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Abstract

The evolution of speech technology has been001
spurred by the rapid increase in dataset sizes.002
Traditional speech models generally depend on003
a large amount of labeled training data, which004
is scarce for low-resource languages. This pa-005
per presents GigaSpeech 2, a large-scale, multi-006
domain, multilingual speech recognition cor-007
pus. It is designed for low-resource languages008
and does not rely on paired speech and text data.009
GigaSpeech 2 comprises about 30,000 hours010
of automatically transcribed speech, including011
Thai, Indonesian, and Vietnamese, gathered012
from unlabeled YouTube videos. We also in-013
troduce an automated pipeline for data crawl-014
ing, transcription, and label refinement. Specif-015
ically, this pipeline uses Whisper for initial016
transcription and TorchAudio for forced align-017
ment, combined with multi-dimensional filter-018
ing for data quality assurance. A modified019
Noisy Student Training is developed to further020
refine flawed pseudo labels iteratively, thus en-021
hancing model performance. Experimental re-022
sults on our manually transcribed evaluation set023
and two public test sets from Common Voice024
and FLEURS confirm our corpus’s high quality025
and broad applicability. Notably, ASR models026
trained on GigaSpeech 2 can reduce the word027
error rate for Thai, Indonesian, and Vietnamese028
on our challenging and realistic YouTube test029
set by 25% to 40% compared to the Whisper030
large-v3 model, with merely 10% model param-031
eters. Furthermore, our ASR models trained032
on GigaSpeech 2 yield superior performance033
compared to commercial services. We believe034
that our newly introduced corpus and pipeline035
will open a new avenue for low-resource speech036
recognition and significantly facilitate research037
in this area.038

1 Introduction039

In recent years, the scaling of model parameters040

and data size has prevailed and proven effective041

in a range of areas, including language (Kaplan042

et al., 2020; Hoffmann et al., 2022), vision (Betker 043

et al., 2023; Dehghani et al., 2023), as well as 044

speech processing (Pratap et al., 2024; Zhang et al., 045

2023; Radford et al., 2023). Consequently, pur- 046

suing superior AI models is now closely associ- 047

ated with expanding model size and leveraging 048

larger, high-quality datasets. In the realm of Au- 049

tomatic Speech Recognition (ASR), several large- 050

scale open-source labeled speech datasets (Chen 051

et al., 2021; Kang et al., 2024; Zhang et al., 2022; 052

Galvez et al., 2021; Pratap et al., 2020b; Ardila 053

et al., 2020) have been proposed. However, these 054

extensive datasets are only available for several 055

mainstream languages, such as English and Man- 056

darin, hindering speech recognition development 057

for low-resource languages. Moreover, traditional 058

ASR corpus (Ardila et al., 2020; Conneau et al., 059

2023; Bu et al., 2017; Du et al., 2018) construction 060

relies heavily on human-labeled speech data, mak- 061

ing it time-consuming and a major bottleneck in 062

the fast-paced AI industry. Reducing dependence 063

on vast labeled data is crucial when expanding to 064

new languages and domains (Hsu et al., 2021). YO- 065

DAS (Li et al., 2023) attempts to address this issue 066

by building multilingual datasets via scraping au- 067

dio and transcriptions from YouTube. However, 068

neither manual nor automatic subtitles accurately 069

reflect the speech content, resulting in unguaran- 070

teed quality. 071

With this perspective in mind, we propose a 072

new paradigm for constructing large-scale ASR 073

datasets, focusing exclusively on audio content 074

irrespective of the existence or quality of corre- 075

sponding text pairs. This approach leverages the 076

gigantic amount of unlabeled audio data, thereby 077

bypassing the constraints of scarce paired data. We 078

introduce GigaSpeech 2, an evolving, large-scale, 079

multi-domain, multilingual ASR corpus for low- 080

resource Southeast Asian languages. GigaSpeech 081

2 raw comprises about 30,000 hours of automati- 082

cally transcribed speech, including Thai, Indone- 083
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sian, and Vietnamese. GigaSpeech 2 refined con-084

