
Published as a conference paper at COLM 2024

See What LLMs Cannot Answer: A Self-Challenge Framework
for Uncovering LLM Weaknesses

Yulong Chen1,2∗ Yang Liu3 Jianhao Yan1 Xuefeng Bai1 Ming Zhong4

Yinghao Yang1 Ziyi Yang3 Chenguang Zhu Yue Zhang1,5†

1 Westlake University 2 University of Cambridge 3 Microsoft GenAI
4 UIUC 5 Westlake Institute for Advanced Study
yulongchen1010@gmail.com yaliu10@microsoft.com yue.zhang@wias.org.cn

Abstract

The impressive performance of Large Language Models (LLMs) has con-
sistently surpassed numerous human-designed benchmarks, presenting
new challenges in assessing the shortcomings of LLMs. Designing tasks
and finding LLMs’ limitations are becoming increasingly important. In
this paper, we investigate the question of whether an LLM can discover its
own limitations from the errors it makes. To this end, we propose a Self-
Challenge evaluation framework with human-in-the-loop. Starting from
seed instances that GPT-4 fails to answer, we prompt GPT-4 to summarize
error patterns that can be used to generate new instances and incorpo-
rate human feedback on them to refine these patterns for generating more
challenging data, iteratively. We end up with 8 diverse patterns, such
as text manipulation and questions with assumptions. We then build a
benchmark, SC-G4, consisting of 1,835 instances generated by GPT-4 using
these patterns, with human-annotated gold responses. The SC-G4 serves
as a challenging benchmark that allows for a detailed assessment of LLMs’
abilities. Our results show that only 44.96% of instances in SC-G4 can be an-
swered correctly by GPT-4. Interestingly, our pilot study indicates that these
error patterns also challenge other LLMs, such as Claude-3 and Llama-3,
and cannot be fully resolved through fine-tuning. Our work takes the first
step to demonstrate that LLMs can autonomously identify their inherent
flaws and provide insights for future dynamic and automatic evaluation.

1 Introduction

Large Language Models (LLMs), such as GPT-4 (OpenAI, 2023) and Llama (Touvron et al.,
2023a; Dubey et al., 2024), have shown remarkable performance on diverse Natural Lan-
guage Processing (NLP) tasks, and have been trusted by users as search engines and personal
assistant due to its great capacity (Tan et al., 2023b). To better understand the capability of
LLMs, much effort has been dedicated to evaluating LLMs on multiple benchmarks (Fabbri
et al., 2021; Gao & Wan, 2022; Huang et al., 2023; Bang et al., 2023; Zhong et al., 2023). Early
LLM evaluation work follows traditional evaluation protocols, which are designed to evalu-
ate task-specific models on datasets of single tasks (Nallapati et al., 2016; Rajpurkar et al.,
2016; Goyal et al., 2022), or benchmarks that assemble multiple tasks for evaluating a certain
capability, e.g., math problems (Cobbe et al., 2021) or summarization (Chen et al., 2023).
More recent work evaluates LLMs on complex and expertise-level human tasks (Zhong
et al., 2023; Skopek et al., 2023; Wang et al., 2024; Gandhi et al., 2024), such as the lawyer
qualification test (Shui et al., 2023), GAOKAO test (Zhang et al., 2023b), etc.1

∗Yulong Chen completed this work during his internship at Microsoft when he was a D.Phil.
student at Westlake University.

†Yue Zhang is the corresponding author.
1Due to space limit, we present more Related Work in Appendix A.

1

mailto:yulongchen1010@gmail.com
mailto:yaliu10@microsoft.com
mailto:yue.zhang@wias.org.cn

Published as a conference paper at COLM 2024

Figure 1: The overall Self-Challenge framework. We first summarize initial error patterns
from seed failure instances (Step 1). Then, we perform pattern evaluation (Step 2) to
determine whether summarized patterns can be used to generate challenging queries,
and obtain corresponding human feedback; pattern optimization (Step 3) to modify the
original pattern, making it more accurately describe challenging features, based on human
feedback (the difference between the initial pattern and optimized pattern in is highlighted
by underlined text). We frame Step 2 and Step 3 iteratively.

Although benchmarking scores are widely used to assess the capabilities of LLMs, they offer
a somewhat superficial view, i.e., mostly indicating whether LLMs can perform a specific
task without deeper analyses into the systems to uncover the precise reasons for failure or
the nuanced aspects of performance degradation (Zhang et al., 2023b). As a result, people
can be satisfied with high evaluation scores, but overlook the model’s real weaknesses
reflected in the negative instances, which can pertain to more fundamental issues, such as
tokenization (Sennrich et al., 2015). Therefore, developing more dynamic, adaptive, and
automated evaluation methods that can efficiently detect the limitations of LLM capabilities
remains an open challenge for the research community.

To mitigate the above, we propose a Self-Challenge2 framework that allows dynamic and
interpretable evaluation for LLMs. The key idea is to prompt LLMs to identify their
own limitations based on the errors they make, and then generate queries featuring those
limitations to challenge themselves. As shown in Figure 1, given a set of failure instances
from an LLM, we first prompt the LLM to summarize error patterns (Step 1), and then
ask it to iteratively evaluate (Step 2) and refine these patterns (Step 3), discovering new
challenging features and detailing those features. During this process, we engage human
experts to evaluate the quality of summarized patterns by manually identifying whether
such patterns can be used to generate challenging queries. Such a framework offers two
advantages: First, it enables the dynamic generation of large-scale datasets for quantitative
evaluation, starting from a small set of qualitative instances. Thus, it is adaptive and free
of human design for tasks. Second, the patterns provide a detailed description of features
that can lead to the failure of LLMs, which allows more fine-grained evaluation and thereby
makes the weaknesses of LLMs more interpretable.

Employing the Self-Challenge framework on GPT-4 (OpenAI, 2023), we obtain 8 challenging
patterns from 189 failure instances. Those error patterns are distinct, covering different
aspects of GPT-4’ limitations, such as Text Manipulation or Transformation and Temporal
Ambiguity or Confusion with Specific Events. Leveraging these patterns, we construct a new
benchmark, SC-G4, consisting of 1,835 challenging instances in the combination of 8 patterns
and 30 domains, where GPT-4 can only answer 44.96% correctly.

We further investigate characteristics of those error patterns using SC-G4. We first bench-
mark multiple LLMs in a zero-shot setting and show that those error patterns from GPT-4

2Later in this paper, unless otherwise specified, the terms "challenge" or "challenging" refer to
behaviours or features of queries that can induce LLMs to generate incorrect, hallucinatory, or non-
factual responses.

2

Published as a conference paper at COLM 2024

can generalize across different LLMs such as Claude–3 only achieving 24.47% accuracy and
Llama-3-70B achieving 23.32% accuracy. Interestingly, our pilot fine-tuning experiments
show these errors cannot be reliably addressed by simply fine-tuning on SC-G4, suggesting
that part of them can be “bugs” of LLMs, such as incompetence of text manipulation on
sub-word and character levels.

We release our data at https://github.com/cylnlp/Self-Challenge-GPT4.

2 Self-Challenge Framework

In this section, we introduce the Self-Challenge framework, designed to identify and sum-
marize error patterns in LLMs from errors. Additionally, it enables the generation of
representative data under each pattern, facilitating quantitative evaluation for various LLMs

The overall process of Self-Challenge is shown in Figure 1. In particular, given a set of
instances, the LLM is first prompted to discover potential challenging patterns from the
instances (subsection 2.1). To ensure the generated patterns are of high quality, we perform
pattern evaluation (subsection 2.2) and pattern optimization (subsection 2.3) with human-in-
the-loop. We further frame the above two processes in an iterative manner (subsection 2.4).
Appendix B presents detailed prompt information.

2.1 Pattern Summarization

As shown in Step 1 in Figure 1, given a set of queries Q = {q1, ..., q|Q|}, we obtain LLM
responses R = {r1, ..., r|R|} (|Q| = |R|) by directly prompting the LLM with the query, i.e.:

ri = ϕ(qi), (1)

where qi is the i-th query, ϕ is the LLM function, and ri is the LLM-generated response to qi.
We also collect correct responses C = {c1, ..., c|C|}, where ci is the correct response to qi.

Then, we prompt the LLM to summarize potential error patterns from those instances:

P = ϕ(Promptsumm(Q, R, C)), (2)

where Promptsumm is a natural language instruction that guides the LLM to generate initial
patterns and P is the summarized pattern list (P = {p1, ..., p|P|}).

2.2 Pattern Evaluation

In our experiments, we notice that some initially summarized patterns can be coarse-
grained and of low quality, i.e., a generated pattern fails to capture the features of queries
that challenge LLMs. Therefore, it is essential to evaluate these patterns. However, since
there are no fixed answers or gold standards for what constitutes a good pattern, evaluating
them directly (e.g., by comparing the similarity of two pieces of text) is not feasible.

To address this, we perform the pattern evaluation indirectly. In particular, we evaluate
whether a pattern accurately summarizes and describes the challenging features of a set
of queries by determining if it can be used to generate new, analogous, and challenging
queries. Therefore, given a summarized pattern p, we prompt the LLM to generate new
queries in a specific domain d,3 i.e.:

Qp,d = ϕ(Promptgen(p, d)), (3)

where Qp,d is the new query set under the pattern of p in the domain of d, and Promptgen is
a natural language instruction.

Similarly, for each query in Qp,d, we obtain its model-generated response by directly prompt-
ing the LLM (Equation 1). Human annotators then provide feedback. Each human feedback

3We find that, without the domain information (i.e., Qp = ϕ(Promptgen(p)), the generated queries
tend to converge and lack diversity.

3

https://github.com/cylnlp/Self-Challenge-GPT4

Published as a conference paper at COLM 2024

is a natural language that describes whether the query successfully challenges the LLM,
which functions both as an evaluation score and a “gradient” signal for later pattern opti-
mization. Finally, we can evaluate the pattern quality by accuracy, i.e., the portion of how
many queries successfully challenge the LLM.

