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ABSTRACT

Task-free continual learning is the machine-learning setting where a model is
trained online with data generated by a nonstationary stream. Conventional wis-
dom suggests that, in this setting, models are trained using an approach called
experience replay, where the risk is computed both with respect to current stream
observations and to a small subset of past observations. In this work, we explain
both theoretically and empirically how experience replay biases the outputs of the
model towards recent stream observations. Moreover, we propose a simple ap-
proach to mitigate this bias online, by changing how the output layer of the model
is optimized. We show that our approach improves significantly the learning per-
formance of experience-replay approaches over different datasets. Our findings
suggest that, when performing experience replay, the output layer of the model
should be optimized separately from the preceding layers.

1 INTRODUCTION

In broad terms, continual learning is the process of incrementally aggregating knowledge from data
that are generated by a nonstationary distribution (Lee et al., 2019; Riemer et al., 2019). The main
motivation for studying continual learning is to give artificial learners the ability to learn as biologi-
cal learners do—perpetually updating and refining their body of knowledge under changing external
conditions (Silver et al., 2013). The inability of artificial learners to learn continually stems from the
fact that they overwrite previously learned knowledge whenever they encounter new information.
This phenomenon is called catastrophic forgetting (McCloskey & Cohen, 1989; French, 1999).

In this paper, we focus specifically on task-free continual learning (Aljundi et al., 2019b). In this
setting, the data are presented to the learner in small minibatches, and this setting is agnostic to
the way the data distribution changes over time. In other words, we assume no knowledge about
whether the distribution is piecewise-stationary (that is, when there are distinct tasks being learned),
or whether the distribution changes continuously over time (Aljundi et al., 2019b). Most task-free
continual learning approaches make use of a memory which can store a small percentage (typically
10% or less) of all observed data instances. The data instances stored in memory are subsequently
replayed in order to mitigate catastrophic forgetting. This simple paradigm, called replay-based
continual learning, is surprisingly effective in task-free settings. Furthermore, it is also supported
by findings from the field of neuroscience, in relation to how biological learning takes place (Marr,
1971; Ji & Wilson, 2007; Liu et al., 2019).

A number of continual learning methods tend to make predictions that are biased towards recently
observed data (Buzzega et al., 2021; Mai et al., 2021). Several strategies have been proposed to deal
with this prediction bias (also called recency bias). Unfortunately, most of them are not applicable
to task-free continual learning, since they have been designed for continual learning settings that
consist of a task sequence, and they require knowledge of which classes the current task comprises
(Wu et al., 2019; Belouadah & Popescu, 2019; Buzzega et al., 2021). One approach which is appli-
cable in task-free continual learning is proposed in Mai et al. (2021), but it can only be performed
after the end of training, hence the learner’s predictions during training would remain biased.
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In this paper, we propose a simple approach that performs online bias correction for task-free con-
tinual learning. Our contributions are as follows: a) We formally illustrate that the conventional
paradigm of model training in task-free continual learning overweights the importance of current
stream observations (Section 3.2), and we speculate that this overweighting is a cause of prediction
bias of continual learners; b) We propose a novel metric to quantify prediction bias (Section 3.3),
and we show that this bias can be effectively mitigated by appropriately modifying the parameters
of only the final layer of the model, after the end of training (Section 3.4); c) We propose a novel
approach called Online Bias Correction (OBC; Section 3.5), which maintains an unbiased model on-
line, throughout the entire duration of learning (see Figure 1 for an illustration); d) We evaluate the
performance of OBC extensively, and we show that it significantly improves a number of task-free
continual learning methods, over multiple datasets (Section 4).

2 BACKGROUND

2.1 TASK-FREE CONTINUAL LEARNING

We define task-free continual learning as the online optimization of a model via small minibatches
that are sampled from a nonstationary stream. In task-free continual learning, no strong assumptions
are made about the nature of the distributional nonstationarity of the stream (Aljundi et al., 2019b).
Other continual learning settings, such as task-incremental and class-incremental continual learning
assume a data distribution that is piecewise stationary, hence one that only changes at discrete points
in time (Van de Ven & Tolias, 2019). The objective of continual learning is to learn from all observed
data despite the nonstationary nature of the distribution (Jin et al., 2021), and, in general, previous
work assumes no distributional mismatch between training and evaluation data.

Previous work in task-free continual learning mostly focuses on replay-based methods (Aljundi
et al., 2019c; Jin et al., 2021). The prevalent replay paradigm is called experience replay (ER) (Isele
& Cosgun, 2018; Chaudhry et al., 2019). According to the ER paradigm, each minibatch of obser-
vations received by the learner is combined with another minibatch of equal size sampled from the
memory. The model is then trained for one step with the combined stream-and-memory minibatch.
Moreover, the memory is typically maintained by an online memory-population algorithm called
reservoir sampling (Vitter, 1985).

There are multiple variants of the ER method. For instance, one approach called Maximally-
Interfered Retrieval (MIR) replays instances that are going to be interfered the most by the cur-
rent minibatch of new observations. Another approach called Class-Balancing Reservoir Sampling
(CBRS) (Chrysakis & Moens, 2020) modifies the memory population algorithm to ensure that the
memory remains balanced. There also other approaches that deviate from the ER paradigm, such as
Greedy Sampler and Dumb Learner (GDUMB) (Prabhu et al., 2020), which only trains the model
using data stored in memory, or Asymmetric Corss-Entropy (ACE) (Caccia et al., 2022), which uses
a modified version of the cross-entropy loss to prevent the drift of latent representations.

