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Abstract

Memory is crucial for the ability to store and retrieve prior knowledge when that information
is gathered as a continuous stream that cannot be processed all at once. For decades, various
types of artificial recurrent neural networks (RNNs) have been designed and improved to
handle sequential data, incorporating memory in di�erent ways. Transformers have become
the most widely adopted architecture to deal with sequential data, while more recently
structured state-space models (SSMs) and linear RNNs were put forward for their improved
computational e�ciency. While these families of models have been studied on various
synthetic and real-world tasks, the generalization abilities of these newer models remain a
topic of ongoing exploration. In particular, there is a gap in the current literature regarding
the length generalization of models on sequence modeling tasks, both across models and
across tasks. For models, while numerous studies have investigated the generalization of
RNNs and Transformers to longer sequences, there is not much work devoted to such studies
for SSMs or linear RNNs. Regarding tasks, one limitation of current works is their focus
on formal language tasks for studying the generalization of sequence modeling. In contrast,
the deep learning literature often introduces a variety of other tasks to assess the specific
capabilities of deep learning models on sequential data. In this paper, we take a step toward
addressing this gap by comparing the generalization abilities of all three families of algorithms
across tasks that impose di�erent memory requirements and are of special interest to the
deep learning community, namely, copying tasks, state tracking tasks, and counting tasks.
Our results show that despite their great e�ciency, state space models seem to be less able
than the non-linear recurrent models to generalize to longer sequences.

1 Introduction

The ability to e�ectively learn from sequences forms a significant part of deep learning research, given the
wide amount of data in the real world that comes under this form. Various advancements have been made
throughout the years by first determining limitations in existing methods, which led to developments in
architecture and algorithms to overcome them. From the early recurrent networks, such as vanilla recurrent
neural networks (RNNs) (Jordan, 1986; Rumelhart et al., 1986) which su�ered from the vanishing/exploding
gradient problem (Bengio et al., 1994; Pascanu et al., 2013), came variants that better overcame these through
various modifications, such as adding gating components (Hochreiter & Schmidhuber, 1997; Cho et al., 2014;
Chung et al., 2015), designing better initialization of recurrent weights (Le et al., 2015; Tallec & Ollivier, 2018;
van der Westhuizen & Lasenby, 2018), parametrizing weights as orthogonal matrices (Hena� et al., 2016; Jing
et al., 2019) and using non-saturating activation functions (Chandar et al., 2019). Then, the introduction
of Transformers (Vaswani et al., 2017) addressed the issue of parallelizability and enabled the learning of
dependencies of any length, thanks to the attention mechanism (Bahdanau et al., 2015) and led to a large
shift towards this new architecture. However, due to the quadratic complexity of the attention mechanism,
with respect to the sequence length, the sequence length that Transformers can process is practically limited.
Finally, state space models (SSMs) (Gu et al., 2021; 2022b) were developed with the claim of solving these
remaining issues through the specific initialization of parameters of the recurrence matrix (Gu et al., 2020;
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2022a), leading to an increased surge in interest in linear recurrence (Orvieto et al., 2023; Qin et al., 2023; De
et al., 2024; Beck et al., 2024) under the belief that such a paradigm can avoid prior limitations.

Understanding how these di�erent models learn from sequences remains an open area of discussion. However,
an implicit requirement often assumed is the need to memorize information from the input for later use. This
has an analogous parallel within human reasoning, where information seen along a temporal axis quickly fades
away and is possibly lost, if not immediately relevant. To overcome this, humans utilize memory (Miller, 1956),
using internal modules for short or long-term storage (Atkinson & Shi�rin, 1968; Baddeley & Hitch, 1974)
of information that can then be extracted once a signal is received that the stored information is required.
However, in deep neural networks, it remains a subject of research to explore the particular role of memory.
In an attempt to understand the use of memory in sequence modeling, (Deletang et al., 2023) consider a
range of recurrent neural networks with various ways of incorporating memory, as well as Transformers, and
compare their performance on a set of formal language tasks that di�er in their memory requirements in the
context of the theory of automata and formal languages. As a method of evaluating whether the trained RNN
has learned the correct algorithm to solve the corresponding task, they analyze the extrapolation capability
of the trained models by looking at their generalization to longer sequences than the longest they had seen in
the training set. Interestingly, they find remarkable similarities between the behavior of the RNN models and
their corresponding automata.

While in their work, as well as in related research on the generalization of RNNs, such as (Wang & Niepert,
2019), the tasks considered are those typically examined in the context of automata theory and formal
languages, in this paper, we are concerned with the tasks that are of particular interest and relevance to
neural networks studies, namely, copying memory, state tracking and counting. Some of these tasks have
emerged from the interest in modeling complex sequential data with deep neural networks, with all being
crucial for benchmarking and evaluating di�erent deep learning algorithms. Our interest in these tasks stems
from their representation of significant challenges in sequential models. The copying memory task (Hochreiter
& Schmidhuber, 1997; Arjovsky et al., 2016) is a benchmark extensively used in the literature to assess how
sequential models address the vanishing gradient problem and handle long sequence modeling. Moreover, this
task requires the memorization of a sequence of data, making it an ideal test for neural networks with robust
memory structures. While many variants of RNNs have successfully solved the copying task, few studies test
whether they learn the correct algorithm and hence, generalize. On the other hand, certain state tracking
tasks may be too complex, in terms of circuit complexity, for linear sequential models like structured state
space models (S4) to solve (Merrill et al., 2024). Therefore, various versions of these tasks, with varying
levels of di�culty, are used to benchmark linear sequential models, such as S4-types, against non-linear
ones. Regarding generalization performance, while some earlier works, such as (Deletang et al., 2023), have
studied the capability of Transformers and sequential neural networks on state tracking tasks, their sequential
models are limited to non-linear RNNs; only a few recent studies have investigated the ability of certain
linear sequential models to generalize to longer sequences. Sarrof et al. (2024) study the expressiveness of
SSMs on specific formal languages, uncovering a design choice that renders the state transition matrices of
these models non-negative and consequently hinders their generalization, even on some solvable state tracking
tasks such as parity. Subsequently, in a concurrent work to ours, Grazzi et al. (2024) suggest modifications to
some of these models, resulting in a more general transition matrix; while their proposed solution partially
improves model generalization, some models including Mamba, still fail to generalize on certain hard state
tracking tasks. Exploring the generalization capabilities of a wider range of the linear sequential models
and tasks can provide valuable insights into the performance of these models compared to non-linear ones.
Therefore, aside from the gap in task types, another aspect of the generalization studies in learning models
that requires further exploration, is the variety of models that have been examined. Our work aims to address
these gaps by employing a similar approach to the one used by Deletang et al. (2023). Finally, the counting
task, in the context of timing (Gers & Schmidhuber, 2000; Gers et al., 2002), demonstrates the ability of
sequential models to measure the temporal distance between events in sequences with rhythmic patterns.
This capability is crucial for tasks such as music processing.

