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Abstract
Positional encodings are ubiquitous as an input
featurization tool in language modeling, com-
puter vision, and graph representation learning,
enabling neural networks to capture important
geometric structure of the input. Traditionally, po-
sitional encodings have been defined anew for
each data domain. In this work, we reinterpret
positional encodings for disparate data types —
including sequences, grids, graphs, and manifolds
— in the unifying framework of group represen-
tations. We show how to express existing posi-
tional encodings as group representations, and
conversely, propose new positional encodings by
choosing suitable groups and representations. We
validate our framework with experiments on im-
plicit neural representations of images and vector
fields, highlighting the practical utility of such po-
sitional encodings for encouraging approximate
equivariance and capturing geometric structure.

1. Introduction
Positional encodings are important ingredients for machine
learning models in numerous domains, including implicit
neural representations (Tancik et al., 2020), graph neural net-
works (Lim et al., 2023), and Transformers for text (Vaswani
et al., 2017), images (Dosovitskiy et al., 2021), or various
types of data that can be viewed as arrays (Jaegle et al.,
2021). As such, many works have studied existing posi-
tional encodings or proposed new positional encodings. Our
current work contributes to both of these directions.

First, we unify many existing positional encodings by inter-
preting them as group representations of a symmetry group
of the data domain. We include concepts that are not tra-
ditionally viewed as positional encodings, such as the use
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of spherical harmonics to encode directions in Euclidean
group equivariant networks (Thomas et al., 2018).

Grounded in our unified framework, popular positional en-
codings can be theoretically motivated as injecting equiv-
ariance priors and other geometric information into neural
networks, without strict enforcement (Section 3). We give
intuitive explanations for the approximate equivariance in-
duced by group representation-based positional encodings
(Section 2.2). Using this perspective, we propose new SO(2)
positional encodings for various data modalities (Section 4).
Experiments with these encodings for implicit neural rep-
resentations demonstrate that group representations are a
promising space to explore for designing positional encod-
ings (Section 5).

2. Pos. Encodings as Group Representations
2.1. Preliminaries

By a positional encoding, we mean a function γ : X → Rd

that maps input x ∈ X to positional encodings γ(x) ∈ Rd,
where X denotes the space of positions. For example,
X = {1, . . . , n} for sequences with n tokens or graphs
with n nodes. We will only consider absolute positional en-
codings here, and defer the discussions of relative positional
encodings in Appendix A.1. It is often useful to identify X
with G, either directly (if the two are equal) or indirectly
(via G’s action). In the very special case of regular grids
(e.g. sequences or images), this identification is natural, as
for instance the index (x, y) ∈ Z2 can be identified with the
translation (a, b) 7→ (a+ x, b+ y). In general, this is also
natural when X is a homogeneous space for G, meaning
that G acts transitively on X . In this case, we can map x to
G by first fixing an origin x0 ∈ X , and then “lifting” x to
the set xG of group elements g ∈ G such that gx0 = x. For
any space X acted on by G, define the orbit of x ∈ X as
{gx : g ∈ G}.

A group representation is a vector space V together with
a function ρ : G → GL(V ) from group elements g to
invertible linear maps ρ(g) that respects group compositions,
meaning ρ(gh) = ρ(g)ρ(h) for g, h ∈ G. An irreducible
representation (or irrep) is a group representation ρ such that
there is no proper, nontrivial subspace W ⊂ Rn satisfying
ρ(g)W ⊆ W for all g ∈ G. Irreps are fundamental, as any
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Table 1. Examples of positional encodings, interpreted as group representations. Y m
ℓ denotes spherical harmonics, vi the i-th eigenvector

of the graph Laplacian, J(r) a radial function, and R2×2(θ) is the 2× 2 rotation matrix by θ.

Data Type Group Encoding Ref.

Text T (x) 7→ {(cos(αx), sin(αx))}α Vaswani et al. (2017)
Image T × T (x, y) 7→ {(cos(α1x+ α2y), sin(α1x+ α2y))}α1,α2 Dosovitskiy et al. (2021)
Molecule SO(3) (r, θ, ϕ) 7→ {Y m

ℓ (θ, ϕ)J(r)}ℓ,m Thomas et al. (2018)
Graph S|X| (x) 7→ {vi(x)}i Lim et al. (2023)
Any (learned embedding) S|X| x 7→ one hot(x) Gehring et al. (2017)
Text (spherical embedding) SO(2)n/2 (m) 7→ {

⊕
R2×2(mα)}α Su et al. (2021)

X , homogeneous space G x 7→ {ρλ(xG)}λ Ours

group representation ρ can be written as a direct product of
irreps.