2.2 COMPUTATIONAL COST

An important issue in task-free continual learning is computational cost. Since practical applications
will likely involve large amounts of data, the design of task-free continual learners should ensure
they are tractable. In practical terms, let us assume that a model has to learn from a stream of n
instances. Moreover, we assume that applications with larger streams will likely involve memory
storages of larger size m. In real-world applications, the difference between an O(n) learning
algorithm, and an O(mn) algorithm could be enormous. Hence, in this work we will only focus
on learning algorithms whose computational cost per incoming batch is independent of the memory
size m, so that the computational complexity of learning from the entire stream is O(n).

2.3 BIAS CORRECTION IN TASK-FREE CONTINUAL LEARNING

To the best of our knowledge, there is only one approach explicitly designed to correct for prediction
biases in task-free continual learning. Mai et al. (2021) propose learning a model using conventional
experience replay, and after the entire stream has been observed, they replace the final linear layer
of the model with a nearest-class-mean (NCM) classifier computed using all data stored in mem-
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ory. Moreover, they demonstrate that this approach is effective in increasing the final accuracy of
the model. However, in many real-world applications, there is a need for a model that learns and
performs inference at the same time, and such a model should ideally be unbiased all the time. To
achieve this goal, the NCM approach would have to be applied after every update of the model, and
since it needs to make a full pass over the memory, it would be computationally very expensive.

3 METHODOLOGY

3.1 NOMENCLATURE

Previous work in continual learning typically views the entire neural network as one learning com-
ponent. In contrast, we adopt a more modular view of a neural network that consists of two learning
components. Specifically, we will call the output layer of a neural network the classifier, and we
will denote it as the parameterized function c(z;θc). Moreover, we will refer to the set of layers
preceding the classifier as the feature extractor, and we will similarly denote it as g(x;θg). Using
this notation, we can represent the full neural network h as the composition of g and c, that is

h(x;θh) ≜ c
(
g(x;θg);θc

)
, where θh ≜ {θg,θc}. (1)

An important distinction between the classifier and the feature extractor, is that classifier has a low
learning capacity because it consists of only one linear layer, while the feature extractor has a high
learning capacity because it is composed of multiple nonlinear layers. Hence, given enough data,
the feature extractor can learn more complex representations, but, in low-data scenarios, it is also
more prone to overfitting, in comparison to the classifier.

3.2 DATA-SAMPLING BIAS

At a high level, the optimization process during task-free continual learning is very simple. At each
step t, the learner receives a small minibatch of b observations St = {(xi, yi)}bi=1 from the stream.
The learner then samples another minibatch R of equal size from its memory M = {(xi, yi)}mi=1,
and performs an update step over the model parameters using the gradient calculated with respect to
St ∪R. Finally, the learner updates its memory with respect to St, using reservoir sampling (Vitter,
1985), or another memory population algorithm. This training paradigm is called experience replay
(Isele & Cosgun, 2018; Chaudhry et al., 2019). We will now explain why this paradigm has a
data-sampling bias that favors new observations over the instances stored in memory.

An intuitive way to understand this data-sampling bias is to consider a learner with an infinite mem-
ory. Let us assume that the learner has encountered a data instances in the past—all of which
have been stored in the memory for replay—and that the learner now receives a minibatch St of
b new observations.1 Given an Occam’s-razor assumption that all observations, current and past,
are equally important, we will say that the data-sampling is unbiased if all a + b observed data
instances are equally likely to contribute to the upcoming optimization step of the model. In other
words, the probability of using any instance in the optimization step should be the same, regardless
of whether that instance is in the current stream minibatch St, or stored in memory. Accordingly, the
model should be updated with a minibatch B sampled uniformly-at-random from the set of all a+ b
observed instances (that is, the concatenation of the memory and the stream minibatch M ∪ St).

Now let us contrast this unbiased data sampling with experience replay. Under experience replay,
the b new observations are included in the minibatch B with a probability of 1, and, by definition,
an equal number of instances are sampled uniformly-at-random from the memory (which contains
a instances). Hence, each memory instance has a probability of b/a ≪ 1 of being sampled for
the model update. Therefore, unlike in the unbiased case described above, new observations are
guaranteed to participate in the model update, but an arbitrary memory instance is very unlikely to.
In essence, this is a data-sampling bias that favors current observations over past ones, and, in turn,
leads to the predictions of the model being biased towards recent observations.2

1Since the new observations arrive in small minibatches, we generally assume that a ≫ b. Put another way,
the instances in memory vastly outnumber the instances in the newly observed minibatch.

2To further elucidate the concept of data-sampling bias, we include a numerical example in the appendix.
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Table 1: We compare the final accuracy (Acc.) and the bias of ER, MRO, and ER with post-training
bias correction (ER+BC), over four datasets. All entries are 95%-confidence intervals over 15 runs.