sists of 10,000 hours of Thai, 6,000 hours each085

for Indonesian and Vietnamese. To achieve this,086

an automated pipeline is developed for data crawl-087

ing, transcription, and filtering. Furthermore, a088

modified Noisy Student Training (NST) (Xie et al.,089

2020) method is proposed to refine labels from090

flawed data iteratively. Through comprehensive091

evaluations, ASR models trained on GigaSpeech 2092

refined can reduce the word error rate for Thai, In-093

donesian, and Vietnamese on our YouTube test set094

by 25% to 40% compared to the powerful Whisper095

large-v3 model, with merely 10% model parame-096

ters.097

Our contributions can be summarized as follows:098

• We release GigaSpeech 2, an evolving, large-099

scale, multi-domain, and multilingual ASR cor-100

pus focusing on low-resource languages. Gi-101

gaSpeech 2 raw comprises about 30,000 hours of102

automatically transcribed speech across Thai, In-103

donesian, and Vietnamese. GigaSpeech 2 refined104

consists of 10,000 hours of Thai, 6,000 hours105

each for Indonesian and Vietnamese.106

• We develop an automated pipeline for data crawl-107

ing, transcription, and label refinement, enabling108

the creation of large-scale speech datasets with-109

out reliance on labeled data.110

• We propose a modified NST method to refine111

flawed pseudo labels iteratively. Our modified112

NST considers scaling, relabeling, and filtering113

data within each iteration, significantly improv-114

ing data quality.115

• We release a series of challenging and realistic116

speech recognition test sets, including Thai, In-117

donesian, and Vietnamese. Compared to previ-118

ous public test sets, GigaSpeech 2 test sets more119

realistically reflect speech recognition scenarios120

and mirror the real performance of an ASR sys-121

tem for low-resource languages.122

• Experimental results on our challenging Gi-123

gaSpeech 2 test sets, as well as other compet-124

itive public test sets including Common Voice125

and FLEURS, demonstrate the superiority of the126

ASR models trained on GigaSpeech 2 over sev-127

eral competitive baselines, including Whisper128

large-v3 and commercial services.129

2 Related Work130

Multilingual Low-Resource Speech Datasets131

Several public multilingual speech datasets have132

emerged for low-resource languages. BA-133

BEL (Gales et al., 2014), a pioneering dataset, in- 134

cludes conversational telephone data in 17 African 135

and Asian languages. Common Voice (Ardila et al., 136

2020) offers 19,000 hours of validated recordings 137

in over 100 languages. FLEURS (Conneau et al., 138

2023) covers 102 languages with 12 hours of super- 139

vised data per language. CMU Wilderness (Black, 140

2019) provides 20 hours of New Testament data 141

for over 700 languages. VoxLingua107 (Valk 142

and Alumäe, 2021) contains 6,628 hours of un- 143

labeled YouTube data across 107 languages. How- 144

ever, most public multilingual speech datasets 145

focus on high-resource languages, leaving low- 146

resource languages with limited annotated speech 147

data. For example, the available open-source data 148

for Thai, Indonesian, and Vietnamese is scarce, as 149

detailed in Table 1. In contrast, industry-utilized 150

speech models like Whisper (Radford et al., 2023), 151

MMS (Pratap et al., 2024), Google USM (Zhang 152

et al., 2023), and Universal-1 (Ramirez et al., 2024) 153

are trained on massive industrial-grade datasets, the 154

details of which remain undisclosed. To resolve 155

the problem, YODAS (Li et al., 2023) attempts to 156

crawl audio from YouTube, but neither manual nor 157

automatic subtitles accurately reflect the speech 158

content, resulting in unguaranteed quality. More- 159

over, widely used evaluation benchmarks for low- 160

resource languages (Ardila et al., 2020; Conneau 161

et al., 2023) only consist of read speech, which is 162

relatively clean and mismatched with real-world 163

speech data. 164

Multilingual Automatic Speech Recognition 165

As the demand for communication between peo- 166

ple worldwide grows, many works (Radford et al., 167

2023; Zhang et al., 2023; Pratap et al., 2024; Li 168

et al., 2021; Lugosch et al., 2022; Toshniwal et al., 169

2018; Cho et al., 2018; Pratap et al., 2020a; Tjandra 170

et al., 2023; Kannan et al., 2019; Conneau et al., 171

2021) have shifted attention to multilingual speech 172

recognition. Whisper (Radford et al., 2023), built 173

on 680,000 hours of web data, supports 99 lan- 174

guages. Google USM (Zhang et al., 2023), trained 175

on YouTube audio, extends to 100+ languages. 176

Massively Multilingual Speech (MMS) (Pratap 177

et al., 2024), trained on religion data, further scales 178

to 1,107 languages. 179

Noisy Student Training (NST) NST (Xie et al., 180

2020; Park et al., 2020; Xu et al., 2020; Zhang 181

et al., 2020; Likhomanenko et al., 2021; Mehmood 182

et al., 2022; Chen et al., 2023) is a self-training 183

technique that leverages unlabeled data to enhance 184

performance. Traditional NST methods start with 185
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Table 1: Comparison of data size between GigaSpeech 2 and other common public multilingual speech datasets on
Thai (th), Indonesian (id), and Vietnamese (vi).

Dataset Language Total Duration
(h) Domain Speech Type Labeled Label Type

Common Voice (Ardila et al., 2020)
th 172.0

Open domain Read Yes Manualid 28.0
vi 6.0

FLEURS (Conneau et al., 2023)
th 13.3

Wikipedia Read Yes Manualid 12.6
vi 13.3

VoxLingua107 (Valk and Alumäe, 2021)
th 61.0

YouTube Spontaneous No -id 40.0
vi 64.0

CMU Wilderness (Black, 2019)
th 15.6

Religion Read Yes Manualid 70.9
vi 9.2

BABEL (Gales et al., 2014) vi 87.1 Conversation Spontaneous Yes Manual
VietMed (Le-Duc, 2024) vi 16.0 Medical Spontaneous Yes Manual

Thai Dialect Corpus (Suwanbandit et al., 2023) th 840.0 Open domain Read Yes Manual
TITML-IDN (Shinoda and Furui, 2011) id 14.5 News Read Yes Manual
MEDISCO (Qorib and Adriani, 2018) id 10.0 Medical Read Yes Manual

