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Abstract

Conventional transformer models typically001
compress the information from all tokens in002
a sequence into a single [CLS] token to rep-003
resent global context– an approach that can004
lead to information loss in tasks requiring lo-005
calized or hierarchical cues. In this work,006
we introduce Inceptive Transformer, a mod-007
ular and lightweight architecture that enriches008
transformer-based token representations by in-009
tegrating a multi-scale feature extraction mod-010
ule inspired by inception networks. Our model011
is designed to balance local and global depen-012
dencies by dynamically weighting tokens based013
on their relevance to a particular task. Evalua-014
tion across a diverse range of tasks including015
emotion recognition (both English and Bangla),016
irony detection, disease identification, and anti-017
COVID vaccine tweets classification shows that018
our models consistently outperform the base-019
lines by 1% to 14% while maintaining effi-020
ciency. These findings highlight the versatility021
and cross-lingual applicability of our method022
for enriching transformer-based representations023
across diverse domains.024

1 Introduction025

Since its introduction, the transformer architec-026

ture (Vaswani et al., 2017) has revolutionized the027

field of natural language processing (NLP), thanks028

to an innovative self-attention mechanism capa-029

ble of capturing complex contextual relationships030

across tokens. Transformer-based models such031

as BERT (Devlin et al., 2019), RoBERTa (Liu032

et al., 2019b), Electra (Clark et al., 2020), and XL-033

Net (Yang et al., 2019) have demonstrated impres-034

sive performance across a wide range of NLP tasks.035

However, in practice, we often encounter domain-036

specific text—be it medical, scientific, business,037

legal, or social media content. These texts come038

with their own unique language and nuanced stylis-039

tic patterns, which are difficult for general purpose040

models like BERT or RoBERTa to capture. To041

address this, domain-specific BERT-based models 042

like BioBERT (Lee et al., 2019), SciBERT (Beltagy 043

et al., 2019), LegalBERT (Chalkidis et al., 2020), 044

BERTweet (Nguyen et al., 2020) have emerged, 045

which have been further pre-trained on domain- 046

specific corpora to capture the unique language, 047

terminology, and stylistic features of various spe- 048

cialized fields. In parallel, cross-lingual models 049

like XLM-R (Conneau et al., 2020) and language- 050

specific models such as BanglaBERT (Bhattachar- 051

jee et al., 2022) have extended this architecture to 052

support diverse linguistic settings, including low 053

resource languages like Bangla. 054

Despite their success, transformer models still 055

have limitations, particularly in capturing short- 056

range dependencies between tokens (Guo et al., 057

2019; Li et al., 2021) that are often important for 058

classification. A significant issue we observed in 059

our research is their reliance on the [CLS] token, 060

where the model aggregates all token embeddings 061

into a single representation. Although convenient, 062

we found that this approach can lead to informa- 063

tion loss, as the single [CLS] token is insufficient 064

to capture fine-grained contextual nuances or local- 065

ized cues critical for tasks like emotion recognition 066

or irony detection. This limitation is especially 067

problematic for multi-label tasks, which require 068

token-level attention rather than a single sequence- 069

level summary. 070

To address these limitations of traditional trans- 071

former models, we propose Inceptive Transform- 072

ers, which aim to enhance both general-purpose 073

and domain-specific transformer models by using 074

convolutional filters. These filters are designed 075

to recognize key phrases or word combinations 076

that are indicative of specific classifications. Our 077

model uses an initial transformer layer to capture 078

the global context and long-range dependencies 079

within the input sequence. Following this, we 080

introduce a multi-scale convolutional module to 081

extract local dependencies and patterns, comple- 082
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menting the global representations learned earlier.083

