monotonous, resembling
typical stock photos (e.g., images generated with the prompt “Photo of a doctor” always feature a white
wall background and a similar pose). This sharply contrasts with real-world images, which exhibit greater
variation and creativity (Kynkäänniemi et al., 2019; Naeem et al., 2020), thereby limiting their broader
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Baseline (Stable Diffusion 3.5-Large [27])
has limited demographic diversity and sample diversity

Diversity-focused methods (TextAug [23])
enhance demographic diversity but overlook sample diversity

Image-conditioned methods ([105]) adapted for diversity will
increase sample diversity at the cost of reduced sample fidelity

Our method
enhances demographic diversity and sample diversity 

while preserving sample fidelity
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Figure 1: The proposed method (right) enhances both demographic diversity (e.g., generating both female
and male images) and sample diversity (e.g., varied poses and backgrounds) while preserving sample fidelity
(e.g., sharp details, natural faces, and realistic lighting).

applicability. Furthermore, SOTA models (Betker et al., 2023; Podell et al., 2023) are limited in large-scale
image generation, as when generating 50-200 images from the same prompt, they often produce images
similar to those already generated images even with different random initialization seeds (Tang et al., 2024;
Du et al., 2024). We quantitatively demonstrate that SOTA models and existing diversity-focused methods
struggle to capture real-world sample variability in Tab. 1 and Fig. 4, and exhibit limited prompt reusability
in Fig. 5.

Since sample diversity is often overlooked in the literature, we propose a method to enhance it while also
considering demographic diversity. It is well established that diversity and fidelity exhibit a trade-off (Dhari-
wal and Nichol, 2021; Ho and Salimans, 2022; Brock, 2018b; Kingma and Dhariwal, 2018), meaning that
improving one often reduces the other. For instance, many general methods (Nichol et al., 2021; Blattmann
et al., 2022), such as Classifier-Free Guidance (CFG) (Ho and Salimans, 2022), a widely adopted technique
in diffusion models, trade off output variability over fidelity, as lower guidance scales introduce more de-
tails but reduce control. Consequently, a key challenge in improving diversity is effectively alleviating this
diversity-fidelity trade-off, as both are essential for generating high-quality images. In this paper, our primary
objective is to enhance both demographic and sample diversity while preserving sample fidelity.

To achieve our objective, we investigate whether incorporating additional diversity can enhance output di-
versity without compromising fidelity. To introduce more diversity, we alternate training between text and
image modalities to encode image information, and leverage the rich visual details from multiple retrieved
reference images to augment the user prompt during inference. To preserve sample fidelity, we propose
Bimodal Classifier-Free Guidance (BCFG), which extends the unified control of text and image modalities
in CFG by separately controlling guidance from each modality. This technique allows image modality to
fully exploit the added diversity while properly tuning text modality to maintain both sample fidelity and
image-text alignment, as empirically verified in Fig. 7. Additionally, existing demographic diversity-focused
methods (Shrestha et al., 2024) typically support only a fixed fairness criterion, which may cause over-
shooting biases (Wan and Chang, 2024). To address this limitation, we reformulate demographic diversity
enhancement as a distribution alignment problem (Shen et al., 2024), enabling adaptability to various fair-
ness criteria based on user needs. Finally, our method is implemented in a lightweight and efficient manner.
Specifically, we design a low-rank joint text-image adapter architecture on the pre-trained model for bi-
modal conditioning. Our approach eliminates the computational overhead of re-training or Full Fine-Tuning
(FFT) (Blattmann et al., 2022; Chen et al., 2022) by freezing all text modality parameters to preserve
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pre-trained knowledge and designing a delicate adapter for the image modality. We summarize our main
contributions below:

• Proposing, to our knowledge, the first method to enhance both demographic diversity and sample
diversity while preserving sample fidelity and alignment by alleviating the diversity-fidelity trade-off
in a lightweight and efficient manner (12M parameters for Stable Diffusion v2.1).

• Highlighting and formulating sample diversity which is overlooked by existing diversity-focused meth-
ods.

• Providing an extensive empirical analysis of the proposed method, demonstrating its superior perfor-
mance in enhancing demographic diversity (Intersectional Diversity (Shrestha et al., 2024)) from 0.19
to 0.47 and sample diversity (Recall) from 0.31 to 0.45 while maintaining sample fidelity (Precision)
at 0.54, comparable to 0.52 of the baseline.

2 Related Work

Enhancing Diversity in Diffusion Models. While diffusion models can generate high-fidelity images (Ho
et al., 2020; Rombach et al., 2022; Dhariwal and Nichol, 2021), they exhibit insufficient demographic (Wan
et al., 2024a; He et al., 2024; Esposito et al., 2023) and sample diversity (Marwood et al., 2023; Cao et al.,
2024; Naeem et al., 2020). To enhance demographic diversity, several methods directly augment the user
prompt with demographic description (Bansal et al., 2022; Ding et al., 2021; Friedrich et al., 2023), while
others apply Parameter-Efficient Fine-Tuning (Zhang et al., 2023a; Teo et al., 2024; Shen et al., 2024).
Building on Retrieval-Augmented Generation (RAG) (Lewis et al., 2020; Cai et al., 2022), FairRAG (Shrestha
et al., 2024) uses the user prompt (e.g., “Photo of a doctor") to retrieve relevant images from external
databases and boosts minority group sampling. Despite efforts to enhance demographic diversity (Luo et al.,
2024; Chuang et al., 2023; Fraser et al., 2023; Gandikota et al., 2024), few methods improve sample diversity
or both diversity in diffusion models.