The detailed annotation information can be found in Appendix C.

2.3 Pattern Optimization

After evaluating the pattern and obtaining the feedback, we then prompt the LLM to
optimize it, making it more accurate and detailed.

Taking each pattern p and its newly generated queries Qp (Qp =
⋃

d∈D Qq,d, where D = {d}),
corresponding LLM-generated responses Rp and human feedback Fp as input, we prompt
the LLM to optimize the pattern so that the optimized pattern can better reflect the features
of challenging queries and be used for generating new queries:

p′ = ϕ(Promptopt(p, Qp, Rp, Fp)), (4)

where p′ is the optimized pattern and Promptopt is a natural language instruction.

2.4 Iterative Self-Challenge

We iterate the pattern evaluation and optimization processes to ensure that the optimized
patterns are of high quality. In particular, we replace p with p′ in Equation 3 and can obtain
a new set of queries generated by p′. Then we evaluate the query-response under p′ and
obtain corresponding human feedback to optimize p′ by replacing p with p′ in Equation 4.
Through this iterative process, we can continually optimize the patterns until they are
considered good enough.

Finally, we can obtain a set of high-quality patterns, which illustrate where and how LLMs
can fail and can be used to generate more diverse queries under corresponding patterns.

3 Discovering Error Patterns in GPT-4 and Constructing SC-G4
Benchmark

To demonstrate the usage and facilitate future research, we apply our Self-Challenge frame-
work to GPT-4 (OpenAI, 2023).4 We first discover 8 error patterns from 189 failure instances
and construct a new benchmark, SC-G4, for quantitative evaluation.

3.1 Seed Instance Collection

We collect 189 diverse queries from online5 and from previous studies that qualitatively
evaluate GPT-4 such as (Zheng et al., 2023b). These instances are diverse in terms of task
formats and domains, which cover traditional NLP tasks such as multi-hop QA (Zheng
et al., 2023b), and non-traditional NLP tasks such as word sorting (bench authors, 2023).
Appendix D shows the collection details.

3.2 Error Pattern Discovery

Given the initial collection of queries, we first prompt GPT-4 to discover their initial patterns.
Due to the length limit, we group the instances according to their sources and prompt GPT-4
individually. In this way, we obtain a list of 14 initial patterns.

We then perform the pattern evaluation and optimization for two rounds. To smooth model
bias towards a certain domain, we provide 4 domain words. For each combination of pattern

4https://platform.openai.com/docs/models/gpt-4-and-gpt-4-turbo, gpt-4-32k version.
5For example: https://twitter.com/home and https://github.com/manyoso/haltt4llm.

4

https://platform.openai.com/docs/models/gpt-4-and-gpt-4-turbo
https://twitter.com/home
https://github.com/manyoso/haltt4llm

Published as a conference paper at COLM 2024

ID Pattern Name # %

A Assumption of Existence 179 9.75

B Bias towards More popular or Well-known Information&Overgeneralization 221 12.04

C Complex Counting or Identification Tasks 232 12.64

D Complex Logical Reasoning and Paradoxes 229 12.48

E Complex Syntactic Structures & Multiple Clauses 256 13.95

F Recursive and Unusual Patterns 230 12.53

G Temporal Ambiguity or Confusion with Specific Events 217 11.83

H Text Manipulation or Transformation 271 14.77

Table 1: A list of names of patterns, with instance counts (#) and portions (%) for each
individual pattern.

and domain, we generate 10 new queries, and thus have 4 × 10 = 40 new queries for each
pattern. Then, we manually evaluate model responses with human feedback. During this
process, we discard patterns that are consistently found less satisfying, i.e., over 50% of
generated queries cannot challenge GPT-4. Finally, we obtain 8 high-quality patterns.

Table 1 presents the list of pattern names, where we see that the error patterns cover
different aspects that can challenge GPT-4, ranging from underlying problems such as
character (letter) processing, which can be related to tokenization issues, to more high-level
problems such as logical reasoning.

Figure 2 presents one typical error pattern and its corresponding original pattern, where we
highlight their difference. We see that the original patterns are general while the optimized
patterns are more comprehensive and detailed in describing what kind of specific features
should be included in the query, such as “such as dependency or constituency...”. Moreover, the
optimized patterns include instructions on how to re-produce queries under such patterns.

We also apply the Self-Challenge framework to Llama-3-70B (Dubey et al., 2024) for pattern
discovery as shown in Appendix G, which, however, is less effective compared with GPT-4.

3.3 The SC-G4 Benchmark

After obtaining the patterns, we construct the SC-G4 benchmark consisting of 1,835 queries
with human-annotated gold responses under the combination of 8 patterns and 30 domains.

We randomly select 30 Wikipedia titles from Wikipedia metadata (Appendix E). For each
combination of pattern and title, we prompt the LLM to generate 10 diverse queries at once.
Thus, we have 8 ×30 ×10 = 2,400 new queries in total. Generally, we find that new queries can
mostly follow the pattern and are diverse in terms of specific tasks. Take pattern C (Complex
Counting or Identification Tasks, Appendix F) for example, the new query: “In the sentence,
‘Joey Votto is known for his exceptional plate discipline and ability to get on base,’ how many words
have the letter ‘e’ as the third character and end with the letter ‘n’?” suits the requirement of
“identify specific elements in complex sentences”. Moreover, the task of identifying a letter that
comes after another letter is not shown in the aforementioned instruction. It suggests we can
obtain diverse queries out of the limited features described in patterns.

As we aim to assemble the benchmark by collecting self-challenging data generated by GPT-
4, there remain two major questions. First, a few generated queries can still distract from
corresponding patterns, in particular when we use new domains for generation. Second,
the generated queries can lead to open-ended responses such as “Please combine two names of
the centers and institutes at Stanford University in an alphabet order” , which poses challenges
for practical evaluation. Therefore, we further filter out 565 queries to ensure the remaining
1,835 queries can be used to evaluate LLMs by comparing model-generated responses with
responses annotated by humans. We ask 4 human annotators to write the gold response
with the help of GPT-4, where annotators also manually give a binary label to the GPT-4

5

Published as a conference paper at COLM 2024

Figure 2: A case of optimized pattern, coupled with its original pattern. We highlight their
difference. Full patterns can be found in Appendix F.

response, indicating whether it is correct or not. This binary label is further used as the gold
evaluation results of GPT-4 on SC-G4. The detailed annotation information can be found in
Appendix C.

Finally, we obtain 1,835 queries annotated with gold responses. Our human evaluation
shows that GPT-4 can only achieve an accuracy of 44.96%. Table 2 gives the basic statistics
for the overall SC-G4 benchmark. This suggests that most queries generated by GPT-4 can
successfully challenge GPT-4 themselves. Also, we see that compared with GPT-4 responses,
the averaged token lengths of human-annotated responses are much less. It shows most
GPT-4 responses are further corrected by human annotators.

4 Benchmarking LLMs on SC-G4 and Investigating Error Generalization
across LLMs

In this section, we investigate the main question of whether GPT-4 error patterns are universal
and can generalize across other LLMs.

4.1 Experimental Setup

In addition to GPT-4, we experiment with other closed-source LLMs and open-source LLMs
on SC-G4, in both zero-shot and few-shot settings

Baseline Systems. We compare Gemma-7B (Team et al., 2024), Phi3-7B-instruct (Abdin et al.,
2024), Mixtral-8×7B-instruct (Jiang et al., 2024), Gemini-1-pro (Team et al., 2023), Llama
models (Touvron et al., 2023b; Dubey et al., 2024), Claude-3-Sonnet,6 and GPT-3.5-turbo and
GPT-4o models (Achiam et al., 2023; Brown et al., 2020) with GPT-4 (OpenAI, 2023).

Evaluation Data. For zero-shot experiments, we evaluate LLMs on the whole SC-G4 data.
For few-shot fine-tuning, we experiment under 2 settings as shown in Table 2. (1) Split
randomly: We first randomly split the SC-G4 into train/dev/test sets (500/335/1000), where
train and test sets share common patterns and domains. (2) Split by domains: We split the
SC-G4 into train/dev/test sets by constraining domains in them. In other words, train and
test sets have different domains but share common patterns. In particular, we split data of
10/5/15 domains into train/dev/test sets (629/247/959), respectively.

6https://www.anthropic.com/news/claude-3-family

6

https://www.anthropic.com/news/claude-3-family

Published as a conference paper at COLM 2024

Self-Chal # Avg Query Avg Gold R Avg GPT-4 R

Overall 1,835 34.84 49.08 78.13

Random-set 500/335/1,000 34.07/35.37/35.05 48.56/48.44/49.56 77.48/77.00/78.84

Domain-set 629/247/959 34.34/35.60/34.98 43.21/56.57/51.01 79.05/78.12/77.54

Table 2: Basic statistics for SC-G4 benchmark. #: instance count. Avg: averaged token length.
R: Response. We also report statistics of different data split strategies (Random and Domain)
as discussed in subsubsection 4.2.2.

Implementation Details. For zero-shot experiments, we directly prompt baseline LLMs
given queries as input. For few-shot experiments, we use LoRA (Hu et al., 2021) to fine-tune
the Llama 2-Chat (7B) in different settings (c.f. subsubsection 4.2.2 for detailed settings of
different data split strategies). We fine-tune the model on 8 A100 GPUs on our training sets
for 5 epochs7 and choose the best checkpoint by their loss on validation sets. We use the
AdamW optimizer (Loshchilov & Hutter, 2017) and set the learning rate as 2e-4.

Evaluation Protocol. For GPT-4, we directly evaluate their performance when annotating the
gold responses (subsection 3.3). However, it is not practical to conduct manual evaluation for
all models, which can be costly. Therefore, we evaluate model performance via prompting
GPT-4 (Liu et al., 2023) to compare the model response and gold response, i.e.:

l = ϕ(Prompteval(q, h, r)), (5)

where l, q, h and r are output label (“correct” or “incorrect”), query, gold and model-generated
responses, respectively. Appendix B presents the prompt in detail. We show that this
evaluation method achieves a moderate-to-high F-1 score of around 90 in Appendix I.