In the following sections, after reviewing some related works, we define a set of representative tasks, each
necessitating di�erent types of memory usage to be solved e�ectively. Next, we consider a set of commonly
used neural network models with di�erent ways that memory is utilized in them for sequence modeling, and
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evaluate these architectures and tasks under various settings to understand how memory is employed in
learning from sequences. In summary, our contributions are as follows:

• We define a memory taxonomy that applies to the deep learning synthetic tasks in our study, while
relating those tasks and their memory requirements to corresponding tasks in formal language theory.

• We conduct a set of experiments to examine if and how the use of memory in various neural network
architectures alters the learning process for di�erent tasks, focusing on both the model’s ability to
learn and to generalize to more challenging settings.

• Following the claim of Merrill et al. (2024) that SSM models, such as S4 and Mamba, and Transformers
share a similar inability to learn hard state tracking tasks due to their parallelizable nature, we
empirically demonstrate that, even in generalization, these state space models exhibit behaviour
similar to Transformers on Regular Language tasks (Deletang et al., 2023). Specifically, even for
solvable state tracking tasks where SSM models have been successfully trained, they are unable to
generalize to longer sequences.

Overall, our work contributes to this growing field by extending the studies of memory and generalization to
include more recent sequential models within the current state of deep learning research.

2 Related Work

Memory in Neural Networks Memory plays a fundamental role in human cognition (Atkinson & Shi�rin,
1968) and can be classified into multiple hierarchies (Cowan, 2008), in particular short-term (or working)
and long-term memory. Recurrent neural networks stood out due to their ability to learn and carry out
complicated transformations of data over extended periods of time, as well as the potential to simulate
arbitrary procedures with proper construction (Siegelmann & Sontag, 1995). They handle variable-length
sequences by having a recurrent hidden state whose activation at each time is dependent on that of the
previous time through a general update equation

ht = f(W ht≠1 + Uxt) (1)

where ht, xt stand for the hidden state and the input vector at time t, W , U are weight matrices parameterizing
the RNN and f is an activation function of choice. However, due to the gradient scaling problems, the hidden
state acts only as a short-term memory (Miller, 1956) and is limited in the duration and quantity of the
stored information. By contrast, long-term memory can hold more information for extended time (Ratcli�,
1990). Attempts to alleviate this issue have primarily consisted along the direction of architectural design,
such as the long short-term memory (Hochreiter & Schmidhuber, 1997) and gated recurrent units (Cho
et al., 2014). Later, in an attempt to integrate better memory capabilities in sequential models, explicit
memory modules (Graves et al., 2014; Gulcehre et al., 2017; 2018; Chandar et al., 2019) have been successfully
explored to extend the capabilities of sequential models. This class of models, known as memory-augmented
neural networks (MANNs), utilizes external memory, usually a matrix, to store information. A controller
within the network learns to both read from and write to this external memory. This paradigm provides the
model with greater flexibility to retrieve past information, forget, or store new information in the memory.
Yet, these also pose challenges, in particular the additional complexity of managing an external memory
structure and designing e�cient algorithms for memory interactions, leaving it underexplored how memory
explicitly helps with sequence modeling tasks.

Memory and Extrapolation to unseen examples In addition to helping RNNs overcome gradient
scaling issues and achieve faster convergence on sequence modeling tasks (Graves et al., 2014; Chandar
et al., 2019), memory cells have been shown in literature to significantly improve the generalization of
memory-augmented models to unseen samples, such as samples with sequence lengths longer than those seen
during training. Graves et al. (2014) first showed that their Neural Turing Machine (NTM) with an LSTM
controller not only converges faster to a lower minimum than LSTM for the memory-intense task of copying
memory, but also that in contrast to LSTM, the trained NTM can perform copying on sequences of more

3



Under review as submission to TMLR

than twice longer than the ones seen during training. Wang & Niepert (2019) then speculated that the poor
extrapolation capabilities of RNNs stem from a lack of regularization in their hidden space, leading to the
memorization of data rather than accurately storing the sequence state at each step. They propose a state
regularization technique with a state extraction method for the automaton corresponding to the trained RNN
and empirically show the benefit of this process for the generalization to out-of-distribution examples on tasks
requiring some levels of memorization, such as balanced parenthesis (BP) task. One implicit assumption here
is that the memory cells are required for the model to extrapolate, and state regularization optimizes the
model’s use of both its hidden state and its memory. Therefore, they consider the LSTM model for that task.
The intuition comes from the fact that the balanced parenthesis task is classified as a context-free language in
the Chomsky hierarchy, requiring a push-down automaton to express arbitrary depths of nested parentheses.
Their experiment reveals that regularization prompts the LSTM to use its memory cell, rather than the
hidden state, to track the nesting depth, akin to how the push-down automaton uses its stack. Consequently,
a regularized RNN with a memorization mechanism becomes particularly advantageous for this task.

Finally, Deletang et al. (2023) conducted an exhaustive empirical study on the relationship between the
architecture of sequence models and their ability to generalize to longer sequences. Their study spans a wide
range of tasks and the corresponding state-of-the-art architectures, which they expect to better fit the task
based on the Chomsky hierarchy, showing that while for higher levels of the hierarchy, di�erent types of
RNNs encounter di�culties in extrapolating beyond certain lengths, all of them, including the basic RNN
and LSTM, generalize to a significant degree to longer lengths on regular language tasks such as parity and
modular sum. This confirms that vanilla RNNs are capable of simulating finite state automata.

Counting with Neural Networks Counting is a trivial yet crucial skill possessed by the human mind,
and can be split into three distinct groups: item counting in arrays, arithmetic, and event sequencing (Noël,
2009; Logie & Baddeley, 1987). The greatest utility of counting for real-world applications are tasks that
require timing and sequence modeling, such as queuing, contextual awareness, and time series predictions.
Learning to count requires the use of various strategies involving working memory, defined in cognitive
literature as the temporary storage and processing of information (Logie & Baddeley, 1987). In the past, it
was observed that recurrent models such as LSTMs that were extended by ‘peephole connections’, allowing
them to observe their internal states, were able to time and count various target signals (Gers & Schmidhuber,
2000). More recently, it was shown that the popular Transformer models are also able to count, however,
they are limited by the dimension of the model, and when performing counts on the most frequent element,
single-layer Transformers are unable to learn this objective (Yehudai et al., 2024).

In the next section, we categorize the memory requirements for solving the deep learning tasks considered in
this work and highlight their relationship to the categorization of related tasks in formal language theory.

3 Task-Based Memory Taxonomy

Significant research has been conducted on the memory requirements of tasks in deep learning architectures.
One well-established approach to formalizing memory classification in machine learning is through the
Chomsky hierarchy, which hierarchizes formal language tasks based on their complexities and the type of
automata that can solve them. For instance, finite automata correspond to regular language tasks with
limited memory requirements, whereas pushdown automata, with their stack-based memory, can handle
more complex context-free languages. By drawing analogies between neural networks and di�erent types of
automata, we can comment on the networks’ capabilities in performing specific tasks and, therefore, their
expressivity (Weiss et al., 2018; Deletang et al., 2023). However, it is important to note that there is no
one-to-one correspondence between neural networks and automata. A key reason is that automata have
discrete states, while the hidden states of recurrent neural networks exist within a continuous space. This
lack of exact mapping between the two classes of models means that empirical testing is necessary to validate
the analogies and conclusions drawn about neural network capabilities1. In line with this argument, in this
section, we review various levels of memory required for di�erent learning tasks. We discuss the actual tasks

1Aside from the well-known works on extracting automata from trained RNNs, Wang & Niepert (2019) show how to extract
a finite set of automata states being learned by RNNs during training.
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considered in this study and their memory requirements in order to build a better taxonomy to distinguish our
analysis. Notice that the categorization of memory in learning tasks presented here, including the titles of our
categories, is based on our interpretation, drawing from both machine learning and neuroscience literature.

