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Abstract

We propose Lagrangian Proximal Gradient De-
scent (LPGD), a flexible framework for learn-
ing convex optimization models. Like traditional
proximal gradient methods, LPGD can be inter-
preted as optimizing a smoothed envelope of the
possibly non-differentiable loss. The smoothen-
ing allows training models that do not provide
informative gradients, such as discrete optimiza-
tion models. We show that the LPGD update can
efficiently be computed by rerunning the forward
solver on a perturbed input. Moreover, we prove
that the LPGD update converges to the gradient
as the smoothening parameter approaches zero.
Finally, we experimentally investigate the poten-
tial benefits of applying LPGD even in a fully
differentiable setting.

1. Introduction

Optimization at inference is inherent to many prediction
tasks, including autonomous driving (Paden et al., 2016),
modelling physical systems (Cranmer et al., 2020), or
robotic control (Kumar et al., 2016). Therefore, embed-
ding optimization algorithms in machine learning models
is a powerful inductive bias. A recent trend has been to
embed constrained convex optimization problems that can
efficiently be solved to optimality (Amos & Kolter, 2017;
Agrawal et al., 2019a;b; Sun et al., 2022).

Training a convex optimization model is an instance of bi-
level optimization (Gould et al., 2016), which is generally
challenging. When it is possible to propagate informative
gradients through the optimization problem, the task is typi-
cally approached with standard stochastic gradient descent
(GD) (Amos & Kolter, 2017; Agrawal et al., 2019b). In
some problems, such as discrete optimization layers, gradi-
ents are not informative. Previous works have proposed sev-
eral methods to overcome this, ranging from differentiable
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relaxations (Wang et al., 2019; Wilder et al., 2019a; Mandi
& Guns, 2020; Djolonga & Krause, 2017) and stochastic
smoothing (Berthet et al., 2020; Dalle et al., 2022), over
proxy losses (Paulus et al., 2021), to finite difference-based
techniques (Vlastelica et al., 2020). See Appendix A for a
more detailed overview of the related work.

In this work, we unify and generalize previous finite-
difference-based methods (McAllester et al., 2010; Domke,
2010; Vlastelica et al., 2020) in a general framework called
Lagrangian Proximal Gradient Descent (LPGD). It is mo-
tivated by traditional proximal optimization techniques
(Moreau, 1962; Parikh & Boyd, 2014; Boyd & Vanden-
berghe, 2014), fostering deep links between traditional and
contemporary methods. Practically, in the differentiable set-
ting, we show that gradients can be computed as the limit of
the LPGD update, which provides an alternative to previous
methods based on differentiating the optimality conditions
(Amos & Kolter, 2017; Agrawal et al., 2019b). In the non-
differentiable setting, LPGD allows learning the parameters
even when GD fails, generalizing (Vlastelica et al., 2020) to
non-linear objectives and learnable constraints. Further, we
introduce regularization to stabilize training with LPGD. Fi-
nally, we empirically investigate to which extent LPGD can
improve upon GD even in the fully differentiable setting.

2. Background & Notation
2.1. Problem Setup

We consider a model that contains an embedded constrained
convex optimization procedure:

e e R? X2y e RF 25 (2%, y*) e R™™ 5 (2%) € R

Given an input e € RP, the model Wy predicts parameters
of the optimization problem w € R¥. A solver then finds an
optimal primal-dual solution pair z* = (z*,y*) € R" xR™
of the optimization problem, and the primal solution z* is
passed to a loss function £(2*)." The loss can further consist
of additional layers that could be trained standardly. We fo-
cus on minimizing the loss with respect to the parameters 6.

We consider constrained optimization problems of the form

2 (w) = (2" (w),y" (w)) = argmin max L(x,y, w), (1)
zeX Y

'A more general setup of a loss depending on both primal and
dual solutions is discussed in Appendix



where X' C R" is convex and £ is a continuously differen-
tiable Lagrangian that is convex in the primal variables z
and affine in the dual variables y. The affinity assumption is
not restrictive as inequalities can be enforced by introducing
slack variables, see Appendix for details and examples
covering conic and quadratic programs. Next, we assume
strong duality

L*(w) == min max L(z, y,w) = maxmin L£(z,y, w) (2)

zeX y Yy TEX

and, for simplicity, we assume L to be strictly convex in z,
so that optimization (1) always attains a unique solution.

2.2. Proximal Gradient Descent & Moreau Envelope

The Moreau envelope (Moreau, 1962) env,¢: R™ — R of a
possibly non-smooth f: R™ — R is defined for 7 > 0 as

env,y () = inf, f(z) + &= |z — Z|I3. 3)

The envelope env . is a smoothed lower bound approxima-
tion of f (Rockafellar & Wets, 1998, Theorem 1.25). The
proximal map prox;: R" — R"™ is given by

prox,;(7) = arginfy f(2) + 5= |z — 213 @
=7 —7Venv ().

Intuitively, the proximal map searches for an z close to

with a lower value of f, and the Moreau envelope is the

sum of f and a Euclidean distance penalty at this . The

proximal point method (Parikh & Boyd, 2014; Giiler, 1992)

aims to minimize f by iteratively updating ¥ — prox, ¢ ().