Finally, we say a function f : X → Y is equivariant with
respect to G if for all g ∈ G, x ∈ X , f(gx) = gf(x).
Similarly, a function f is approximately equivariant with
respect to G if for all g ∈ G, x ∈ X , f(gx) ≈ gf(x).

2.2. Positional Encodings as Irreps

We first show that many previously proposed positional
encodings γ(x) take the form γ(x) = vec(ρ(x)) for some
(often irreducible) group representation ρ, where vec flattens
a matrix into a vector. More generally, positional encodings
can be seen as residing in the equivariant vector space of
some group representation (which subsumes the previous
case). For ease of exposition, we focus on positional en-
codings as irreps, but elaborate on the subtle distinctions
in Appendix A.2. See Table 1 for a list of examples. We
expand on a few key instances now and leave further details
to Appendix A.

Text and images. Sinusoidal positional encoding were
popularized in (Vaswani et al., 2017) for encoding positions
in 1D sequences, where we can identify the data domain
with the translation group T . A similar identification can be
made for images as signals supported on T×T (Dosovitskiy
et al., 2021). The group irreps are eiαx and ei(α1x+α2y),
respectively; traditional positional encodings simply take
the real and imaginary parts at certain frequencies.

Manifolds and graphs. In shape analysis and geometric
machine learning, it is standard to generate positional encod-
ings for a manifold or graph using the first eigenfunctions
(i.e. those with smallest eigenvalues) of its Laplacian opera-
tor (Rustamov, 2007; Lim et al., 2023). Such functions are
well-understood as the “smoothest” functions on the man-
ifold (Rustamov, 2007). For a manifold and a closed sub-
group G of the isometry group, the eigenspaces of the Lapla-
cian are group representations of G (see Appendix A.3).

3. Why Group Representations?
3.1. Biasing Towards Equivariance

Group representations satisfy an equivariance property, in
that when an input h ∈ X ≡ G is transformed by a group
element g ∈ G, the corresponding group representation
is transformed by g, since ρ(gh) = ρ(g)ρ(h). Intuitively,
models that process group representation positional encod-
ings then have a (possibly weak) inductive bias towards
equivariance. Thus, such models are in some sense endowed
with equivariance priors, and may be more capable of learn-
ing (approximately) equivariant functions. We specifically
elaborate on equivariance bias in both Transformers and
multi-layer perceptrons (MLPs) that process group repre-
sentation positional encodings as input.

Equivariance bias in transformers. Consider a layer of
self-attention in a Transformer encoder (Vaswani et al.,
2017), where the input solely consists of group represen-
tation positional encodings γ(x) = vec(ρ(x)) of inputs
x = [x1, . . . , xn] ∈ Rdx×n, for some orthogonal represen-
tation ρ. Define γ(x) = [γ(x1), . . . , γ(xn)] ∈ Rd×n. Then
the self-attention layer takes the form

f(x) = WV γ(x) softmax
(
γ(x)⊤W⊤

KWQγ(x)
)
, (1)

for linear maps WV ,WK , and WQ. Suppose that
WV ,WK ,WQ are all scalar multiples of the identity. In
Appendix A.4, we show that this self-attention layer is equiv-
ariant, in the sense that f(gx) = (I ⊗ ρ(g))f(x).

Equivariance bias in MLPs. The neural tangent kernel
(NTK) (Jacot et al., 2018) provides a theoretical model for
the behavior of overparameterized MLPs during training.
In Appendix A.5, we show that the NTK of an MLP with
input positional encodings γ(x) = vec(ρ(x)) for an or-
thogonal group representation ρ is group invariant. Thus, if
the supervised prediction task is equivariant, then the MLP
predictions are approximately equivariant.

3.2. Useful Structure in Group Representations

Besides encouraging equivariance, group representations
have other desirable properties for a design space of features.
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In most cases of interest (e.g. compact groups), every group
representation can be decomposed into irreducible represen-
tations. Moreover, the matrix entries of irreducible repre-
sentations form an orthonormal basis for square-integrable
functions over the group by the Peter-Weyl theorem. Thus,
irreducible representations are akin to a universal bank of
features (Chughtai et al., 2023), which we can search over
when designing positional encodings.