Diversity-Fidelity Trade-Off. Diffusion models inherently exhibit the diversity-fidelity trade-off (Nichol
et al., 2021; Blattmann et al., 2022), which limits high-quality data generation, as both aspects contribute
to overall quality. Many general techniques (Dhariwal and Nichol, 2021; Ho and Salimans, 2022; Brack
et al., 2023; Friedrich et al., 2023; Chen et al., 2022; Bansal et al., 2023; Epstein et al., 2023) enhance
fidelity at the expense of diversity (Dhariwal and Nichol, 2021; Ho and Salimans, 2022; Brack et al., 2023;
Friedrich et al., 2023; Chen et al., 2022; Bansal et al., 2023; Epstein et al., 2023). For instance, Classifier
Guidance (CG) (Dhariwal and Nichol, 2021) increases fidelity by combining the original score estimate
with the gradient from an auxiliary classifier to better align the sampling process with the conditioning
information, albeit at the cost of reduced diversity. Classifier-Free Guidance (CFG) (Ho and Salimans, 2022)
mathematically interprets the classifier gradient in CG as a combination of unconditional and conditional
score estimates, removing the need for an explicit classifier. However, effectively enhancing diversity without
compromising fidelity remains an open challenge.

3 Methods

We propose a lightweight and efficient method to enhance both demographic and sample diversity while
preserving sample fidelity. Our method leverages the additional diversity introduced by retrieved reference
images to alleviate the diversity-fidelity trade-off. During training, we design Low-Rank Image Adapter
(LoRIA), a lightweight adapter architecture that extracts image information into visual token and efficiently
fuses text and image modalities to enable pre-trained models to incorporate reference images as additional
conditioning. During inference, we introduce Image-Augmented Prompt (IAP), which retrieves reference
images based on generated demographic description to augment the original user prompt, thereby introducing
additional sample diversity and enhancing demographic diversity in a manner adaptable to various fairness
criteria. Furthermore, we propose Bimodal Classifier-Free Guidance (BCFG), which independently controls
the guidance strength of text and image modalities, better aligning the sampling process with conditioning
information from each modality.
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serve sample fidelity and text-image alignment.

Figure 2: The framework of the proposed Low-Rank Image Adapter, Image-Augmented Prompt, and Bimodal
Classifier-Free Guidance.

3.1 Low-Rank Image Adapter (LoRIA)

To incorporate additional conditioning on reference images i, several methods (Blattmann et al., 2022;
Chen et al., 2022; Ramesh et al., 2022) re-train or fine-tune pre-trained SD models which are originally
conditioned solely on text prompts p. However, these methods are resource-intensive and time-consuming,
and may compromise image-text alignment due to unrelated content in i retrieved from limited external
databases, as studied in Fig. 6. To address this and ensure that the image modality introduces variation
without dominating generation, we freeze all text-modality parameters to retain pre-trained knowledge (Li
et al., 2023c), while training a linear projector and applying Low-Rank Adaptation (LoRA)(Hu et al., 2021)
to selectively update specific cross-attention weights in the modality fusion module (e.g., U-Net(Ronneberger
et al., 2015)), as illustrated in Fig. 2a. This lightweight design enables efficient image generation during both
training and inference. Additionally, it helps prevent catastrophic forgetting (Kirkpatrick et al., 2017; Zhai
et al., 2023; Smith et al., 2023) for the training prompt “Photo of a person", as analyzed in Appendix 3.2.

Extracting Image Information into the Visual Token. We utilize a frozen CLIP image encoder Φ
followed by a trainable linear layer T and Layer Normalization (LN) (Ba, 2016) to obtain the visual token
embedding ei. To ensure the model effectively extracts image information into the visual token, including
demographic information, we train it on cases where only reference images are provided without any text
prompt (Algorithm 1), which forces the model to rely maximally on the image for noise removal. As evidence,
our ablation study (Tab. 3) demonstrates that omitting model training on cases with only image modality
leads to a notable reduction in demographic diversity. Thus, during inference, the visual token is expected
to retain demographic information from the retrieved reference images.

Fusing Text and Image Modalities. The bimodal embeddings (ep, ei) are fed into SD for conditioning,
with the text token embedding ep obtained from a frozen CLIP text encoder Ψ. To fuse two modalities while
considering their distinct roles, we introduce a low-rank decoupled cross-attention layer. The query features,
shared across both modalities, are computed as Q = zWq, where Wq is the corresponding weight matrix.
For text modality, the key and value features are obtained as Kp = epWk

p and Vp = epWv
p, respectively.

For image modality, the key and value features are calculated using weight matrices derived from the text
weight matrices via LoRA, i.e., Wk

i = Wk
p +BkAk and Wv

i = Wv
p +BvAv, where Bk ∈ Rm×r, Ak ∈ Rr×n,

Bv, and Av are low-rank matrices that approximate fine-tuning adjustments, with rank r ≪ min(m, n).
Overall, the layer output is formulated as:

z′ = Attention(Q, Kp, Vp) + Attention(Q, Ki, Vi), (1)
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where Q = zWq, Kp = epWk
p, Vp = epWv

p, Ki = ei(Wk
p +BkAk), Vi = ei(Wv

p +BvAv). During training,
only Bk, Ak, Bv, Av, and linear layer T with LN are learnable while all other parameters remain frozen.
The training objective is to minimize the following loss function:

L = Eϵ∼N (0,I),z0,ep,ei,t∼[1,T ]

[
∥ϵ− ϵθ(zt, ep, ei, t)∥2

]
, (2)

where ϵ is the sampled noise during the diffusion process; z0 = E(i) is the original latent representation of
the training image i encoded by a variational autoencoder (VAE) (Kingma, 2013) E ; zt = αtz0 + σtϵ is the
noisy version of z0 at timestep t, with αt and σt defining the diffusion process (Rombach et al., 2022); ϵθ is
the noise predicted by the denoising diffusion model parameterized by θ; and p is the fixed training prompt
(e.g., “Photo of a person"). To enhance the model’s ability to extract information from each modality, we
randomly discard conditioning during training. Specifically, we replace the training prompt with an empty
sequence with probability πp = 0.1, following (Saharia et al., 2022), and replace the image embedding with
the all-zero embeddings of the same size with probability πi = 0.1. The training and inference algorithms
are shown in Algorithm 1 and Algorithm 2. We present the implementation details in Appendix 6.