3.1 Memory-Free

The most basic tasks are memory-free tasks, where the output token only depends on the current input
token and making the prediction does not require any memory of the past tokens (no history). Since each
output only depends on the current input, any non-zero recurrences (introducing some form of memory)
would introduce errors. As a result, memory-free tasks are not considered in this study.

3.2 Stateful Memory

We define the first type of memory requirement for sequences as stateful memory tasks. In this setting, it
is possible to predict the next token based solely on the current internal state and the current input token.
That is, if the internal state is a su�cient statistic for the history, then the problem is Markovian. Therefore,
the primary learning problem in these scenarios becomes learning such statistics. Stateful memory is the
type of memory required for problems where an internal state with a suitable constant size is enough to learn
such statistics for a sequence regardless of its length.

Such tasks are closely related to regular languages in formal language theory, which need an automaton with
the lowest level of memory to recognize them, i.e., a finite state automaton. 2 Stateful memory tasks include
state tracking tasks such as bit parity tracking. In bit parity tracking, the model is given a sequence of 0s
and 1s and must determine the current parity state of the sequence, either 0 or 1 (even or odd parity).

010101101 Correct States≠≠≠≠≠≠≠≠≠æ 011001001

In this paper, experiments on stateful memory tasks are conducted on algebraic groups of di�erent com-
putational complexities, such as Z60, A4 ◊ Z5, and A5, which are studied by Merrill et al. (2024). Solving
these tasks requires understanding the current state, which is either a position on a circle with k positions in
the case of the Zk groups or permutation of k numbers for Ak groups, and combining it with the current
input token (which is a number of steps to move or an order to permute the system) in order to predict
the correct output token (a new position or permutation). The first time step of the sequence tells to take
an action from some initial state. In the second step, the model must learn to apply the next permutation
to the previous output. Given a sequence, the target output is the correct position or permutation given
the sequence of actions applied in order. Merrill & Sabharwal (2023) suggest that any architecture that
can parallelize computation over a sequence inherently lacks the ability to represent languages of a specific
complexity 3(problems that are NC

1-hard), including A5. As such, we are motivated to consider these tasks
as examples of scenarios that only require stateful memory, since the output is always deterministically
decided based on the previous state and the incoming input, and can still be di�cult to solve due to circuit
complexity considerations.

In these tasks with stateful memory requirements, sequences do not need to be long, as the relationships that
are essential for learning the underlying model are short. Theoretically, training on all possible sequences of
two tokens, consisting of an initial permutation, a permutation to execute on the internal state, and the final
outcome permutation, is su�cient to learn the correct internal state to generalize to longer sequences. As
the sequence length increases, the di�culty of the prediction also increases, since intermediate errors will
compound and result in an incorrect final token prediction, if the internal state representation is incorrect.

State tracking tasks are representative of model capabilities in narrative understanding, such as discourse
understanding or entity tracking (Kim & Schuster, 2023) and hence are significant in benchmarking di�erent
sequential models in the current state of language model research.

2One subtle di�erence is that in formal language theory, most tasks are defined in the context of acceptance and rejection,
while the tasks of our interest are of the transduction type. The way we relate these two types of problems is similar to
how Deletang et al. (2023) explain in their work.

3We use the term language as defined in Formal Language terminology.
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3.3 Stable Memory

While stateful memory tasks do not require keeping a single element in memory for a very long time, this is
the case of what we define as stable memory tasks. These tasks could depend on a single token, but that
token has to be kept in memory for a potentially long period before the information is used as output. While
they may not require learning a complex internal state representation (they could just copy the input token),
they do require learning what must be stored in memory and keeping it in memory in order to learn the
task. These tasks are distinct from stateful tasks in two key ways. Firstly, by definition, they necessitate a
memory mechanism capable of retaining information for a long time. Secondly, the state size might need
to expand depending on the amount of information that needs to be stored. This second characteristic
implies that a constant-size state is inadequate for stable memory problems with arbitrary sequence lengths.
Consequently, the formal language counterparts for these tasks reside higher in the Chomsky hierarchy than
Regular Languages, including context-free and context-sensitive languages, which require additional memory
structures such as stack and tape in their respective automata. However, note that in the specific cases where
the sequence lengths are upper-bounded, the problem can be solved by a finite state automaton.

Examples of tasks demanding stable memory are the copying (Hochreiter & Schmidhuber, 1997; Arjovsky
et al., 2016) and denoising (Jing et al., 2019) tasks. In the copying task, the model is given a sequence of S

tokens from a predefined vocabulary, followed by a sequence of T noise tokens. After that, a specific indicator
token tells the model to reproduce the initial S tokens from the beginning of the sequence. An example is
shown below

X Y Z¸ ˚˙ ˝
Sequence to copy of length S

[B] [B] [B]¸ ˚˙ ˝
T Blank tokens

[C]¸˚˙˝
Indicator to start copying

X Y Z¸ ˚˙ ˝
Target Sequence

The denoising task, also called selective copying, is similar to copying task, except that the noise tokens are
scattered in between the elements of the sequence of random tokens to be copied (still resulting in a sequence
of S + T tokens).

X Y [B] [B] Z [B]¸ ˚˙ ˝
S + T Interspersed Tokens

[C]¸˚˙˝
Copying indicator

X Y Z¸ ˚˙ ˝
Target Sequence

These tasks have been widely used to evaluate the capacity of models to learn long-range dependencies in
sequences. Learning the denoising task is considered more challenging because the model must learn a more
complex filtering/ignoring mechanism, as shown by Gu & Dao (2024). While those blanks may initially
overfill the network memory in both tasks, they clearly indicate the end of the sequence to memorize in the
copying task but not in the denoising task. In both cases, the memory of the non-blank tokens must be
stable over the processing of the blank tokens. That is, the activation should not decay nor be altered by
blank inputs. The gradient must also freely flow through time to learn the task correctly. If the memory is
stable, the network should generalize to longer sequences of blanks. Intuitively, generalizing to memorize
more tokens is expected to be more challenging, because from the perspective of Formal Language theory, it
examines the ability of the model to handle the context-sensitive aspect of the task.

3.4 Counting Memory

Another critical role of memory is to perceive duration in order to learn to produce some output at a specific
moment in time. This requires an understanding of counting and/or timing. We define this as counting
memory. This type of memory resides between the stateful and stable ones defined earlier. While counting
and timing tasks require noting time alongside learning the model’s state, the required memory is simpler
than the stable memory: instead of storing some specific content, the number of certain items or time steps
need to be tracked and stored. The counterparts in formal languages are counter languages which aside from
regular languages include some context-free and context-sensitive languages.