In addition, irreducible representations tend to hierarchi-
cally capture different levels of function resolution. For T ,
Fourier series of low frequencies capture low-resolution fea-
tures, while high frequencies capture fine-grained changes.
For SO(3) acting on the sphere, the ℓth spherical harmonic
is a polynomial of degree at most ℓ in x, y, and z. For a
manifold, Laplacian eigenvectors are an orthonormal basis
of functions over the manifold with varying smoothness,
quantified in terms of the Dirichlet energy. By selecting
irreps that correspond to multiple scales of resolution (e.g.
exponentially varying α for T in Vaswani et al. (2017)), po-
sitional encodings enable downstream networks to process
both fine- and coarse-grained changes (e.g. both background
and sharp edges, for images) (Tancik et al., 2020).

Finally, group representations can motivate the design of
positional encoding for out-of-distribution (OOD) general-
ization, where the distributions of the training set and test
set are different (for example, short phrases during training
time and long sentences during test time). In language mod-
eling, Ruoss et al. (2023) improved OOD generalization
by randomly subsampling an ordered set of positions (for
the training data) from a much larger range of positions.
From our group representation framework, this amounts to
using representations from a larger group (based on the test
sequence length) during training time.

4. Group Representations for Pos. Encodings
Suppose we have a new geometric data type or (possibly ap-
proximate) symmetry. What does our group representation
framework prescribe as positional encodings? In particular,
suppose G acts on the position space X in a meaningful way
for the application of interest, and G has irreps ρλ. For X a
homogeneous space of G, we define positional encodings by
vec(ρλ(x

G)), where xG is the lift defined in Section 2.2.1

For general non-homogeneous spaces X , we proceed by de-
composing X into orbits, encoding an orbit’s identity in the
quotient space X/G and a point’s position within the orbit
separately. For example, the group SO(2) consists of 2D ro-
tations; however, R2 is not a homogeneous space of SO(2).

1What makes a group “meaningful” for an application can
range from strict symmetry, to simply a prior that the variation
of the ground-truth function values is best captured along orbits
(essentially, approximate symmetry).

In this case, we embed (x, y) ∈ R2 via its orbit (indexed by
the radius r in polar coordinates) and the position of (x, y)
within its orbit (indexed by the angle θ in polar coordinates),
separately2: (r, θ) 7→ {Jm(cr)eikθ}m,c,k, where Jm is the
m-th Bessel function. In our experiments, we set m = 0,
and sample both c and k; see Appendix D.2.

5. Experiments
5.1. 2D Implicit Neural Representations of Images

Figure 1. Images used in experiments of Section 5.1.

In this section, we explore learning implicit neural represen-
tations, where past work has shown that proper positional en-
codings are crucial (Tancik et al., 2020). We fix a grayscale
image and positional encoding p, and then learn an MLP fθ
such that fθ(γ(x, y)) approximates the grayscale intensity
at pixel (x, y). We consider two natural images (Camera-
man, Retina) and two synthetic images (Radial, Spiral) —
see Figure 1. The Retina and Spiral images are approxi-
mately invariant to the action of SO(2), while the Radial
image is exactly invariant to this action — that is, all pixels
(x, y) of the same distance to the origin have the same value.
We compare no positional encodings (γ(x, y) = (x, y)),
T × T positional encodings as in Tancik et al. (2020), and
our proposed SO(2) positional encodings.

Table 2 (left) shows that our proposed SO(2) positional
encodings outperform the other positional encodings in the
invariant and approximately invariant tasks. On the Camera-
man image, T × T encodings perform slightly better; this is
expected, as the variation in the image is better captured in
Cartesian than polar coordinates. Figure 2 shows that SO(2)
encodings qualitatively provide rotationally symmetric bi-
ases, even at initialization and early in training.