FashionMNIST CIFAR-10 CIFAR-100 tinyImageNet

Acc. Pred. Bias Acc. Pred. Bias Acc. Pred. Bias Acc. Pred. Bias

ER 83.4± 0.5 0.9± 0.2 45.5± 1.7 17.0± 2.4 19.3± 0.7 33.8± 2.0 13.5± 0.5 25.3± 1.7
MRO 83.7± 0.5 0.4± 0.3 38.9± 1.6 8.7± 2.7 14.7± 0.6 17.0± 2.2 10.7± 0.4 12.6± 1.3
ER+BC 84.8± 0.2 0.4± 0.1 54.4± 0.8 6.6± 0.5 27.4± 0.4 6.3± 0.4 20.4± 0.3 5.1± 0.3

A hypothesis arising from this discussion is that prediction biases could be negated if the learner
had a memory of infinite size, and if it constructed the minibatch B, used to update the model, by
sampling instances uniformly-at-random from all observed data, current or past. In this case, we
would expect that, on average, a ratio of b/(a+ b) of the instances in the minibatch B will be from
St, and a/(a+ b) of the instances will be from M. Unfortunately, in practical applications, it is not
possible to have a memory of infinite size. As the learner observes more and more data, it is a ≫ b,
which means that a/(a+ b) ≃ 1 and b/(a+ b) ≃ 0. Therefore, on average, the minibatches B used
to train the model will contain almost exclusively data from the memory, and almost no data from
the current stream batch St. Since in practical applications the size of the memory is much smaller
than the size of the stream, this weighting scheme will arguably lead to overfitting the memory data.

3.3 QUANTIFYING PREDICTION BIAS

At this point, we will propose a metric to quantify prediction bias with respect to a set of unseen
data. Let T = {(xi, yi)}i be this set, and by yi, we will denote the one-hot representation of the
label yi. We define the expected vector of prior class probabilities as p = E[yi]. Moreover, we
define the expected vector of model predictions as q = E

[
h(xi;θh)

]
. Note that both expectations

are taken with respect to the data distribution of T, and are computed by averaging over the test-set
instances.

We quantify the prediction bias of the model by measuring the discrepancy between the expected
ground truth p and the expected prediction q. Since both p and q are vectors of probabilities, we
propose the use of the Jensen-Shannon divergence (Lin, 1991), which is a symmetric divergence
measure between two probability distributions. It is defined as

JS(p || q) = 1

2

 c∑
j=1

pj log
µj

pj
+

c∑
j=1

qj log
µj

qj

 (2)

where µ = 1/2(p + q) is the average of p and q, and j is the index over the classes 1, . . . , c, that
are present in the test set. At a high level, when the model predictions are not biased, p and q will
be very similar, and the divergence will be close to zero. Conversely, the more dissimilar p and q
are, the more the divergence will increase.

3.4 POST-TRAINING BIAS CORRECTION

At this point, we will show that we can significantly reduce the prediction bias of a task-free contin-
ual learner if we appropriately change the parameter vector θc of the classifier after the entire stream
has been observed. We will compare three approaches over four datasets (we follow the experimen-
tal settings described in Section 4.1). We report both the accuracy and the prediction bias (Eq. 2)
after the end of the stream. We compare regular experience replay (ER), which weights equally its
present and past, and memory-replay only (MRO), which uses only data stored in memory to train
the model. Moreover, we also evaluate a version of ER with post-training bias correction (ER-BC).
To correct the bias of the model, we use the data stored in memory to train only the classifier of the
model, until convergence. The feature extractor of the model remains unchanged.

The results of this comparison are presented in Table 1. We observe that MRO is less biased than ER
in all four datasets. On the other hand, despite being more biased, ER outperforms MRO in CIFAR-
10, CIFAR-100, and tinyImageNet. As we hypohtesized at the end of Section 3.2, training a model
using only the data stored in memory will reduce the prediction bias of that model, but it could also
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Figure 1: An illustration of Online Bias Correction (OBC). At first (left), the feature is extractor
is trained using both a stream and a replay minibatch (as in conventional experience replay), with
the help of a surrogate classifier (SC). Afterwards (right), the classifier (C) is trained using only a
minibatch sampled from the memory, while the feature extractor remains unchanged. This two-step
process is repeated for every incoming stream minibatch. The color of a model component illustrates
the instances with respect to which its gradients are calculated (i.e., both stream and memory or only
memory instances). Lack of color for a component means that it is not currently trainable.

lead to overfitting. On the contrary, ER+BC is less biased than ER, and achieves significantly higher
accuracy values on all four datasets.

These results are evidence that prediction bias can be mitigated just by changing the way the clas-
sifier is trained. Moreover, because the classifier consists of just one layer, it has lower learning
capacity, and, therefore, overfits much less than if we were to train the entire model using only the
memory data (as is the case with MRO). In the following section, we exploit the findings of this
section to propose an algorithm that maintains an unbiased model throughout the entire stream.

3.5 ONLINE BIAS CORRECTION

Our approach is called Online Bias Correction (OBC) and acts as a wrapper around other task-free
continual learning methods that perform experience replay. At first, a generic task-free continual
learning method performs its training step. Such a training step, typically includes receiving a
minibatch of observations St from the stream (Line 1), sampling another minibatch R from memory
(Line 2), and performing a training step using the combination of the two minibatches (Line 3). Note
that only the parameter vector of the feature extractor (FE), and that of the surrogate classifier (SC)
are updated during this training step. Next, the learner decides which of the new observations in St

to store in memory, and which ones to discard (Line 4).