Algorithm 1 Training a Diffusion Model with Bimodal Classifier-Free Guidance
Require: πp: the probability of training without text conditioning
Require: πi: the probability of training without image conditioning

1: repeat
2: (z0, p, i) ∼ p(z0, p, i) ▷ Sample data z0, training prompt p, and reference images i from the dataset
3: p← ∅ with probability πp ▷ Discard text conditioning with probability πp

4: ei ← ∅ with probability πi ▷ Discard image conditioning with probability πi

5: t ∼ [1, T ] ▷ Sample a timestep uniformly from the range
6: ϵ ∼ N (0, I) ▷ Generate Gaussian noise
7: zt = αtz0 + σtϵ ▷ Corrupt the latent representation by adding noise
8: Take a gradient step on ∇θ

[
∥ϵ− ϵθ(zt, ep, ei, t)∥2

]
▷ Optimize the denoising model

9: until converged

Comparison of Design Aspects between LoRIA and Existing Image Adapters (Ramesh et al.,
2022; Ye et al., 2023; Zhang et al., 2023b; Mou et al., 2024). The main design difference between
existing methods and ours stems from different objectives: while they aim to edit the input image based on
the user prompt (where the input image acts as the primary subject and its details need to be maximally
preserved) (Ye et al., 2023), our method intends to leverage the image to introduce additional variation,
hence enhancing diversity in T2I generation (where the input image serves as supportive context (Zhou
et al., 2024)). As compared in Fig. 6, our method better aligns generated images with the user prompt
by addressing potential unrelated content in reference images. To control the image modality strength,
existing methods use an image scale parameter λ (e.g., scaling Attention(Q, Ki, Vi) in Eq. (1) (Ye et al.,
2023)). However, adjusting this parameter during inference can introduce discrepancy between training
and inference, which may induce flaws (e.g., overexposure or lower resolution) (Lin et al., 2024b). Aligning
it across training and inference requires retraining, which is time-consuming and limits flexibility for user
control. To address this, we employ ωi in BCFG, a training-free hyper-parameter, to control the strength
of image modality while preserving image quality, as shown in Fig. 3. We present the detailed comparison
between control using the image scale parameter λ and control via BCFG in Sec. 4.6.

3.2 Image-Augmented Prompt (IAP)

To introduce demographic diversity, conventional methods such as Text-Augmented Prompt (TAP) (Bianchi
et al., 2023; Bansal et al., 2022; Ding et al., 2021) augment user prompt p (e.g., “Photo of a doctor")
by appending it with fixed demographic descriptions d (e.g., “This person is a female."). However, TAP
still exhibits limited sample diversity and struggles to substantially enhance demographic diversity due
to linguistic ambiguity (e.g., many skin tone categories are difficult to express using text alone) (Zhang
et al., 2023a; Wan et al., 2024a; Shrestha et al., 2024). To address these limitations, we propose Image-
Augmented Prompt (IAP), which enriches p with the visual token encoded from one or multiple reference
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Algorithm 2 Inference with Bimodal Classifier-Free Guidance
Require: p: user prompt
Require: i: reference images
Require: wp: text guidance scale
Require: wi: image guidance scale

1: zT ∼ N (0, I) ▷ Initialize latent representation with Gaussian noise
2: for t = T, . . . , 1 do
3: ϵ̃θ(zt, ep, ei, t) = ϵθ(zt, t) + ωp[ϵθ(zt, ep, t)− ϵθ(zt, t)] + ωi[ϵθ(zt, ei, t)− ϵθ(zt, t)] ▷ Compute BCFG

score
4: zt−1 = (zt − σtϵ̃θ(zt, ep, ei, t))/αt ▷ Update latent representation for the next timestep
5: end for
6: return z0 ▷ Return the final denoised latent representation

images i retrieved based on textual demographic description d. Incorporating visual token not only conveys
demographic information to enhance demographic diversity but also introduces additional sample diversity
through rich visual details (e.g., appearance, environment, and lighting conditions) that text alone cannot
provide, thereby increasing sample diversity. We mathematically prove (Theorem 1 in Appendix 1.1) and
empirically verify (Tab. 1) that IAP generates more diverse images than TAP.

Diverse Retrieval Strategy (DRS). To further improve diversity, we introduce DRS, a two-step retrieval
strategy ξ, as shown in Fig. 2b. First, we perform nearest neighbor search (Borgeaud et al., 2022) with
demographic information d to retrieve Top-N candidates (Blattmann et al., 2022) based on cosine similarity
between their CLIP-encoded text embeddings ed and image embeddings ei (Radford et al., 2021). Next, we
randomly select one or more samples as reference images i for each generation query q. This random selection
contributes to generating diverse samples since various image candidates representing d, rather than a fixed
text description d, can reduce biases introduced by deterministic selection. Compared with TAP (p, d), IAP
is defined as (p, i), where i = ξ(d). With IAP (p, i) integrating both text p and image i, we explore a method
to separately control the strength of each modality in Sec. 3.3.