4.2 Result and Analysis

We first show results in a zero-shot setting, finding the “bugs” are universal to other LLMs,
and present few-shot results, finding most error patterns cannot be simply solved via tuning.

4.2.1 Zero-shot Performance

Table 3 shows the model performance on the full SC-G4 data in the zero-shot setting.
Generally, GPT-4 achieves the best performance of 44.96% human-evaluated accuracy and
47.63 GPT-4 evaluated accuracy, which, however, is still less satisfying. Compared with
GPT-4, other LLMs show poor performance on our data, where GPT-4o outperforms other
LLMs including Turbo, Llama models, and Claude-3. This suggests that although those
instances are initially aimed to challenge GPT-4, they are difficult for other LLMs. For Llama
2 based models, Chat models slightly outperform standard models. Also, we see that as the
sizes of LLMs increase, the overall performance increases.

We further analyze the model performance under different patterns, respectively. The break-
down analysis is shown in Table 3. Note that the pattern IDs are aligned with as in Table 1
and Appendix F, respectively. First, GPT-4 achieves the best human-evaluated accuracy
on patterns D (68.12%), A (67.60%) and B (65.61%), and show very poor performance on
patterns H (9.23%), C (22.41%) and G (38.25%). Also, Turbo shows a similar trend on those
patterns, while the performance on each pattern is much poorer than GPT-4. Interestingly,
although outperforming Turbo on most patterns, GPT-4o shows poor performance on pat-
tern A. We assume that this can be because the multi-modal training does not necessarily
enhance the models’ ability to disambiguate hallucinatory queries. In addition, Llama-based
models and other LLMs underperform GPT-4 on all patterns.

For Llama models, it is noted that Chat models show very poor performance on pattern A
compared with standard models, indicating they are more prone to hallucinate on queries
that include non-existent entities. Also, we see that Llama models of bigger size do not

7We also trained models with more steps, but did not observe large performance improvement.

7

Published as a conference paper at COLM 2024

LLMs A B C D E F G H all

Gemma-7B 25.70 8.14 8.19 11.35 16.80 6.09 5.07 0.00 9.65
Gemini-1-pro 17.88 17.65 7.76 17.03 26.17 10.87 5.07 0.00 12.59
Phi3-7B-instruct 12.29 21.72 15.09 37.55 20.31 21.30 9.22 2.21 17.33
Llama-2-7B 0.56 19.46 4.74 13.54 22.66 4.78 6.45 0.00 9.21
Llama-2-7B-chat 8.94 15.84 1.72 3.06 19.92 3.91 7.83 1.11 7.74
Llama-2-13B 0.00 23.53 6.90 14.41 27.34 5.65 11.06 0.00 11.34
Llama-2-13B-chat 17.88 18.55 5.17 13.97 22.27 5.65 7.83 0.37 11.17
Llama-3-70B-instruct 43.58 31.22 19.40 30.57 32.81 20.87 15.21 0.37 23.32
Mixtral-8x7B-instruct 24.58 24.43 8.19 18.34 26.56 13.04 7.37 0.37 14.93
Claude-3-Sonnet 41.34 34.39 20.69 35.37 29.69 24.35 15.21 1.85 24.47
GPT-3.5-turbo 49.72 42.53 14.22 39.74 43.75 23.91 23.04 2.58 28.94
GPT-4o 30.73 41.63 30.60 44.54 43.36 35.22 20.74 8.86 31.66
GPT-4 65.92 69.68 22.84 71.18 60.16 46.52 43.32 11.44 47.63
GPT-4† 67.60 65.61 22.41 68.12 57.42 41.74 38.25 9.23 44.96

Table 3: Model performance on full SC-G4 benchmark. We show the overall performance and
breakdown performance under different individual patterns. † indicates human evaluation
while others are evaluated by GPT-4. The IDs of patterns correspond to IDs in Table 1.

ID # G-4† G-4 L-2 L-2∗

A 106 65.09 60.38 7.55 31.13↑
B 110 64.55 69.09 15.45 10.00↓
C 129 20.16 23.26 1.55 6.20↑
D 118 66.95 71.19 1.69 0.85↓
E 145 56.55 58.62 19.31 23.45↑
F 124 40.32 45.16 3.23 5.65↑
G 118 34.75 40.68 9.32 8.47↓
H 150 8.67 10.00 1.33 0.00↓
all 1,000 43.10 45.80 7.40 10.40↑

ID # G-4† G-4 L-2 L-2∗

A 98 67.35 67.35 7.14 35.71↑
B 112 73.21 76.79 16.96 11.61↓
C 124 20.97 20.16 2.42 4.84↑
D 130 70.00 71.54 2.31 2.31
E 125 63.20 65.60 22.40 20.00↓
F 118 42.37 47.46 3.39 2.54↓
G 113 42.48 46.02 10.62 9.73↓
H 139 7.91 10.79 0.72 0.00↓
all 959 47.24 49.24 8.03 10.01↑

Table 4: Model performance on randomly split test set (left) and performance on test set
split by domains (right). G-4: GPT-4. L-2: Llama 2-Chat (7B). ∗: LoRA-tuned.

significantly perform better than smaller models on certain patterns, such as pattern H
(Llama-2-7B: 0.00; Lllama-2-13B: 0.00; Llama-3-70B: 0.37). This indicates that simply scaling
up the model size may not solve problems of such patterns. We present the breakdown
analysis of different domains in Appendix J.

4.2.2 Few-shot Performance

We experiment with 2 settings as stated in Table 4.1. The first is to give a general overview
of whether fine-tuning can bring improvement, while the latter is to present a more fine-
grained analysis.

Random Split. Table 4 (left) presents the results, which also include zero-shot performance
of GPT-4 and Llama 2-Chat (7B) on the test set for comparison. Generally, we see that
the LoRA-fine-tuned model shows a 3.00% accuracy improvement. However, we see that
fine-tuning only brings great improvement on pattern A (23.58%↑), but few on the rest. On
the other hand, fine-tuning even slightly hurts the model performance, such as B (5.45%↓)
and H (1.33%↓). The above results suggest that most challenges cannot be simply resolved
by fine-tuning.

Domain Split. As shown in Table 4 (right), similarly, the LoRA-tuned model shows the
best improvement on pattern A (28.57%↑) and shows poorer performance on B (5.35%↓),
E (2.40%↓), F (0.85%↓), G (0.89%↓) and H (0.72%↓) than zero-shot model. Moreover, the
performance gap between the LoRA-tuned and zero-shot models on this dataset is less than
on the randomly split dataset. Such a narrower gap indicates that different domain further

8

Published as a conference paper at COLM 2024

enhances the difficulty of generalization ability. This suggests that the model does not learn
relevant pattern knowledge from fine-tuning, except for pattern A.

4.3 Findings and Highlights

The error patterns can be universal in different LLMs. Evidenced by our zero-shot results,
we find all LLMs show poor results on GPT-4 error patterns. The results also show that
most LLMs tend to perform relatively well on patterns A and E, while relatively poor on
patterns C and H. Similar trends can be consistent with previous research (Huh et al., 2024;
Bommasani et al., 2022) that LLMs can be homogeneous as they are trained with similar
techs (e.g., transformers (Vaswani et al., 2017)) on similar data (e.g., Wikipedia) (Touvron
et al., 2023b; Radford et al.; Brown et al., 2020).

LLMs tend to fail on tasks that are related to tokenization. By analyzing patterns C and
H, we find they are mostly related to the tokenization mechanism in LLMs. Challenging
queries under these two patterns include identifying certain (sub-)words in a word, or
counting words with a specific feature (e.g., “start with ‘e’, and end with ’f’”). Such tasks
can be closely related to applications such as poetry generation (Oliveira, 2017), spelling
and grammar checking (Soni & Thakur, 2018), and teaching aide (Felten et al., 2023). We
emphasize that such issues reveal the problems of underlying tokenization mechanisms,
which can further influence the performance of downstream tasks. Also, it reveals that
the current tokenization design (Sennrich et al., 2015) in LLMs is different from humans,
making LLMs less sensitive to character-level information. While humans can easily solve
these tasks, LLMs fail to do so.

LLMs can sense the uncertainty within themselves. Our few-shot (in particular the cross-
domain) experiments show that the Llama model can benefit most from fine-tuning on
pattern A. It shows LLMs may have learned that there can be non-factual information in the
query even although we do not fine-tune them on more in-domain data. We hypothesize
that this reflects the LLMs’ ability to sense internal uncertainty (Zhang et al., 2024; Ye et al.,
2024), and that fine-tuning on such data enhances their threshold for taking uncertain
queries into account and responding more cautiously. We show more analyses, including
case study, in Appendix L.

Simply fine-tuning may not be able to solve all problems. We observe that fine-tuning
can enhance model performance on certain tasks (pattern A) (Yin et al., 2023). However, as
evidenced by our few-shot experiments in different settings, for the other patterns, we find
that fine-tuning does not bring consistent improvement. Although we acknowledge that
little improvement can be attributed to the small training data, there can be some inherent
flaws in LLMs. More advanced technologies or a large amount of relevant data may help to
resolve those error patterns, which we leave for future work.

5 Conclusion

In this work, we introduced a Self-Challenge framework that evaluates LLMs, revealing their
nuanced limitations by prompting LLMs to challenge themselves iteratively. By integrating
this framework with GPT-4, we obtained 8 typical error patterns, and assembled the SC-
G4 benchmark with 1,835 challenging instances, where GPT-4 achieves 44.96% accuracy.
We further showed that such patterns are universal across multiple LLMs, highlighted by
low accuracy rates in both zero-shot and few-shot settings, suggesting that the limitations
may not be mere oversights but inherent “bugs” within current LLM architectures or their
pre-training data.

Acknowledgments

We appreciate reviewers and meta-reviewers from COLM 2024 for their valuable feedback.
We also appreciate Bonnie Webber, Andreas Vlachos, Leyang Cui and Rami Aly for their
proofreading and insightful discussion. We acknowledge funding support from the NSFC
key project 62336006.