YODAS manual (Li et al., 2023)
th 497.1

YouTube Spontaneous Yes Manualid 1420.1
vi 779.9

YODAS automatic (Li et al., 2023)
th 1.9

YouTube Spontaneous Yes Pseudoid 8463.6
vi 9203.1

GigaSpeech 2 raw
th 12901.8

YouTube Spontaneous Yes Pseudoid 8112.9
vi 7324.0

GigaSpeech 2 refined
th 10262.0

YouTube Spontaneous Yes Pseudoid 5714.0
vi 6039.0

training a teacher model on high-quality labeled186

data. Each student model then trains on both noisy-187

augmented labeled data and pseudo-labeled data188

generated by its teacher from the unlabeled data. A189

recent study (Xu et al., 2020) uses Character Error190

Rate (CER) between pseudo-labeled data gener-191

ated with and without a language model to perform192

data selection, suggesting a positive correlation be-193

tween the CERs of different pseudo labels and their194

ground truth.195

3 Dataset Construction196

Our proposed automated construction pipeline is197

illustrated in Fig. 1. Sec. 3.1 covers the stages198

involved in building GigaSpeech 2 raw and Sec.199

3.2 further construct GigaSpeech 2 refined.200

3.1 GigaSpeech 2 raw: Automated Crawling201

and Transcription202

Audio Collection Due to the scarcity of human-203

labeled data in low-resource languages, our dataset204

is collected with a focus solely on the audio con-205

tent, irrespective of the existence or quality of206

corresponding text pairs. This strategy allows207

for a broader range of audio data. Given the208

scarcity and uneven distribution of resources for209

low-resource languages, we strategically focus on210

crawling videos from YouTube channels based on 211

two key assumptions. First, prioritizing popular 212

channels ensures consistent domain characteristics 213

and audio quality. Second, different channels have 214

no speaker overlap, simplifying the subsequent data 215

partitioning. The data collection process starts by 216

manually defining categories of interest. The se- 217

lected topics include Agriculture, Art, Business, 218

Climate, Culture, Economics, Education, Entertain- 219

ment, Health, History, Literature, Music, Politics, 220

Relationships, Shopping, Society, Sport, Technol- 221

ogy, and Travel. Alongside multiple topics, var- 222

ious content formats are also considered, includ- 223

ing Audiobook, Commentary, Lecture, Monologue, 224

Movie, News, Talk, and Vlog. This broad selec- 225

tion ensures the comprehensiveness of the dataset 226

across multiple domains for research and analysis. 227

Once the list of YouTube channels is prepared, we 228

use yt-dlp1 toolkit to download all audio files in 229

WebM format. These files are then converted to 230

WAV format with a single channel and resampled 231

at a 16 kHz sampling rate. 232

Creating TRAIN/DEV/TEST Splits To ensure 233

no speaker overlap between the splits, we manually 234

verify no speaker overlap between different chan- 235

nels and partition the data by allocating different 236

1https://github.com/yt-dlp/yt-dlp
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Figure 1: Automated construction pipeline of GigaSpeech 2, comprising (1) audio collection, (2) dataset partitioning,
(3) automated transcription with Whisper, (4) forced alignment with TorchAudio, (5) transcription normalization,
(6) data filtering, and (7) label refinement.

YouTube channels to each subset. The dataset is di-237

vided into three distinct subsets: TRAIN, DEV, and238

TEST. The DEV and TEST sets each contain 10239

hours and are manually transcribed by profession-240

als, while the remainder is allocated to the TRAIN241

set. Table 1 shows the amount of data across these242

three languages. Detailed analysis of GigaSpeech243

2 is illustrated in Appendix A.244

Transcription with Whisper Whisper large-v3245

model2 from OpenAI is used to transcribe audio246

files automatically. For each audio recording, a247

30-second segment is selected from the middle to248

perform language detection by Whisper. Only au-249

dios that match the target languages are transcribed.250

Forced Alignment with TorchAudio Although251

Whisper can generate timestamps, inspection re-252

veals they are not precise enough. We resort to253

the model3 from TorchAudio (Hwang et al., 2023)254

for forced alignment, which provides reliable align-255

ment for noisy transcriptions, supports efficient256

processing on GPUs, and handles longer sequences257

more effectively (Pratap et al., 2024).258

Text Normalization Text normalization on tran-259

scripts involves applying Normalization Form260

Compatibility Composition (NFKC), converting261

all characters to uppercase, removing punctuation,262

and mapping Arabic numerals to corresponding263

words in the respective languages.264

Multi-dimensional Filtering A series of heuris-265

tic filtering rules across text and audio modalities266

are implemented to exclude relatively poor-quality267

samples. 1) Charset Filtering: Segments are re-268

2https://huggingface.co/openai/
whisper-large-v3

3https://dl.fbaipublicfiles.com/mms/
torchaudio/ctc_alignment_mling_uroman/model.pt

tained if they only contain characters permitted by 269

the charset of the respective language. 2) Language 270

Confidence Filtering: The language identification 271

(LID) model4 from fastText (Joulin et al., 2016) 272

is used to filter based on the estimated language 273

confidence score, retaining only segments with con- 274

fidence scores above a predetermined threshold. 275

This method effectively eliminates meaningless 276

and repetitive segments. Note that language identi- 277

fication based on audio has already been performed 278

before transcription. 3) Audio Duration Filtering: 279

Segments are filtered based on duration, with only 280

those retained within the predetermined minimum 281

and maximum duration thresholds. 4) Balancing: 282

We carefully control the duplication of transcripts 283

caused by channel-specific content while preserv- 284

ing natural linguistic patterns. 285

3.2 GigaSpeech 2 refined: Iterative Label 286

Refinement 287

Some samples remain low quality due to inaccura- 288

cies in Whisper transcriptions and imprecise forced 289

alignment boundaries. To address this, we develop 290

a modified NST method. As illustrated in the bot- 291

tom right corner of Fig. 1, it begins by training 292

a teacher model on a subset of flawed pseudo la- 293

bels, iteratively expanding the training set, gen- 294

erating new pseudo labels, and filtering them. A 295

student model, equal to or larger than the teacher, 296

is trained on these refined pseudo labels and as- 297

signed as the new teacher. Unlike previous NST 298

approaches that heavily rely on unchanged super- 299

vised data combined with additional unsupervised 300

4https://dl.fbaipublicfiles.com/fasttext/
supervised-models/lid.176.bin
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data, our method eliminates the need for any su-301