These enriched features are then processed by a084

self-attention mechanism, which dynamically as-085

signs weights to tokens based on their task-specific086

contribution, thus allowing the model to effectively087

prioritize relevant tokens.088

Our experiments show that Inceptive Trans-089

formers consistently outperform baseline trans-090

former models across both general-purpose (e.g.,091

RoBERTa) and domain-specific (e.g., BERTweet,092

BioBERT) architectures in a diverse set of tasks,093

including emotion recognition, irony detection,094

disease identification from documents, and anti-095

vaccine concern classification. Evaluated on four096

distinct datasets covering both English and Bangla097

– a low resource but morphologically rich language098

– our models achieved moderate (1%) to signifi-099

cant (14%) improvements in key metrics such as100

accuracy and F1-score.101

The major contributions of our work are as fol-102

lows.103

• We introduce the Inceptive Transformer archi-104

tecture, designed to capture both global context105

and local features effectively while identifying106

and prioritizing the most important tokens across107

the entire input sequence— thus alleviating the108

limitations of standard transformer models.109

• We propose a generalizable framework that110

can enhance both general-purpose models like111

RoBERTa and domain-specific pre-trained mod-112

els. Through comprehensive evaluation, we show113

that our inceptive models perform strongly across114

diverse datasets while maintaining efficiency.115

• We demonstrate the effectiveness of our models116

through extensive experiments and comparisons,117

ablation studies, statistical significance testing,118

and interpretations of the findings.119

2 Related Work120

There are a number of text classification meth-121

ods, ranging from traditional machine learning122

approaches like decision trees (Law and Ghosh,123

2022), support vector machines (SVM), k-nearest124

neighbors (KNN) (Hanifelou et al., 2018), and en-125

semble learning (Zhu et al., 2023; Wu et al., 2016),126

to more advanced deep learning techniques like127

RNN and LSTM (Lai et al., 2015; Onan, 2022).128

Convolutional networks have also been been used129

(Conneau et al., 2017; Choi et al., 2019; Yao et al.,130

2019; Soni et al., 2022), but they often struggle 131

with capturing long-range dependencies in text. 132

After the transformer architecture (Vaswani 133

et al., 2017) was introduced, many works have 134

combined convolution with transformers, but these 135

works mostly focus on vision related tasks (Fang 136

et al., 2022; Si et al., 2022; Yuan et al., 2023). Ap- 137

plication on NLP domain remains limited to a few 138

works (Zheng and Yang, 2019; Wan and Li, 2022; 139

Chen et al., 2022; Wu et al., 2024) — which mostly 140

focus on improving a particular transformer model, 141

like BERT or XLNet. In comparison, we provide a 142

general architecture capable of improving different 143

types of transformer models, both domain-specific 144

and general-purpose. 145

A number of works modify BERT through archi- 146

tectural or pretraining adaptations to better suit spe- 147

cific tasks or domains, including SpanBERT (Joshi 148

et al., 2020), StructBERT (Wang et al., 2019), and 149

CodeBERT (Feng et al., 2020). Other works such 150

as MT-DNN (Liu et al., 2019a) introduce multi- 151

task learning objectives on top of BERT, while 152

KnowBERT (Peters et al., 2019) integrates external 153

knowledge bases into BERT’s architecture. Our 154

work is orthogonal to these efforts: instead of mod- 155

ifying the pretraining strategy, we propose an archi- 156

tectural enhancement that can be directly plugged 157

into existing BERT-like models. 158

3 Inceptive Transformer 159

3.1 Motivation 160

Transformer-based models rely on token-level em- 161

beddings derived primarily from self-attention lay- 162

ers to capture global dependencies and context 163

within text sequences. In our experiment, we visu- 164

alized the attention maps of these models in section 165

5.4, which show a strong bias in attention towards 166

the [CLS] token, while intermediate tokens often 167

receive comparatively lower attention. The [CLS] 168

token is a weighted aggregation of all token em- 169

beddings in the sequence, which the model relies 170

on to represent the entire sequence for classifica- 171

tion tasks. This bias suggests an underutilization 172

of contextual and local dependencies, potentially 173

limiting the model’s ability to effectively capture 174

fine-grained patterns and hierarchical structures 175

present in textual data. 176

Our model is designed to address this gap by in- 177

corporating convolutional operations, which excel 178

at capturing local patterns and hierarchical struc- 179

tures in data (Gu et al., 2018; Li et al., 2022). CNNs 180
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Figure 1: Inceptive Transformer model architecture