9

Published as a conference paper at COLM 2024

6 Ethics Statement

The construction of SC-G4 involves the participation of GPT-4 (input query generation) and
human annotation (gold output response).

Data Usage and Safety: During our annotation, we have ensured that the GPT-4 generated
text is safe and does not contain any uncomfortable descriptions, such as violent crimes and
events. The data in SC-G4, in particular under pattern A (Assumption of Existence), includes
fake questions that contain fictional entities or events. This inclusion is crucial for testing
and enhancing GPT-4’s ability to reason about hypothetical or speculative information,
thereby improving its performance across a variety of real-world applications.

Potential Biases of GPT-4 Generated Queries: We acknowledge that relying on GPT-4
to generate instances for evaluation can lead to potential biases, in particular data homo-
geneity (Ding et al., 2024; Dunlap et al., 2023). Although we enrich the input pattern with
additional domain information and evaluate their level of diversity by calculating the Dis-
tinct score (Li et al., 2015) as in Appendix M, there remains a potential problem that queries
under the same pattern and domain can be similar to each other without human verification.
This problem can be solved by decomposing the current patterns into more fine-grained
and detailed sub-patterns or providing larger domain text as a source for query generation,
which we leave for future work.

Human Annotation: Please refer to Appendix C, where we provide a detailed annotation
plan and how we compensate the annotators.

References
Marah Abdin, Sam Ade Jacobs, Ammar Ahmad Awan, Jyoti Aneja, Ahmed Awadallah,

Hany Awadalla, Nguyen Bach, Amit Bahree, Arash Bakhtiari, Harkirat Behl, et al. Phi-3
technical report: A highly capable language model locally on your phone. arXiv preprint
arXiv:2404.14219, 2024.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni
Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al.
Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.

Ateret Anaby-Tavor, Boaz Carmeli, Esther Goldbraich, Amir Kantor, George Kour, Segev
Shlomov, Naama Tepper, and Naama Zwerdling. Do not have enough data? deep learning
to the rescue! In Proceedings of the AAAI conference on artificial intelligence, volume 34, pp.
7383–7390, 2020.

Xuefeng Bai, Jialong Wu, Yulong Chen, Zhongqing Wang, and Yue Zhang. Constituency
parsing using llms. arXiv preprint arXiv:2310.19462, 2023.

Yejin Bang, Samuel Cahyawijaya, Nayeon Lee, Wenliang Dai, Dan Su, Bryan Wilie, Holy
Lovenia, Ziwei Ji, Tiezheng Yu, Willy Chung, et al. A multitask, multilingual, multi-
modal evaluation of chatgpt on reasoning, hallucination, and interactivity. arXiv preprint
arXiv:2302.04023, 2023.

BIG bench authors. Beyond the imitation game: Quantifying and extrapolating the capabili-
ties of language models. Transactions on Machine Learning Research, 2023. ISSN 2835-8856.
URL https://openreview.net/forum?id=uyTL5Bvosj.

Yonatan Bisk, Rowan Zellers, Ronan Le bras, Jianfeng Gao, and Yejin Choi. Piqa: Reasoning
about physical commonsense in natural language. Proceedings of the AAAI Conference on
Artificial Intelligence, 34(05):7432–7439, Apr. 2020. doi: 10.1609/aaai.v34i05.6239. URL
https://ojs.aaai.org/index.php/AAAI/article/view/6239.

Rishi Bommasani, Kathleen A Creel, Ananya Kumar, Dan Jurafsky, and Percy S Liang. Pick-
ing on the same person: Does algorithmic monoculture lead to outcome homogenization?
Advances in Neural Information Processing Systems, 35:3663–3678, 2022.

10

https://openreview.net/forum?id=uyTL5Bvosj
https://ojs.aaai.org/index.php/AAAI/article/view/6239

Published as a conference paper at COLM 2024

Ali Borji. A categorical archive of chatgpt failures. arXiv preprint arXiv:2302.03494, 2023.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini
Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya
Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner,
Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models
are few-shot learners. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-
Florina Balcan, and Hsuan-Tien Lin (eds.), Advances in Neural Information Processing
Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020,
December 6-12, 2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/
hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde, Jared Kaplan,
Harrison Edwards, Yura Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke
Chan, Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad
Bavarian, Clemens Winter, Philippe Tillet, Felipe Petroski Such, David W. Cummings,
Matthias Plappert, Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William H.
Guss, Alex Nichol, Igor Babuschkin, Suchir Balaji, Shantanu Jain, Andrew Carr, Jan Leike,
Joshua Achiam, Vedant Misra, Evan Morikawa, Alec Radford, Matthew M. Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario Amodei, Sam
McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large language models
trained on code. ArXiv, abs/2107.03374, 2021. URL https://api.semanticscholar.org/
CorpusID:235755472.

Yulong Chen, Yang Liu, Ruochen Xu, Ziyi Yang, Chenguang Zhu, Michael Zeng, and
Yue Zhang. UniSumm and SummZoo: Unified model and diverse benchmark for
few-shot summarization. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki
(eds.), Proceedings of the 61st Annual Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pp. 12833–12855, Toronto, Canada, July 2023. As-
sociation for Computational Linguistics. doi: 10.18653/v1/2023.acl-long.718. URL
https://aclanthology.org/2023.acl-long.718.

Bharath Chintagunta, Namit Katariya, Xavier Amatriain, and Anitha Kannan. Medically
aware gpt-3 as a data generator for medical dialogue summarization. In Machine Learning
for Healthcare Conference, pp. 354–372. PMLR, 2021.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and
Kristina Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions.
arXiv preprint arXiv:1905.10044, 2019.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and
John Schulman. Training verifiers to solve math word problems. ArXiv, abs/2110.14168,
2021. URL https://api.semanticscholar.org/CorpusID:239998651.

Chris Cummins, Volker Seeker, Dejan Grubisic, Mostafa Elhoushi, Youwei Liang, Baptiste
Rozière, Jonas Gehring, Fabian Gloeckle, Kim Hazelwood, Gabriel Synnaeve, and Hugh
Leather. Large language models for compiler optimization. ArXiv, abs/2309.07062, 2023.
doi: 10.48550/arXiv.2309.07062.

Haixing Dai, Zhengliang Liu, Wenxiong Liao, Xiaoke Huang, Yihan Cao, Zihao Wu, Lin
Zhao, Shaochen Xu, Wei Liu, Ninghao Liu, et al. Auggpt: Leveraging chatgpt for text
data augmentation. arXiv preprint arXiv:2302.13007, 2023.

Bosheng Ding, Chengwei Qin, Ruochen Zhao, Tianze Luo, Xinze Li, Guizhen Chen, Wenhan
Xia, Junjie Hu, Anh Tuan Luu, and Shafiq Joty. Data augmentation using llms: Data
perspectives, learning paradigms and challenges. arXiv preprint arXiv:2403.02990, 2024.

11

https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://api.semanticscholar.org/CorpusID:235755472
https://api.semanticscholar.org/CorpusID:235755472
https://aclanthology.org/2023.acl-long.718
https://api.semanticscholar.org/CorpusID:239998651

Published as a conference paper at COLM 2024

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle,
Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3
herd of models. arXiv preprint arXiv:2407.21783, 2024.

Yann Dubois, Xuechen Li, Rohan Taori, Tianyi Zhang, Ishaan Gulrajani, Jimmy Ba, Carlos
Guestrin, Percy Liang, and Tatsunori B. Hashimoto. Alpacafarm: A simulation framework
for methods that learn from human feedback, 2023.

Lisa Dunlap, Alyssa Umino, Han Zhang, Jiezhi Yang, Joseph E Gonzalez, and Trevor Darrell.
Diversify your vision datasets with automatic diffusion-based augmentation. Advances in
neural information processing systems, 36:79024–79034, 2023.

Alexander R Fabbri, Chien-Sheng Wu, Wenhao Liu, and Caiming Xiong. Qafacteval:
Improved qa-based factual consistency evaluation for summarization. arXiv preprint
arXiv:2112.08542, 2021.

Ed Felten, Manav Raj, and Robert Seamans. How will language modelers like chatgpt affect
occupations and industries? arXiv preprint arXiv:2303.01157, 2023.

Kanishk Gandhi, Jan-Philipp Fränken, Tobias Gerstenberg, and Noah Goodman. Under-
standing social reasoning in language models with language models. Advances in Neural
Information Processing Systems, 36, 2024.

Mingqi Gao and Xiaojun Wan. Dialsummeval: Revisiting summarization evaluation for dia-
logues. In Proceedings of the 2022 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, pp. 5693–5709, 2022.

Tanya Goyal, Junyi Jessy Li, and Greg Durrett. News summarization and evaluation in the
era of gpt-3. arXiv preprint arXiv:2209.12356, 2022.

Qingyan Guo, Rui Wang, Junliang Guo, Bei Li, Kaitao Song, Xu Tan, Guoqing Liu, Jiang
Bian, Yujiu Yang, Tsinghua University, and Microsoft Research. Connecting large lan-
guage models with evolutionary algorithms yields powerful prompt optimizers. ArXiv,
abs/2309.08532, 2023. doi: 10.48550/arXiv.2309.08532.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. In International
Conference on Learning Representations, 2021a. URL https://openreview.net/forum?id=
d7KBjmI3GmQ.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn
Song, and Jacob Steinhardt. Measuring mathematical problem solving with the MATH
dataset. In Thirty-fifth Conference on Neural Information Processing Systems Datasets and
Benchmarks Track (Round 2), 2021b. URL https://openreview.net/forum?id=7Bywt2mQsCe.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv
preprint arXiv:2106.09685, 2021.

Yuzhen Huang, Yuzhuo Bai, Zhihao Zhu, Junlei Zhang, Jinghan Zhang, Tangjun Su, Junteng
Liu, Chuancheng Lv, Yikai Zhang, Jiayi Lei, et al. C-eval: A multi-level multi-discipline
chinese evaluation suite for foundation models. arXiv preprint arXiv:2305.08322, 2023.