A simple yet representative task can be derived from classical and temporal conditioning (Gallistel & Gibbon,
2000) where, models are autoregressively trained with on/o� (or 0/1) signals of varying lengths. The objective
is to learn the duration of the on signal, which is fixed, to accurately predict when it will turn o�. This
duration, known as the interstimulus interval (ISI) in the conditioning literature, is interleaved with a random
interval of o� tokens, called the intertrial interval (ITI). The Networks that successfully learn to count
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should focus on learning the ISI duration, as its end is fully predictable, whereas the beginning of the ISI is
impossible to predict precisely. A crucial aspect of this timing task is that the actual task (timing the ISI)
can start anywhere in the sequence, and the end to be predicted depends entirely on stable counting or time
tracking from the ISI onset. The memory must then be fully reset to handle the next ISI in the sequence. In
animals, the task does not get more di�cult or easier as long as the ITI/ISI ratio remains constant (Gallistel
& Gibbon, 2000). However, for most neural networks, a longer ITI should increase the training di�culties.

4 Experiments

In this section, we empirically evaluate the performance of di�erent types of sequential models on the tasks
described in Section 3. Given the nature of the tasks discussed, it follows that the varying inductive biases
inherent in di�erent neural network architectures can enable some to outperform others. In Appendix A, we
describe the architectures we use in our experiments: RNN (Rumelhart et al., 1986), LSTM (Hochreiter &
Schmidhuber, 1997), GRU (Cho et al., 2014), NRU (Chandar et al., 2019), Transformer (Vaswani et al., 2017),
S4D (Gu et al., 2022a) and Mamba (Gu & Dao, 2024), and briefly discuss their memory properties, while
additional implementation details are provided in Appendices B, D and F.1. We assess the models’ abilities
to both learn the tasks and generalize to out-of-distribution (OOD) examples, as a means to probe whether
the models have learned the correct algorithm. In our state tracking, copying and denoising experiments, the
OOD examples are sequences longer than the training samples.

4.1 State Tracking

State tracking experiments use the same setting as in (Merrill et al., 2024), specifically the use of groups Z60,
A4 ◊Z5 and A5. For all our experiments, we control the number of parameters in each layer to approximately
3 million parameters per layer. Explicit hyper-parameters are provided in Appendix D.

We train each model for up to 500 epochs, with early stopping if performance reaches a desired threshold (set
at 90% accuracy) or fails to reach 1% accuracy after half the allocated training time. A model is deemed to
learn the task if it achieves the threshold performance before the training budget elapses. Performance on
a task (in this case, a group g œ {Z60,A4 ◊ Z5,A5}) is measured by the model’s accuracy at predicting all
elements across the entire sequence. The model is considered to have predicted a sample correctly if it can
predict all tokens exactly within the sequence. Since all samples have the same length, overall performance
on the task is measured by the number of correctly predicted samples within a held-out test set.

When training on sequences of length k, we first create a dataset of elements from the selected group of
length k. We then randomly select a maximum of 106 elements from the dataset, which is further split into a
training and testing split. Following Merrill et al. (2024), we always include all examples for k = 2 in the
training set.

When evaluating for extrapolation to longer lengths, the number of parameters per layer is kept constant
between models. But, we use the minimal number of layers necessary to achieve the threshold accuracy on
the training length (empirically chosen as 90% in our experimentas). This number of layers can vary between
di�erent models for each task. Additionally, a model is considered to have ’extrapolated’ to a length only if it
simultaneously achieves the predefined threshold accuracy on that length as well as on all shorter test lengths.

Initial Long Sequence Results We first ask why learning group multiplication for the A5 group poses a
challenge for models. Notably, while one-layer models can adequately model sequences of length k = 2, it is
interesting that some models fail to learn the task when k increases-unless the model’s depth (number of
layers) is also increased accordingly. Given that the underlying group operations are deterministic in the
token tagging structure, they should ideally be represented by a deterministic transition function that takes
the current state and input token as inputs. Thus, our first question is whether there is a length limit to the
e�ectiveness of one-layer models. To test this hypothesis, we significantly increase the value of k beyond 25,
the limit tested by Merrill et al. (2024). For further comparison, we include a novel model they introduced,
called the Input-Dependent S4 (IDS4). They claim IDS4 can solve the A5 class of problems due to the
inclusion of input-dependent A transition matrices.
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Figure 1: Ability of single-layer recurrent models to learn longer state tracking tasks. We observe that as the
sequence gets increasingly long, even models that theoretically should be able to learn the task fail to do so,
especially as the state tracking task becomes more complex (in terms of circuit complexity).

Task Z60 A4 ◊ Z5 A5

Model RNN LSTM GRU NRU RNN LSTM GRU NRU RNN LSTM GRU NRU

L
en

gt
h 128 4 4 4 4 4 4 4 4 4 4 4 4

256 4 4 4 4 8 4 8 4 8 4 8 8
512 8 4 4 4 8 4 8 8 8 8 8 8

Table 1: An extension of Merrill et al. (2024)’s on longer length state tracking tasks. (4) indicates that a
single-layer model attains > 90% accuracy on a held-out validation set (averaged over 5 seeds), (8) means
otherwise. We compare models suggested to have the ability to model the corresponding group structure of
each task for arbitrary length. The IDS4 demonstrates significant numerical issues which renders it incapable
of modeling sequences of longer than 20 tokens, hence we exclude it. Other models (Transformer, Mamba,
S4D) cannot properly learn sequences with a single layer and are also excluded.

Table 1 shows that even recurrent models with non-linearities, which are claimed to have the ability to
model arbitrarily long state tracking problems, have limits on all tasks being tested. Note that other models
(Transformer, Mamba, S4D) cannot properly learn sequences with a single layer and therefore are excluded.
IDS4, on the other hand, demonstrates significant numerical issues, which render it incapable of modeling
sequences of longer than 20 tokens, and hence we exclude it as well. A comparison with other recurrent
models further shows that those with explicit memory structures (LSTM and NRU) are better able to learn
sequences of increasing length. Figure 1 further shows accuracy on a held-out validation set during training.
Clearly, the direct learning trends of the di�erent models change both between tasks as well as length. For
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example, for sequences of length k = 128, the RNN manages to learn the task significantly faster than other
models on the groups A5 and Z60, yet eventually the other models remain capable of learning on longer
sequences, while the RNN cannot (k = 256 for A5 and k = 512 for Z60, respectively)4. This highlights the
possibility that the inductive biases of such models, despite modeling the correct circuit complexity for these
classes of problems, remain insu�cient for such state tracking tasks.