pervised data. Instead, we treat the flawed pseudo302

labels generated by Whisper as supervised data,303

refining all labels iteratively based on the Character304

Error Rate (CER) between those produced by Whis-305

per and the teacher model. SpecAugment (Park306

et al., 2019), Bypass (Yao et al., 2024), and fea-307

ture mask (Yao et al., 2024) introduce noise during308

each NST step. Bypass, a type of stochastic depth,309

learns channel-wise scalar weights to combine the310

module input and output. Feature mask performs311

dropout in the hidden dimension of the feedforward312

and convolution layer but shares across the time313

dimension. This deliberate noising enables the stu-314

dent model to learn consistency with the teacher315

model, which remains unaffected by noise when316

generating pseudo labels (Xie et al., 2020). This it-317

erative process progressively enhances data quality.318

Algo. 1 illustrates the workflow of our proposed319

iterative label refinement.320

Algorithm 1: Iterative Label Refinement
Input: Pseudo-label set P , Number of

iterations n, Threshold τ
Output: Refined-label setR
Divide P into n splits P1,P2, . . . ,Pn;
R ← P1;
Train teacher modelM1 onR with noise;
for i← 1 to n do
R ← ∅;
if i == 1 then

// Filter Pi by teacher model
Mi with CER ≤ τ

R ← {(x, y) ∈ Pi |
CER(y,Mi(x)) ≤ τ};

else
for j ← 1 to i do

// Relabel Pj by teacher
model Mi and filter
with CER ≤ τ

Rtmp ← {(x,Mi(x)) |
(x, y) ∈
Pj ,CER(y,Mi(x)) ≤ τ};
R ← R∪Rtmp;

end
end
Train equal-or-larger student model
Mi+1 onR with noise and assign as
new teacher;

end
returnR;

4 Experiments 321

4.1 ASR Model Training on GigaSpeech 2 322

Our ASR systems are constructed by Zipformer 323

Transducer (Graves et al., 2013). Two Zip- 324

former (Yao et al., 2024) variants, namely 325

Zipformer-M and Zipformer-L, are employed for 326

each NST iteration. Specific configurations are 327

listed in Appendix B.1. During Noisy Student 328

Training, SpecAugment (Park et al., 2019) is used 329

as input noise, and Bypass (Yao et al., 2024) and 330

feature mask (Yao et al., 2024) are used as model 331

noise. 332

Table 2 presents the ASR results across different 333

NST iterations on three evaluation sets, including 334

the development and test sets from GigaSpeech 335

2 and the Common Voice 17.0 and FLEURS test 336

set. Each iteration involves distinct modifications 337

aimed at refining high-quality transcriptions. A 338

subset of automatic transcriptions generated by 339

Whisper large-v3 is used to train the initial teacher 340

model (Iteration 1). The teacher model then filters 341

the training utterances by applying a CER/WER 342

threshold, using the original labels as references 343

and the new labels generated by the teacher as the 344

hypothesis. The student model is trained on this 345

filtered set with noise injected (Iteration 2). The 346

student model is then used as the teacher to gener- 347

ate new labels on a larger subset of raw automatic 348

transcriptions, applying the same filter to refine 349

the training data. This refined data is used to train 350

the student model with noise injected (Iteration 351

3). The process repeats in subsequent iterations, 352

and the model size is scaled up to a larger version 353

in the final iteration (Iteration 3 of Indonesian & 354

Vietnamese, Iteration 4 of Thai). 355

According to the results shown in Table 2, sev- 356

eral notable trends can be observed: 357

1) Across all three languages (Thai, Indonesian, 358

and Vietnamese), iteratively scaling the training 359

data size, adding noise, and filtering labels lead to 360

consistent improvements in the WER performance 361

on the evaluation sets until the final iteration. This 362

indicates that the iterative approach of refining and 363

scaling the training data is effective in enhancing 364

the accuracy of the raw transcriptions. 365

2) The Thai language achieves the absolute 366

lowest error rates consistently across iterations 367

from Iteration 1 to 4, indicating the effective- 368

ness of the NST approach for this particular lan- 369

guage. The best NST model outperforms the stan- 370

dard transcription model data by WER reductions 371
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Table 2: Comparison of ASR performance with different NST iterations on various evaluation sets, including
GigaSpeech 2 DEV and TEST, Common Voice 17.0 TEST, and FLEURS TEST. Detailing training set size (#
Hours), model size (# Params), Character Error Rate (CER) for Thai, and Word Error Rate (WER) for Indonesian
and Vietnamese.

NST
Iter

# Hours
(h)

# Vocab # Params
(M)

CER / WER
GigaSpeech 2
DEV TEST

Common Voice
TEST

FLEURS
TEST

Thai
1 4378 500 65.5 12.14 15.10 8.88 14.33
2 3497 500 65.5 10.97−9.6% 13.15−12.9% 6.99−21.3% 11.93−16.7%

3 7219 2000 68.6 10.50−4.3% 12.46−5.2% 4.61−34.0% 10.94−8.3%

4 10262 2000 151.9 10.45−0.5% 12.46−0.0% 4.15−10.0% 10.54−3.7%

Indonesian
1 5765 2000 68.6 16.68 15.99 19.82 16.29
2 4534 2000 68.6 15.60−6.5% 15.23−4.8% 15.83−20.1% 14.30−12.2%

3 5714 2000 151.9 14.58−6.5% 14.92−2.0% 13.83−12.6% 13.77−3.7%

Vietnamese
1 2351 2000 68.6 16.08 16.95 24.63 17.86
2 1764 2000 68.6 15.08−6.2% 14.72−13.2% 18.81−23.6% 13.50−24.4%