Minyoung Huh, Brian Cheung, Tongzhou Wang, and Phillip Isola. The platonic representa-
tion hypothesis. arXiv preprint arXiv:2405.07987, 2024.

Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary,
Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian
Bressand, et al. Mixtral of experts. arXiv preprint arXiv:2401.04088, 2024.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh,
Chris Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, et al. Natural
questions: a benchmark for question answering research. Transactions of the Association for
Computational Linguistics, 7:453–466, 2019.

12

https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=7Bywt2mQsCe

Published as a conference paper at COLM 2024

Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao, and Bill Dolan. A diversity-promoting
objective function for neural conversation models. arXiv preprint arXiv:1510.03055, 2015.

Xiao Li, Yawei Sun, and Gong Cheng. Tsqa: tabular scenario based question answering. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pp. 13297–13305,
2021.

Zekun Li, Wenhu Chen, Shiyang Li, Hong Wang, Jing Qian, and Xifeng Yan. Controllable
dialogue simulation with in-context learning. arXiv preprint arXiv:2210.04185, 2022.

Yen-Ting Lin, Alexandros Papangelis, Seokhwan Kim, Sungjin Lee, Devamanyu Haz-
arika, Mahdi Namazifar, Di Jin, Yang Liu, and Dilek Hakkani-Tur. Selective in-context
data augmentation for intent detection using pointwise v-information. arXiv preprint
arXiv:2302.05096, 2023.

Yang Liu, Dan Iter, Yichong Xu, Shuohang Wang, Ruochen Xu, and Chenguang Zhu.
Gpteval: Nlg evaluation using gpt-4 with better human alignment. arXiv preprint
arXiv:2303.16634, 2023.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Yu Meng, Martin Michalski, Jiaxin Huang, Yu Zhang, Tarek Abdelzaher, and Jiawei Han.
Tuning language models as training data generators for augmentation-enhanced few-shot
learning. In International Conference on Machine Learning, pp. 24457–24477. PMLR, 2023.

Ramesh Nallapati, Bowen Zhou, Cicero dos Santos, Çağlar Gu̇lçehre, and Bing Xiang.
Abstractive text summarization using sequence-to-sequence RNNs and beyond. In
Proceedings of the 20th SIGNLL Conference on Computational Natural Language Learning, pp.
280–290, Berlin, Germany, August 2016. Association for Computational Linguistics. doi:
10.18653/v1/K16-1028. URL https://aclanthology.org/K16-1028.

Hugo Gonçalo Oliveira. A survey on intelligent poetry generation: Languages, features,
techniques, reutilisation and evaluation. In Proceedings of the 10th international conference
on natural language generation, pp. 11–20, 2017.

OpenAI. Gpt-4 technical report. arXiv, pp. 2303–08774, 2023.

Chengwei Qin, Aston Zhang, Zhuosheng Zhang, Jiaao Chen, Michihiro Yasunaga, and
Diyi Yang. Is chatgpt a general-purpose natural language processing task solver? arXiv
preprint arXiv:2302.06476, 2023.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever.
Language models are unsupervised multitask learners.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+
questions for machine comprehension of text. arXiv preprint arXiv:1606.05250, 2016.

Gaurav Sahu, Pau Rodriguez, Issam H Laradji, Parmida Atighehchian, David Vazquez, and
Dzmitry Bahdanau. Data augmentation for intent classification with off-the-shelf large
language models. arXiv preprint arXiv:2204.01959, 2022.

Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare
words with subword units. arXiv preprint arXiv:1508.07909, 2015.

Ruihao Shui, Yixin Cao, Xiang Wang, and Tat-Seng Chua. A comprehensive evaluation
of large language models on legal judgment prediction. In Houda Bouamor, Juan Pino,
and Kalika Bali (eds.), Findings of the Association for Computational Linguistics: EMNLP
2023, pp. 7337–7348, Singapore, December 2023. Association for Computational Linguis-
tics. doi: 10.18653/v1/2023.findings-emnlp.490. URL https://aclanthology.org/2023.
findings-emnlp.490.

13

https://aclanthology.org/K16-1028
https://aclanthology.org/2023.findings-emnlp.490
https://aclanthology.org/2023.findings-emnlp.490

Published as a conference paper at COLM 2024

Ondrej Skopek, Rahul Aralikatte, Sian Gooding, and Victor Carbune. Towards better
evaluation of instruction-following: A case-study in summarization. In Jing Jiang,
David Reitter, and Shumin Deng (eds.), Proceedings of the 27th Conference on Compu-
tational Natural Language Learning (CoNLL), pp. 221–237, Singapore, December 2023.
Association for Computational Linguistics. doi: 10.18653/v1/2023.conll-1.16. URL
https://aclanthology.org/2023.conll-1.16.

Madhvi Soni and Jitendra Singh Thakur. A systematic review of automated grammar
checking in english language. arXiv preprint arXiv:1804.00540, 2018.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid,
Adam Fisch, Adam R. Brown, Adam Santoro, Aditya Gupta, Adrià Garriga-Alonso,
Agnieszka Kluska, Aitor Lewkowycz, Akshat Agarwal, Alethea Power, Alex Ray, Alex
Warstadt, Alexander W. Kocurek, Ali Safaya, Ali Tazarv, Alice Xiang, Alicia Parrish,
Allen Nie, Aman Hussain, Amanda Askell, Amanda Dsouza, Ambrose Slone, Ameet
Rahane, Anantharaman S. Iyer, Anders Andreassen, Andrea Madotto, Andrea Santilli,
Andreas Stuhlmüller, Andrew Dai, Andrew La, Andrew Lampinen, Andy Zou, Angela
Jiang, Angelica Chen, Anh Vuong, Animesh Gupta, Anna Gottardi, Antonio Norelli,
Anu Venkatesh, Arash Gholamidavoodi, Arfa Tabassum, Arul Menezes, Arun Kirubara-
jan, Asher Mullokandov, Ashish Sabharwal, Austin Herrick, Avia Efrat, Aykut Erdem,
Ayla Karakaş, B. Ryan Roberts, Bao Sheng Loe, Barret Zoph, Bartłomiej Bojanowski,
Batuhan Özyurt, Behnam Hedayatnia, Behnam Neyshabur, Benjamin Inden, Benno Stein,
Berk Ekmekci, Bill Yuchen Lin, Blake Howald, Bryan Orinion, Cameron Diao, Cameron
Dour, Catherine Stinson, Cedrick Argueta, César Ferri Ramírez, Chandan Singh, Charles
Rathkopf, Chenlin Meng, Chitta Baral, Chiyu Wu, Chris Callison-Burch, Chris Waites,
Christian Voigt, Christopher D. Manning, Christopher Potts, Cindy Ramirez, Clara E.
Rivera, Clemencia Siro, Colin Raffel, Courtney Ashcraft, Cristina Garbacea, Damien Sileo,
Dan Garrette, Dan Hendrycks, Dan Kilman, Dan Roth, Daniel Freeman, Daniel Khashabi,
Daniel Levy, Daniel Moseguí González, Danielle Perszyk, Danny Hernandez, Danqi Chen,
Daphne Ippolito, Dar Gilboa, David Dohan, David Drakard, David Jurgens, Debajyoti
Datta, Deep Ganguli, Denis Emelin, Denis Kleyko, Deniz Yuret, Derek Chen, Derek Tam,
Dieuwke Hupkes, Diganta Misra, Dilyar Buzan, Dimitri Coelho Mollo, Diyi Yang, Dong-
Ho Lee, Dylan Schrader, Ekaterina Shutova, Ekin Dogus Cubuk, Elad Segal, Eleanor
Hagerman, Elizabeth Barnes, Elizabeth Donoway, Ellie Pavlick, Emanuele Rodola, Emma
Lam, Eric Chu, Eric Tang, Erkut Erdem, Ernie Chang, Ethan A. Chi, Ethan Dyer, Ethan
Jerzak, Ethan Kim, Eunice Engefu Manyasi, Evgenii Zheltonozhskii, Fanyue Xia, Fate-
meh Siar, Fernando Martínez-Plumed, Francesca Happé, Francois Chollet, Frieda Rong,
Gaurav Mishra, Genta Indra Winata, Gerard de Melo, Germán Kruszewski, Giambat-
tista Parascandolo, Giorgio Mariani, Gloria Wang, Gonzalo Jaimovitch-López, Gregor
Betz, Guy Gur-Ari, Hana Galijasevic, Hannah Kim, Hannah Rashkin, Hannaneh Ha-
jishirzi, Harsh Mehta, Hayden Bogar, Henry Shevlin, Hinrich Schütze, Hiromu Yakura,
Hongming Zhang, Hugh Mee Wong, Ian Ng, Isaac Noble, Jaap Jumelet, Jack Geissinger,
Jackson Kernion, Jacob Hilton, Jaehoon Lee, Jaime Fernández Fisac, James B. Simon,
James Koppel, James Zheng, James Zou, Jan Kocoń, Jana Thompson, Janelle Wingfield,
Jared Kaplan, Jarema Radom, Jascha Sohl-Dickstein, Jason Phang, Jason Wei, Jason Yosin-
ski, Jekaterina Novikova, Jelle Bosscher, Jennifer Marsh, Jeremy Kim, Jeroen Taal, Jesse
Engel, Jesujoba Alabi, Jiacheng Xu, Jiaming Song, Jillian Tang, Joan Waweru, John Bur-
den, John Miller, John U. Balis, Jonathan Batchelder, Jonathan Berant, Jörg Frohberg, Jos
Rozen, Jose Hernandez-Orallo, Joseph Boudeman, Joseph Guerr, Joseph Jones, Joshua B.
Tenenbaum, Joshua S. Rule, Joyce Chua, Kamil Kanclerz, Karen Livescu, Karl Krauth,
Karthik Gopalakrishnan, Katerina Ignatyeva, Katja Markert, Kaustubh D. Dhole, Kevin
Gimpel, Kevin Omondi, Kory Mathewson, Kristen Chiafullo, Ksenia Shkaruta, Kumar
Shridhar, Kyle McDonell, Kyle Richardson, Laria Reynolds, Leo Gao, Li Zhang, Liam
Dugan, Lianhui Qin, Lidia Contreras-Ochando, Louis-Philippe Morency, Luca Moschella,
Lucas Lam, Lucy Noble, Ludwig Schmidt, Luheng He, Luis Oliveros Colón, Luke Metz,
Lütfi Kerem Şenel, Maarten Bosma, Maarten Sap, Maartje ter Hoeve, Maheen Farooqi,
Manaal Faruqui, Mantas Mazeika, Marco Baturan, Marco Marelli, Marco Maru, Maria
Jose Ramírez Quintana, Marie Tolkiehn, Mario Giulianelli, Martha Lewis, Martin Potthast,
Matthew L. Leavitt, Matthias Hagen, Mátyás Schubert, Medina Orduna Baitemirova,