Task Z60 A4 ◊ Z5 A5

Test Length 1X 2X 3X 4X 5X 64 128 256 512 1X 2X 3X 4X 5X 64 128 256 512 1X 2X 3X 4X 5X 64 128 256 512

Se
qu

en
ce

M
od

el

Mamba 4 8 8 8 8 8 8 8 8 4 8 8 8 8 8 8 8 8 4 8 8 8 8 8 8 8 8
Transformer 4 8 8 8 8 8 8 8 8 4 8 8 8 8 8 8 8 8 4 8 8 8 8 8 8 8 8

S4 4 8 8 8 8 8 8 8 8 4 8 8 8 8 8 8 8 8 4 8 8 8 8 8 8 8 8
IDS4 4 8 8 8 8 8 8 8 8 4 8 8 8 8 8 8 8 8 4 8 8 8 8 8 8 8 8
RNN 4 4 4 4 4 8 8 8 8 4 4 4 4 4 8 8 8 8 4 4 4 4 8 8 8 8 8

LSTM 4 4 4 4 4 4 8 8 8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 8 8 8 8
GRU 4 4 4 4 4 4 8 8 8 4 4 4 4 4 4 4 4 8 4 4 4 4 8 8 8 8 8
NRU 4 4 4 4 4 4 8 8 8 4 4 4 4 4 4 4 8 8 4 4 4 4 8 8 8 8 8

Table 2: Evaluating the ability of models to extrapolate from their training length to longer sequences. Here,
we provide an example where k = 8. The number of layers of each model depends on the ability to learn the
training length (1X). (4) indicates that the model can attain > 90% accuracy on a held-out validation set
(averaged over 5 seeds), and (8) means otherwise. We evaluate on extrapolation up to 5 times the training
length and fixed lengths of 64, 128, 256, and 512.

Short-to-Long Extrapolation A particular feature of state tracking tasks is the deterministic nature of
transitions. This means that if a model is learning the underlying transitions within the specific task, then
learning properly from a short sequence can trivially extrapolate to sequences of any arbitrary length, as the
rules of the transitions do not change within the group. This motivates us to explore the ability of di�erent
models to exhibit this feature. If a model fails to extrapolate to longer lengths, we hypothesize that it is
learning something other than the underlying transitions. If this persists, then we can further contend that
such models can su�er from di�culties when it comes to more complex state tracking tasks, especially those
that have non-deterministic rules for their transitions.

Table 2 shows extrapolation performance from training on sequences of length 8. Interestingly, only non-linear
recurrent networks are capable of extrapolating to any degree past the length of sequences used for training;
this suggests that parallelizable models fail to properly learn the task. Meanwhile, we observe that non-linear
recurrent models with explicit memory structures demonstrate improved extrapolation performance.

4.2 Copying

For this task, the input consists of a sequence of S random tokens, followed by T blank tokens, and finally an
indicator token. The goal is to reproduce the S random tokens after seeing the indicator token. In practice,
the input has a length of T + 2S, where we append another S blank tokens to the end of the input sequence.
The model is trained to output blank tokens up to the (S + T )-th step (until it sees the indicator token).
After seeing the indicator, it starts to output the random tokens (in order) when presented with S additional
blank tokens.

As explained before, we are interested in two aspects of model performance: first, the training dynamics
which we study through the evolution of accuracy over the random part of the sequence, i.e., the part of
length S; secondly, the generalization of the model to unseen data; we do an extrapolation analysis and test
the trained model on longer sequences than the ones seen during training. To compare di�erent models, we
consider two experimental setups. In the first one, we adjust all model hyper-parameters so that the number
of parameters for all of them is similar. In the second setting, we consider models with the same hidden
state size so that we can comment on how they may di�erently use the same hidden space. For both cases
mentioned, we consider both 1-layer and 2-layer architectures.

4We conduct a grid search on a select set of hyper-parameters. Increasing model size (which we control for) may potentially
change convergence rates of each model.
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We have two di�erent training setups which correspond to two di�erent extrapolation experiments. In the
first one, we train models on a mixture of data sequences with a fixed pattern length, but di�erent lengths of
the blank interval. This setup is later used to evaluate the capability of the trained model to extrapolate to
sequences of the same pattern length, but longer blank interval length than in the training set. Training
sequences have a fixed pattern length of 10 and contain up to 50 blank tokens, and we examine generalization
to sequences containing up to 500 blank tokens.

In the second setup, we train models on a mixture of data sequences of a fixed blank interval length but
varying pattern lengths. We then evaluate their extrapolation performance on sequences of the same blank
interval length, but longer pattern lengths. Training sequences have blank tokens of lengths 50 and pattern
lengths up to 10 and we examine the generalization of the models to sequences with up to 100 pattern lengths.

In all cases, for comparing the extrapolation capability of di�erent architectures, as we observe the models
achieve > 99% training ccuracy, we compare the generalization ability of the trained models in extrapolating
to longer sequences to empirically investigate how di�erent memory structures help with better extrapolation.
However, some models did not learn the task within the maximum number of training steps set for our
experiments, which is 150K. For those cases, we still illustrate their generalization performance on longer
sequences, comparing it to their best-achieved accuracy at the end of the training.

We provide the list of hyper-parameters in Appendix B, including both global hyper-parameters, which
remain fixed across all experiments, and those we set to di�erent values to examine their potential e�ect on
the results.

4.2.1 Mixed blank Interval Length

Figure 2 shows the results for training on mixed blank interval lengths but fixed pattern lengths for models
with one and two layers, where di�erent architectures have comparable sizes . As observed in Figure 2,
while gated RNN models (GRU, LSTM, and NRU) successfully solve the task with both 1 and 2 layers,
the vanilla RNN does not learn the task within our maximum number of training steps. S4D exhibits
the fastest convergence, whereas the other SSM model, Mamba, solves the task only with 2 layers, within
the given number of training steps. The Transformer’s slow convergence is primarily due to the lack of
Positional Encoding (NoPE). We did not include results for the Transformer with sine-cosine encoding because,
although it learns the task very quickly, that type of positional encoding significantly reduces its extrapolation
capability.5 Note that all models were trained with the same learning rate of 1e ≠ 3. From Figure 13 we
observe similar results for the case where all models have the same hidden size. We still notice the slower
convergence for the LSTM in this experiment compared with the larger LSTM in Figure 13.

Extrapolation to Longer Blank Interval Length Figure 3 shows the results of length generalization
for di�erent models with comparable sizes. The plots display the accuracy over the random numbers to be
copied, which are of length 10 in all experiments. The dashed vertical blue line indicates the training range;
sequences to the right of this line have not been seen during training and thus measure generalization. We
observe that, despite its strong performance on the copying task, S4D fails to extrapolate to longer sequences.
Conversely, gated RNNs, especially GRU and NRU, continue to perform well for longer distances. The 2-layer
architectures exhibit similar behavior as the 1-layer ones. Finally, while Mamba takes longer than S4D to
achieve perfect accuracy, it demonstrates superior performance in extrapolation. Overall, GRU with 2 layers
shows the best extrapolation. In Figure 14, we observe similar results on the performance of architectures
with the same hidden size on the same task.

4.2.2 Mixed Pattern Length

Figure 4 shows the result for training on mixed pattern length but fixed blank interval length on 1- and
2-layer models of comparable sizes. Figure 15 in the appendix shows the same experiment with models of the
same hidden size.

5Also, the work by (Deletang et al., 2023) studies several other positional encodings including RoPE and ALiBi. We did
not include them because Transformers were not the main focus of our work, and none of the encodings resulted in a good
generalization performance on the duplicate string task, which is a formal language task related to our copying task.
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Figure 2: Learning dynamics of (left) 1- and (right) 2-layer models with comparable number of parameters
for copying memory task trained on sequences with a mixture of blank interval lengths. While gated
RNNs and S4D can solve the task with only one layer, 2-layer Mamba and Transformer take much longer to
converge.