5.2. 2D Implicit Neural Representations of Vector Fields

Section 5.1 showed the strength of SO(2) positional encod-
ings in tasks with some degree of SO(2) invariance. Now,
we consider tasks with SO(2) equivariance. The setup is

2This procedure works for any non-homogeneous space acted
on by G: if x ∈ X , the lifting procedure in Section 2.2 equivari-
antly encodes x’s position within its orbit, while any encoding
of x’s orbit itself is invariant by definition. These two encoding
components can be combined in many ways. In the case of SO(2),
the invariant orbit embedding is a real scalar and the equivariant
embedding is a complex unit vector, so it is natural to losslessly
multiply the two. This is analogous to SO(3) in Table 1.
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Table 2. Test MSE of MLP with no positional encoding, T × T positional encodings, and SO(2) positional encodings for implicit neural
representation of images and vector fields. Lower is better. Mean and standard deviation are reported over 10 independent runs.

Images Vector Fields

MSE ↓ Cameraman Retina Radial Spiral Radial Spiral

None .0249±.0017 .0040±.0004 .0572±.0144 .0071±.0033 .01099±.00431 .00075±.00018
T × T .0209±.0013 .0044±.0008 .0041±.0011 .0021±.0007 .00072±.00047 .00055±.00048
SO(2) .0238±.0021 .0024±.0003 .0024±.0014 .0015±.0004 .00050±.00019 .00027±.00010

Step 0 Step 25 Step 500

Figure 2. Learned representations for Radial image after 0, 25, and
500 training steps. Even early in training, SO(2) positional encod-
ings show the correct bias towards radially symmetric functions.

similar to Section 5.1, except we wish to predict a 2D vector
field rather than an image. The neural network fθ(γ(x, y))
now seeks to approximate the 2D vector at location (x, y).
We consider two vector fields: the Radial vector field is
exactly SO(2) equivariant, while the Spiral vector field is
approximately SO(2) equivariant. Table 2 (right) shows that
SO(2) positional encodings outperform the other choices
on these tasks, validating the utility of our framework.

6. Conclusion
In this work, we gave a unified framework for several popu-
lar positional encodings as irreducible group representations.
We motivated why irreps are a particularly useful build-
ing block for encodings, and using this intuition, proposed
SO(2)-positional encodings as a proof of concept. In the fu-
ture, we plan to extend this framework to other groups, such
as SE(2), and to further explore irrep positional encodings
as a mechanism for incorporating approximate equivariance
and geometric structure.
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A. More on Group Representations and Positional Encodings
A.1. Relative Positional Encodings

Many works also consider relative positional encodings η : X × X → Rd that map pairs of points (g, h) to encodings
η(g, h) (Shaw et al., 2018). We note that relative positional encodings are often taken to be invariant to some relevant
symmetry group. For instance, when encoding indices i, j ∈ Z in a 1D sequence, one choice of relative positional encoding
is η(i, j) = i− j, which is invariant to translations: η(i+ t, j+ t) = η(i, j). Therefore, one way to design relative positional
encodings based on our framework is to take inner products of absolute positional encodings derived from an orthogonal
group representation ρ, meaning γ(x, y) = vec(ρ(x))⊤vec(ρ(y)). This is because γ(gx, gy) = γ(x, y), so the resulting
relative positional encoding is group invariant. We capture this in the following elementary lemma, which we also use to
demonstrate the equivariance bias for Transformers and MLPs with group representation positional encodings.

Lemma A.1. If ρ is an orthogonal group representation, then vec(ρ(gx))⊤vec(ρ(gy)) = vec(ρ(x))⊤vec(ρ(y)).

Proof. We can directly compute that

vec(ρ(gx))⊤vec(ρ(gy)) = trace[ρ(gx)⊤ρ(gy)] (2)

= trace[ρ(x)⊤ρ(g)⊤ρ(g)ρ(y)] (3)

= trace[ρ(x)⊤ρ(y)] (4)

= vec(ρ(x))⊤vec(ρ(y)) (5)

A.2. More Positional Encodings as Group Representations

In the main body of the paper, we explained how several positional encodings can be viewed through the lens of (often
irreducible) group representations. A group representation refers to both a vector space V , and the group action of G on V
via invertible linear maps, ρ : G → GL(V ). Some existing positional encodings, such as those for text and images, can be
readily viewed as irreps themselves: given some method of mapping a gridded position x (e.g. word position in a sentence,
or pixel location in an image) to xG ∈ G (where G is T or T × T ), the standard positional encodings are understandable as
ρλ(x

G), with λ denoting the frequency of the irrep. The dimensionality of these irrep matrices owes to the fact that both T
and T × T are abelian groups, so the complex vector space V (for irreps) is complex and one-dimensional, yielding the
familiar positional encodings. For SO(3) acting on the sphere S2 in physical applications, the spherical harmonics are not
precisely the irreps (which are the Wigner-D matrices), but they do appear in the Wigner-D matrices.