Now, assume that f decomposes as f = g + h with g
differentiable and h potentially non-smooth and consider

g9(x) = g(@) + (z — 2, Vg(2)), ®)
a linearization of g around Z. This yields
PrOX, (5. (3) = arginf, §(a) + hx) + Lz — 73
= prox,,( — 7Vg(T)) 6)
and iterating T — prox,, (T — 7Vg¢(%)) is called proximal
gradient descent (Parikh & Boyd, 2014). For h = Iy

this reduces to projected gradient descent (Parikh & Boyd,
2014).

3. Method

Our goal is to translate the idea of proximal methods to
hybrid models (2.1) by defining a smoothed envelope of
the loss w — £(x*(w)) on which we can perform gradient
descent. Given w and optimal solution z*, this envelope
should select an z in the proximity of z* with a lower loss
£. The key concept is to replace the Euclidean distance term
with a Lagrangian divergence indicating how close z is to
optimality given w.

?For set-valued solution mapping see Appendix

3.1. Lagrangian Divergence
For z € X, we have the inequality

sup L(z,y,w) > inf sup L(z,y,w) = L*(w) (7)
Yy zeX Y

and therefore we define the Lagrangian divergence’ as
De(w,a|w) = sup L(w, z,y) — Lw) >0 (8)
Yy
for x € X and w € R¥. Note that z* is determined by w,

therefore D, is a function of only x and w and we abbrevi-
ate it as D (x|w). The divergence holds the key property

Dy(xz|w) =0 ifand only if z = z*(w) forxz € X, (9)

which makes it a good measure of optimality of = given w.

3.2. Lower Lagrange-Moreau Envelope

Given 7 > 0, we call the lower Lagrange-Moreau envelope
(L-envelope) the function £, : R*¥ — R defined as

(- (w) = inf {(z) + LD, (z|w)

et (10)

= inf supl(z) + L[L(z,y, w) — L*(w)].
reX Y

The lower L-envelope /- is a smoothed lower bound approx-
imation of the function w +— ¢(z*(w)). The smoothness
of /7 is inherited from the smoothness of the Lagrangian.
A function z,,: R¥ — R™*™ representing the correspond-
ing lower L-proximal map is given by

zre(w) = arg inf sup l(x) + 2[L(z,y,w) = L7 (w)]
= arg inf sup L(z,y, w) + 7¢(x). (11)
zeX Y

The objectives in (10) and (I 1) are strictly convex in x;
hence the optimal points are uniquely attained.
3.3. Upper Lagrange-Moreau Envelope

The upper L-envelope 7 : RF — R is defined with maxi-
mization instead of minimization as

0" (w) = sup {(z) — LDy (z|w) (12)
zeEX
= - jnf St;pf[ﬁ(x,y,w) L (w)] = U(x).

and the upper L-proximal map 2™ : RF — R"t™ as

2™ (w) = arg sup {(z) — Dy (z|w)
rEX

(13)
= arg inf sup L(z,y,w) — 7¢(x).
zeX Y

3In some cases, the Lagrangian divergence coincides with the
Bregman divergence, a proximity measure generalizing the Eu-
clidean distance, opening connections to Mirror descent, see Ap-
pendix



Analogously to ¢, the upper L-envelope ¢™ is a smoothed
upper bound of w — ¢(x*(w)).” We have the simple rela-
tions

(m=—(=0), and 2™ =2, (14)

between the L-envelopes and L-proximal maps.

As both the lower and upper envelope have desirable prop-
erties, we will also work with the average L-envelope

lr(w) = 5[l (w) + €7 (w)]. (15)

3.4. Differentiating the Lagrange-Moreau Envelopes

We perform gradient descent on the L-envelope. By Dan-
skin’s theorem (Danskin, 1966), the gradient of the envelope
reads

Vi (w) =
VI (w) =

[VwLl(w, zr¢) — Vi L£(w, 2%)],

16
[VuwLl(w,z*) = Vo L(w, 2™, (e

1
pe
1
pe

where we abbreviate 2,y = z,¢(w) and 2 = zrz(w).

Example (Direct Loss Minimization). For a loss £(, Zye),
feature function ¥ and an optimization problem of the form

2" (w,§) = argmin —(w, ¥(z, §)) (17)
reX

the gradient of the lower £-envelope update is
Vilr(w) = 2[¥(2", &) — W(zr, €)] (18)
with z* = z*(w, £) and

Tre(w, &) = argmin —(w, ¥(z,€)) + 74(x, Tyge ). (19)

reEX

This recovers the “towards-better” Direct Loss Minimization
(DLM) update (McAllester et al., 2010), while the “away-
from-worse” update corresponds to the upper L-envelope
gradient. The DLM framework has also been generalized to
non-linear objective functions (Song et al., 2016; Lorberbom
etal., 2019), always considering 7 — 0.

3.5. Lagrangian Proximal Gradient Descent

In practice, due to the loss term, the £-proximal map can
be difficult to evaluate. As in the proximal gradient descent
algorithm, we consider a linearization ¢ of the loss ¢ at 2*

“Note the link to the Proximal hull (Rockafellar & Wets, 1998,
Example 1.44) corresponding to taking an upper envelope of a
lower envelope. Note also that for a general loss, the optimiza-
tion (12) and (13) can diverge. This will not be problematic for the
linearized loss we will consider in Sec.