Algorithm 1 Online Bias Correction
Stream minibatches St, t = 1, 2, . . . ,
Memory M, Feature Extractor (FE),
Classifier (C), Surrogate Classifier (SC)

1: for each stream minibatch St do
2: Sample a memory minibatch R ∼ M
3: Train the FE and the SC using R ∪ St

4: Perform memory population using St

5: Freeze the FE
6: Sample a memory minibatch R∗ ∼ M
7: Train the C using R∗

8: Unfreeze the FE
9: end for

The following four steps (i.e., Lines 5-8) are
the ones that OBC introduces. First, the fea-
ture extractor is frozen (Line 5)—that is, in the
update step that follows, there will be no gra-
dients with respect to its parameter vector cal-
culated in the backward pass, and thus its pa-
rameter vector will not be updated. Next, a
new minibatch R∗ is sampled from the memory
(Line 6). This memory minibatch is feedfor-
warded through the feature extractor and then
the classifier (C), and only the parameter vec-
tor of the classifier, is updated with the result-
ing gradients (Line 7). Since the classifier is
trained using only memory data, in order to re-
duce overfitting, we make use of label smooth-
ing (Szegedy et al., 2016), which is a technique
that adds noise to the ground-truth labels, in or-
der to discourage overconfident predictions. Fi-
nally, the feature extractor is unfrozen, meaning that its parameter vector is trainable again (Line 8).

The design of OBC was motivated by the preliminary experiments of Section 3.4. In particular, we
exploit the fact that, as we saw earlier, it is possible to mitigate prediction bias by just optimizing the
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weights of the classifier with respect to the data in memory. Moreover, the classifier, in the context
discussed here, consists of a single layer, hence it is more resistant to overfitting compared to the
feature extractor, which is typically a deep neural network of high learning capacity. Therefore, by
training the classifier only using memory data, we mitigate the data-sampling bias, and hence, its
prediction bias. Regarding the feature extractor, as we saw in Section 3.4, it is beneficial for it to be
trained via experience replay, possibly because this approach leads to less overfitting compared to
training the feature extractor only with memory data. Therefore, we introduced a surrogate classifier
in order to ensure that the feature extractor is trained in exactly the same way as in experience
replay (that is, in combination with a biased classifier). We have also validated this design choice
experimentally in Section 4.4.

In short, OBC attempts to capture the benefits of both experience replay (less feature-extractor over-
fitting), and training the classifier only with memory data (less prediction bias), in a best-of-both-
worlds manner.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Datasets and Experimental Setup We use four datasets of varying difficulty. The FashionMNIST
dataset (Xiao et al., 2017) contains 60,000 grayscale images of clothing items split in 10 classes.
CIFAR-10 and CIFAR-100 (Krizhevsky, 2009) each contain 50,000 color images, with the ones in
CIFAR-10 being divided in 10 classes, and the ones in CIFAR-100 in 100 classes. Finally, tinyIma-
geNet (Le & Yang, 2015) contains 100,000 color images of 200 different classes. The tinyImageNet
dataset is the most challenging dataset widely used in the task-free continual learning literature,
mainly due to its large number of classes (200) and the small number of data instances per class
(500). Our experimental setup closely follows previous work (Aljundi et al., 2019a; Jin et al., 2021;
Caccia et al., 2022). We use class-incremental streams that are presented to the learner online, in
small minibatches. For FashionMNIST and CIFAR-10, we use five binary tasks; for CIFAR-100
and tinyImageNet, we use ten and twenty tasks, respectively, each containing ten classes. We follow
the majority of past work (Aljundi et al., 2019c; Chrysakis & Moens, 2020; Aljundi et al., 2019a)
by not using data augmentation in our experiments.

Methods Experience replay (ER) (Isele & Cosgun, 2018; Chaudhry et al., 2019) is the most fun-
damental continual learning baseline. It performs replay using a memory that is populated using
reservoir sampling (Vitter, 1985). Memory-replay only (MRO) also uses reservoir sampling to pop-
ulate the memory, but instead of using both stream and memory data, it trains the model using only
data from the memory. Maximally-interfered retrieval (MIR) (Aljundi et al., 2019a) is an extension
of ER that replays the instances which would experience the largest loss increases, if the model were
to be updated using only the current minibatch of observations. Class-balancing reservoir sampling
(CBRS) (Chrysakis & Moens, 2020) uses a memory population algorithm that attempts to maintain
the memory as class-balanced as possible at all times. Greedy sampler and dumb learner (GDUMB)
(Prabhu et al., 2020) also uses a class-balancing memory population algorithm and trains the model
using only data stored in memory.3 Gradient-based memory editing (GMED) (Jin et al., 2021) edits
the data stored in memory in order to increase their loss values and make them more challenging.
Finally, asymmetric cross entropy (ACE) (Caccia et al., 2022) modifies the traditional cross-entropy
loss with class-masking, which reduces representation drift during continual learning.