are typically not used on textual data due to their181

inability to capture long-range dependencies. How-182

ever, using convolution makes sense in our model183

because it operates on embeddings generated by184

a transformer— not on raw text. This allows the185

convolutional operations to refine the already glob-186

ally contextualized embeddings by emphasizing187

fine-grained, local features that might otherwise188

be overlooked. Furthermore, instead of using a189

single convolution layer with a fixed kernel size,190

we use an inception module (Szegedy et al., 2015)191

to apply convolutions with multiple kernel sizes to192

learn features at different levels of granularity– cap-193

turing both token-level patterns and phrase-level194

dependencies.195

The applicability of our model is not limited196

to general-purpose transformers like RoBERTa.197

Domain-specific pre-trained models such as198

BioBERT, CT-BERT, or BERTweet show similar199

attention biases as BERT and RoBERTa, leading to200

challenges in capturing local and hierarchical de-201

pendencies. By integrating our model’s multi-scale202

feature extraction approach, these domain-specific203

variants can also be enhanced, improving their abil-204

ity to represent diverse patterns within specialized205

input data. This versatility makes our model a ro-206

bust addition to any transformer-based architecture.207

3.2 Model Architecture208

The full workflow of our inceptive models is il-209

lustrated in Fig.1. The input to our model is pre-210

processed text data, which need to be tokenized211

using an appropriate pre-trained tokenizer corre-212

sponding to the chosen transformer model. Math-213

ematically, the input can be represented as X =214

[x1, x2, . . . , xL] where L is the sequence length, 215

and each xi corresponds to a token from the text. 216

X is passed to the transformer layer. 217

3.2.1 Transformer Layer 218

The first layer of our architecture is a transformer- 219

based model, such as RoBERTa, BioBERT, 220

BERTweet, or CT-BERT. Given input X , the trans- 221

former layer generates a tensor of hidden states 222

H ∈ RB×L×d where B is the batch size, L is the 223

sequence length, and d is the hidden state dimen- 224

sion. We denote H[b, i, :] = h
(b)
i ∈ Rd as the 225

contextual embedding for the i-th token in the b-th 226

input. A dropout layer is applied to H to prevent 227

overfitting. 228

3.2.2 Inception Module 229

The primary task of this layer is to extract multi- 230

scale local features. The inception module receives 231

contextual embeddings H generated by the trans- 232

former and applies parallel convolutional layers 233

with small kernel sizes k (e.g., k = 2, 3, 5, 7) to 234

learn features at different granularities. Smaller 235

kernels (k = 2 or 3) capture fine-grained token- 236

level relationships, such as modifiers or word pair 237

dependencies, whereas larger kernels (k = 5 or 7) 238

capture slightly broader local patterns, such as syn- 239

tactic or semantic relationships over small phrases. 240

Each branch of the inception module applies a 241

1D convolution over the sequence of contextual em- 242

beddings generated by the transformer. Let the in- 243

put be H ∈ RL×d, where L is the sequence length 244

and d is the hidden size. For a convolution with 245

kernel size k, each filter has weights W ∈ Rk×d 246

and a bias term b ∈ R. The output at position i is 247
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computed as:248