Figure 3: Extrapolation of (left) 1- and (right) 2-layer models with comparable number of parameters
to longer blank interval length for copying task. The dashed vertical blue line is the training range. We
especially observe that perfectly trained S4D fails to extrapolate to longer sequences. Also, GRU with 2
layers shows the best overall performance.

Figure 4: Learning dynamics for copying memory task with similar number of parameters trained on
sequences with a mixture of pattern lengths up to 10. We observe that all gated RNNs, as well as S4D,
are able to solve the task with only one layer, while Mamba and Transformer need a second layer.

Extrapolation to Longer Pattern Length Figure 5 shows the results of length generalization for
di�erent models with 1 and 2 layers where all models have the same number of parameters. Training
sequences have noise tokens of lengths 50 and pattern lengths up to 10, and we examined the generalization of

11



Under review as submission to TMLR

the model to sequences with up to 100 pattern lengths. The main observation here is that all models that we
have tried fail to extrapolate for pattern length twice the maximum training length and beyond. We especially
observe that despite its fast convergence on the copying task, S4D is again the worst-performing model in
extrapolating to unseen sequence lengths. For the 2-layer case where Mamba can solve the task, it interestingly
shows better asymptotic extrapolation, on par with best performing RNN types of models. It should also be
noted that our Mamba model is 4 times smaller than all other models due to some implementation restrictions
that do not allow a hidden size larger than 256. Figure 16 in Appendix C shows the results for the same
setting when all models have the same hidden size.

Figure 5: Extrapolation of 1- (left) and 2-layer (right) models with the same number of parameters to
longer pattern length for copying task. The dashed vertical blue line is the training range. Notice that all
models fail to extrapolate as we increase the pattern length to almost twice the maximum training length.

4.2.3 Summary of Results

The main result of this section is that, while some models can extrapolate to longer sequences with increased
blank interval length, all of them struggle to generalize to sequences with longer pattern lengths. That is,
they do not perform well when the amount of data they need to retain in memory increases. This happens
while in principle the models have enough storage to store the information of those long sequences. This
result aligns with the observations in (Deletang et al., 2023), where various sequential models, including
Transformers, were tested on the related task of string duplication. This task falls within the context-sensitive
class of the Chomsky hierarchy and requires an automaton with a memory tape. Their findings indicate that
for this memory-intensive task, only Tape-RNN could extrapolate to longer strings, while other RNN models
with less structured memory modules, such as LSTM and GRU, failed to generalize beyond their training
sequence lengths.

4.3 Denoising

As explained in Section 3, this task is very similar to the copying memory task, with the only di�erence being
the blank (noise) tokens scattered between the random tokens that should be copied rather than coming after
them. Otherwise, the experiment setup and the model’s evaluation during both training and generalization
are exactly the same as described in the previous section for the copying task.

4.3.1 Mixed Noise Interval Length

Figure 6 shows the results for training on mixed blank interval lengths but fixed pattern lengths for models
with one and two layers, where di�erent architectures have the same number of parameters. Unlike the copying
task, S4D demonstrates very slow convergence even with two layers, while the 2-layer Mamba successfully
solves the task. Figure 17 presents the results for the same experiment using di�erent models with the same
hidden size. Interestingly, a vanilla RNN with 2 layers successfully solves the denoising task as well.
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Figure 6: Learning dynamics for denoising task with similar number of parameters across models
trained on sequences with a mixture of blank interval lengths. With a larger size, S4D still has a very
slow performance even with 2 layers.

Figure 7: Extrapolation of (left) 1- and (right) 2-layer models with comparable number of parameters
to longer noise interval length for denoising task.

Extrapolation to Longer Noise Length Figure 7 shows the extrapolation of the trained models to
longer noise intervals. We especially observe that although 1-layer Mamba only partially solves the task,
it is able to keep its performance for longer noise intervals. Also, while S4D cannot extrapolate to longer
sequences, the 2-layer Mamba model behaves more like gated RNNs in terms of its extrapolation capability.
In Figure 18, we present the results of a similar analysis for the case where all models have the same hidden
size.

4.3.2 Mixed Pattern Length

Figure 8 shows the result for training on mixed pattern length but fixed blank interval length on 1- and
2-layer models of comparable sizes. On Figure 8, we again see that gated RNN models and 2-layer Mamba
solve the task while S4D has very slow performance and Transformer (with NoPE) also converges much slower
compared with RNN-type models. Comparing with Figure 19, under the same experimental setting with
models of identical hidden size, we observe that the larger Mamba model solves the task at least twice as fast
as the smaller model.

Extrapolation to Longer Pattern Lengths Figure 9 shows the result of length generalization for
di�erent models of similar sizes with one and two layers. Figure 20 illustrates the results of a similar
analysis with models of the same hidden size. Notably, in both cases, we observe that increasing the
number of layers does not help with better extrapolation.
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Figure 8: Learning dynamics for denoising task for models with similar number of parameters trained
on sequences with a mixture of pattern lengths. While 2-layer Mamba solves the task, S4D shows a very
slow performance. Again, RNN models beat all other architectures.

Figure 9: Extrapolation of (left) 1- and (right) 2-layer models with the same number of parameters to
longer pattern length for denoising task.

4.3.3 Summary of Results

As in the copying task, the main result is that while several models achieve perfect performance for the
sequence lengths seen during training, as we increase the pattern length at the test time, none of them
can keep as good performance on any longer length, which could be expected from the task being memory
intensive and hence requiring more specialized memory modules in the architecture. Regarding the capacity
of the studied state space models in learning the task, the superior performance of Mamba compared to
S4D could be attributed to its input-dependent weights, which enhance the filtering ability required for the
denoising task. In contrast, S4D is time invariant, as explained in Section A.3.3.

4.4 Learning to Count

For the first task, we present models with a fixed-length stimulus (the ISI). The stimulus is removed for a
random period (the ITI) and presented again, with this cycle continuing for a predetermined time. The ITI
has a value of 0 and its duration is randomly picked from the set of the following intervals depending on the
sequence length: {[20, 40], [60, 120], [100, 200]}. For the ISI, the signal is on with a value of 1 for one of the
values of {10, 30, 50} timesteps of the sequence, again depending on the sequence length. The length of the
signals varies among 200 (short), 600 (medium), and 1000 (long) time steps. The signal is constructed by
alternating ITIs and ISIs, where it always starts with an ITI followed by an ISI and this pattern repeats for
the whole sequence length. Therefore, this memory task involves 2 components: the ability to reset at the
onset of the stimulus and the ability to either count the duration of the ISI or to compute an o�set time
stamp to predict the ISI o�set.
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Counting requires models to realize the length of the ISI, as the ITI is random and therefore cannot be
learned. The model’s desired behavior requires counting to start once an onset is observed and stop at the
desired o�set. To assess whether the counting ability improves with the network scale, we further increase
the hidden dimension from 8 to 64. However, our results suggest that the task is trivial for models with a
hidden size of 8. Interestingly, even after training for much longer, up to a thousand epochs, the performance
remained relatively the same, indicating that counting does not improve with increasing the capacity of the
network.