Lower, upper and average envelopes are closely related to
the right-, left- and double-sided directional derivatives, see Ap-
pendix

like in (5), which allows computing the £-proximal map
with the forward pass solver.” W.l.0.g., exposing the linear
parameters of the Lagrangian as

L(z,y,w) = (z,c) + H(z,y,v) (20)
with w = (¢, v) and abbreviating V¢ = V{(x*) we get

Z‘rz = arg inf sup(w, C> + H(.’E, Y, ’U) + 7—<‘/E7 V£>
=z"(c+ 7V ).

The upper L-proximal map is computed analogously. This
enables efficient gradient computation for the L-envelope
of the linearized loss using the forward solver’ as

Vgr(w) = % [Vwﬁ(w z ~) — Vwﬁ(w,zTg)]. (22)

7Tl

When using this gradient, we refer to Lagrangian Proximal
Gradient Descent (LPGD), or more speciﬁcalNIy, to LPG]?T,

LPGD~ and LPGD” for gradient descent on £, ¢ and ¢".
Theorem 3.1. It holds that

Th_r&) Vi (c,v) = Vienl(z™(c,v)) = 71_11}% V{7 (¢,v). (23)

The proof is given in Appendix . The extension for
set-valued solution mappings is provided in Appendix

Example (Blackbox Backpropagation). For a linear pro-
gram (LP)

2*(¢) = arg min(z, ¢), (24)
reX

the LPGD.; update reduces to
Vi (c) = La*(c+ V) — 2*(c)], (25)

the update rule in Blackbox Backpropagation (Vlastelica
et al., 2020). Moreover, their piecewise affine interpola-
tion of the loss ¢ — #(x*(c)) corresponds to the lower
L-envelope .

Example (Implicit Differentiation by Perturbation). For a
regularized linear program

x*(c) = arg min(z, ¢) + H(x) (26)
zeX

with a strongly convex regularizer H, the LPGD update is

Vir(c) = la*(c+7VE) —z*(c—TVL)], (27
recovering the update in (Domke, 2010), where only the

limit case 7 — 0 is considered.

®Note that the loss linearization is only applied after the solver
and does not approximate/linearize the solution mapping.

"Note that warm-starting the solver with z* strongly accelerates
the computation of the £-proximal map.

8LP does not satisfy the strict convexity of the Lagrangian, and
the solution map is set-valued in general, cf. Appendix
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Figure 1. Visualization of the upper o, average ¢, and lower
0, Lagrange-Moreau envelope for different temperatures 7 and
augmentation strengths p. The envelopes are smoothed approxi-
mations of the linearized loss ¢ — £, (z*(c)), illustrated in black.
In Lagrangian Proximal Gradient Descent (LPGD) we optimize
the loss by gradient descent on the Lagrange-Moreau envelope.

3.6. Augmented Lagrangian

The L-envelope inherits its smoothness from the Lagrangian.
This motivates augmenting the Lagrangian with a strongly
convex smoothing term as

Lo(@,y,w) = L(z,y,w) + §llz — 2" (@)[F. (28

The augmentation smoothens the Lagrangian envelope while
not changing the current optimal solution.

4. Experiments
4.1. Visualizations

We visualize the different L-envelopes of the linearized
loss ¢ — £(z*(c)) in Fig. 4.1, for a quadratic loss on the
solution to the linear program (24) with X = [0,1]™ and a

one-dimensional random cut through the cost space.

4.2. Sudoku

The main practical use-case of LPGD is the case when gra-
dients of the loss are uninformative. However, we focus our
experiments on fully differentiable problems, to investigate
whether going beyond standard gradient-based methods is
beneficial even in these cases.

“This also affects the adjoint derivative obtained from implicit
differentiation, in which it introduces a regularizing term in the
Jacobian. We discuss this in Appendix
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== LPGD_avg Test —~ LPGD_upperTest == LPGD_lower Test == GD Test
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Figure 2. Comparison of LPGD and gradient descent (GD) on the
Sudoku experiment. Reported are train and test MSE over epochs
and wall-clock time spent in the backward pass. Statistics are over
5 restarts. Additional results can be found in Appendix

We consider the Sudoku experiment proposed by Amos &
Kolter (2017). The task is to learn the rules of Sudoku in
the form of linear programming constraints from pairs of
incomplete and solved Sudoku puzzles. See Appendix
for detailed information on the experimental setup. We
compare LPGD to gradient descent (GD), in which we use
the CVXPY (Diamond & Boyd, 2016) implementation of
(Agrawal et al., 2019b) to compute the gradients.

The results are reported in Fig. 4.2. LPGD~ reaches a lower
final loss than GD, which shows that LPGD~ produces better
update steps than standard gradients. LPGD~ also outper-
forms LPGD” and LPGD., which highlights that both lower
and upper envelope carry relevant information for the op-
timization. Considering backward pass computation time,
all variants of LPGD converge much faster than GD. This
is due to the efficient computation of LPGD via warmstart-
ing and parallelization. Additional results, including other
metrics and wallclock time convergence, are reported in
Appendix

5. Conclusion

We propose Lagrangian Proximal Gradient Descent (LPGD),
a flexible framework for learning convex optimization mod-
els. It unifies and generalizes contemporary optimization
methods while providing deep links to traditional ones.