Yi =

k−1∑
j=0

Wj ·Hi+j + b249

where Hi+j ∈ Rd is the embedding of the (i+ j)-250

th token, and Wj ∈ Rd is the j-th row of the filter.251

This operation slides across the sequence to pro-252

duce a feature map Y ∈ RL×c, where c is the253

number of convolutional filters (i.e., output chan-254

nels) used in the branch. To preserve the original255

sequence length, we apply appropriate padding: for256

kernel size 2, we use right-padding of 1; for kernel257

sizes 3, 5, and 7, we apply symmetric (left and258

right) padding.259

After the convolution, each branch further pro-260

cesses its output using batch normalization to sta-261

bilize and accelerate the training process, followed262

by a ReLU activation to introduce non-linearity.263

Finally, the outputs from all four branches are con-264

catenated along the channel dimension to form a265

combined feature map C ∈ RB×L×(4·c). To pre-266

serve information from the original transformer267

output, we concatenate H and C along the feature268

dimension to form R ∈ RB×L×(d+4c). This resid-269

ual connection ensures that the original features are270

retained alongside the multi-scale features. This271

combined representation, enriched with both global272

and multi-scale local features, is then passed to the273

self-attention layer for further processing.274

3.2.3 Self-Attention275

While the transformer layer uses self-attention to276

contextualize token embeddings, these mechanisms277

are applied early in the model flow. After the in-278

ception module extracts multi-scale features, an279

additional self-attention mechanism is necessary to280

capture dependencies and relationships across the281

enriched feature space R. This ensures that tokens282

contributing the most to the task are effectively pri-283

oritized and selected, thus allowing the model to284

focus on the most relevant features.285

Given R ∈ RB×L×dR , the attention mechanism286

maps it to query Q, key K, and value V :287

Q = RWQ, K = RWK , V = RWV288

where WQ,WK ,WV ∈ RdR×dA , dR is the en-289

riched feature space dimension, and dA is the at-290

tention head dimension. The attention scores are291

computed as:292

Attention(Q,K, V ) = softmax
(
QK⊤
√
dA

)
V293

Since we use multi-headed attention, the outputs 294

of multiple attention heads are concatenated and 295

projected back to the original feature space: 296

A = Concat(head1, . . . , headh)WO 297

where WO ∈ R(h·dA)×dR is a learnable projection 298

matrix and h is the number of attention heads, an- 299

other tunable hyperparameter. The attention out- 300

put A ∈ RB×L×dR captures refined dependencies 301

across both token positions and feature scales. 302

3.2.4 Adaptive Average Pooling 303

To reduce the sequence-level representation A to a 304

fixed-size vector suitable for classification, global 305

average pooling is applied across the sequence 306

length. Given the attention output A ∈ RB×L×dR , 307

we first permute it to RB×dR×L. Afterwards, adap- 308

tive average pooling computes the average over the 309

entire sequence for each feature channel, regardless 310

of the input length, by dynamically adjusting the 311

pooling region. Mathematically: 312

Pb,i =
1

L

L∑
j=1

ab,i,j 313

where ab,i,j is the value of the ith feature channel at 314

the jth position for the bth example. This produces 315

a tensor P ∈ RB×dR×1, which is then squeezed to 316

yield a final pooled representation P ∈ RB×dR . 317

3.2.5 Dense Block 318

For further refinement, the pooled representation P 319

is passed through a dense block consisting of three 320

sublayers. First, a fully connected layer is used 321

to reduce the dimensionality by D = PWd + bd 322

where Wd ∈ RdR×dD , bd ∈ RdD , and dD is the 323

target dimensionality (e.g., 512). Next, ReLU acti- 324

vation is used to introduce non-linearity, and layer 325

normalization is used to stabilize the output. The 326

output of the dense block D ∈ RB×dD represents 327

a compact and refined feature set ready for classifi- 328

cation. 329

3.2.6 Final Classification 330

The output D is passed to a linear classifier, which 331

computes logits for each class as O = DWf + bf ; 332

where Wf ∈ RdD×C and bf ∈ RC . The logits 333

O ∈ RB×C are interpreted based on the task. 334

4 Experimental Setup 335

In this section we discuss the datasets, model train- 336

ing and evaluation procedures, and hyperparame- 337

ters used. 338
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4.1 Datasets339