14

https://aclanthology.org/2023.conll-1.16

Published as a conference paper at COLM 2024

Melody Arnaud, Melvin McElrath, Michael A. Yee, Michael Cohen, Michael Gu, Michael
Ivanitskiy, Michael Starritt, Michael Strube, Michał Swędrowski, Michele Bevilacqua,
Michihiro Yasunaga, Mihir Kale, Mike Cain, Mimee Xu, Mirac Suzgun, Mitch Walker,
Mo Tiwari, Mohit Bansal, Moin Aminnaseri, Mor Geva, Mozhdeh Gheini, Mukund Varma
T, Nanyun Peng, Nathan A. Chi, Nayeon Lee, Neta Gur-Ari Krakover, Nicholas Cameron,
Nicholas Roberts, Nick Doiron, Nicole Martinez, Nikita Nangia, Niklas Deckers, Niklas
Muennighoff, Nitish Shirish Keskar, Niveditha S. Iyer, Noah Constant, Noah Fiedel, Nuan
Wen, Oliver Zhang, Omar Agha, Omar Elbaghdadi, Omer Levy, Owain Evans, Pablo
Antonio Moreno Casares, Parth Doshi, Pascale Fung, Paul Pu Liang, Paul Vicol, Pegah
Alipoormolabashi, Peiyuan Liao, Percy Liang, Peter Chang, Peter Eckersley, Phu Mon
Htut, Pinyu Hwang, Piotr Miłkowski, Piyush Patil, Pouya Pezeshkpour, Priti Oli, Qiaozhu
Mei, Qing Lyu, Qinlang Chen, Rabin Banjade, Rachel Etta Rudolph, Raefer Gabriel, Rahel
Habacker, Ramon Risco, Raphaël Millière, Rhythm Garg, Richard Barnes, Rif A. Saurous,
Riku Arakawa, Robbe Raymaekers, Robert Frank, Rohan Sikand, Roman Novak, Roman
Sitelew, Ronan LeBras, Rosanne Liu, Rowan Jacobs, Rui Zhang, Ruslan Salakhutdinov,
Ryan Chi, Ryan Lee, Ryan Stovall, Ryan Teehan, Rylan Yang, Sahib Singh, Saif M. Mo-
hammad, Sajant Anand, Sam Dillavou, Sam Shleifer, Sam Wiseman, Samuel Gruetter,
Samuel R. Bowman, Samuel S. Schoenholz, Sanghyun Han, Sanjeev Kwatra, Sarah A.
Rous, Sarik Ghazarian, Sayan Ghosh, Sean Casey, Sebastian Bischoff, Sebastian Gehrmann,
Sebastian Schuster, Sepideh Sadeghi, Shadi Hamdan, Sharon Zhou, Shashank Srivastava,
Sherry Shi, Shikhar Singh, Shima Asaadi, Shixiang Shane Gu, Shubh Pachchigar, Shubham
Toshniwal, Shyam Upadhyay, Shyamolima, Debnath, Siamak Shakeri, Simon Thormeyer,
Simone Melzi, Siva Reddy, Sneha Priscilla Makini, Soo-Hwan Lee, Spencer Torene, Srihar-
sha Hatwar, Stanislas Dehaene, Stefan Divic, Stefano Ermon, Stella Biderman, Stephanie
Lin, Stephen Prasad, Steven T. Piantadosi, Stuart M. Shieber, Summer Misherghi, Svetlana
Kiritchenko, Swaroop Mishra, Tal Linzen, Tal Schuster, Tao Li, Tao Yu, Tariq Ali, Tatsu
Hashimoto, Te-Lin Wu, Théo Desbordes, Theodore Rothschild, Thomas Phan, Tianle
Wang, Tiberius Nkinyili, Timo Schick, Timofei Kornev, Titus Tunduny, Tobias Gerstenberg,
Trenton Chang, Trishala Neeraj, Tushar Khot, Tyler Shultz, Uri Shaham, Vedant Misra,
Vera Demberg, Victoria Nyamai, Vikas Raunak, Vinay Ramasesh, Vinay Uday Prabhu,
Vishakh Padmakumar, Vivek Srikumar, William Fedus, William Saunders, William Zhang,
Wout Vossen, Xiang Ren, Xiaoyu Tong, Xinran Zhao, Xinyi Wu, Xudong Shen, Yadollah
Yaghoobzadeh, Yair Lakretz, Yangqiu Song, Yasaman Bahri, Yejin Choi, Yichi Yang, Yid-
ing Hao, Yifu Chen, Yonatan Belinkov, Yu Hou, Yufang Hou, Yuntao Bai, Zachary Seid,
Zhuoye Zhao, Zijian Wang, Zijie J. Wang, Zirui Wang, and Ziyi Wu. Beyond the imitation
game: Quantifying and extrapolating the capabilities of language models, 2023.

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, Yi Tay, Hyung Won
Chung, Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny Zhou, et al. Challenging big-
bench tasks and whether chain-of-thought can solve them. arXiv preprint arXiv:2210.09261,
2022.

Qingyu Tan, Hwee Tou Ng, and Lidong Bing. Towards benchmarking and improving the
temporal reasoning capability of large language models. arXiv preprint arXiv:2306.08952,
2023a.

Yiming Tan, Dehai Min, Yu Li, Wenbo Li, Nan Hu, Yongrui Chen, and Guilin Qi. Can
chatgpt replace traditional kbqa models? an in-depth analysis of the question answering
performance of the gpt llm family. In International Semantic Web Conference, pp. 348–367.
Springer, 2023b.

Zhen Tan, Alimohammad Beigi, Song Wang, Ruocheng Guo, Amrita Bhattacharjee, Bohan
Jiang, Mansooreh Karami, Jundong Li, Lu Cheng, and Huan Liu. Large language models
for data annotation: A survey. arXiv preprint arXiv:2402.13446, 2024.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui
Yu, Radu Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family
of highly capable multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju,
Shreya Pathak, Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale, Juliette Love, et al.

15

Published as a conference paper at COLM 2024

Gemma: Open models based on gemini research and technology. arXiv preprint
arXiv:2403.08295, 2024.

Petter Törnberg. Chatgpt-4 outperforms experts and crowd workers in annotating political
twitter messages with zero-shot learning. arXiv preprint arXiv:2304.06588, 2023.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux,
Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al.
Llama: Open and efficient foundation language models. arXiv preprint arXiv:2302.13971,
2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2:
Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023b.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Isabelle Guyon, Ulrike
von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan,
and Roman Garnett (eds.), Advances in Neural Information Processing Systems 30: Annual
Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach,
CA, USA, pp. 5998–6008, 2017. URL https://proceedings.neurips.cc/paper/2017/hash/
3f5ee243547dee91fbd053c1c4a845aa-Abstract.html.

Weizhi Wang, Li Dong, Hao Cheng, Xiaodong Liu, Xifeng Yan, Jianfeng Gao, and Furu Wei.
Augmenting language models with long-term memory. Advances in Neural Information
Processing Systems, 36, 2024.

Zezhong Wang, Fangkai Yang, Lu Wang, Pu Zhao, Hongru Wang, Liang Chen, Qingwei
Lin, and Kam-Fai Wong. Self-guard: Empower the llm to safeguard itself. arXiv preprint
arXiv:2310.15851, 2023.

Yotam Wolf, Noam Wies, Yoav Levine, and A. Shashua. Fundamental limitations of align-
ment in large language models. ArXiv, abs/2304.11082, 2023. doi: 10.48550/arXiv.2304.
11082.

Jianhao Yan, Yun Luo, and Yue Zhang. Refutebench: Evaluating refuting instruction-
following for large language models. arXiv preprint arXiv:2402.13463, 2024.

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V. Le, Denny Zhou, and
Xinyun Chen. Large language models as optimizers. ArXiv, abs/2309.03409, 2023. doi:
10.48550/arXiv.2309.03409.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William Cohen, Ruslan Salakhutdi-
nov, and Christopher D Manning. Hotpotqa: A dataset for diverse, explainable multi-hop
question answering. In Proceedings of the 2018 Conference on Empirical Methods in Natural
Language Processing, pp. 2369–2380, 2018.

Fanghua Ye, Mingming Yang, Jianhui Pang, Longyue Wang, Derek F Wong, Emine Yilmaz,
Shuming Shi, and Zhaopeng Tu. Benchmarking llms via uncertainty quantification. arXiv
preprint arXiv:2401.12794, 2024.

Zhangyue Yin, Qiushi Sun, Qipeng Guo, Jiawen Wu, Xipeng Qiu, and Xuanjing Huang.
Do large language models know what they don’t know? pp. 8653–8665, 2023. doi:
10.48550/arXiv.2305.18153.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. HellaSwag: Can a
machine really finish your sentence? In Anna Korhonen, David Traum, and Lluís Màrquez
(eds.), Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics,
pp. 4791–4800, Florence, Italy, July 2019. Association for Computational Linguistics. doi:
10.18653/v1/P19-1472. URL https://aclanthology.org/P19-1472.