3 6039 2000 151.9 14.09−6.6% 12.83−12.8% 14.43−23.3% 11.59−14.1%

of 1.69%, 2.64%, 4.73%, and 3.79% absolute372

(13.92%, 17.48%, 53.27%, and 26.45% relative)373

respectively (Iteration 4 vs. 1).374

Additional ablation studies on our modified NST375

in Appendix C Table 9 demonstrate the effective-376

ness of relabeling and discuss the detriment of en-377

larging noise when scaling the training data.378

4.2 Comparison to Existing ASR Systems379

To demonstrate the efficacy of our ASR models380

trained on GigaSpeech 2, several mainstream and381

competitive ASR systems, including Whisper (Rad-382

ford et al., 2023) from OpenAI, MMS (Pratap et al.,383

2024) from Meta, and commercial services from384

Azure and Google, are used as benchmarks.385

Whisper: Our work builds upon Whisper (Rad-386

ford et al., 2023), a suite of large-scale, multitask,387

and multilingual speech models developed by Ope-388

nAI. It leverages the encoder-decoder Transformer389

architecture (Vaswani et al., 2017), with model390

sizes ranging from 39 million parameters (tiny) to391

1.55 billion parameters (large). Additionally, Whis-392

per offers variants spanning from an English-only393

version to a multilingual model capable of handling394

99 languages. To conduct a comprehensive evalua-395

tion, we test three variants: Whisper base, Whisper396

large-v2, and Whisper large-v3 models.397

MMS: The Massively Multilingual Speech398

(MMS) (Pratap et al., 2024) project leverages self-399

supervised learning (SSL) techniques and a novel400

dataset to expand the language coverage of speech401

technology significantly. The core components in-402

clude pre-trained wav2vec 2.0 (Baevski et al., 2020)403

models for 1,406 languages, a single multilingual404

ASR model supporting 1,107 languages, speech 405

synthesis models for the same set of languages, 406

and a language identification model capable of rec- 407

ognizing 4,017 languages. In this study, we employ 408

the MMS L1107 configuration. 409

Azure AI Speech: Azure Speech CLI offers 410

a convenient way to leverage Microsoft’s speech 411

recognition capabilities directly from the command 412

line. It not only supports a wide range of audio file 413

formats but also possesses the ability to handle var- 414

ious streaming audio inputs. We utilize the Azure 415

Speech CLI version 1.37 in this paper, which is the 416

latest version available. 417

Google USM: The Universal Speech Model 418

(USM) (Zhang et al., 2023) is introduced as a sin- 419

gle, large-scale model that excels in ASR across 420

over 100 languages. This achievement is made 421

possible by pre-training the model’s encoder on a 422

vast, unlabeled multilingual dataset of 12 million 423

hours, covering more than 300 languages, followed 424

by fine-tuning on a smaller labeled dataset. To 425

conduct a thorough comparison, we utilize their 426

Chirp Speech-to-Text v2 model for performance 427

evaluation. 428

We compare the performance of our proposed 429

approach trained on GigaSpeech 2 against these 430

above-mentioned ASR models, including Whisper 431

(base, large-v2, and large-v3), MMS L1107, Azure 432

Speech CLI 1.37.0 and Google USM Chirp v25, 433

across three languages: Thai, Indonesian, and Viet- 434

namese. The ASR performance is evaluated regard- 435

ing character error rate (CER) or word error rate 436

5Abnormal high deletion rates with Google USM in Thai
are observed in our repeated testing.
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Table 3: Comparison of ASR results for models trained on GigaSpeech 2 with open-source multilingual ASR models
and commercial ASR services, evaluated on test sets from GigaSpeech 2, Common Voice 17.0, and FLEURS. The
evaluation metrics are Character Error Rate (CER) for Thai and Word Error Rate (WER) for both Indonesian and
Vietnamese. “†" denotes commercial services.

Model # Params
(M)

CER / WER
GigaSpeech 2 Common Voice FLEURS

Thai
Whisper large-v3 1542 20.44 6.02 11.55
Whisper large-v2 1541 22.47 8.79 15.50
Whisper base 72 46.47 32.59 42.28
MMS L1107 964 31.75 14.49 23.07
Azure Speech CLI 1.37.0† - 17.25 10.20 13.35
Google USM Chirp v2† - 49.70 14.75 63.35
GigaSpeech 2 (proposed) 151.9 12.46 4.15 10.54

Indonesian
Whisper large-v3 1542 20.03 7.43 7.85
Whisper large-v2 1541 21.44 8.93 8.95
Whisper base 72 39.37 34.70 33.76
MMS L1107 964 35.27 20.72 24.49
Azure Speech CLI 1.37.0† - 18.07 10.33 11.18
Google USM Chirp v2† - 19.63 9.70 7.23
GigaSpeech 2 (proposed) 151.9 14.92 13.83 13.77

+ Common Voice + FLEURS 151.9 14.95 7.33 12.74
Vietnamese

Whisper large-v3 1542 17.94 13.74 8.59
Whisper large-v2 1541 18.74 18.00 10.26
Whisper base 72 39.88 44.07 40.41
MMS L1107 964 46.62 43.88 55.35
Azure Speech CLI 1.37.0† - 11.86 10.21 11.88
Google USM Chirp v2† - 13.28 12.46 11.75
GigaSpeech 2 (proposed) 151.9 12.83 14.43 11.59