We have selected four datasets from diverse do-340

mains that cover both multi-class and multi-label341

settings. The TweetEval dataset (Barbieri et al.,342

2020) is a benchmark for Twitter-specific classifi-343

cation tasks, from which we have selected emotion344

recognition (Mohammad et al., 2018) and irony345

detection (Van Hee et al., 2018). The first one346

is a multi-class problem while the latter is binary347

classification. We have also selected a large-scale348

Bengali emotion detection dataset (Faisal et al.,349

2024) to demonstrate our model’s effectiveness on350

low-resource, morphologically rich languages such351

as Bengali. For multi-label, we have chosen two352

datasets: OHSUMED 1 from biomedical domain,353

which is a collection of abstracts of medical journal354

articles; and CAVES (Poddar et al., 2022) for anti-355

covid vaccine concerns, such as concerns about the356

vaccine ingredients, side-effects of vaccines, mone-357

tary motivations of the pharmaceutical companies,358

political and geographic issues, etc.359

Table 1: Dataset statistics. C : number of classes or
labels; C : average number of labels per instance (for
multi-label); and L : average token length of each text.

Dataset #Texts C C L

Emotion 5,052 4 – 24.35
Irony 4,601 2 – 21.54
Bangla 80,098 6 – 18.6
OHSUMED 13,929 23 1.66 289.51
CAVES 9,921 11 1.16 58.35

4.2 Model Training and Evaluation360

Each input sequence was tokenized using a model-361

specific tokenizer and then passed through the362

model to generate logits. For multi-class classi-363

fication, the model predicts mutually exclusive364

class probabilities using softmax activation and365

cross-entropy loss, whereas for binary and multi-366

label tasks, it outputs non-exclusive probabilities367

with sigmoid activation and binary cross entropy368

with logits loss. During backpropagation, gra-369

dients were clipped to a maximum norm of 1.0370

to ensure numerical stability. The AdamW opti-371

mizer (Kingma and Ba, 2014) with weight decay372

was used to update the model weights.373

The training process was conducted iteratively374

over multiple epochs, with a Cosine Annealing375

1OHSUMED-link

learning rate scheduler. At the end of each epoch, 376

the model was evaluated on the validation dataset to 377

monitor key metrics, including accuracy, F1-score, 378

AUC-ROC (multi-class), AUPR (multi-label), and 379

inference time. The best model was selected based 380

on accuracy for binary and multi-class classifica- 381

tion tasks, and F1-score for multi-label tasks. Each 382

model was run 10 times on each dataset. The mod- 383

els were trained and evaluated using 40GB A100 384

GPU. However, all of our models can be run on 16 385

GB GPUs (e.g. P100). We used the transformer 386

version 4.48.3. 387

4.3 Hyperparameters 388

Table 2: Hyperparameters.

Hyperparameter Value

Sequence Length 128, 512 (ohsumed)
Batch Size 32
Epochs 12
Learning Rate 1e-5
Weight Decay 1e-3, 1e-4 (ohsumed, caves)
Sigmoid threshold 0.5

The hyperparameters used in this experiment 389

are shown in Table 2. All hyperparameter values 390

were selected empirically based on validation set 391

performance. 392

5 Results 393

5.1 Comparative Performance 394

In this section, we compare the performance of 395

the inception-enhanced models with that of the 396

transformer-based models. Multi-class perfor- 397

mance comparison (in terms of accuracy) is shown 398

in Table 3, while multi-label comparison (F1-score) 399

is shown in Table 4. A detailed comparison can 400

be found in appendix A, where we also report met- 401

rics like precision, recall, AUC-ROC and AUPR, 402

that also account for class imbalance. We ran each 403

model in each dataset 10 times and reported the 404

average metric in test set. Performance compari- 405

son across all runs can be found in appendix B. It 406

should be noted here that iBERTweet-32 means it 407

is an Inceptive BERTweet model with 32 output 408

channels in each convolution layer. 409

In the task of emotion recognition, Inceptive 410

BERTweet-32 achieved an accuracy of 84.02, 411

which is a 0.98% improvement over BERTweet 412

(83.29). InceptiveRoBERTa-16 (82.42) improved 413
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Table 3: Multi-class performance comparison in test set