Architectures and Hyperparameters Similar to previous work (Lopez-Paz & Ranzato, 2017;
Aljundi et al., 2019a), we use a reduced ResNet-18 architecture (He et al., 2016) for CIFAR-10,
CIFAR-100, and tinyImageNet. For the simpler FashionMNIST, we use a simple convolutional
neural network (CNN). For more information on these architectures, please refer to the appendix.
Following previous work (Aljundi et al., 2019a; Jin et al., 2021), we use a learning rate of 0.1 when
using the reduced ResNet-18 architecture. When using the simpler CNN, we use a learning rate of
0.03. The stream and replay batch sizes were both set to 10, in accordance with past work. The batch
size of OBC was set to 50 (please refer to the appendix for a sensitivity analysis.) Past work typically

3We adapt GDUMB for use in task-free continual learning (in this setting, the learner should always be
available for inference, while in (Prabhu et al., 2020), the model is trained only after the entire stream is
observed).
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Table 2: Comparison of various task-free continual learning methods with and without OBC, over
four datasets. We report the accuracy after training (Acc.) and the information retention averaged
over the stream (Av. IR). All entries are 95%-confidence intervals over 15 runs.

FashionMNIST CIFAR-10 CIFAR-100 tinyImageNet

Acc. Av. IR Acc. Av. IR Acc. Av. IR Acc. Av. IR

ER 83.4± 0.5 86.5± 0.2 45.5± 1.7 60.0± 0.4 19.3± 0.7 27.0± 0.3 13.5± 0.5 15.4± 0.2
+OBC 84.9± 0.3 89.8± 0.1 54.3± 1.1 67.5± 0.4 25.1± 0.6 35.2± 0.4 16.9± 0.5 21.7± 0.2

MIR 83.7± 0.4 87.5± 0.2 47.1± 1.5 59.1± 0.7 18.8± 0.7 27.4± 0.4 12.4± 0.7 15.8± 0.2
+OBC 84.9± 0.3 89.7± 0.1 53.4± 1.3 66.8± 0.4 23.8± 0.6 34.9± 0.4 15.5± 0.6 21.7± 0.2

CBRS 82.9± 0.5 84.8± 0.2 44.9± 1.8 57.6± 0.4 19.2± 0.7 25.7± 0.3 13.4± 0.6 14.8± 0.2
+OBC 84.5± 0.3 89.2± 0.1 53.4± 1.1 66.7± 0.4 25.4± 0.6 35.0± 0.3 17.0± 0.5 21.6± 0.2

GMED 83.9± 0.7 87.0± 0.2 46.2± 1.8 60.4± 0.5 19.8± 0.8 27.2± 0.4 13.7± 0.7 16.1± 0.3
+OBC 85.1± 0.4 90.1± 0.3 54.7± 1.3 67.9± 0.5 25.4± 0.8 35.4± 0.4 17.1± 0.6 21.9± 0.3

uses memory sizes in the range of 1%–10% of the size of the stream. Hence, unless explicitly
mentioned otherwise, we set the memory size to 1000 for both FashionMNIST (approximately 2%)
and CIFAR-10 (2%), and to 2500 for CIFAR-100 (5%) and 5000 for tinyImageNet (5%).4 For OBC,
and only when training the classifier, we use a batch size of 50, and a label-smoothing5 factor of 0.5
(we perform a sensitivity analysis of these two hyperparameters in the appendix). Method-specific
hyperparameters were set to the values given in their respective papers.

Evaluation Metrics We calculate the accuracy and the proposed prediction bias metric we pro-
posed in Section 3.3, after the entire stream has been observed. Both of these metrics are calculated
with respect to the unseen test set. These metrics inform us about how well the model has learned
after the end of learning. We also use the information retention metric (accuracy computed with
respect to past observations) proposed in Cai et al. (2021), averaged over the entire stream. This
metric is a form of continual evaluation that evaluates how well each method performs, not only
after the end of learning, but during its entire length. Continual evaluation is crucial for real-world
applications where training and inference take place interchangeably.

4.2 APPLYING OBC

At first we apply OBC to four state-of-the-art, task-free continual learning methods. Namely, we
compare the performance (final accuracy and information retention averaged over the stream) of ER,
MIR, CBRS, and GMED, with and without OBC on four different datasets (see Table 2). (Due to
of lack of space, we report the prediction bias numbers of these experiments in the appendix.) We
observe that OBC improves both the learning performance of each method over the continuum (Av.
IR), and their final accuracy (Acc.), for all four datasets. The learning benefit that OBC provides
is especially prominent in CIFAR-10, CIFAR-100, and tinyImageNet. We note that methods that
perform post-training bias correction (as the one we proposed in Section 3.4, or the NCM approach
proposed by Mai et al. (2021)) would only affect the final accuracy of each method, but not the
average information retention over the stream, because, by definition, the bias correction takes place
after the end of training.

Since OBC only modifies the way the classifier is trained, we argue that when applying bias cor-
rection to various methods, we can essentially compare the quality of the representations that their
feature extractor learns. In the results presented here, there is no clear best method in that respect,
but future work could specifically focus on improving feature-extractor representation learning.

4To avoid potential confusion, we would like to point out that some previous works (e.g., Aljundi et al.
(2019a)) do not report the size of the entire memory, but the memory size divided by the number of classes
instead. Along similar lines, the memory sizes used here are 100, 100, 25, and 50, respectively.

5We found that when label smoothing is applied in combination with other methods (ER, GDUMB, ACE,
etc.) it invariably leads to reduced performance, possibly because it is not applied specifically to the training of
the classifier, but to the entire model.
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Table 3: Comparison of various bias-correction methods for three memory sizes on CIFAR-10. We
report the accuracy after training (Acc.), the information retention averaged over the stream (Av.
IR), and the prediction bias (Pred. Bias) of each approach. All entries are 95%-confidence intervals
over 15 runs.