Adaptable Description Generator (ADG). Existing demographic diversity-focused methods (Bansal
et al., 2022; Friedrich et al., 2023; Zhang et al., 2023a; Teo et al., 2024; Shen et al., 2024; Shrestha et al.,
2024) are designed for a specific fairness criterion and limit sufficient control over demographic distribution of
generated images, which may cause overshooting biases (Wan and Chang, 2024; Wan et al., 2024b) since per-
ceptions of fairness vary across contexts. To address this, we formulate demographic diversity enhancement
as a distributional alignment problem (Shen et al., 2024) and propose ADG, which generates d for image
retrieval based on a target distribution D specified by user-defined fairness criteria, making it adaptable to
various fairness criteria. For a generation query q with prompt p, we use the target distribution Dp(a1, ..., aj)
of demographic attributes A1, ..., Aj to direct a description generator G(Dp, Λ) in creating demographic de-
scription dq by filling a template Λ (e.g., “This person is a [AGE], [SKIN TONE] [SEX].") with respective
demographic qualifiers1. Note that Dp and Λ can be adapted to various fairness criteria such as disparate
impact (Esposito et al., 2023), demographic factuality (Wan et al., 2024b), counter-stereotypes (Bianchi
et al., 2023), or other user-defined fairness criteria; implementations are in Appendix 2. In the main paper,
following (Friedrich et al., 2023; Xu et al., 2018; Shrestha et al., 2024), we consider a well-known fairness
criterion, demographic parity (DP) (Hardt et al., 2016), to define Dp. DP requires the independence between
the label Y (e.g., occupation) and demographic attribute A (e.g., sex) for a (generated/synthetic) dataset,
i.e., P (Y |A) = P (Y ). Thus, to achieve DP and generate an overall balanced dataset, Dp is a uniform
distribution2 for any p. This DP-based augmentation forms the foundation for the proposed IAP.

3.3 Bimodal Classifier-Free Guidance (BCFG)

Classifier-Free Guidance (CFG) (Ho and Salimans, 2022) is commonly used in diffusion-based models (Ho
et al., 2020; Rombach et al., 2022; Nichol et al., 2021) to direct the inverse diffusion process towards condi-

1We present the values for demographic qualifiers in Appendix 2.1.
2We present the proof in Appendix 2.2.
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Figure 3: Visualization of varying image guidance scale ωi from 1 to 10 in BCFG (Eq. (4)), with text guidance
scale ωp fixed at 7.5. ωi controls how much the inverse diffusion process path will be pulled towards features
of the reference image (e.g., increasing ωi shortens the doctor’s sleeves to match the reference image). This
allows users to easily choose their desired degree of diversity by varying ωi.

tioning features by incorporating the predicted noise during sampling:

ϵ̃θ(zt, ep, t) = ϵθ(zt, t) + ω[ϵθ(zt, ep, t)− ϵθ(zt, t)], (3)

where ϵθ(zt, ep, t) and ϵθ(zt, t) are the conditional and unconditional score estimate, respectively; ω > 0 is
the guidance scale; zt is the intermediate representation of the U-Net (Ronneberger et al., 2015) at timestep
t; and ep is the text embedding of user prompt p. However, CFG is well known for exhibiting the diversity-
fidelity trade-off, where reducing ω enhances diversity at the cost of fidelity (Dhariwal and Nichol, 2021; Ho
and Salimans, 2022; Nichol et al., 2021). In this work, we propose two modifications to CFG that alleviate
this trade-off, thereby enabling diffusion models to achieve greater diversity while preserving sample fidelity.

First, we extend CFG to incorporate reference images i (introduced by IAP) by replacing ϵθ(zt, ep, t) with
ϵθ(zt, ep, ei, t) in Eq. (3) where ei is the image embedding of i. By introducing image modality, rich visual
details and variations from different reference images can introduce additional diversity beyond the textual
description d, even though the user prompt p remains unchanged.

Second, to ensure that incorporating diversity does not compromise sample fidelity, we extend the unified
control of text and image modalities in CFG by separately controlling guidance from two modalities. As
empirically demonstrated in Fig. 7, using a unified guidance scale ω for both modalities leads to suboptimal
sample fidelity and text-image alignment (Appendix 3.1) due to potentially conflicting content in i (e.g., a
skier) that contradicts p (e.g., “Photo of a doctor") (Teo et al., 2024). However, in T2I generation, the
generated image should primarily reflect user-provided prompt p (Li et al., 2019; Qiao et al., 2019; Ding et al.,
2021). Thus, in our proposed IAP (p, i), the user prompt p serves as the primary role, while reference images
i serve as the supportive role, introducing additional variations rather than imposing all details that could
dominate generated images. To achieve this, we propose Bimodal Classifier-Free Guidance (BCFG), which
enables separate control over the text prompt and reference image modalities by leveraging the predicted
noise during sampling:

ϵ̃θ(zt, ep, ei, t) = ϵθ(zt, t) + ωp[ϵθ(zt, ep, t)− ϵθ(zt, t)]
+ ωi[ϵθ(zt, ei, t)− ϵθ(zt, t)],

(4)

where ωp > 0 and ωi > 0 are guidance scales for user prompt p and reference images i. We set ωp as
7.5 following (Ho and Salimans, 2022) and choose ωi < ωp to prioritize text modality in image generation.
In Fig. 7, we empirically compare BCFG with CFG on the diversity-fidelity trade-off, showing that BCFG
can enhance diversity while preserving fidelity. Besides, we compare it with other guidance methods (Ho
and Salimans, 2022; Brack et al., 2023; Chen et al., 2022) and analyze ωi at different scales in Appendix 3.1.