In contrast, however, consider the RoPe embedding (Su et al., 2021) for words. In this setting, we assume that each word is
already assigned a semantic embedding vector v in Rd. Implicitly, it is assumed that no two words’ semantic embedding
vectors have the same norm. Then, the positional information of a given word is encoded by applying a particular group
representation of SO(d) to v. In particular, if the word with semantic embedding vector v appears in the mth position, it is
embedded as: 

R2×2(mα1) 0 0 0
0 R2×2(mα2) 0 0

0 0
. . . 0

0 0 0 R2×2(mαd/2)



v1
v2
...
vd

 ,

where R2×2(mα) =

[
cos(mα) − sin(mα)
sin(mα) cos(mα)

]
is a 2× 2 rotation matrix and the αi are chosen as αi = 10000

2(i−1)
d . Thus,

embedding of a positioned word is equivariant: when its position is translated, each pair of consecutive coordinates is
rotated. Much like standard positional encodings for T , the frequencies of the rotations are chosen to exponentially vary.

An important takeaway is that this is distinct in character from previous examples, as the RoPe embeddings really are defined
to be equivariant vectors, rather than linear maps. They still transform according to a group action, but are not themselves
readily interpretable as matrices. Thus, embeddings such as RoPe (Su et al. (2021)), as well as Laplacian eigenvectors for
points on manifolds (Rustamov (2007), described in the next subsection), are really equivariant maps from the input position
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space (e.g. the word location or the point on the manifold) into the vector space V of a group representation, rather than the
actual matrices themselves.

Recall that a map f : X → V is G-equivariant if f(gx) = gf(x) for all x ∈ X , g ∈ G, where we have implicitly assumed
that g acts on V according to some representation. In the main text, we discussed two key advantages of using irreducible
representation encodings: (1) equivariance and (2) capturing hierarchical resolution. Any map that is equivariant with respect
to a unitary representation on V still satisfies (1)! Although (2) is not true for all equivariant maps, Laplacian eigenfunctions
retain this property in the sense of minimizing the Dirichlet energy subject to orthogonality constraints (as noted in the main
body). RoPe similarly retains this property to a degree, as a result of the particular representation of the special orthogonal
group that is used, since it is very reminiscent of standard positional encodings for T .

We also note that group representations (in the sense of mappings between G and invertible matrices GL(V )), are a special
case of equivariant maps. This is because the image of ρ itself is a vector space (consisting of matrices), and by definition, it
is equivariant: a group representation ρ satisfies ρ(gh) = ρ(g)ρ(h).

Learned embeddings / Embedding table. Another common type of positional encoding is fully learned embed-
dings (Gehring et al., 2017; Vaswani et al., 2017), which may also be referred to as the embedding table or lookup
table approach. Here, each data point x is associated with a unique vector γ(x) = wx ∈ Rd that is learned end-to-end with
gradient descent, where we assume that the data domain X is finite, so that we can encounter each data point during training
at least once. For instance, for encoding positions in text, one may store a vector wi ∈ Rd for each i ∈ {1, . . . , 8192}, where
8192 is the largest sequence length that can be processed.

Fix an ordering x1, . . . , x|X | of the points in X . By stacking the vectors wi as columns of a matrix W = [w1, . . . , w|X |] ∈
Rd×|X|, we can view the embedding table as one-hot encoding each xi to a vector in 1xi

∈ R|X |, and then applying a
learned linear transformation γ(xi) = wxi

= W1xi
. In other words, we can view the positional encoding as the one-hot

encoding 1xi
, and then we modify the model that processes the positional encoding by prepending a learned linear projection

W to it. The one-hot encodings belong to a vector space of a group representation of the group of permutations S|X |, where
g ∈ X acts naturally as g · 1xi = 1gxi .