LPGD approximates gradients as finite differences and only
requires accessing the forward solver as a black-box oracle.
Formulated as Gradient Descent (GD) on a loss function
smoothening, LPGD allows learning general objective and
constraint parameters even in the non-differentiable setting.

Empirically, we explore the potential benefits of LPGD over
GD even in a fully differentiable setting. We find that in
our synthetic setup, LPGD achieves faster convergence and
better final results when compared to GD, which motivates
applying LPGD in other fully differentiable experimental
setups. Finally, an exciting direction for future work is
to explore further the connections to Mirror descent (see
Appendix C.2) and experimentally compare it to LPGD.
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A. Related work

Numerous implicit layers have been proposed in recent years, including neural ODEs (Chen et al., 2018; Dupont et al.,
2019) and root-solving-based layers (Bai et al., 2019; 2020; Gu et al., 2020; Winston & Kolter, 2020; Fung et al., 2021;
Ghaoui et al., 2021; Geng et al., 2021).

In this work, we focus on optimization-based layers. A lot of research has been done on obtaining the true informative
gradient of such a layer, either by use of the implicit function theorem to differentiate quadratic programs (Amos & Kolter,
2017), conic programs (Agrawal et al., 2019b), ADMM (Sun et al., 2022), dynamic time warping (Xu et al., 2023), or by
finite differences (Domke, 2010; McAllester et al., 2010; Song et al., 2016; Lorberbom et al., 2019).

Another direction of research has investigated problems in which no informative gradients exist. The techniques for still
training the model range from continuous relaxations of SAT problems (Wang et al., 2019) and submodular optimization
(Djolonga & Krause, 2017), over regularization of linear programs (Amos et al., 2019; Wilder et al., 2019a; Mandi &
Guns, 2020; Paulus et al., 2020) to stochastic smoothing (Berthet et al., 2020; Dalle et al., 2022), learnable proxies (Wilder
et al., 2019b) and generalized straight-through-estimators (Jang et al., 2017; Sahoo et al., 2022). Other works have built on
geometric proxy losses (Paulus et al., 2021) and finite differences (Vlastelica et al., 2021; Niepert et al., 2021).

A special case of an optimization layer is to embed an optimization algorithm as the final component of the prediction
pipeline. This encompasses energy-based models (LeCun & Huang, 2005; Blondel et al., 2022), structured prediction
(McAllester et al., 2010; Blondel, 2019; Blondel et al., 2020), smart predict-then-optimize (Ferber et al., 2020; Elmachtoub
& Grigas, 2022) and symbolic methods such as SMT solvers (Fredrikson et al., 2023).

B. Experiments

We are given pairs of incomplete and solved sudokus. The task is to learn a model that solves incomplete sudokus. Instead of
limiting ourselves to the mini-sudoku case (4 x 4 grid) as in (Amos & Kolter, 2017), we consider the full 9 x 9 sudoku grid.
It is modelled as a one-hot-encoding; hence the partial input e and solved output  have dimensionp =k =n =9 x 9 x 9.
The dataset consists of N = 9000 training and 1000 test instances. The solution procedure is modelled as a generic
box-constrained linear program

x* (A, b;e) = argmin(z, e) (29)
z€[0,1]™
subjectto Ay +b=10 (30)

with a sufficient number of constraints to represent the rules of mini-sudoku. This differs from the original formulation in
(Amos & Kolter, 2017), as we replace the quadratic regularizer with box constraints. Such a formulation is possible as our
method is not limited to quadratic programs.

We follow the training protocol described in (Amos & Kolter, 2017), using a modification of the public codebase for the
paper. The model is trained by minimizing the mean square error loss between the predictions and one-hot encodings of the
correctly solved sudokus, for which an informative gradient with respect to the constraints exists. For evaluation, we follow
(Amos & Kolter, 2017) in refining the prediction by taking an argmax over the one-hot dimension and report the percentage
of violated ground-truth sudoku constraints. The hyperparameters «, 7 and p were selected in a grid search.

We solve the optimization problems using CVXPY (Diamond & Boyd, 2016; Agrawal et al., 2018). The optimization
problem is automatically transformed to a conic program by CVXPY for which we implemented LPGD. We compare
LPGD to the standard implementation of the conic program differentiation (Agrawal et al., 2019b), with the augmentation
as described in Sec.

We chose the hyperparameters learning rate o, 7 and p with a grid search. The best hyperparameters for LPGD are 7 = 10*,
p =10, a = 0.1, for gradient descent they are p = 103, a = 0.1. We use these hyperparameters in our final evaluation.

The loss and error training curves are presented in Fig. 3 and Fig. 4. LPGD converges much faster than GD in terms of
time spent in the backward pass. This is also visible in the convergence in terms of total wallclock time, although to a
lesser extent, as the forward pass becomes more and more computationally demanding as training progresses and non-trivial
constraints are discovered. It is also apparent that LPGD~ achieves a lower final loss and error than GD, LPGD™ and LPGD .
This suggests that both lower and upper envelope carry relevant information for the optimization.
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Figure 3. Results for the Sudoku experiment. Reported are the batched train and test loss over 11 epochs. We additionally report the loss
over total wallclock time, and total time spent in the backward passes.
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Figure 4. Results for the Sudoku experiment. Reported are the batched train and test error over 11 epochs. We additionally report the
loss over total wallclock time, and total time spent in the backward passes. The error of an instance is zero if it is a valid solution to the
sudoku, otherwise it is one.