500 1000 2500

Acc. Av. IR Pred. Bias Acc. Av. IR Pred. Bias Acc. Av. IR Pred. Bias

ER 37.4± 1.4 55.0± 0.3 28.9± 2.4 45.5± 1.7 60.0± 0.4 18.1± 2.8 56.1± 1.8 64.3± 0.5 8.3± 1.7
GDUMB 37.5± 1.2 54.5± 0.3 16.8± 2.2 42.2± 1.7 57.9± 0.3 10.8± 2.7 49.3± 1.5 61.3± 0.4 6.6± 1.6
MRO 34.4± 1.3 54.9± 0.3 9.2± 3.3 38.2± 1.6 58.1± 0.3 10.5± 2.7 46.0± 1.5 61.6± 0.3 7.7± 1.7
ACE 46.7± 1.4 63.3± 0.4 4.6± 1.6 51.6± 1.9 65.3± 0.5 5.3± 2.2 53.8± 1.6 67.5± 0.4 5.0± 1.4
ER+OBC 46.8± 1.3 63.4± 0.4 1.3± 0.3 54.3± 1.0 67.6± 0.4 0.9± 0.2 61.5± 1.3 71.0± 0.4 1.0± 0.4

Table 4: Comparison of various bias-correction methods for three memory sizes on CIFAR-100. We
report the accuracy after training (Acc.), the information retention averaged over the stream (Av.
IR), and the prediction bias (Pred. Bias) of each approach. All entries are 95%-confidence intervals
over 15 runs.

1000 2500 5000

Acc. Av. IR Pred. Bias Acc. Av. IR Pred. Bias Acc. Av. IR Pred. Bias

ER 12.8± 0.6 23.4± 0.3 57.2± 2.4 19.3± 0.7 26.9± 0.3 34.7± 2.0 23.1± 0.8 27.8± 0.4 25.5± 1.6
GDUMB 11.2± 0.5 19.2± 0.2 26.2± 2.6 15.3± 0.7 21.5± 0.3 16.4± 2.3 18.6± 0.6 22.4± 0.3 10.2± 1.2
MRO 10.2± 0.5 19.0± 0.2 23.8± 3.0 14.7± 0.6 21.4± 0.3 17.0± 2.2 18.1± 0.6 22.4± 0.3 11.1± 1.3
ACE 17.8± 0.5 27.0± 0.3 8.7± 1.2 22.4± 0.6 29.3± 0.4 6.6± 1.1 25.7± 0.7 30.2± 0.4 4.8± 0.5
ER+OBC 19.0± 0.6 31.0± 0.3 2.5± 0.5 25.1± 0.5 35.2± 0.4 2.7± 0.4 30.7± 0.5 37.1± 0.5 1.8± 0.3

4.3 COMPARISON WITH OTHER BIAS CORRECTION APPROACHES

At this point, we will compare OBC to three other methods that perform implicit bias correction
(in the sense that they were not designed specifically to correct for prediction bias, but they do so
anyway). In particular, we compare OBC to GDUMB, MRO (they are not biased by the stream in
the first place since they both train models using memory data only), and ACE (it uses both stream
and replay data, but with a masked cross-entropy, which is aimed to reduce representation drift,
but also does not lead to biased predictions). We also include ER in this comparison, as a biased
baseline. The comparison takes place on CIFAR-10 (see Table 3) and CIFAR-100 (see Table 4). We
use memory sizes that correspond to 1%, 2%, 5% of the size of CIFAR-10, and 2%, 5%, 10% of the
size of CIFAR-100. For CIFAR-10, we can see that OBC outperforms GDUMB and MRO, and is
competitive with ACE for very small memories of 500 instances. For the other two memory sizes,
OBC outperforms GDUMB, MRO, and ACE, with respect to all three metrics used. In CIFAR-100,
OBC outperforms GDUMB, MRO, and ACE, for all three memory sizes. Interestingly, we point
out that for both CIFAR-10 and CIFAR-100, the gaps in accuracy and average information retention
between OBC and the other three bias-correction methods increase with larger memory sizes.

Table 5: Comparison of OBC with and without (OBC – SC) a surrogate classifier over two datasets.
We report the accuracy after training (Acc.), the information retention averaged over the stream (Av.
IR), and the prediction bias (Pred. Bias) of each approach. All entries are 95%-confidence intervals
over 15 runs.

CIFAR-10 CIFAR-100

Acc. Av. IR Pred. Bias Acc. Av. IR Pred. Bias

ER 45.5± 1.7 60.0± 0.4 18.1± 2.8 19.1± 0.7 27.0± 0.3 34.7± 2.0
+OBC 54.3± 1.0 67.6± 0.3 0.9± 0.2 25.1± 0.5 35.2± 0.3 2.7± 0.4
+OBC – SC 42.8± 2.3 58.3± 0.4 6.1± 1.3 21.0± 0.6 25.6± 0.5 6.1± 0.5
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4.4 THE NEED FOR A SURROGATE CLASSIFIER

Finally, we experimentally motivate the introduction of a surrogate classifier in the OBC paradigm.
We compare the performance of OBC when applied to ER, with and without the use of a surrogate
classifier. In the latter case, the computational graph in the left part of Figure 1 flows from the feature
extractor to the classifier, but the classifier is not updated with the resulting gradients. The right part
of Figure 1 remains unchanged.