Biao Zhang, Barry Haddow, and Alexandra Birch. Prompting large language model for
machine translation: A case study. In International Conference on Machine Learning, pp.
41092–41110. PMLR, 2023a.

16

https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://aclanthology.org/P19-1472

Published as a conference paper at COLM 2024

Caiqi Zhang, Fangyu Liu, Marco Basaldella, and Nigel Collier. Luq: Long-text uncertainty
quantification for llms. arXiv preprint arXiv:2403.20279, 2024.

Xiaotian Zhang, Chun yan Li, Yi Zong, Zhengyu Ying, Liang He, and Xipeng Qiu. Evaluating
the performance of large language models on gaokao benchmark. ArXiv, abs/2305.12474,
2023b. doi: 10.48550/arXiv.2305.12474.

Yue Zhang, Yafu Li, Leyang Cui, Deng Cai, Lemao Liu, Tingchen Fu, Xinting Huang, Enbo
Zhao, Yu Zhang, Yulong Chen, et al. Siren’s song in the ai ocean: a survey on hallucination
in large language models. arXiv preprint arXiv:2309.01219, 2023c.

Chujie Zheng, Sahand Sabour, Jiaxin Wen, Zheng Zhang, and Minlie Huang. Augesc:
Dialogue augmentation with large language models for emotional support conversation.
arXiv preprint arXiv:2202.13047, 2022.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao
Zhuang, Zi Lin, Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang, Joseph E. Gonzalez,
and Ion Stoica. Judging llm-as-a-judge with mt-bench and chatbot arena, 2023a.

Shen Zheng, Jie Huang, and Kevin Chen-Chuan Chang. Why does chatgpt fall short in
providing truthful answers? arXiv preprint arXiv:2304.10513, 2023b.

Ming Zhong, Yang Liu, Da Yin, Yuning Mao, Yizhu Jiao, Pengfei Liu, Chenguang Zhu,
Heng Ji, and Jiawei Han. Towards a unified multi-dimensional evaluator for text gen-
eration. In Proceedings of the 2022 Conference on Empirical Methods in Natural Language
Processing, pp. 2023–2038, Abu Dhabi, United Arab Emirates, December 2022. Association
for Computational Linguistics. URL https://aclanthology.org/2022.emnlp-main.131.

Wanjun Zhong, Ruixiang Cui, Yiduo Guo, Yaobo Liang, Shuai Lu, Yanlin Wang, Amin
Saied, Weizhu Chen, and Nan Duan. Agieval: A human-centric benchmark for evaluating
foundation models. arXiv preprint arXiv:2304.06364, 2023.

Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Siddhartha Brahma, Sujoy Basu, Yi Luan, Denny
Zhou, and Le Hou. Instruction-following evaluation for large language models. arXiv
preprint arXiv:2311.07911, 2023.

Yiming Zhu, Peixian Zhang, Ehsan-Ul Haq, Pan Hui, and Gareth Tyson. Can chatgpt
reproduce human-generated labels? a study of social computing tasks. arXiv preprint
arXiv:2304.10145, 2023.

A Related Work

Evaluating LLMs. Recently, model evaluation has gained increasing attention from the
communities (Zhang et al., 2023c; Fabbri et al., 2021; Gao & Wan, 2022; Bai et al., 2023;
Zhong et al., 2022; 2023; Huang et al., 2023; Bang et al., 2023; Chen et al., 2023). Before the
surge of LLMs, evaluation protocols mainly focus on evaluating a certain aspect of a single
task (Zheng et al., 2023b; Goyal et al., 2022). Evaluation in LLMs can be broadly divided
into two categories. A line of work aims to evaluate the comprehensive performance, either
on a large set of tasks (Qin et al., 2023; Bang et al., 2023; Zhong et al., 2023; Hendrycks
et al., 2021a; Srivastava et al., 2023), or evaluate on representative datasets of core scenarios,
such as general instruction-response (Dubois et al., 2023; Zheng et al., 2023a). Another
line of research focuses on specific capabilities of LLMs, such as MATH (Cobbe et al.,
2021; Hendrycks et al., 2021b), reasoning (Zellers et al., 2019; Bisk et al., 2020), instruction
following (Zhou et al., 2023; Yan et al., 2024), coding (Chen et al., 2021), etc. Our work does
not fall into these two categories but rather focuses on locating the specific limitations of
LLMs.

There has been work that highlights the intrinsic limitation of LLMs (Yin et al., 2023; Wolf
et al., 2023). For example, Yin et al. (2023) explore LLMs’ self-knowledge, revealing the
limits of their knowledge compared to human proficiency. Wolf et al. (2023) investigate
the fundamental limitations of aligning LLM behaviours with human intentions. However,

17

https://aclanthology.org/2022.emnlp-main.131

Published as a conference paper at COLM 2024

they still focus on evaluating LLMs on certain tasks. In contrast, we find challenging tasks
(error patterns) from data in the wild.

Data Augmentation using LLMs. Recently, researchers have explored using LLMs as
annotators for creating and augmenting data of their interest, using both zero-shot and few-
shot learning (Ding et al., 2024; Tan et al., 2024). For example, Dai et al. (2023); Anaby-Tavor
et al. (2020); Sahu et al. (2022); Lin et al. (2023); Törnberg (2023); Zhu et al. (2023) use LLMs
such as ChatGPT and GPT-4 to label raw text for text classification tasks, and Chintagunta
et al. (2021); Zhang et al. (2023a) use LLMs to generate output texts for text generation tasks,
such as machine translation and text summarization. Additionally, Anaby-Tavor et al. (2020)
finetune GPT-2 with small data to annotate new training data for text classification tasks. Li
et al. (2022); Zheng et al. (2022); Meng et al. (2023) use LLMs to augment dialogues with
few-shot learning.

Our work falls in the above studies that use LLMs for data augmentation. However, different
from those that mostly use LLMs to augment analogous data or label output text, we use
LLMs to obtain diverse queries for a specific task under the guidance of patterns (instruction)
generated by LLMs themselves.

Using LLMs as Optimizers. Our Self-Challenge framework involves using LLMs as opti-
mizers to modify the patterns. Similarly, Yang et al. (2023) introduce the optimization by
prompting, which employs LLMs for generating solutions in natural language. Cummins
et al. (2023) explore the application of LLMs in optimizing code. Guo et al. (2023) integrate
evolutionary algorithms with LLMs for discrete prompt optimization.

B Details of Prompts

B.1 Summarization Prompt

We first ask GTP-4 to analyze the error instances:

Given the below question, incorrect model answer, and correct answer, please ana-
lyze why and how this question induces GPT-4 to generate an incorrect answer. Do
not provide suggestions on how to improve GPT-4 performance on such questions.
...
{Question: {qi}; GPT-4 Answer: {ri}; Correct Answer: {ci}}
...

where {qi}, {ri} and {ci} are the i-th query, model response and correct answer.

Then, we ask GPT-4 to summarize possible patterns of challenging questions using the
below prompt:

Below are some questions, where GPT-4 fails to generate correct answers, and
corresponding analysis why and how the question challenges GPT-4:
...
{Question: {qi}; Analysis: {ai}}
...
According to the questions and analysis, please summarize the most common
patterns of the above questions, which can induce GPT-4 to generate incorrect
answers. Please note that:
a. The patterns can describe features from different cognitive levels in those
questions, for example, syntax, semantics, pragmatics, or even the knowledge
acquisition in GPT-4.
b. Each above question can contain multiple patterns.
c. Each summarized pattern should at least appear in one of the above questions.
d. For each summarized pattern, give clear and detailed explanation and analysis
to make the summarized pattern understandable.
e. Each pattern should be formulated in a reproducible way. Following each
pattern, please give suggestions on: when we want to generate questions using the

18

Published as a conference paper at COLM 2024

summarized patterns, how can we generate those questions, which contain such
patterns and induce GPT-4 to fail?

where {ai} is the analysis to the i-th query.

B.2 Generation Prompt

We use the below prompt to generate new queries:

Below is a pattern, which is summarized from a set of questions that induce GPT-4
to generate incorrect answers.
Pattern: {Pi}
Please generate 10 new questions that contain such a pattern in the {domain}
domain. Please note that:
1. The question should induce GPT-4 to generate incorrect answers.
2. The question should be answered by a short sentence or phrase. The answer
should not be complicated, for example, not a paragraph of hundreds of words.
3. The new questions should be diverse, and are different from each other in terms of
their main contents, entities, events, and question types. Do not generate questions
consistently asking the same thing, or having large lexical overlaps.
4. You should generate more diverse and novel questions of different types, as
long as those new questions contain the pattern and successfully induce GPT-4 to
generate incorrect answers.
5. Please generate questions with entries (e.g., “1.”) and do not generate possible
answers or generate patterns again.

where {Pi} is an individual pattern (full pattern with name and description), and {domain}
is a domain word, such as Martin Nolan.

B.3 Optimization Prompt

After collecting model responses and their corresponding human feedback, we use the
below prompt to optimize the initial pattern:

Please first read the below original pattern, which is summarized from questions
where GPT-4 fails, and their paired example questions.
Pattern: Pi
Below are new questions, which are generated using the above pattern and should
induce GPT-4 to fail, GPT-4 answers to those new questions and their correspond-
ing human feedback:
...
{Question: {qi}; GPT-4 Answer: {ri}; Human Feedback: { fi}}
...
Given the new questions which are generated using that pattern, GPT-4 answers,
and human feedback, please:
1. Check whether the new questions successfully induce GPT-4 to generate incorrect
answers: if not, analyze reasons why GPT-4 can successfully generate correct
answers for those new questions, which are supposed to induce GPT-4 to generate
incorrect answers.
2. Then consider how to modify the pattern so that it can be used to generate
questions where GPT-4 is more likely to fail. In particular, you should treat the
questions where GPT-4 answers correctly as negative samples.
The modification can include but are not limited to:
Modify a vague pattern into a more fine-grained and specific pattern.
Add descriptions on what types of questions that GPT-4 can answer correctly, and
how we should avoid them when generating questions.