C. Theoretical Considerations
C.1. Implicit Differentiation with Augmentation

We inspect how the augmentation in (28) affects existing methods for computing the adjoint derivative of an optimization
problem.

Quadratic Program. For a symmetric matrix H we can write a quadratic program with inequality constraints as

(z*,s") =argmin %Z‘TH.I +cTy subjectto Az +b+s=0. 31
z,5s>0

In Lagrangian form, we can write it as

2" = (2", s",y") =arg mi>r10 max L(H, e, A, b, x,y) (32)
xr,s~ Yy
with the Lagrangian
L(H,c,Ab,x,y) =2THe + Tz + (Az + b+ s5)Ty. (33)

The augmentation in (28) augments the Lagrangian to
L,(H,c,Ab,x,y) = tTHe + "z + (Ax + b+ S)Ty + &l — x*||2 (34)
and we write

z,(H,c, A,b) = arg mi>nO max L,(H,c, A, b,z,y). (35)
T,8> y

As described in (Amos & Kolter, 2017), the optimization problem can be differentiated by treating it as an implicit layer via
the KKT optimality conditions, which are given as

Hr+ ATy 4+ c+plz —2*) =0 diag(y)s =0 Az +b+s5=0 s> 0. (36)
Assuming strict complementary slackness renders the inequality redundant and the conditions reduce to the set of equations
Hx + ATy +c+ p(x — z¥)

0= F(x,s,y,H,c Ab) = diag(y)s (37)
Az +b+ s

which admits the use of the implicit function theorem. It states that under the regularity condition that %—5 is invertible,
z*(w) can be expressed as an implicit function, and we can compute its Jacobian by linearizing the optimality conditions

P
around the current solution
OF 0z, OF
= 920w T 0w %)
with
H + pI 0 AT
oF
5 = 0 diag(¥) I |. (39
* A I 0
It is now possible to compute the desired Vector-Jacobian-product as
92+ oFToFr T
wl(x® = (z*)=—— — L(x™), 40
Vul(a"(w) = 5o Vi) =~ S H(a) (40)

which involves solving a linear system. The augmentation term, therefore, serves as a regularizer for this linear system.

10



Conic Program. A conic program (Boyd & Vandenberghe, 2014) is defined as

(z*,s") =arg mKin 'y subjectto Az +s+b=0 41)
x,s8€

where K is a cone. The Lagrangian of this optimization problem is
Lo(Aib,cw,5,y) = cao+ (Ay+5+b)Ty (42)

which allows an equivalent saddle point formulation given by

2" = (2% s%,y") = arg min myaxﬁ(A b,c,x,s,y). (43)

The KKT optimality conditions are
ATy4+c¢=0 Az +s+b=0 (s,y) e K x K* sTy=0 (44)
where [C* is the dual cone of . The skew-symmetric mapping
0 AT ¢

- T 0

is used in the homogenous self-dual embedding (O’ Donoghue et al., 2016), a feasibility problem that embeds the conic
optimization problem. Agrawal et al. (2019b) solve and differentiate the self-dual embedding. We use the CVXPY
implementation of this method as our baseline for computing the true adjoint derivatives of the optimization problem. The
augmentation in (28) changes the stationarity condition and, thereby, the skew-symmetric mapping as

pl AT ¢
Q,=Q,(Abc)=]-A 0 b|. (46)

- =T 0

We adjust the CVXPY implementation accordingly for our experiments.

C.2. Relation to Mirror Descent

Standard Mirror Descent. Classical mirror descent is an algorithm for minimizing a function ¢(x) over a closed convex
set X C R™. The algorithm is defined by the distance-generating function (or mirror map) ¢: R™ — R, a strictly convex
continuously differentiable function. The mirror descent algorithm also requires the assumption that the dual space of ¢ is
all of R™, i.e. {V¢(z) | x € R"} = R™, and that the gradient of ¢ diverges as ||x||2 — oc.

The Bregman divergence of the mirror map is defined as

Dy (2, %) = ¢(x) — ¢(Z) — (x — 7, V¢(T)) (47)

The (left) Bregman-Moreau envelope (Bauschke et al., 2018) and the (left) Bregman-Moreau proximal map are defined as

env?, () = minl(z) + L Dy(z,7), (48)
proxf_’g(i) = argmin{(z) + L Dy(z, T) (49)
=% —7Venv?,(2). (50)

Then, the mirror descent algorithm in proximal form is given by iteratively applying the Bregman-Moreau proximal map of
£+ Iy as

Trr1 = argmin(z) + Ly (z) + LDy (, xx) D
= argmin(z, VU(zy)) + 2 Dg(z, z1) (52)
zeX

11



An equivalent form of this algorithm is

= Vo(zy) (53)
M1 = N — TVL(g) (54)
Trpr = (V) (ksa) (53)
Tpy1 = argen);in Dy(x,Tpt1) (56)

which highlights that gradients are applied in the dual space of ¢, and V¢ serves as the mapping between primal and
(“mirrored”) dual space.