A.3. Laplacian Eigenspaces and Positional Encodings

Here, we follow the exposition of Tahmasebi & Jegelka (2023) to explain why the eigenspaces of the Laplace-Beltrami
operator are vector spaces of group representations. We consider manifold data, but the discrete graph case is very similar.
Consider a Riemannian manifold M, and let G be any closed subgroup of its isometry group, i.e. the group of bijections
τ : M → M that preserve geodesic distances between pairs of points. Let C∞(M) be the vector space of smooth real-
valued functions from M to R. The action of G on f ∈ C∞(M) is given by (g · f)(x) = f(g−1x). The Laplace-Beltrami
operator is a linear operator ∆ : C∞(M) → C∞(M). Let Vλ be an eigenspace of ∆, corresponding to eigenvalue λ ∈ R.
Then Vλ is a representation of G since ∆ commutes with isometries, because for any eigenfunction ϕ of eigenvalue λ we
have

∆(g · ϕ) = g ·∆(ϕ) = λ(g · ϕ). (6)

Now, suppose we have an orthonormal basis ϕ1, . . . , ϕk of an eigenspace Vλ. Define the positional encoding γ(x) =
[ϕ1(x), . . . , ϕk(x)] ∈ Rk. We will show that this positional encoding is equivariant, i.e. γ(gx) = ρ(g)γ(x) for some
orthogonal ρ(g) ∈ O(k). This is because g · ϕ1, . . . , g · ϕk is still an orthonormal basis of Vλ. Thus, there exists an
orthogonal change of basis ρ(g) such that [g · ϕ1, . . . , g · ϕk] = ρ(g)[ϕ1, . . . , ϕk]. Evaluating this at x, we have

γ(gx) = [g · ϕ1(x), . . . , g · ϕk(x)] = ρ(g)[ϕ1(x), . . . , ϕk(x)] = ρ(g)γ(x). (7)

To see that ρ is a representation, note that for g, h ∈ G we have (gh) · ϕ = g · (h · ϕ). Thus, it holds that

ρ(gh)[ϕ1, . . . , ϕk] = [(gh) · ϕ1, . . . , (gh) · ϕk] (8)
= [g · (h · ϕ1), . . . , g · (h · ϕk)] (9)
= ρ(g)[h · ϕ1, . . . , h · ϕk] (10)
= ρ(g)ρ(h)[ϕ1, . . . , ϕk]. (11)

Since the action on an orthonormal basis determines a linear map, we have ρ(gh) = ρ(g)ρ(h).

Thus, Laplacian eigenfunction positional encodings also belong to a vector space of a group representation. The above
argument can be extended to a positional encoding γ(x) = [ϕ1(x), . . . , ϕk(x)], where ϕi are orthonormal eigenvectors

7
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potentially belong to different eigenspaces. The only requirement is that if ϕi has eigenvalue λ, that there is an orthonormal
basis for the eigenspace Vλ within ϕ1, . . . , ϕk.

A.4. Transformers with Group Representation Positional Encodings

Consider again the form of the self-attention layer with positional encoding input, with γ(x) = [γ(x1), . . . , γ(xn)] and
γ(xi) = vec(ρ(xi)) for an orthogonal representation ρ.

f(x) = WV γ(x) softmax
(
γ(x)⊤W⊤

KWQγ(x)
)
, (12)

and suppose that WV = b1I,WK = b2I,WQ = b3I for bi ∈ R (in particular, the weight matrices are all square). We will
show that the self-attention layer is equivariant, in the sense that f(gx) = (I ⊗ ρ(g))f(x).

First, note that the attention matrix is invariant, because

softmax
(
γ(gx)⊤W⊤

KWQγ(gx)
)
= softmax

(
b2b3γ(gx)

⊤γ(gx)
)

(13)

= softmax

b2b3

γ(gx1)
⊤γ(gx1) γ(gx1)

⊤γ(gx2) . . .
γ(gx2)

⊤γ(gx1) γ(gx2)
⊤γ(gx2)

...
...

. . .


 (14)

= softmax

b2b3

γ(x1)
⊤γ(x1) γ(x1)

⊤γ(x2) . . .
γ(x2)

⊤γ(x1) γ(x2)
⊤γ(x2)

...
...

. . .


 (15)

= softmax
(
γ(x)⊤W⊤

KWQγ(x)
)
, (16)

where in the second to last equality we used Lemma A.1 in each entry.