The Corresponding Sampling Distribution of Bimodal Classifier-Free Guidance (BCFG). As
proved below, the predicted noise in BCFG yields approximate samples from the following distribution3,

p̃θ(zt|ep, ei) ∝ pθ(zt)pθ(ep|zt)ωppθ(ei|zt)ωi . (5)

Intuitively, the effect of BCFG is to increase the sampling probability of data points with a higher likelihood
of matching the user prompt p and reference image i by the implicit classifier (Ho and Salimans, 2022).

3For brevity, we omit the timestep variable t.
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In Sec. 4, we apply BCFG to the proposed bimodal conditioning module (LoRIA) to control the strength
of each modality. Notably, BCFG can be applied independently of the conditioning module, as empirically
verified with other conditioning modules in Sec. 4.7.

Proof of the Corresponding Sampling Distribution. In this subsection, we provide a mathematical
interpretation of the sample distribution of Bimodal Classifier-Free Guidance. Recall that the diffusion score
(Ho and Salimans, 2022)

ϵθ(zt, ep, ei) = −σt∇zt
log p(zt, ep, ei) (6)

= −σt∇zt
log[p(ei, ep)p(zt|ei, ep)] (7)

= −σt∇zt
[log p(ei, ep) + log p(zt|ei, ep)] (8)

≈ −σt∇zt
log p(zt|ei, ep) (9)

since p(ei, ep) is not a function of zt.

Suppose we have two auxiliary implicit classifier models pθ(ep|zt) ∝ p(zt|ep)
p(zt) and pθ(ei|zt) ∝ p(zt|ei)

p(zt) . Assume
exact estimate ϵ∗(zt, ep) of p(zt|ep), ϵ∗(zt, ei) of p(zt|ei), and ϵ∗(zt) of p(zt). The gradient of the resulting
classifier can be written as ∇zt

log p(ep|zt) = − 1
ωp

[ϵ∗(zt, ep)− ϵ∗(zt)] and ∇zt
log p(ei|zt) = − 1

ωi
[ϵ∗(zt, ei)−

ϵ∗(zt)] respectively. Since the exact scores ϵ∗(zt, ep), ϵ∗(zt, ei), and ϵ∗(zt) are not available, we use their
estimates ϵθ(zt, ep), ϵθ(zt, ei), and ϵθ(zt) respectively. The modified score function in Eq. (4) can thus be
rewritten as

ϵθ(zt, t) + ωp[ϵθ(zt, ep, t)− ϵθ(zt, t)]+
ωi [ϵθ(zt, ei, t)− ϵθ(zt, t)] (10)

≈ ϵθ(zt, t)− σtωp∇zt
log pθ(ep|zt)−

σtωi∇zt
log pθ(ei|zt) (11)

= −σt∇zt
[log pθ(zt) + ωp log pθ(ep|zt) + ωi log pθ(ei|zt)] (12)

= −σt∇zt
log[pθ(zt)pθ(ep|zt)ωppθ(ei|zt)ωi ] (13)

= −σt∇zt
log[pθ(zt)pθ(ep|zt)pθ(ei|zt)

pθ(ep|zt)ωp−1pθ(ei|zt)ωi−1] (14)
= −p(ep, ei)σt∇zt

[pθ(zt|ep, ei)pθ(ep|zt)ωp−1pθ(ei|zt)ωi−1] (15)

where p(ep, ei) is a positive constant. In the last step, we used the Bayes Rule and the independence of
random variable ep and ei given zt to derive p(zt|ep, ei) = p(zt,ep,ei)

p(ep,ei) = p(ep,ei|zt)p(zt)
p(ei,ep) = p(zt)p(ep|zt)p(ei|zt)

p(ep,ei) .
This proves Eq. (5).

4 Experimental Evaluation

4.1 Experiment Setup

Datasets and Evaluation Prompts Following (Shrestha et al., 2024), we construct non-overlapping train-
ing and reference image datasets from human images in MSCOCO (Lin et al., 2014) and OpenImages-
v6 (Krasin et al., 2017), and store the pre-computed CLIP image embeddings (Radford et al., 2021) to speed
up the inference process by bypassing the usage of the image encoder during inference. For evaluation,
we use prompts of 80 occupations that exhibit bias toward specific demographic groups (Shrestha et al.,
2024; Friedrich et al., 2023) and generate 10,000 images (i.e., 125 per prompt). Specifically, we employ the
template “Photo of a [OCCUPATION]" to create prompts such as “Photo of a doctor". Additional details
are provided in Appendix 5.

Metrics For demographic diversity, we use intersectional diversity (Shrestha et al., 2024), calculated as
the normalized entropy of unique demographic groups categorized by sex, age, and skin tone, and indi-
vidual diversity (Shrestha et al., 2024) to measure each attribute separately. For sample diversity, we use
Recall (Kynkäänniemi et al., 2019) and W1KP (Tang et al., 2024). We use a fixed set of samples from
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Table 1: Comparison of our method with existing methods. Bold indicates the best results, and underline
indicates the second-best results.