Lagrangian Mirror Descent. In this section, we derive Lagrangian Mirror Descent (LMD), an alternative algorithm to
LPGD inspired by mirror descent. We define
Loy (x) == sup L(z,y, w) (57)
Yy
and assume that £,, is strongly convex and continuously differentiable in x. As the key step, we define the distance-

generating function (mirror map) as ¢ = L,,. This has the interpretation that distances are measured in terms of the
Lagrangian, similar to the intuition behind the previously defined Lagrangian divergence.

This mirror map leads to the Bregman divergence

Dp, (2,7) = Lyy(x) — Ly(T) — (. — T, VL, (T)) (58)
D¢, (z,2%) >0, (59
D;, (z,2") =02z =2"(w) forzeX. (60)

We define the Lagrange-Bregman-Moreau envelope at w as the Bregman-Moreau envelope at 2* = z*(w), i.e.
05 (w) = envfl}“HX (x*) (61)
=minl(z) + Ix(z) + 1D, (z,2%) (62)
= IIél/IYlf(w) + %(E(a:,w) - ﬁ*(w) - <:L' - l‘*, vzﬁ(l'*,ll/»), (63)
25, (w) = proxfl}’;IX (™) (64)
=argminl(z) + Ix(z) + 1D, (z,2%) (65)
=argmin{(z) + L(L(z,w) — L*(w) — (z — ¥, Vo L(z*, w))). (66)

rEX

Similar to how we defined LPGD as gradient descent on the Lagrange-Moreau envelope of the linearized loss, we define
Lagrangian Mirror Descent (LMD) as gradient descent on the Lagrange-Bregman-Moreau envelope of the linearized loss,
ie.

VwlE (w) = 1V, [L(xE,w) — L(z*,w) — (x5, — %, V. L(z*, w))]. (67)

Again, the approximation allows efficiently computing the gradients using the forward solver as
:cfz(u,v) = arg qc12&7’(337 VO + (z,u) + H(z,y,v) — (z, V. L(z*, w)) (68)
=z"(u+7VL =V L(z",w),v). (69)

If X = R", then the original optimization problem (1) is unconstrained and we have the optimality condition V£ (z*, w) =
0. Therefore, the Bregman divergence

Dp, (z,2") = Lyy(x) = Loy(x") — (x — 2", VL, (z¥)) (70)
=L(z,w) — L(z",w) = L(z,w) — L*(w) = Dg(x|w) (71)

is equal to our Lagrangian divergence. It follows that, in this case, the Lagrange-Moreau envelope/LPGD is equivalent to the
Lagrange-Bregman-Moreau envelope/LMD.

12



C.3. Extension to General Loss Functions

Loss on Dual Variables. In the main text we only considered losses depending only on the primal variables, i.e. £(x). For
a loss on the dual variables ¢(y) we can reduce the situation to the primal case, as

y*(w) = argsup min L(z, y, w) = arginf max —L(z,y, w). (72)
y zeX y reX

This amounts to simply negating the Lagrangian in all equations while swapping x and y.

Loss on Primal and Dual Variables. The situation becomes more involved for a loss function L(z,y) depending on
both primal and dual variables. If it decomposes into a primal and dual component, i.e. L(x,y) = £,(z) + £4(y), we can
compute the envelopes of the individual losses independently. Note that a linearization of the loss L trivially decomposes
this way. Adding the envelopes together yields a combined lower and upper envelope for the total loss as

(€p)+(w) + (a)r(w) = inf, sgp[%ﬁ(% y,w) + £p(@)] - sup int [2L(z,y,w) = La(y)] (73)
(€a)" (w) + (6,)" (w) = sup zig([%ﬁ(x, y,w) +La(y)] — inf sgp[%ﬁ(% Yy, w) — Ly(2)]. (74)

Assuming strong duality of these optimization problems, this leads to

(lp)r(w) + (£a)- (w) = inf, Sgp[%ﬁ(% y,w) + bp(w)] - inf, Sgp[%ﬁ(x, y,w) — La(y)] (75)
(€a)7(w) + (£)" (w) = inf sgp[%ﬁ(ax ysw) + Lay)] — inf Sgp[%ﬁ(l‘, y, w) — Lp(z)] (76)

Strong duality holds in particular for a linearized loss L, as this only amounts to a linear perturbation of the original
optimization problem. Unfortunately, computing the average envelope

(6p)r(w) + (La)r(w) = 5{ inf sup[L(z,y,w) + ()] — inf sup[LL(z,y,w) — La(y)] (77)
+ Inf sup[ 2 L(x, y,w) + La(y)] = inf sup[2L(z,y,w) = ()]} (78)

or its gradient would now require four evaluations of the solver, which can be expensive. To reduce the number of evaluations,
we instead “combine” the perturbations of the primal and dual loss, i.e. we define

L, (w) = Tlgi sup L(z,y) + 1[L(z,y,w) — L*(w)] (79)
L7 (w) = xlgi sup L(z,y) + 1[L(z,y,w) — L*(w)] (80)
Lr(w) == 3{L.(w) + L™ (w)} (81)
= inf sup[%ﬁ(m, Y, w) + L(CE, y)] — inf sup[%ﬁ(x, Y, ’U}) - L(l‘, y)] (82)

zeX Yy zeX Yy

Note that L./L™ (w) are not necessarily lower/upper bounds of the loss anymore. However, these combined envelopes also
apply to loss functions that do not separate into primal and dual variables, and computing their gradients requires fewer
additional solver evaluations. For L(x,y) = ¢(x) we have

Ly (w) = £ (w), Lr(w) = tr(w), L7 (w) = £7(w). (83)

For the rest of the appendix, we will work with L instead of ¢ for full generality and reduce the situation to a primal loss ¢
with the relations above.