Model RNN LSTM GRU NRU TF S4D Mamba
Hidden Size 8 64 8 64 8 64 8 64 8 64 8 64 8 64

L
en

gt
h 200 4 4 4 4 4 4 4 4 8 8 4 4 8 8

600 8 8 4 4 4 4 4 8 8 8 4 4 8 8
1000 4 8 4 4 4 8 4 8 8 8 4 4 8 8

Table 3: Model Performance on training length of 1000 epochs, hidden sizes 8 and 64, on all 200, 600, and 1000
timestep sequences. (4) indicates that the model was able to learn the signal and (8) indicates otherwise.

Predicting Signal O�set In Table 3, we report the ability to predict the desired o�set for short, medium,
and long ISIs. We consider a model successful if it predicts the ISI o�set at least 3 out of 5 trials within the
specific configuration, measured using the validation MSE.

First of all, regardless of the length of the ISI and the hidden size, both Mamba and Transformer fail to
learn the task, whereas LSTM and S4D succeed in learning the signal across all configurations. Another
observation is that, except for the RNN model on the medium ISI, all recurrent models and S4D perform
well with a hidden size of 8. However, a larger hidden size of 64 not only fails to introduce any benefits, but
also, in some cases, hinders performance, such as with NRU and GRU for long ISI.

Figure 10: Model outputs for models with hidden size of 8, trained on 1000 epochs and a 200 sequence length.
All recurrent models have slight anticipation for the onset and correctly predict the o�set. The Transformer
model has no anticipation for the onset, starts to o�set early, and also misses the desired o�set. S4D behaves
similarly to the recurrent models, while Mamba, although it shows some anticipation of the onset, misses the
desired o�set timing.

Phase Alignment Tests A model’s ability to generalize can be inferred by the ability to phase align,
defined as resetting its memory after seeing a stimulus. Here, we conduct two phase alignment tests to
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measure a model’s learning ability. We run these tests on models trained on short signals, with a hidden size
of 8 and 64, trained on 1000 epochs. We chose this configuration as most models can predict the desired
o�set in this setting. The results are similar for medium and long sequences.

Model RNN LSTM GRU NRU TF S4D Mamba
Hidden Size 8 64 8 64 8 64 8 64 8 64 8 64 8 64

T
es

t Two ISI 8 4 8 8 8 8 4 8 8 8 4 4 8 8
Double ISI 8 8 8 8 4 8 4 8 8 8 4 4 8 8

Table 4: Phase alignment results for varying lengths on short signals sequences trained for 1000 epochs. (4)
indicates that the model was able to phase align at least 3 out of 5 times with the specific configuration, and
(8) indicates otherwise.

First, we evaluate whether models can reset their memory. To test this, a second ISI is placed after an
initial ISI and a long ITI (longer than the ITI seen during training) at test time. This assesses the ability to
consistently recognize the onset of a signal and begin counting. The desired behavior is thus for the model to
correctly predict the end of the ITI and re-activate upon the appearance of the second ISI.

Figure 11: Phase alignment test results for two ISIs with an intermediate ITI. Recurrent models are unable
to predict the o�set of the second ISI. Transformer and Mamba miss the o�set, while S4D can predict both
o�sets, indicating an understanding of the transition from ITI to ISI.

For hidden size 8, the NRU and S4D models succeed (Table 4). In contrast, for a hidden size of 64, only the
RNN and S4D models complete the task. The RNN model was the only model that benefited from increasing
the hidden size as it was able to predict the o�set for the first and second ISI. The GRU and LSTM models
similarly failed the test (Figure 11), with both models predicting the first o�set but struggling with the
anticipation of the onset and prediction of the o�set of the second ISI. This suggests that they struggle to
re-align their count to the ISI once introduced to longer ITIs. Increasing the hidden size hindered the NRU
model from learning the tasks, namely, this increase introduced learning instabilities, where models produced
NaN values. From Figure 11 we observe that the S4D model expects an ISI in between the longer ITI due to
what it has seen during training, however, it turns o� rather quickly and shows its ability to reset its memory.
The Transformer and Mamba models fail in the same manner as the models with 8 hidden units.

The second test evaluates if models can correctly reactivate their counting mechanism when encountering
consecutive ISIs. After completing the first ISI, the model should deactivate briefly, as learned during training,
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then reactivate and continue counting for the second ISI’s duration. The RNN, LSTM, Transformer, and
Mamba models fail to do this (Figure 12). The GRU and NRU models succeeds with a hidden size of 8 but
fail with a hidden size of 64. Only, the S4D model completes the test for both hidden sizes, retaining the
ability to reset its memory when no stimulus is present.

Figure 12: Phase alignment test results on two consecutive ISIs. We observe that only the NRU, GRU,
and S4D models are able to reactivate after the first ISI, indicating that other models lack a complete
understanding of the ISI.

Summary of Results From our experiments with the counting task, several key insights emerge. The
Transformer and Mamba models consistently fail to learn the task, regardless of model size. The limitations
with the Transformer are consistent with previous work where it was suggested that single-layer models,
like ours, struggle with similar tasks (Yehudai et al., 2024). Mamba’s poor performance, particularly in
overestimating ISI lengths, contrasts with the S4D model, which excels across all configurations and signal
lengths. It will be interesting to investigate if such gap in performances can be due to the positivity of
Mamba’s transition matrix. This property was recently shown to hinder the generalization of models such
as Mamba in some state tracking tasks (Sarrof et al., 2024; Grazzi et al., 2024). Recurrent models such as
GRU and LSTM perform well on most tasks, particularly in o�set prediction. LSTM models enjoy success by
leveraging their memory mechanism to handle ISI o�sets as complexity increases, which aligns with prior
findings in similar counting domains (Rivest et al., 2010; Suzgun et al., 2019). However, RNNs falter with
longer ISI lengths, reflecting di�culties with long-term dependencies. Interestingly, NRU achieves success with
a smaller hidden size but faces training instability as the hidden size increases. Across all recurrent models,
increasing hidden size does not result in any notable improvement in generalization or task performance.
Overall, S4D demonstrates superior generalization and performance, supporting prior claims of robustness in
tasks involving long-term temporal dependencies, while other models exhibit varying degrees of success and
limitations.

5 Discussion

In this section, we provide an additional overview of the motivation behind our research, our interest in the
topic of neural network memory, and its relevance to our generalization studies. After highlighting the gaps in
the current literature that our work addresses we review the main results of our experiments and the insights
that our findings o�er for future research.
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5.1 Relating Memory and Extrapolation

Understanding deep learning models is crucial because these methods often operate as black boxes, making
it di�cult to interpret their solutions. It is essential to have insights and methods to interpret the model’s
solution to ensure that a model has learned the correct algorithm for a given problem. Extrapolation to
out-of-distribution (OOD) samples serves as a significant indicator of whether the model has internalized
the correct algorithm. On the other hand, in the framework of formal language theory in classical machine
learning, there is a correspondence between di�erent formal languages and various types of automata that
di�er in terms of their memory component. If an automaton with a finite number of states possesses the
correct memory component for a task with given memory requirements, then in principle it should be able to
learn the correct algorithm to solve the task and extrapolate to unseen examples. For example, pushdown
automaton generalizes on the task of balanced parentheses to longer open parenthesis depth than seen during
training, while a finite-state automaton cannot realize this generalization. While there is no direct equivalence
between neural networks and automata, and many tasks of interest in deep learning research may not directly
translate to formal language tasks, valuable insights can still be drawn. Similar arguments can be applied
to analyze the suitability of deep learning models for di�erent tasks. Therefore, categorizing the memory
mechanisms of these models and studying their generalization capabilities across various problems is crucial.
This approach provides essential insights into developing better models and designing more informative
benchmarking tasks.