Next, we show that γ is equivariant using the Kronecker product trick:

γ(gx) = [vec(ρ(g)ρ(x1)), . . . , vec(ρ(g)ρ(xn))] (17)
= [(I ⊗ ρ(g))vec(ρ(x1)), . . . , (I ⊗ ρ(g))vec(ρ(xn))] (18)
= (I ⊗ ρ(g))γ(x). (19)

Finally, we can show equivariance of the self-attention layer f :

f(gx) = WV γ(gx) softmax
(
γ(gx)⊤W⊤

KWQγ(gx)
)

(20)

= WV γ(gx) softmax
(
γ(x)⊤W⊤

KWQγ(x)
)

(21)

= b1I (I ⊗ ρ(g))γ(x) softmax
(
γ(x)⊤W⊤

KWQγ(x)
)

(22)

= (I ⊗ ρ(g))b1Iγ(x) softmax
(
γ(x)⊤W⊤

KWQγ(x)
)

(23)
= (I ⊗ ρ(g))f(x). (24)

A.5. Neural Tangent Kernel of MLPs with Group Representation Positional Encodings

Here, we demonstrate that the NTK of an MLP trained with positional encodings coming from an orthgonal group
representation ρ is group invariant. As such, when trained on an equivariant task, the predictions on a test set are approximately
equivariant in a sense that we elaborate on below. Our exposition is similar to that of Tancik et al. (2020).

Suppose we have data points x1, . . . , xn, with positional encodings γ(xi) = vec(ρ(xi)) for some orthogonal group
representation ρ, so the norm of γ(xi) is the same for each i. The NTK is then rotationally invariant, so it can be written as
an inner product kernel, Kij = h(γ(xi)

⊤γ(xj)) for some h : R → R. If we transform each xi by g ∈ G, then the NTK
Kg

ij for the dataset gx1, . . . , gxn is given by

Kg
ij = h

(
vec(ρ(gxi))

⊤vec(ρ(gxj))
)

(25)

= h
(
vec(ρ(xi))

⊤vec(ρ(xj))
)

(26)
= Kij , (27)

8
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where we used Lemma A.1 for the second equality. Thus, the NTK is rotationally invariant with respect to the training
dataset. Now, suppose the labels yi ∈ Rd′

are G-equivariant functions of xi ∈ Rdx , that is yi = f(xi) for some f such that
f(gx) = ρ(g)f(x). Denote x = [x1, . . . , xn] ∈ Rdx×n, and let f(x) = [f(x1), . . . , f(xn)]. Let xtest ∈ Rdx×n′

denote
test points. Finally, let Ktest ∈ Rn×n′

denote the kernel between train and test points, Ktest
i,j = γ(xi)

⊤γ(xtest
j ). Under

NTK evolution when trained on a mean-squared error loss, the outputs fθt(x
test) at training time t can be approximated as

follows (Lee et al., 2019):

fθt(x
test) ≈ f(x)(I − e−ηKt)K−1Ktest. (28)

Now, suppose we transform both the train and test data by g. Note that then f(gx) = ρ(g)f(x). Further, the train and test
NTK matrices K and Ktest are invariant. Thus, if θgt denotes the parameters of the network at training time t on this new
data, we have

fθg
t
(gxtest) ≈ f(gx)(I − e−ηKt)K−1Ktest = ρ(g)f(x)(I − e−ηKt)K−1Ktest ≈ ρ(g)fθt(x

test). (29)

Thus, we have the approximate equivariance fθg
t
(gxtest) ≈ ρ(g)fθt(x

test). Importantly, here we have to transform the
training data of the MLP to get the equivariance property, which is slightly different than typical equivariance. This is
because we are considering the NTK-approximated training dynamics of the MLP, as opposed to considering equivariance
for any single function.

B. More Examples of Learned Implicit Neural Representations

Step 0 Step 25 Step 500

Figure 3. Learned implicit neural representations at different points in training for the Cameraman image. Each positional encoding
uses its best hyperparameter settings from the sweeps for the experiments in Section 5.1 (which is why the model at initialization looks
differently from that of Figure 2).

See Figure 3 for learned implicit neural representations at different points in training for the Cameraman image. We see that
the equivariance bias of the SO(2) is not helpful in this task. Nonetheless, it is able to ignore this equivariance bias during
training, and learn a highly non-rotationally-invariant prediction.