C.4. Recovery of True Gradient

We aim to show that for a linear loss approximation L, the LPGD update recovers the true gradient as 7 approaches zero.
We again expose the linear parameters of the Lagrangian

L(z,u,v) = (z,u) + H(z,v) (84)
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and get from Danskin’s envelope theorem (Danskin, 1966)

VoL (u,v) = Vo, L(z%,u,v) = 2" (u, v). (85)
We define
dw = (VZL> . (86)
0
Then it holds that
. jd T 1 * . *
lli% VLl (w) = ;g% ~ [Vl (w+ 7dw) — V, L% (w)] (87)
02L orct o /v.L
= Sodw = dw = 2 ( ; ) (88)
L’ OV, )T 0T i}
= oo Val= St VL= o VoL =V, L= (w) (89)

The main step in this derivation was to identify the Jacobian of the solution mapping as a sub-matrix of the Hessian of the
optimal Lagrangian function, which is a symmetric matrix.'" Exploiting the symmetry of the Hessian then allows computing
the gradient, which is a co-derivative (backward-mode), as the finite difference between two solver outputs, which usually
only computes a directional (forward-mode) derivative as

oz*

Az = S Aw = ‘}IL% —[2" (w + TAw) — 2% (w)] (90)
= lim L[V, £* (w + rAw) — VL' (w)) 1)

We observe that computing the gradient of the £-envelope is the backward-mode counterpart of the forward-mode right-
sided directional derivative. This observation also gives an interpretation of not taking the limit in theLPGD update: In
forward-mode, checking how the solver reacts to finite perturbation of the parameters intuitively provides higher-order
information than linear sensitivities to infinitesimal perturbations. The finite difference in the gradient of the L-envelope
serves the equivalent purpose in backward-mode, by back-propagating higher-order information instead of linear sensitivities
as in standard directional co-derivatives (back-propagation).

Note that for L(z,y) = ¢(x) this reduces to

lim Vulr(w) = Vl(z* (w)). (92)

An analogous proof and discussion also hold for the upper envelope (™ and average envelope I, corresponding to the left-
and double-sided directional derivatives.
C.5. Background: Set-valued Solution Mappings

In the main text, we assumed that the Lagrangian is strictly convex, which entails a unique solution to the optimization
problem. We now turn to the more general case, in which the optimization problem does not have a unique solution i.e. the
solution mapping is set-valued.

S:R"=Z3R":w— S(w)={z" e R" | L(z*,w) = L"(w)} (93)
We still assume access to a solver oracle that returns a single element of the solution set z* € S(w).

One possible approach to generalizing the concepts of derivatives and co-derivatives to set-valued mappings is the machinery
of graphical differentiation described in detail in Rockafellar & Wets (1998).

As the name suggests, this approach relies on a graphical interpretation of the derivative and co-derivative mappings to
generalize them from single-valued functions to set-valued mappings.

!Note that a similar derivation already appeared in (Domke, 2010), but only for primal variables without considering the benefits of
finite values of 7 over the limit.
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Before we state the definition of graphical derivatives, we first develop a description of derivatives of single-valued functions
in terms of graphs that can be generalized to set-valued functions. For a single-valued function z*(w) the directional
derivative

Dz*(w) : R™ - R" : Aw +— %—i(w)Aw (94)

is a function mapping perturbations of the input Aw to corresponding changes in the output. In a graphical interpretation, it
gives a first-order local approximation of the function graph

Gphz* = {(w,2) | z = z*(w)} (95)
Gph Dz*(w) = {(Aw, Az) | Az = %(w)Aw}. (96)

Likewise, the graph of the directional co-derivative
D 2*(w) :R* > R™ :dz — %T(w)dz o7
is given by
Gph D*2* (w) = {(dw,dz) | dw = 22" (w)dz} 98)

We observe that up to a sign flip, the vectors in the graph of the derivative and the co-derivative are orthogonal

((dw, —dz), (Aw, Az)) = (dw, Aw) — (—dz, Az) (99)
= (22 ()" dz, Aw) — (dz, 2 (@) Aw) (100)
= (dz, Z () Aw) — (dz, Z (@) Aw) (101)
-0 (102)

We can, therefore, equivalently define the co-derivative as the function with the graph

Gph D*z*(w) = {(dw,dz) | (dw, —dz) L Gph Dz*(w)}. (103)
These properties can now be generalized to graphical derivatives of set-valued mappings (Rockafellar & Wets, 1998,
Definition 8.33). A local approximation to the graph of the set-valued mapping gives the graph of the directional derivative.