+ Common Voice + FLEURS 151.9 12.39 11.47 9.94

(WER) on three distinct test sets from GigaSpeech437

2, Common Voice 17.0, and FLEURS. According438

to the results shown in Table 3, there are several439

intriguing findings:440

1) For the Thai language, our ASR model trained441

on GigaSpeech 2 (Table 3, Thai, Row 7) outper-442

forms all competitors, including commercial ser-443

vices from Azure and Google, securing the top rank444

across all three test sets among the seven models. It445

outperforms Whisper large-v3 by WER reductions446

of 7.98%, 1.87%, and 1.01% absolute (39.04%,447

31.06%, and 8.74% relative) (Table 3, Thai, Row 7448

vs. 1). Remarkably, our model achieves such im-449

pressive performance with nearly one-tenth of the450

parameters compared to Whisper large-v3 (151.9451

M vs. 1542 M).452

2) For the Indonesian and Vietnamese languages,453

our system demonstrates competitive performance454

compared to existing baseline models. This high-455

lights the efficacy of our pipeline in delivering high-456

quality results with a lightweight model. Specifi-457

cally, on the GigaSpeech 2 test set in the Indonesian458

language, our system (Table 3, Indonesian, Row459

7) outperforms all baseline models, attaining the460

best performance. Compared to Whisper large-v3,461

the model trained on Indonesian achieves an abso-462

lute WER reduction of 5.11%, corresponding to463

a relative reduction of 25.51% (Table 3, Indone-464

sian, Row 7 vs. 1). Similarly, the model trained on 465

Vietnamese achieves an absolute WER reduction 466

of 5.11%, corresponding to a relative reduction of 467

28.48% (Table 3, Vietnamese, Row 7 vs. 1). 468

3) Our model exhibits degraded performance 469

compared to commercial ASR systems on the Com- 470

mon Voice and FLEURS test sets in Indonesian 471

and Vietnamese, which can be attributed to the 472

domain mismatch. Contrastively, we observe a 473

performance leap after adding Common Voice and 474

FLEURS training data into GigaSpeech 2 (Table 3, 475

Indonesian & Vietnamese, Row 7 vs. 8). 476

Although our training data size is smaller 477

than that of industrial-scale models, our method 478

achieves the best performance for the Thai lan- 479

guage domain and delivers comparable results to 480

commercial models for Indonesian and Vietnamese. 481

This remarkable accomplishment highlights the ef- 482

ficacy of our approach in leveraging limited, free, 483

open-source, unlabeled data to train highly com- 484

petitive speech recognition models. It showcases 485

a promising path towards developing high-quality 486

speech recognition systems without the need for ex- 487

tensive, proprietary datasets, thereby reducing the 488

barrier to entry and enabling wider accessibility. 489
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Table 4: Comparison of ASR results for models trained
on YODAS and GigaSpeech 2, evaluated on test sets
from GigaSpeech 2, Common Voice 17.0, and FLEURS.
The evaluation metrics are Character Error Rate (CER)
for Thai and Word Error Rate (WER) for both Indone-
sian and Vietnamese.

Training Set # Params
(M)

CER / WER
GigaSpeech 2 Common Voice FLEURS

Thai
YODAS manual 68.6 27.34 10.71 14.19
YODAS manual 151.9 28.76 10.96 16.11
GigaSpeech 2 refined 151.9 12.46 4.15 10.54

Indonesian
YODAS manual 68.6 25.77 10.82 14.63
YODAS manual + automatic 68.8 41.11 15.41 47.26
YODAS manual 151.9 25.11 11.05 12.67
GigaSpeech 2 refined 151.9 14.92 13.83 13.77

Vietnamese
YODAS manual 68.6 40.35 31.07 25.68
YODAS manual + automatic 68.6 71.91 25.73 61.38
YODAS manual 151.9 40.71 32.58 29.32
GigaSpeech 2 refined 151.9 12.83 14.43 11.59

4.3 Comparison to the YODAS Corpus490

Table 4 compares ASR performance across differ-491

ent models trained on YODAS (Li et al., 2023)492

and GigaSpeech 2 datasets evaluated on multiple493

test sets. Note that YODAS Thai automatic is not494

included due to insufficient data (only 1 hour). De-495

spite variations in overall data volume, several gen-496

eral conclusions can be drawn from trend analysis:497

1) The models trained on GigaSpeech 2 refined498

yield generally superior results compared to those499

trained on the YODAS datasets for all three lan-500

guages.501

2) The YODAS manual may suffer from overfit-502

ting or noisy data issues due to simplistic filtering503

rules, leading to inconsistent performance in In-504

donesian (Table 4, Indonesian, Row 1 & 3).505

3) Purely automatic generation of YODAS tends506

to degrade performance, as observed for Viet-507

namese (Table 4, Vietnamese, Row 1 vs. 2) and508

Indonesian (Table 4, Indonesian, Row 1 vs. 2),509

likely due to the inherent noise and errors in the510

automatically generated subtitles.511

4.4 Training ASR Models within ESPnet and512

icefall on GigaSpeech 2513

Icefall: The neural Transducer (Graves et al., 2013)514

architecture is employed, with Zipformer-L as the515

encoder and the pruned RNN-T loss (Kuang et al.,516

2022) as the object function. 2000-class Byte Pair517

Encoding (BPE) (Sennrich et al., 2016) word pieces518

are used. More details are provided in Appendix519

B.1.520

ESPnet: The Conformer (Gulati et al., 2020)521

CTC/AED (Kim et al., 2017) system is adopted522

from ESPnet (Watanabe et al., 2018), with523

Table 5: Comparison of ASR models trained on Gi-
gaSpeech 2 with Icefall and ESPnet toolkits, evaluated
on GigaSpeech 2 TEST set. The evaluation metrics
are Character Error Rate (CER) for Thai (th) and Word
Error Rate (WER) for both Indonesian (id) and Viet-
namese (vi).