Category Method Demographic Diversity ↑ Sample Diversity Sample Fidelity Sample Quality Alignment
Sex Age Skin Tone Intersec. W1KP ↓ Recall ↑ IS ↑ Precision ↑ FID ↓ F1P R ↑ CLIP ↑

Baseline SDv2.1 Rombach et al. (2022) 0.27 0.22 0.22 0.19 0.88 0.31 22.81 0.52 27.87 0.39 23.63

Existing Demographic
Diversity Methods

Interven Bansal et al. (2022) 0.45 0.44 0.36 0.33 0.85 0.29 19.93 0.46 32.71 0.36 23.19
TextAug Ding et al. (2021) 0.77 0.43 0.33 0.34 0.80 0.28 16.03 0.49 30.81 0.36 23.02
FairDiff Friedrich et al. (2023) 0.37 0.23 0.22 0.20 0.83 0.34 22.40 0.50 27.77 0.40 23.97
ITI-GEN Zhang et al. (2023a) 0.80 0.56 0.38 0.44 0.70 0.34 20.56 0.51 34.02 0.41 21.44
FairQueue Teo et al. (2024) 0.82 0.56 0.41 0.47 0.72 0.35 21.23 0.52 30.43 0.42 22.65
DAL Shen et al. (2024) 0.83 0.57 0.42 0.43 0.79 0.33 23.50 0.51 28.77 0.40 23.12
FairRAG Shrestha et al. (2024) 0.80 0.56 0.42 0.44 0.61 0.37 20.88 0.53 26.82 0.44 23.63

Image-Conditioned
Methods Adapted for
Diversity Enhancement

RDM Blattmann et al. (2022) 0.43 0.22 0.38 0.23 0.57 0.40 18.52 0.52 25.24 0.45 23.78
unCLIP Ramesh et al. (2022) 0.50 0.27 0.26 0.23 0.72 0.44 18.09 0.47 41.33 0.45 21.22
IP-Adapter Ye et al. (2023) 0.55 0.22 0.27 0.22 0.65 0.45 19.88 0.50 26.38 0.47 22.28
T2I-Adapter Mou et al. (2024) 0.37 0.24 0.16 0.16 0.70 0.42 18.55 0.51 62.55 0.46 22.54
ControlNet Zhang et al. (2023b) 0.43 0.29 0.18 0.20 0.65 0.43 18.49 0.49 58.25 0.46 22.60
Ours 0.82 0.57 0.42 0.47 0.54 0.45 22.45 0.54 23.18 0.49 23.05
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Figure 4: Our method (top-right) enhances both demographic diversity and sample diversity simulta-
neously while preserving sample fidelity, whereas existing methods can only improve either demographic
diversity or sample diversity while sacrificing sample fidelity.

MSCOCO that do not overlap with the reference image dataset as real samples to compute metrics in-
volving real samples (Brock, 2018a). Additionally, we use W1KP, a metric independent of real samples,
to evaluate sample diversity and prompt reusability, as it is more effective than other diversity metrics
(e.g., LPIPS (Zhang et al., 2018) and ST-LPIPS (Ghildyal and Liu, 2022)) (Tang et al., 2024). We use
Precision (Kynkäänniemi et al., 2019) and Inception Score (IS) (Salimans et al., 2016) to evaluate sample
fidelity. We use FID (Heusel et al., 2017) to assess overall sample quality, as it captures both diversity and
fidelity (Dhariwal and Nichol, 2021; Karras et al., 2019; 2020). Additionally, we calculate the harmonic mean
of Precision and Recall, denoted as F1P R, to comprehensively evaluate both sample diversity and sample
fidelity. We use CLIP Score (Radford et al., 2021) to evaluate the alignment between the user prompt and
the actual content of the generated image.

4.2 Comparison with Existing Demographic Diversity Methods

We compare our method with an extensive list of existing demographic diversity methods in Tab. 1 and Figs. 4
and 5. Since most compared methods are built on SDv2.1, we use it as the backbone in this comparison,
and later evaluate our method on other backbones in Fig. 8, including the SOTA SDv3.5-L (Esser et al.,
2024). In Tab. 1, our method outperforms all demographic diversity methods in improving sample diver-
sity, while having on-par or better demographic diversity and sample fidelity. For instance, compared to
FairRAG (Shrestha et al., 2024), which retrieves reference images using p, our method achieves high sample
diversity by using description d, as more candidates match d than p. Interestingly, our method also surpasses
TAP-based methods (Bansal et al., 2022; Ding et al., 2021; Friedrich et al., 2023) in demographic diversity,
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Figure 5: Prompt reusability evaluated by W1KP Tang et al. (2024) (lower is better). Our method performs
the best compared to other methods.

particularly in skin tone, possibly because skin tone is difficult to specify in text but easily conveyed through
images (Zhang et al., 2023a). Moreover, our method achieves comparable performance in sample fidelity to
the baseline (e.g., precision 0.54 vs. 0.52 and FID 23.18 vs. 27.87). We attribute the FID improvement to
increased sample diversity, as FID captures both diversity and fidelity. In Fig. 5, where we evaluate prompt
reusability across representative methods with greater sample diversity, our method performs the best.