The results are presented in Table 5. We observe that both for CIFAR-10 and CIFAR-100, the
alternative formulation of OBC without a surrogate classifier (OBC – SC) performs worse than OBC
with a surrogate classifier. These results validate the use of the surrogate classifier. Since OBC is
applied only for the optimization of the classifier in both cases, we can only conclude that not using a
surrogate classifier negatively affects the feature extractor. In other words, it appears that the feature
extractor learns better representations when it is trained in combination with the biased surrogate
classifier than when it is trained combined with the unbiased classifier. Future work focusing on
better representation learning in task-free settings could further interpret this finding.

4.5 DISCUSSION

As we saw in Section 4.2, OBC performs reliably for multiple methods and over multiple datasets.
In Section 4.3, we showed that it also outperforms other methods that perform bias correction im-
plicitly, for different memory sizes, and for two different datasets.

In our view, one important point this work makes is that, in the context of task-free continual learn-
ing, we should not necessarily be viewing a neural network as a single black box. Instead, we should
make a distinction between the feature extractor and the classifier, because of their different learning
capacities. In particular, our OBC approach trains the classifier of the neural network online using
only memory data, in order to mitigate its prediction bias. Moreover, the feature extractor and the
surrogate classifier are trained via experience replay, in order to prevent the overfitting that would
result if the feature extractor were to be trained only using memory data. An interesting direction
for future work would be to investigate the extent to which the data-sampling bias affects the feature
extractor of the learner.

One potential limitation of OBC is that it does not improve the feature extractor of the model. Conse-
quently, the final performance after applying OBC will depend on the quality of the representations
learned by the method being wrapped. Therefore, another interesting avenue for future work, would
be to focus on how to improve task-free continual representation learning.

Finally, we hypothesize that OBC can be used to disentangle the confounding factors of prediction
bias and representation learning. In particular, when two task-free continual learning methods use
the same memory population algorithm and their classifiers are both trained using OBC, any dif-
ferences in learning performance can be explained by the quality of the representations learned by
their respective feature extractors. For example, if a method A learns better representations but is
also more biased than approach B, it is possible that method B would achieve higher accuracy. But,
if we correct for the bias in both methods using our proposed bias-correction approach, we expect
method A to outperform method B, since A learns better representations than B.

5 CONCLUSION

To summarize, this work discusses the issue of prediction bias in task-free continual learning. In par-
ticular, we provided a concrete explanation of how this bias is caused—namely, by the experience-
replay paradigm favoring current stream observations over the past data stored in memory. Sub-
sequently, we proposed an evaluation metric that quantifies the prediction bias of a model on an
unseen test set. More importantly, we proposed a simple approach called Online Bias Correction
(OBC) that can correct this prediction bias online throughout the entire duration of learning. Be-
cause of its online nature, OBC is especially useful for real-world applications in which a model
needs to learn and perform inference at the same time. Also, OBC is trivial to implement and can
be applied as a wrapper over other task-free continual learning methods in order to increase their
accuracy and their information retention, and reduce their prediction bias.
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A HYPERPARAMETER SENSITIVITY

We now examine how sensitive OBC is to its hyperparameters. (Note that other hyperparameters
such as the stream batch size are applicable, not directly to OBC, but only to the method that OBC
wraps.) In Figure 2, we present the final accuracy of ER+OBC for various values of the OBC batch
size (10, 20, 50, 100, 200), and the label-smoothing factor (0.2,. . . ,0.8).6 The accuracies correspond
to CIFAR-100 for memory sizes of 1000 and 2500, and are presented as 95%-confidence intervals.
The batch-size curves are very similar for both memory sizes. Higher batch sizes are correlated
with higher accuracies, but with diminishing returns. For the label-smoothing factor, we can see that
relatively large values (0.7 or 0.8) lead to lower accuracies for both memory sizes. In addition, only
for the smaller memory of 1000 instances, we also observe that a relatively small label-smoothing
factor of 0.2 or 0.3 also leads to slightly reduced accuracies.
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Figure 2: We examine the sensitivity of OBC with respect to its two hyperparameters, namely, the
label-smoothing factor, and the batch size. The comparison is performed on CIFAR-100 for two
memory sizes. The results are presented as 95%-confidence intervals over 15 runs.

Table 6: (left) A simple convolutional block; (middle) The Convolutional Neural Network (CNN)
architecture used in the FashionMNIST experiments. (right) The reduced ResNet-18 architecture
used for CIFAR-10, CIFAR-100, and tinyImageNet, is built using the BasicBlock(nf, nb, ns) from
(He et al., 2016), where nf is the number of convolutional filters, nb is the number of sub-blocks per
block, and ns is the stride of the layer.

ConvBlock CNN Reduced ResNet-18

Conv2D(nin, nout) ConvBlock(1, 32) BasicBlock(20, 2, 1)
ReLU ConvBlock(32, 64) BasicBlock(40, 2, 2)
BatchNorm2D(nout) Linear(64, c) BasicBlock(80, 2, 2)
Conv2D(nout, nout) BasicBlock(160, 2, 1)
ReLU AveragePooling
BatchNorm2D(nout) Linear(160, c)
MaxPooling2D(2, 2)

B ARCHITECTURES

In Table 6, we report the architectures used in our experiments.