Also, see Figure 4 for learned implicit neural representations on the vector field tasks. The equivariance bias is somewhat
less visually evident here, but we can still see that early in training, the model with SO(2) positional encodings learns a
nearly rotationally-equivariant vector field for the Radial task.

9
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Step 0 Step 25 Step 500 Step 0 Step 25 Step 500

Figure 4. Learned implicit neural representations at different points in training for the (left) Radial and (right) Spiral vector fields.

C. Related work
Several works have proposed using Laplacian eigenvectors as positional encodings for general geometric domains (Koestler
et al., 2022; Grattarola & Vandergheynst, 2022; Lim et al., 2023). Koestler et al. (2022) suggests using Laplace-Beltrami
eigenfunctions to encode positions on manifolds, Grattarola & Vandergheynst (2022) propose using Laplacian eigenvectors
of a suitable discrete graph associated to any non-Euclidean domain, and Lim et al. (2023) show that eigenvector-symmetry-
invariant networks applied to Laplacian eigenvectors of graphs can approximate many previously proposed graph positional
encodings. These works follow many prior works that use Laplacian eigenvectors for positional encodings or similar
purposes, such as in geometry processing (Rustamov, 2007), graph neural networks / graph Transformers (Dwivedi &
Bresson, 2020), and general point clouds with low-dimensional structure (Belkin & Niyogi, 2003).

D. Experimental Details
D.1. Data Details

Here, we give the exact definitions of the synthetic vector fields and images that we experiment on. We use polar coordinates
(r, θ) instead of (x, y) for the definition, to give a more natural definition of SO(2) equivariant or approximately SO(2)
equivariant vector fields. For the Radial vector field, the vector at location (r, θ) is:

v(r, θ) = sin(15
√
r)

[
cos(θ)
sin(θ)

]
. (30)

For the Spiral vector field, the vector at location (r, θ) is:

v(r, θ) = sin(30
√
.1r + θ)

[
cos(θ)
sin(θ)

]
. (31)

The corresponding Radial image at pixel (x, y) has intensity value equal to the magnitude of the vector at (x, y) (so,
sin(15

√
r)), and similarly for the Spiral image the value at (x, y) is sin(30

√
.1r + θ).

D.2. Model and Positional Encoding Hyperparameters

T×T encoding hyperparameters. Similarly to Tancik et al. (2020), we sample the coefficients for the group representations
from a Gaussian distribution with a chosen scale c. That is, our positional encodings are of the form (x, y) 7→ [cos(α

(i)
1 x+

10
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α
(i)
2 y), sin(α

(i)
1 x+α

(i)
2 y)]i=1,...,16, for α(i)

j ∼ N (0, c2). In experiments, we search for c ∈ {.1, 1, 3, 5, 10, 15, 20, 50}. We
use a positional encoding dimension of 32.

SO(2) encoding hyperparameters. Recall our form of the SO(2) positional encodings: (r, θ) 7→ {Jm(cr)eikθ}m,c,k. In
our experiments, we fix m = 0 (so, we only use the 0th Bessel function J0). We sample the scale c uniformly within the
range [0, C] for some maximum value C, and uniformly sample integers k in the range [1,K) for some maximum value K.
In the experiments, we search over C ∈ {5, 25, 50} and K ∈ {2, 4, 8}. Again, we use a positional encoding dimension of
32.

Model details. In all experiments, we use a multi-layer perceptron with hidden dimension 128, 3 hidden layers, and ReLU
nonlinearities. The input dimension is 2 when not using positional encodings, and 32 when using positional encodings. The
output dimension is 1 for the image task, and 2 for the vector field task.

Task setup and training details. For all experiments, the grid size is 256 × 256 (both for images and vector fields).
We uniformly sample 5% of points on the grid as training points, then sample 40% for validation, and we test
on the rest of the points. We train, validate, and test using the mean squared error reconstruction loss, meaning
L(θ) = 1

|S|
∑

i∈S(v(xi, yi)− fθ(γ(xi, yi)))
2, where v(xi, yi) is the value of the image or vector field at location (xi, yi),

γ(xi, yi) is the positional encoding, and S is either the training, validation, or test set. We train for 500 parameter update
steps, where at each step we compute gradients with respect to all training points. We use the Adam optimizer with
learning rate searched for in {.0001, .001, .01}; for the no positional encoding baseline we search over more learning rates:
{.0001, .0005, .001, .005, .01, .05, .1}.
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