4.3 Adapting Image-Conditioned Methods for Enhancing T2I Diversity

Despite a lack of existing solutions for enhancing sample diversity in T2I generation, it might be possible to
construct such a solution by simply combining existing image-conditioned methods with a retrieval strategy.
We implement such a combination as follows: for any given user prompt, we first retrieve reference images
using a diverse pre-existing dataset and then provide the reference images as prompts to image-conditioned
generative methods to synthesize the final image. We consider several SOTA image-conditioned methods,
including RDM (Blattmann et al., 2022), unCLIP (Ramesh et al., 2022), IP-Adapter (Ye et al., 2023),
T2I-Adapter (Mou et al., 2024) and ControlNet (Zhang et al., 2023b)), under this pipeline and study their
effectiveness in enhancing sample diversity while preserving sample fidelity. In Fig. 4 and Tab. 1, we observe
that they can increase sample diversity, but it comes at the cost of reducing fidelity, whereas our proposed
method enhances both demographic and sample diversity without compromising fidelity. To elucidate the
source of their limitation, in Fig. 6 we show how these methods rely strongly on the relevance between user
prompts and retrieved reference images, which can degrade sample quality in generating using large-scale
diverse datasets due to limited relevant references. In contrast, our method uses BCFG to separately handle
text and image modalities and prioritize text guidance for greater robustness to unrelated content in reference
images.

4.4 Alleviating the Diversity-Fidelity Trade-Off

We study BCFG in alleviating the diversity/fidelity trade-off by comparing it with Classifier-Free Guidance
(CFG) (Ho and Salimans, 2022) across guidance scales ω from 1 to 20. For BCFG, we set ωp = 7.5 following
the setting in (Ho and Salimans, 2022) and vary ωi from 1 to 20. For CFG, we use two settings: (1) CFG (Text
Only) (Eq. (3)), which excludes image conditioning, and (2) CFG (Text & Image), which modifies Eq. (3) to
include image conditioning and a unified guidance scale for both modalities. In Fig. 7, methods incorporating
reference images improve sample diversity over CFG (Text Only). BCFG achieves higher diversity than CFG
(Text & Image) while preserving fidelity, thereby alleviating the trade-off.
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Figure 6: Example outputs from our method and general image-conditioned methods across various occu-
pation categories. Unlike existing methods often produce images that misalign with the user prompt due
to unrelated content in reference images, our method generates prompt-aligned samples, thereby enhancing
diversity while maintaining text-image alignment. Refer to Tab. 1 for quantitative comparison.
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Figure 7: Comparison between guidance methods across different guidance scales for alleviating the
diversity-fidelity trade-off. Our method achieves higher diversity while preserving fidelity.

4.5 Application to Various Pre-Trained Models

We demonstrate the compatibility of our method by applying it to various pre-trained T2I backbones.
In Fig. 8, our method achieves the most significant diversity improvement on SDv3.5-Large (Esser et al.,
2024), the latest SD version which exhibits the lowest diversity, highlighting its necessity. Furthermore,
as newer SOTA T2I models (Esser et al., 2024; DeepFloyd Lab at StabilityAI, 2023; Black Forest Labs,
2024) tend to yield reduced diversity due to increasing model size (Rassin et al., 2024), we demonstrate
the effectiveness of our method on the more challenging task of enhancing diversity in models with better
original sample diversity (e.g., SDv1.4 and SDv1.1).
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Figure 8: Application to Various Pre-Trained Models. Our method achieves the most significant
diversity improvement on the latest SD model and even enhances diversity on models with better original
sample diversity, all while preserving sample fidelity.
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(a) Varying image scale parameter λinference during inference while keeping image scale parameter λtraining fixed at
1.0 during training.
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(b) Varying image guidance scale ωi in Bimodal Classifier-Free Guidance.

Figure 9: Comparison between control using the image scale parameter λ in Decoupled Cross-Attention Ye
et al. (2023) and control using the image guidance scale ωi in Bimodal Classifier-Free Guidance.

4.6 Comparison with Other Methods for Controlling Image Modality Strength

In this section, we compare the control of image modality strength using the image guidance scale ωi in the
proposed BCFG with other potential methods. Specifically, aside from our proposed method, we examine
two alternative approaches: 1) adjusting the image scale parameter λ (e.g., scaling Attention(Q, Ki, Vi)
in Eq. (1)) in the original Decoupled Cross-Attention (DCA) (Ye et al., 2023), and 2) applying simple scalar
multiplication α to the image embedding ei. Note that aligning the settings of these approaches between
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Figure 10: Visual comparison of different approaches for controlling image modality strength during inference:
1) (second row) applying scalar multiplication α to the image embedding ei, 2) (third row) adjusting
the image scale parameter λ in the original DCA Ye et al. (2023), and 3) (fourth row) the proposed
image guidance scale ωi in BCFG. Misalignment of αtraining and λtraining between training and inference may
lead to flaws (highlighted in the red box), such as overexposure or reduced resolution Lin et al. (2024b). In
contrast, the image guidance scale ωi in our method, a training-free hyper-parameter, effectively controls
image modality strength by avoiding the misalignment.
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training and inference typically requires retraining, which is time-intensive and limits user control flexibility.
To achieve comparable effects to our method, which allows user control over image modality strength without
retraining, we fix λtraining and αtraining at 1.0 during training, and vary λinference and αinference during
inference. As compared in Figs. 9a and 10, adjusting λinference or αinference during inference may introduce
discrepancies between training and inference, potentially leading to issues such as overexposure or reduced
resolution (Lin et al., 2024b). Nevertheless, as shown in Fig. 9b, the image guidance scale ωi in BCFG, a
training-free hyperparameter, effectively controls the strength of the image modality while preserving image
quality. Furthermore, it demonstrates robustness across a wide range of guidance scales.

Table 2: Applying BCFG to Various Conditioning Modules. BCFG can enhance demographic and sample
diversity across various conditioning modules while preserving sample fidelity.