C RESULTS ON CORE50

In Table 7, we present results on the CORe50 dataset (Lomonaco & Maltoni, 2017). This dataset
contains sequential video frames of 50 objects filmed during 11 different sessions, with each session

6We remind the reader, that for all previous experiments we use an OBC batch size of 50 and a label-
smoothing factor of 0.5.

12



Published as a conference paper at ICLR 2023

Table 7: Comparison of four methods with and without OBC using the CORe50 dataset. All entries
are 95%-confidence intervals over 15 runs.

Acc. Av. IR Pred. Bias

ER 26.8± 1.2 76.9± 0.7 24.8± 1.7
+OBC 30.0± 1.2 83.0± 0.5 2.2± 0.5

MIR 27.8± 1.6 80.1± 0.7 25.3± 3.6
+OBC 30.8± 0.9 84.2± 0.6 2.1± 0.4

CBRS 27.1± 0.2 75.3± 0.7 24.0± 1.7
+OBC 30.2± 0.1 82.2± 0.6 2.3± 0.5

GMED 26.9± 1.3 77.1± 0.9 24.3± 1.7
+OBC 30.2± 1.2 83.0± 0.5 2.3± 0.5

Table 8: Comparison of the prediction bias of four task-free continual learning methods with and
without OBC, over four datasets. The prediction bias is always calculated after the end of the stream,
with respect to the unseen test set. All entries are 95%-confidence intervals over 15 runs.

FashionMNIST CIFAR-10 CIFAR-100 tinyImageNet

ER 0.9± 0.2 17.0± 2.4 33.8± 2.0 25.3± 1.7
+OBC 0.2± 0.1 0.9± 0.3 2.7± 0.5 2.4± 0.5

MIR 0.9± 0.2 16.0± 2.1 35.8± 2.0 28.3± 2.1
+OBC 0.2± 0.1 1.0± 0.5 3.2± 0.5 3.5± 0.7

CBRS 1.0± 0.2 18.7± 2.6 33.7± 2.1 25.3± 1.9
+OBC 0.2± 0.1 1.0± 0.3 2.5± 0.4 2.4± 0.4

GMED 0.9± 0.3 16.9± 2.6 33.6± 2.0 25.1± 1.7
+OBC 0.2± 0.1 1.0± 0.5 2.6± 0.5 2.3± 0.6

consisting of approximately 300 frames. As Lomonaco & Maltoni (2017) suggest, sessions 3, 7, and
10 are used for evaluation purposes (approximately 45,000 images), and the remaining 8 sessions
are used to construct the stream (approximately 120,000 images). The stream consists of ten tasks
of five objects each. We used the reduced ResNet-18 architecture described earlier, with a learning
rate of 0.01 and a memory size of 2400 (2% of the size of the stream). The remaining hyperparam-
eters are identical to the ones described in the main paper. As before, we compare four task-free
continual learning methods, with and without OBC, and we report the accuracy and the prediction
bias calculated with respect to the unseen test set, and the information retention (accuracy on past
observations) averaged over the stream. We observe that the use of OBC results to higher accuracy
and average information retention, and lower prediction bias, for all four methods.

D REDUCTIONS IN PREDICTION BIAS WHEN USING OBC

In Table 8, we report the prediction bias results from the experiments of Section 4.2, which were not
included in the main text due to lack of space. These results suggest that the use of OBC leads to
significant reductions in prediction bias. These reductions are consistent for all four methods and all
four datasets.

E A NUMERICAL EXAMPLE OF DATA-SAMPLING BIAS

Consider a learner that has previously observed data 990 instances, and these instances are currently
stored in the learner’s memory. A new minibatch of 10 instances is now observed by the learner.
If the learner wants to update the model in an unbiased way, all 990 + 10 data instances should be
equally likely to participate in this update. Assuming that 20 instances will be used in the update,
the probability that any instance participates is therefore 20/(990 + 10) = 0.02. In experience
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replay, however, the 10 instances of the new minibatch are guaranteed to participate in the update
(therefore with a probability of 1), while an equal number of instances would be randomly sampled
from memory. Hence, each memory instance is sampled with a probability of 10/990 ≃ 0.01.
Therefore, in experience replay, the probability that a new instance will participate in the update is
1/0.01 = 100 times larger than that of a random memory instance, while in the unbiased case, all
990+10 are equally likely to be sampled, regardless of whether they are new observations or stored
in memory.

F CONTINUAL LEARNING, ONLINE LEARNING, AND DOMAIN ADAPTATION

For the sake of clarity we provide a high-level comparison of continual learning, online learning,
and domain adaptation. In continual learning, the data distribution changes over time and, in gen-
eral, previous work assumes that all observed instances are equally important, and that there is no
distributional mismatch between the training and testing data (Jin et al., 2021). Online learning is
similar to continual learning in the sense that the data distribution changes over time. Yet, the goal
in online learning is for the model to appropriately adapt to the current state of the data distribution
(Fontenla-Romero et al., 2013). Therefore, currently observed instances are in essence more impor-
tant than previous ones. Finally, in the problem of domain adaptation, a model is trained offline
using a set of training data. Subsequently, the model needs to perform inference on data generated
by a data distribution that is different (to a degree) from the one that generated the training data
(Redko et al., 2019).
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