Model Accuracy Inference
Time (s)

Emotion Recognition

BERTweet 83.29 2.83
iBERTweet-64 84.11 2.93
RoBERTa 81.69 2.88
iRoBERTa-16 82.42 3.00

Bangla Emotion Recognition

BanglaBERT 69.98 15.65
iBanglaBERT-16 70.74 16.62
XLM-RoBERTa 65.91 15.42
iXLMRoB-16 66.53 15.77

Irony Detection

BERTweet 82.69 1.59
iBERTweet-16 84.51 1.62
RoBERTa 75.15 1.60
iRoBERTa-32 77.08 1.68

Table 4: Multi-label performance comparison in test set

Model F1-score Inference
Time (s)

OHSUMED

BioBERT 63.50 53.88
iBioBERT-128 72.34 58.74
BioBERT-Large 73.12 154.00
RoBERTa 61.53 67.42
iRoBERTa-128 65.44 74.44

CAVES

CT-BERT 74.24 10.27
iCTBERT-16 74.86 10.56
RoBERTa 71.11 4.67
iRoBERTa-32 72.11 4.78

on RoBERTa (81.69) by 0.89%. In Bangla emotion 414

recognition, Inceptive BanglaBERT-16 (70.74%) 415

improved on the baseline (69.98%) by 1.08%, 416

while Inceptive XLM-RoBERTa-16 achieved a 417

0.94% increase in accuracy over XLM-RoBERTa 418

(66.63 vs 65.91). In the binary classification task of 419

irony detection, InceptiveBERTweet-16 improved 420

on BERTweet by a higher margin of 2.20% (84.51 421

vs 82.69). InceptiveRoBERTa-32 also improved on 422

RoBERTa by a similar margin of 2.57%. 423

In OHSUMED disease identification, our In- 424

ceptive BioBERT model achieved an average F1 425

score of 72.34, which is a 13.92% improvement on 426

BioBERT (63.50). Inceptive RoBERTa (65.44) also 427

offered a significant performance uplift of 6.35% 428

over RoBERTa (61.53). There are two interest- 429

ing observations here. First, Inceptive RoBERTa 430

achieved a higher F1-score (65.44) than BioBERT 431

(63.50), which is pre-trained on biomedical liter- 432

ature. This shows the generalization capability 433

of our inception mechanism. Second, Inceptive 434

BioBERT performed at a similar level as BioBERT- 435

large, despite the latter taking almost three times 436

as much to run and requiring significantly more 437

compute power. This observation highlights our 438

models’ ability to achieve significant performance 439

improvement while maintaining efficiency. 440

Finally, in CAVES dataset, the integration of in- 441

ception module resulted in improvements of 0.84% 442

over the domain-specific model CT-BERT, and 443

1.41% over RoBERTa. 444

Cross Validation Results 445

Table 5: 10-fold cross validation results comparison

Dataset Baseline Inceptive

Mean Std Dev Mean Std Dev

Emotion 80.80 1.27 81.38 1.19
Irony 77.49 1.20 78.10 1.27
Ohsumed 65.06 1.35 72.57 0.62
CAVES 71.88 0.94 72.86 0.88

We conducted 10-fold cross-validation for both 446

the baseline and inceptive models across all 447

datasets except the large-scale Bangla dataset (re- 448

souce constraints). For OHSUMED, we used the 449

training set; for the other datasets, we combined 450

the training and validation sets. The mean and stan- 451

dard deviation of the evaluation scores are reported 452

in Table 5. Across all datasets, the inceptive mod- 453
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els consistently achieved higher mean accuracy or454