Method Demographic Diversity ↑ Sample Diversity Sample Fidelity Sample Quality Alignment
Sex Age Skin Tone Intersec. W1KP ↓ Recall ↑ IS ↑ Precision ↑ FID ↓ F1P R ↑ CLIP ↑

SDv2.1 Rombach et al. (2022) 0.27 0.22 0.22 0.19 0.88 0.31 22.81 0.52 27.87 0.39 23.63
LP (CFG) 0.75 0.51 0.40 0.44 0.60 0.43 17.13 0.42 30.70 0.42 21.33
LP (BCFG) 0.75 0.56 0.40 0.47 0.57 0.44 20.88 0.53 25.41 0.48 23.05
DCA (CFG) 0.77 0.54 0.44 0.41 0.51 0.51 15.57 0.44 27.52 0.47 21.91
DCA (BCFG) 0.76 0.55 0.42 0.47 0.59 0.45 17.60 0.54 25.44 0.49 22.09
LoRIA (CFG) 0.81 0.52 0.41 0.42 0.53 0.53 16.61 0.41 26.06 0.46 22.20
LoRIA (BCFG) 0.82 0.57 0.42 0.47 0.54 0.45 22.45 0.54 23.18 0.49 23.05

Table 3: Ablation study of our proposed method.

Method Intersec. ↑ Recall ↑ Precision ↑ FID ↓ CLIP ↑
SDv2.1 0.19 0.31 0.52 27.87 23.63
TextAug 0.34 0.28 0.49 30.81 23.02
DetailsAug 0.43 0.46 0.43 30.86 21.20

Ablated Variants of Our Method
With TextAug 0.47 0.44 0.49 31.98 22.46
W/o LoRIA 0.47 0.44 0.53 25.41 22.17
W/o DRS 0.18 0.44 0.53 23.58 23.39
W/o BCFG 0.42 0.53 0.41 26.06 22.20
Training w/o only ei 0.23 0.35 0.52 26.12 23.58
Reference (CelebA) 0.46 0.40 0.52 25.23 23.49
Ours 0.47 0.45 0.54 23.18 23.05

4.7 Applying BCFG to Various Conditioning Modules

In this section, we examine the proposed Bimodal Classifier-Free Guidance (BCFG) as an independent
technique and showcase its applicability across different conditioning modules. Specifically, we apply BCFG
to our proposed conditioning module (e.g., Low-Rank Image Adapter) and other image conditioning modules
such as Concatenation + Simple Linear Projection (LP) (Zhao et al., 2024) and Decoupled Cross-Attention
(DCA) (Ye et al., 2023). In Tab. 2, we observe that BCFG can enhance both demographic and sample
diversity across various conditioning modules while maintaining sample fidelity. These results empirically
demonstrate that BCFG can be applied independently of the specific conditioning module.

4.8 Ablation Study

In Tab. 3, LoRIA enables bimodal conditioning while maintaining prompt alignment, DRS improves de-
mographic diversity, and BCFG enhances sample diversity while preserving fidelity. In Fig. 3, the image
guidance scale ωi in BCFG, a training-free hyperparameter, can control image modality strength while pre-
serving quality. In contrast, adjusting the image scale in (Ye et al., 2023) or rescaling ei during inference
may cause discrepancy between training and inference, leading to overexposure or low resolution (Lin et al.,
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2024b) (Sec. 4.6). We also evaluate our method combined with TextAug (With TextAug) by conditioning on
(p, d, i). This setup slightly increases diversity but compromises fidelity, possibly because reference images
already encode demographic information, making added dummy information by d suboptimal. To compare
with TAP, we construct Details-Augmented Prompt (DetailsAug) (Esposito et al., 2023; Datta et al., 2023),
where we instruct ChatGPT-o1 (OpenAI, 2024) (see instruction in Appendix 4) to generate a detailed text
description dd based on the user prompt, including variations in sex, age, skin tone, location, and camera
settings. Our method (p, i) achieves comparable diversity while preserving FID and CLIP, but DetailsAug
(p, dd) compromises text-image alignment, likely because added context in DetailsAug shifts focus from the
original user prompt, occasionally leading to unrelated outputs (Hao et al., 2024). Moreover, excluding
model training on cases with only visual token ei (Training w/o only ei) significantly reduces demographic
diversity, dropping Intersectional Diversity from 0.47 to 0.23. This confirms that our training strategy ef-
fectively encodes demographic information into ei, as the only ei case forces the model to rely solely on
images for noise removal, requiring maximal extraction of image information into ei. Additionally, using
lower-quality retrieval databases (e.g., CelebA (Liu et al., 2018)) slightly lowers fidelity and quality but main-
tains competitive diversity, demonstrating the robustness of our method across various reference databases.
In Appendix 3, we present a detailed ablation on the number of retrieval and reference images in DRS,
additional BCFG guidance scale results, and an analysis of LoRIA regarding LoRA Rank.

5 Conclusion

We propose a lightweight and efficient method to enhance both demographic and sample diversity while
preserving fidelity in diffusion models. Extensive empirical results demonstrate its effectiveness in various
pre-trained models.

Limitations and Future Directions. While our method shows promising results in enhancing demo-
graphic diversity, it relies on the assumption that the bias attribute is known. Thus, a potential direc-
tion is to extend it to address unknown biases (Li et al., 2022) by incorporating a bias detection model
(e.g., B2T (Kim et al., 2024)) to identify visual biases in T2I models. Moreover, our method leverages IAP
to enhance demographic diversity rather than mitigating bias in T2I model itself (Esposito et al., 2023).
Another promising direction is to develop T2I models that are less sensitive to biases in the training dataset.
Besides, replacing the closed-source database with an open-source one could be beneficial, as it offers more
inclusive knowledge to further enhance diversity (Fan et al., 2024).
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