5.2 Limitations of Prior Studies

Research on the computational power of neural networks in relation to automata has been conducted for
various recurrent neural networks (RNNs) across di�erent formal language tasks (Weiss et al., 2018; Wang &
Niepert, 2019; Deletang et al., 2023). However, with the recent development of alternative novel architectures,
more complete studies are still largely absent from the current literature. In terms of OOD generalization,
some of these new architectures have demonstrated exceptional extrapolation capabilities to longer sequences
for specific tasks, such as associative recall and induction heads (Gu & Dao, 2024; De et al., 2024). On
the other hand, various works have identified failure modes in other tasks, particularly di�erent types of
state-tracking (Sarrof et al., 2024; Grazzi et al., 2024). Since each of these synthetic tasks is representative of
di�erent capabilities of deep learning models, there is significant potential for further improvements in these
models. Addressing these gaps and optimizing for various task requirements could lead to more versatile
neural networks.

5.3 Our Results and Suggestions For Further Study

We present our main findings on the models’ ability to learn and generalize in three specific tasks: group
permutation state tracking, (selective) copying, and counting.

State Tracking Our observations here are three-fold. First, we observe that all models have limits both in
terms of how they solve tasks as well as how they extrapolate to longer lengths. Especially, despite theoretical
arguments in (Merrill et al., 2024) about single-layer SSMs being able to solve easy state tracking tasks,
such as Z60 modular sum, in our experiments only non-linear models can solve those tasks with one layer
for long sequences. Therefore, it is important to reconsider whether the failure of linear models on hard
state tracking tasks is due to expressivity concerns or practical training limitations. This reevaluation is
particularly important when considering arguments about the circuit complexity6 of such problems, such as
the widely accepted but unproven TC0 µ NC1 assumption that underlies their justification.

Another significant observation from our experiments is that the solution of finite-layer SSM models on the
easy state tracking tasks does not extrapolate to longer sequences, suggesting that the model has not learned
the correct algorithm. Similar observations for Transformers were identified by Deletang et al. (2023), who
noted that while these models could solve some regular formal language tasks, they failed to extrapolate.
They hypothesized that this failure is due to the positional encoding of such architectures which makes the

6Circuit complexity relates to the width and depth of trees that represent boolean functions necessary to estimate a given
problem accurately.
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network activations out-of-distribution for longer sequences. However, other factors can also play a role.
Liu et al. (2023) demonstrate how Transformers tend to learn shortcut solutions that, while valid, are less
e�ective at generalizing to unseen data. This observation highlights a potential area of interest for SSMs.

Finally, this lack of generalization for linear sequential models holds also for the IDS4 model that Merrill et al.
(2024) specifically constructed to solve even the hard state tracking tasks. While this may be unexpected
from the perspective of (Merrill et al., 2024), it is consistent with a concurrent observation by Grazzi et al.
(2024). Following Sarrof et al. (2024) who identified an important failure mode of current SSMs in the context
of the solvable state tracking task of parity and attributed it to the positivity of the state transition matrix
in non-time-invariant SSMs, such as Mamba, Grazzi et al. (2024) further investigated easy and hard group
permutation tasks in a concurrent work. They showed that while modifying the state transition matrix of
Mamba to include negative eigenvalues enables it to generalize on the parity task, the adjusted Mamba still
poorly generalizes on the more challenging state tracking tasks involving group permutations. That the IDS4
is neither time-invariant 7 nor relies on a positive transition matrix, and still fails to extrapolate, adds to the
evidence that resolving the eigenvalue issue as suggested by Sarrof et al. (2024) and Grazzi et al. (2024) alone
may not fully address state-tracking challenges for SSMs.

(Selective) Copying For the (selective) copying task, none of the models that we examined, including S4D
and Mamba were able to generalize to sequences with a longer random sequence part. This is not unexpected,
since earlier works have already reported failure of sequential models without specific memory mechanisms in
generalizing to longer sequences. This includes both studies on the copying task (Graves et al., 2014) and on
a similar formal language task of string duplication (Deletang et al., 2023).

In the context of linear RNNs, it is particularly interesting to examine whether SSM models with enhanced
memory components, such as xLSTM (Beck et al., 2024), would show stronger performance on memory-
intensive tasks like copying. Additionally, another promising direction could involve devising regularization
methods, similar to those proposed for RNNs by Wang & Niepert (2019), to guide these models towards
more e�ective use of their memory components8.

Counting For counting, we interestingly observe that only the S4D model generalizes from predicting one
signal o�set to detecting a second signal arriving immediately. In contrast to the state-tracking tasks, S4D
can generalize when the temporal dynamics of the task are changed, such as increasing ITI length, unlike
RNNs or Transformer models. Conversely, Mamba was unable to generalize and predict the o�set, which
at first glance was unexpected, as the Mamba model is theoretically an improvement over S4D. As pointed
out before, Mamba has been shown to su�er from expressivity issues on tasks like parity check due to its
non-negative state transition matrices; whether or not this specific parameterization could negatively a�ect
its performance on counting tasks as well is worth exploring.

5.4 Future Research Directions

Finally, we would like to comment on a wider range of ideas relevant to our study that were not covered here
as they were beyond the scope of the current work.

As alluded to earlier, there is evidence that, similar to Transformers, there does not exist a straightforward
concept of state in SSMs (Merrill et al., 2024). Hence, the question of identifying states of a corresponding
automaton for SSMs may not be as well-defined as it is for RNNs. However, there remain many points still
under exploration in understanding SSMs, among them the interpretation of their states. Considering that
state extraction can provide the most direct and straightforward way of interpreting the learning process of a
model, this sounds like a very interesting direction.

With such methods devised, it becomes possible to apply state regularization techniques developed for RNNs,
enhancing the utilization of their hidden states (Wang & Niepert, 2019). If similar methods could be designed

7Similar to (Sarrof et al., 2024), by time-invariant we mean that the transition matrix of the SSM, A, is constant and hence
independent of the input token.

8One should note that the notion of state is not as well-defined for SSMs as it is for RNNs, and consequently, its regularization
is also less well-defined.
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for SSMs without compromising their parallelizability, architectures with enhanced memory abilities, like
xLSTM (Beck et al., 2024), could greatly benefit. This was the case for LSTM, where regularization led to
significant improvements. Implementing these strategies for SSMs could potentially unlock new levels of
performance and e�ciency in state management.

Apart from these, extending this study to tasks that are of special interest to large language models
(LLMs) is highly valuable. This includes more recent LLM-representative tasks like multi-query associative
recall (MQAR), which has been shown to be strongly indicative of an LLM’s performance in in-context
learning. (Arora et al., 2023).
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