F1-scores compared to the baselines. Additionally,455

in all but one case (irony detection), the inceptive456

models had a lower variance, indicating more stable457

performance. These results highlight the robustness458

and generalizability of our proposed architecture.459

5.2 Performance vs Complexity Trade-off460
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Figure 2: Performance comparison of all tested incep-
tive configurations and baseline models

A key hyperparameter of our inceptive models461

is the number of output channels in convolution462

branches, which we tuned to determine the ideal463

inception module configuration in each dataset. To464

account for this added architectural complexity, we465

have compared the performance of all inception466

configurations against the baseline models. The re-467

sults presented in Fig. 2 show that even the lowest468

performing configuration outperforms the baseline469

in all but one dataset, and the average performance470

is always higher. This suggests that extensive tun-471

ing is not strictly necessary — any selected config-472

uration is likely to yield gain over baseline. This473

comparison is a post-hoc analysis performed on the474

test set – these results were not used for the best475

configuration selection.476

5.3 Statistical Significance Testing477

For statistical significance testing, we performed478

the Wilcoxon signed-rank test, which is a non-479

parametric test and suitable for paired comparison480

on the same test set. Each model was run 10 times,481

and the average accuracy or F1-score was recorded482

for statistical analysis. As shown in Table 6, the483

p-value in each test is below the 0.05 significance484

threshold. Therefore, we conclude that the gain485

achieved are statistically significant.486

5.4 Performance Interpretation487

The attention maps for the baseline transformers488

(BERTweet, BioBERT), plotted in Fig. 3a and 3c,489

Table 6: Wilcoxon Signed-Rank Test Results. BT:
BERTweet, BB: BioBERT, RoB: RoBERTa, i: inceptive
model.

Dataset Models Gain p-value

Emotion BT, iBT-64 +0.98% 0.00195

Irony BT, iBT-16 +2.20% 0.00585

Ohsumed BB, iBB-128 +13.92% 0.00195

CAVES RoB, iRoB-32 +1.41% 0.00195

Bangla XLM, iXLM16 +0.94% 0.00195

show that the attention weights are heavily skewed 490

toward the initial [CLS] token, while the rest of the 491

tokens receive negligible attention. In tasks like 492

irony detection, where localized cues or specific 493

tokens (e.g., sarcasm markers) are crucial, over- 494

reliance on the [CLS] token can lead to informa- 495

tion loss. Similarly, multi-label tasks like disease 496

identification often demand token-level attention 497

rather than a single sequence-level summary. In 498

such cases, the [CLS] token may fail to represent 499

the sequence adequately. 500

On the contrary, the attention maps presented 501

in Fig. 3b and 3d highlight a more balanced dis- 502

tribution of attention weights across the sequence. 503

Tokens that were overlooked by transformer-based 504

models, particularly those in the middle of the se- 505

quence, now receive higher attention, reflecting 506

their contextual importance. This improvement is 507

a direct result of the architectural enhancements 508

introduced in our models. Since each token embed- 509

ding now contains both global and local features, 510

tokens across the sequence compete more effec- 511

tively for attention. This allows the self-attention 512

mechanism to dynamically assign weights to the 513

tokens based on their contribution to the task, as 514

evident from the attention maps. 515

Our inceptive transformer models are able to 516

adapt their attention patterns to suit the specific 517

requirements of each task. For tasks like emotion 518

recognition and irony detection, the input data often 519

contains localized cues that are highly indicative of 520

the target class. For example: In emotion recogni- 521

tion, key emotional expressions such as "happy," 522

"sad", or "angry" are often concentrated in a few 523

specific words or phrases within the sentence. Sim- 524

ilarly, in irony detection, sarcasm or irony is usu- 525

ally conveyed through specific linguistic patterns 526
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Figure 3: Attention received by each token in baseline and inceptive models. BioBERT and Inceptive BioBERT
were run on the OHSUMED dataset with 512 tokens, but only the first 128 tokens are shown for better visualization.