Toolkit Model # Params
(M)

CER / WER
th id vi

Icefall Zipformer/Stateless Pruned RNN-T 151.9 12.46 14.92 12.83
ESPnet Conformer/Transformer CTC/AED 111.8 13.70 15.50 14.60

Conformer-L as the encoder and a combination 524

of the localized sensitivity of convolutional neural 525

networks and the long-range modeling capabilities 526

of Transformers (Vaswani et al., 2017). 2000-class 527

BPE word pieces are used. More details can be 528

found in Appendix B.2. 529

Table 5 shows the results of ASR models trained 530

with icefall and ESPnet. The models trained with 531

ESPnet are slightly worse than icefall in all three 532

languages, which is as expected and can be ex- 533

plained by the discrepancy in the number of model 534

parameters (112M vs. 152M). It is worth noting 535

that the results in Table 5 are intended to provide 536

baseline systems for these two popular toolkits to 537

demonstrate the universality of GigaSpeech 2 in- 538

stead of pursuing state-of-the-art performance. 539

5 Conclusion 540

This paper introduces a new multilingual speech 541

dataset, GigaSpeech 2, and a novel automated 542

pipeline to boost speech recognition performance 543

using in-the-wild audio-only data. GigaSpeech 2 544

aims to address the scarcity of labeled training data 545

on low-resource languages by developing this large- 546

scale, multi-domain, and multilingual corpus. Ex- 547

tensive experiments are conducted to validate the 548

efficacy of our newly introduced corpus. The ASR 549

models trained in three languages, which are Thai, 550

Indonesian, and Vietnamese within GigaSpeech 2, 551

demonstrate superior and impressive performance 552

compared to various powerful ASR models, in- 553

cluding Whisper large v2/v3 from OpenAI, MMS 554

from Meta, and even commercial services from 555

Google and Azure. The related resources, includ- 556

ing the training corpus, curated test sets, automated 557

pipeline, and recipes, will be released to facilitate 558

research in this direction. In the future, we are ea- 559

ger to extend our paradigm to more low-resource 560

languages and are devoted to breaking down the 561

language barrier. 562
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Limitations563

In this paper, we propose GigaSpeech 2, a large-564

scale, multi-domain, multilingual speech recogni-565

tion corpus, and a novel automated pipeline to566

boost speech recognition performance using in-567

the-wild audio-only data. Due to time constraints,568

we only tested 3-4 iterations of the proposed NST569

model. We are optimistic that more iterations will570

yield even better results. We are actively extend-571

ing our language coverage by incorporating addi-572

tional languages, including Malay, Korean, Arabic,573

Cantonese, and Minnan. We will also expand our574

low-resource language family in our future investi-575

gation. To resolve potential legal risks, our dataset576

adopts the same terms as GigaSpeech (Chen et al.,577

2021), restricting use to non-commercial research578

and educational purposes only.579

Ethics Statement580

All collected audio is accompanied by a Creative581

Commons license. Personal identification informa-582

tion has been anonymized by removing any iden-583

tifiable details from the data. All annotators are584

compensated fairly by a professional data annota-585

tion company.586
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A Detailed Analysis of GigaSpeech 2871

A.1 Manual Transcription Quality Assurance872

The manual transcription process, carried out by873

a professional data annotation company, includes874

rigorous manual quality checks and secondary in-875

spections to ensure that timestamp accuracy and876

transcription correctness exceed 97%. All man-877

ually transcribed results undergo a 100% manual878

quality inspection, where both timestamps and tran-879

scription accuracy are thoroughly checked. Any880

data that fails to meet the required standards is881

sent back for correction. Subsequently, 30% of882

each inspector’s reviewed data is re-evaluated. If883

this recheck confirms over 97% accuracy, the data884

passes; otherwise, the entire dataset inspected by885

that quality inspector is returned for full correc-886

tion. For timestamp accuracy, an audio snippet tool887

is used to ensure that timestamps do not overlap888

with the waveform. If any timestamp does fall on889

the waveform, a manual inspection is conducted to890

confirm whether it corresponds to speech.891

A.2 Domain Distribution of Manual892

Evaluation Sets893

The domain distribution of the manual evaluation894

sets is shown in Fig. 2. The domains are identified895

based on a predefined set of categories. Each sam-896

ple is manually annotated at the individual video897

level, considering both the topic type and content898

format.899

(a) th (b) id (c) vi

Figure 2: Hours distribution of manual evaluation sets
for Thai (th), Indonesian (id), and Vietnamese (vi). The
inner circle represents the format, and the outer circle
represents the topic.

A.3 Duration Distribution of Training Sets900

The utterance-level duration distribution of the901

training sets is illustrated in Fig. 3.902

A.4 Evaluation of Processing Time903

The processing times for transcription, forced align-904

ment, filtering, segmentation, and relabeling are905

measured on an idle single V100 32G GPU ma-906

chine using a 100-hour subset of Thai audio. The907
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Figure 3: Utterance-level duration (second) distribution
of training sets for Thai (th), Indonesian (id), and Viet-
namese (vi).

processing time and the real-time factor (RTF) are 908

detailed in Table 6.

Table 6: Evaluation of overall processing time and real-
time factor (RTF) for each process in the construction of
GigaSpeech 2. The processing times for transcription,
forced alignment, filtering, segmentation, and relabeling
are measured on an idle single V100 32G GPU machine
using a 100-hour subset of Thai audio.