In general, a local approximation of a set C' at x is given by its tangent cone T's (x) (Rockafellar & Wets, 1998, Definition 6.1),
therefore the graphical derivative is given by

DS(w|z):R™ =2 R" : Aw — {Az | (Aw,Az) € Tgpns(w, 2)} (104)

GphDS(w | 2*) = Tgpn s (w, 2%) (105)
The graphical co-derivative is obtained as all the vectors orthogonal to Gph DS(w | 2) after a sign flip in the second
component. The vectors orthogonal to a tangent cone T's(x) are described by the regular normal cone Ng(x) (Rockafellar
& Wets, 1998, Definition 6.3), (Rockafellar & Wets, 1998, Proposition 6.5). Therefore, we can express the graphical

co-derivative as
D*S(w | z*) : R" = R™ : dz — {dw | (dw, —dz) € Napns(w, 2*)}. (106)
We can back-propagate sub-differentials using the co-derivative mapping chain rule
OuL(S(w|z")) = D*S(w | z%)(VL(z")) (107)
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C.6. Recovery of True Sub-differential

Our goal is to show that the sub-differential of the Lagrange-Moreau envelope of the linearized loss 8(7“,)[} (u,v | z*)
converges in a set-valued sense to the sub-differential of the loss Oy, ) L(S(u, v | 2*)). We will show that this only holds in
the form of an inclusion.

Define the gradient of the optimal Lagrangian with respect to the non-linear parameters at the selected optimal solution as
g =V, L(z%,u,v). (108)

We can then compactly write
(2",9%) = Vi) L£(z", u,v) € Oy, L7 (u,v) =: ST (u,v) (109)

where we defined the extended solution mapping S*: R¥ +— R¥, which contains the gradient with respect to v in addition
to the optimal solution set.

The lower Lagrange-Moreau envelope of the linearized loss at z* is defined as

Lr(u,v | 2%) = inf sup(z, VL(z")) + 1[£(z,u,0) = £(",u,0)] (110)
TEX Y
=1 1161£( sup(z,u 4+ 7VL(z*)) + H(z,v) — L(z*, u,v)] (111)
TEX Y
= L[L*(u+TVL(z"),v) — L(z*,u,v)] (112)

Note that we make the dependence on z* explicit, as z* is not uniquely determined anymore by (u, v). With a slight abuse
of set-valued notation, the sub-differential of the Lagrange-Moreau envelope can again be written as the finite difference
between two extended solver solutions

Aoy Lr (w0 | 2%) = 1[0y L7 (u + TVL(2*),0) — V() L(27, u,v)] (113)
= 1[S*(u+TVL(z"),v) — (z*,9%)] (114)
—— DST(u,v | 2%, g")(VL(z"), 0). (115)

In the final step, we used that the finite difference converges to the graphical derivative (Rockafellar & Wets, 1998, Eq.
8(14)).

Next, we relate the graphical derivative to the desired graphical co-derivative in (107). A promising statement in this
direction is given in (Rockafellar & Wets, 1998, Theorem 13.57), which states that under some regularity conditions, the
graphical derivative of a sub-differential mapping is contained in its graphical co-derivative. We reduce our situation to
this case by phrasing the solution mapping as a sub-differential mapping. To see this, we inspect the graphs of the solution

mapping

Gph ST = {(u,v | 2*,¢*) | 0 € 0. (u” 2* + H(2*,v) + I.(2%)), 9" € V,H(z*,v) + 0Igm(v)} (116)
={(u,v| 2% 9%) [ (-u,9) € O(H + Ic)(z,v)} (117)
and the graph of the sub-differential

GphO(H + Ie) = {(z%,v | u,¢") | (u,g") € O(H + Ic)(z*,v)} (118)
={(="v|-u,g) | (-u,g%) € O(H + Ic)(z",v)}. (119)

We observe that the graphs are equal up to permutation and sign flips of the coordinates. This allows us to write
(du,dv) € D*ST(u,v | 2%, ¢%)(dz,0) < (du, dv, —dz,0) € Ngpn s+ (u,v | 2%, g%) (120)
& (—dz,dv, —du,0) € Ngpham+10) (255 v | —u,g") (121)
& (—dz,dv) € D*O(H + I¢c)(#*,v | —u, ¢")(du,0) (122)
< (—dz,dv) € DO(H + Ic)(z",v | —u, ¢g")(du,0) (123)
& (du,0, —dz,dv) € Topho(a+10) (2" v | —u, g%) (124)
& (dz,0,du,dv) € Tgpn s+(u,v | 2%, 9%) (125)
& (du,dv) € DST(u,v | 2%, g%)(dz,0) (126)
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The key step in this derivation (the implication) is precisely the statement of (Rockafellar & Wets, 1998, Theorem 13.57).
It requires H + I¢ to be prox-regular and subdifferentilly continuous at (z*, u) for (—u, g*). This is the case for all
proper, lower semi-continuous, convex functions (Rockafellar & Wets, 1998, Example 13.30), which also includes indicator

functions of convex sets. As C'is convex and H is assumed to be convex in z and v and affine in y, these conditions are
fulfilled, and the statement holds.

Finally, this gives us the desired result

Oy L (u,0 | 2*) —= DSH(u,0 | 2%, ¢")(VL(="),0) € D*S™ (u,v | 2*, ") (VL(z"),0) (127)
=D*S(u,v | z*)(VL(z")) (128)
= O(u,o) L(S(u,v | 2¥)). (129)

For a primal loss L(x,y) = ¢(z) this reduces to

Qe (ev] %) — DS* e, | 2*,g")(VH(x*).0) € D*S* (e, | a*.g)(VE(a").0) (130)
=D*S(c,v | 2%)(Ve(z™)) (131)
= Oe,)l(S(c,v | z7)). (132)
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