or markers like exaggeration or contrasting terms,527

which are localized to certain parts of the sequence.528

As a result, the model’s attention tends to focus529

sharply on these critical tokens while assigning less530

importance to the rest of the sequence, as shown in531

Fig. 3b. In contrast, the OHSUMED dataset, used532

for disease identification, involves longer, more533

complex sequences such as medical abstracts or534

documents. Here, relevant information is often535

dispersed throughout the text rather than being lo-536

calized. For example, mentions of symptoms, treat-537

ments, or diagnoses may appear in different parts538

of the text, each contributing to the prediction of a539

specific disease label. Since the relevant features540

are distributed across the sequence, the model must541

maintain a more balanced and diffuse attention pat-542

tern. This behavior is evident in the attention maps543

for disease identification (Fig. 3d), where attention544

is spread across the sequence to capture multiple545

independent or overlapping features.546

5.5 Ablation Study547

The results of the ablation study in Table 7 show548

that both the self-attention mechanism and the549

dense block positively contribute to the model’s550

performance. The differences are most pronounced551

in the OHSUMED dataset, where our inception552

Table 7: Ablation study results

Model Full No Attn No Dense

iBT (emotion) 84.11 83.63 83.51
iBT (irony) 84.51 82.61 82.48
iBB (ohsumed) 73.32 71.54 69.00
iRoB (caves) 72.11 71.31 71.38

models achieve the most significant improvement. 553

6 Conclusion 554

In this paper we presented Inceptive Transformer, 555

a general convolution-based framework that en- 556

hances the performance of both general-purpose 557

transformer models like RoBERTa and domain- 558

specific pre-trained language models such as 559

BERTweet, BioBERT, and CT-BERT. Our exper- 560

iments show statistically significant performance 561

gains ranging from 1% to 14%. Moreover, our ap- 562

proach consistently delivers strong results across 563

diverse domains and languages while maintaining 564

computational efficiency. In future work, we plan 565

to adapt our model to other tasks (e.g., NER, Q/A) 566

and architectures (e.g., encoder-decoder models). 567
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7 Limitations568

A limitation of our models is that it requires tun-569

ing the number of output channels in the inception570

module to achieve optimal performance in different571

datasets. For example, while an inception module572

with 128 output channels works best on BioBERT,573

16 (for irony detection) and 32 or 64 (for emo-574

tion recognition) output channels are more suitable575

for BERTweet. However, we empirically found576

that even the lowest performing inception config-577

uration outperformed the baseline in all but one578

case. Another limitation is that we applied our579

inceptive framework exclusively to bidirectional580

encoder-only transformer models; encoder-decoder581

models (e.g., T5 or BART) were not explored. Ap-582

plying the inception module in such generative or583

sequence-to-sequence settings may require archi-584

tectural adaptations.585
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nition
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Figure 5: Performance comparison in Irony Detection
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Figure 7: Performance comparison in CAVES

B Comparison across All Runs830

Fig. 8, 9, 10, 11, and 12 show the comparison831

of baseline pretrained models (BERTweet, XLMR,832

BioBERT, RoBERTa) against the inception models833

across all 10 runs.834
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Figure 8: Accuracy distribution across 10 runs in Emo-
tion Recognition
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Figure 9: Accuracy distribution across 10 runs in Irony
Detection
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Figure 10: Accuracy distribution across 10 runs in
Bangla emotion detection
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Figure 11: F1-score distribution across 10 runs in
OHSUMED
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Figure 12: F1-score distribution across 10 runs in
CAVES

12



C Attention Maps835
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Figure 13: Attention map of XLMR (Bangla)
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Figure 14: Attention map of inceptive XLMR (Bangla)
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Figure 15: Attention map of BERTweet (emotion)
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Figure 16: Attention map of inceptive BERTweet (emo-
tion)
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Figure 17: Attention map of RoBERTa (CAVES)
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Figure 18: Attention map of inceptive RoBERTa
(CAVES)
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