Process Time Consumption RTF
Transcription 19h 42min 13s 1.97× 10−1

Forced Alignment 3h 27min 29s 3.46× 10−2

Filter 3s 8.00× 10−6

Segmentation 6min 58s 1.16× 10−3

Relabel 40min 48s 6.80× 10−3

909

B Model Configurations 910

B.1 Configuration of Zipformer 911

Two Zipformer-based models are used, following 912

official configurations reported in icefall6. In each 913

Zipformer stack, the hidden dimensions of the first 914

and last feedforward modules are 3/4 and 5/4 of 915

the middle one, respectively. Ahead of the encoder, 916

a convolution subsampling module with a stride 917

of 2 reduces the frame rate to 50 Hz. The input 918

consists of 80-channel FBank features extracted 919

over windows of 25ms, strided by 10ms. The label 920

decoder utilizes a stateless decoder (Ghodsi et al., 921

2020). 8 V100 32G GPUs are used for training. 922

Detailed configurations are provided in Table 7. 923

B.2 Configuration of Conformer 924

A Conformer-based model is developed adhering 925

to the official configurations outlined in ESPnet7. 926

6https://github.com/k2-fsa/icefall
7https://github.com/ESPnet/ESPnet
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Table 7: Configuration of Zipformer at two different
scales

Zipformer-M Zipformer-L
Encoder

number of stacks 6
numbers of layers 2,2,3,4,3,2 2,2,4,5,4,2
downsampling factors 1,2,4,8,4,2
output downsampling factor 2
embedding dimensions 192,256,384,512,384,256 192,256,512,768,512,256
embedding unmasked dimensions 192,192,256,256,256,192 192,192,256,320,256,192
feedforward dimensions 512,768,1024,1536,1024,768 512,768,1536,2048,1536,768
convolution kernel sizes 31,31,15,15,15,31
attention heads 4,4,4,8,4,4
attention query dimension 32
attention value dimension 12
positional encoding embedding dimension 48
projected positional encoding dimension per head 4

Decoder
embedding dimensions 512
context size 2

Joiner
embedding dimensions 512

Criterion
use ctc head false
use transducer head true
pruned range 5
loss smoothing lm scale 0.25
loss smoothing am scale 0.0
simple loss scale 0.5
simple loss scale warmup steps 2000

Frontend
n fft 512
hop length 256
feature dimension 80

Training
use amp true
max epochs 30
max duration per batch 1000
ref duration 600
seed 42

Optimization
optimizer scaledadam
base learning rate 0.045
seed 42

Scheduler
scheduler eden
lr batches 7500
lr epochs 10000 / training set hours
warmup batches 500
warmup starting lr 0.5

SpecAugment
time warping factor 80
number of time masks 10
time mask maximum width 100
number of frequency masks 2
frequency mask width range 0 - 27

The model comprises an encoder that employs the927

Conformer architecture and a decoder that lever-928

ages the Transformer architecture. Moreover, the929

parameters for both the encoder and decoder com-930

ponents, the optimization process, the scheduling931

mechanism, and SpecAugment settings are care-932

fully designed to ensure a comprehensive and effi-933

cient model setup. 4 A100 80G GPUs are used for934

training. The specifics of these configurations are935

detailed in Table 8.936

C Ablation Study on Noisy Student937

Training938

Based on the ablation study of our proposed NST939

on the evaluation sets in Table 9, we can analyze940

the effects of different iterations and their impact941

on performance: 1) Relabeling the data during the942

transition from iteration 2 to 3 is crucial for improv-943

ing performance (Sys.1 vs. Sys.2). 2) Larger aug-944

mentation applied in our NST process may have945

a negative impact on the performance (Sys.1 vs.946

Sys.3). These findings suggest that careful consid-947

eration of the relabeling and augmentation strate-948

gies is crucial for optimizing the performance of949

Table 8: Configuration of Conformer at the large scale.

Conformer-L
Encoder Criterion

attention head 8 ctc weight 0.3
numbers of blocks 12 label smoothing 0.1
linear unit 2048 length normalized false
dropout rate 0.1 Frontend
positional dropout rate 0.1 n fft 512
attention dropout rate 0.1 hop length 256
input layer conv2d Training
normalize before true use amp true
macaron style true gradient accumulation 4
relative position type latest max epochs 20
position encoding layer rel_pos Optimization
self-attention layer rel_selfattn optimizer adam
activation type swish learning rate 0.0025
use cnn module true weight decay 0.000001
cnn module kernel 31 Scheduler

Decoder scheduler warmuplr
attention heads 8 warmup steps 40000
linear units 2048 SpecAugment
number of blocks 6 time warp window 5
dropout rate 0.1 frequency mask width range 0 - 27
positional dropout rate 0.1 number of frequency masks 2
self-attention dropout rate 0.1 time mask width ratio range 0.0 - 0.05
source attention dropout rate 0.1 number of time masks 10

Table 9: Ablation study of NST on GigaSpeech 2 Thai,
evaluated across various evaluation sets: GigaSpeech
2 DEV and TEST, Common Voice 17.0 TEST, and
FLEURS TEST.

NST
method

# Hours
(h)

CER
GigaSpeech 2
DEV TEST

Common Voice
TEST

FLEURS
TEST

Sys. 1 (Tab. 2, iter 2 → iter 3) 7219 10.47 12.38 4.63 10.96
Sys. 2 (Tab. 2, iter 2 → iter 3, without relabeling) 7219 10.77+2.9% 12.90+4.2% 5.23+13.0% 10.72−2.2%

Sys. 3 (Tab. 2, iter 2 → iter 3, larger augmentation) 7219 10.65+1.7% 12.81+3.5% 5.36+15.8% 10.86−0.9%

the NST model across different evaluation sets and 950

domains. 951
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