19

Published as a conference paper at COLM 2024

However, please ensure that questions generated by new patterns should be an-
swerable and can be answered by a short phrase.

where {qi}, {ri} and { fi} are the i-th query, model response and human feedback.

B.4 Evaluation Prompt

Given a query and its correct response, we evaluate the model outputs by using the below
prompt:

Please first read the below question, its correct answer and a model-generated
answer:
Question: {question}
Correct Answer: {correctresponse}
Model-generated Answer: {modelresponse}
Is the model-generated answer correct or incorrect? Please only output “correct”
or “incorrect”.

C Details of Annotation

C.1 GPT-4 Response Verification and Gold Response Annotation

We ask annotators to write a gold response to a query with the help of GPT-4 response.
In particular, given a query, we first prompt GPT-4 to generate a response and then ask
the human annotator to check whether the model response is correct or not. In addition
to questions and responses, annotators are also presented with corresponding patterns,
to help them better understand what the task the LLMs are doing. For example, for the
Assumption of Existence questions, responses including “Sorry, I cannot find relevant information
on [non-existent entities/events]” would be regarded as “correct”.

For responses that contain reasoning steps (such as text manipulation and counting tasks),
they should examine whether the reasoning is correct. For example:

Query: In the sentence “Henrik Lundqvist is often regarded as one of the best
goaltenders in the history of the NHL,” identify the total number of words that end
with the letter "s" (ignoring case-sensitivity).
GPT-4 Response: In the given sentence, there are 3 words that end with the letter
"s": "Lundqvist," "as," and "goaltenders."
Human Label: incorrect (although there are 3 words ending with “s”, GPt-4
mistakenly take “Lundqvist” as a candidate)

If the response is correct, the annotator can use it as the gold response with modification.
If the response is found error, the annotator is asked to perform post-editing to correct the
model response, which then can be used as the gold response.

When evaluating GPT-4 responses and annotating gold responses, annotators are encour-
aged to utilize various tools, including search engines (e.g., Google) and syntax analyzers,
to check the factuality and correctness of GPT-4 answers.

C.2 Quality Control

To ensure quality, we require annotators to practice on 20 training samples and achieve
satisfactory performance on our assessment test before proceeding to real annotations. We
pay extra attention to (1) Incorrect: If any error (in particular factual) is found in GPT4
response, annotators label it as correct (or vice versa); annotated responses contain errors, in
particular, annotators use incorrect GPT4 responses as gold responses without modification;
(2) Unreadable: annotated response is oversimplified particularly if annotators modify
GPT4 responses, but annotated responses need GPT4 response as context to understand.

20

Published as a conference paper at COLM 2024

id Wiki Title (domain) # id Wiki Title (domain) #

1 Abney Park Cemetery 62 16 Martin Nolan 50
2 Anatoly Karpov 61 17 Maryborough Base Hospital 55
3 Chaka Khan 69 18 Mixtec language 52
4 Child Workers in Nepal 67 19 Muirchertach Ua Briain 56
5 Chinese calligraphy 67 20 Murgon State School 39
6 Corruption in Yemen 63 21 Philippine drug war 69
7 Development of COVID-19 tests 65 22 Prespa Agreement 66
8 Edinburgh and Northern Railway 72 23 Ray Cooper 50
9 Emergency medical services in Germany 62 24 Scouting in Illinois 65
10 Henrik Lundqvist 77 25 Shirley Chisholm 70
11 Joey Votto 67 26 Stanford University centers & institutes 64
12 John Mowbray, 3rd Duke of Norfolk 56 27 Sunflower Student Movement 47
13 Josh Shapiro 69 28 The Battles of Coxinga 47
14 Laura Siegemund 61 29 Transportation in Washington, D.C. 71
15 Long QT syndrome 55 30 Zhejiang University 61

Table 5: Domains that are used for generating new queries. #: the count of valid queries in
our final (1,835) data.

For the test annotation, we require that their accuracy in determining the correctness of
GPT-4 responses should reach at least 90%, and 90% of their annotation on gold responses
should be reasonable and correct to the queries.

After annotation, we conduct a quality control process where we randomly select 10% of
the annotations for manual review. If we discover that more than 5% of an annotator’s
submissions are deemed unsatisfactory, we request the annotator to redo the entire set of
annotations to meet our quality standards.

C.3 Annotator Background and Compensation

All annotators are junior undergraduate students who study in English programs, ensuring
they have a solid foundation in reasoning and language necessary for the task. Annotators
are compensated by payment based on their annotation quantity, which is around 1.4 USD
per instance. This compensation structure and rate is applied across both the annotation of
human-in-loop feedback and the construction of the SC-G4 benchmark.

C.4 Estimated Human Performance on SC-G4

We provide three estimated human performance (binary-label) on SC-G4 benchmark. (1)
We measure untrained annotators’ performance by calculating their first trial annotation
on 20 instances. 5 annotators were involved (1 did not pass our follow-up test annotation).
Their Fleiss’ Kappa score is 0.56 (moderate agreement). The average accuracy by majority
vote is 81.00%. (2) We measure their trained performance by evaluating their test annotation
on 100 instances, where we provide gold labels. Their averaged accuracies are 90.20% (w 1
who did not pass) and 92.50% (wo), respectively. (3) We measure their formal annotation
performance by comparing their first round of formal annotation, and the final data (gold)
after checking and revision. The accuracy is 96.73%.

D Seed Instance Collection

We collect those failure cases from two main sources: (1) papers that investigate the GPT-
4 failure cases (Zheng et al., 2023b; Borji, 2023; Qin et al., 2023; Tan et al., 2023a) The
original sources of those papers include HotPotQA (Yang et al., 2018), TSQA (Li et al., 2021),
NQ (Kwiatkowski et al., 2019), BigBenchHard (Suzgun et al., 2022), BoolQ (Clark et al.,
2019). (2) failure cases from online (twitter) and our usage. For example:

21

Published as a conference paper at COLM 2024

“If knaves always lie and knights always tell the truth, and you ask a person if they
are a knight and they say no, what are they?”

For cases presented via screenshots, we manually convert them into text. All data are then
tested using our GPT-4 API.

E Full Domain Information

Table 5 presents the full domains that we use to generate new queries in the SC-G4 bench-
mark and the number of valid queries of individual domains. These domains are Wikipedia
titles, which are randomly selected from Wikipedia metadata (2023).

F GPT-4 Error Patterns

We present the full GPT-4 error patterns, with each coupled with their ID and initial patterns
for comparison. We show the major difference in italics.

F.1 Pattern A

Initial Pattern A

Assumption of Existence: GPT-4 may generate incorrect answers when a
question assumes the existence of a non-existent entity or concept. This can
lead the model to provide an answer based on incorrect assumptions or
associations. Such entities or concepts are created using the combination of
existing ones.
To generate questions containing this pattern, create the existence of a
non-existent entity or concept by slightly modifying existent entities, or
combining multiple existent entities into one, and then ask questions that
assume the existence of such non-existent entities or concepts within a real
context.

Final Pattern A

Assumption of Existence: GPT-4 may generate incorrect answers when a
question assumes the existence of a non-existent entity or concept. This can
lead the model to provide an answer based on incorrect assumptions or
associations. Such entities or concepts are created using the combination of
existing ones.
To generate questions containing this pattern, create the existence of a
non-existent entity or concept by slightly modifying existent entities, or
combining multiple existent entities into one, and then ask questions that
assume the existence of such non-existent entities or concepts within a real
context. Additionally, make the questions more specific and detailed, so that GPT-4
is more likely to generate an answer based on the assumed existence of the non-
existent entity or concept, rather than recognizing its non-existence. For example,
instead of asking about the impact of a non-existent study, ask about specific
findings or methodologies used in the study. This will make it more challenging
for GPT-4 to recognize the non-existence of the study and may lead to incorrect
answers.

F.2 Pattern B

Initial Pattern B

Bias towards More popular or Well-known Information and Overgeneral-
ization: GPT-4 might be more familiar with popular or well-known topics

22

Published as a conference paper at COLM 2024

due to their frequency in the training data. This could lead the model to
generate answers related to more popular topics, even if they are incorrect.
Also, GPT-4 might overgeneralize from its knowledge of a topic, leading it
to choose a more well-known or common answer instead of the correct one.
To generate questions with this pattern, create questions that involve less
well-known aspects of popular topics or require the AI to differentiate
between popular and less popular information. To generate questions with
overgeneralization, create questions that require the AI to avoid common
assumptions or generalizations and focus on specific details or less well-
known aspects of a topic. Or focus on subjects or situations that share
similarities with other, more well-known examples, but have distinct differ-
ences that GPT-4 might overlook.

Final Pattern B

Bias towards More popular or Well-known Information and Overgeneral-
ization: GPT-4 might be more familiar with popular or well-known topics
due to their frequency in the training data. This could lead the model to
generate answers related to more popular topics, even if they are incorrect.
Also, GPT-4 might overgeneralize from its knowledge of a topic, leading it
to choose a more well-known or common answer instead of the correct one.
To generate questions with this pattern, create questions that:
1. Involve less well-known aspects of popular topics or require the AI to differentiate
between popular and less popular information, but also ensure that the information
is not outdated. And avoid asking questions with words like "unsung" or "lesser
well-known".
2. Require the AI to avoid common assumptions or generalizations and
focus on specific details or less well-known aspects of a topic.
3. Focus on subjects or situations that share similarities with other, more
well-known examples, but have distinct differences that GPT-4 might over-
look.
4. Involve information that is not easily accessible or requires a deeper understand-
ing of the subject matter.
5. Avoid questions that can be answered by general knowledge or information that
is widely available
Ensure that questions generated by the new pattern are answerable and
can be answered by a short phrase

F.3 Pattern C

Initial Pattern C

Complex Counting or Identification Tasks: GPT-4 may struggle with count-
ing tasks, leading to incorrect answers. Examples: "How many words in the
following sentence have an odd number of letters?", "How many characters
are in this sentence, not counting spaces and punctuation?", and "How
many words in this sentence contain exactly three vowels?”
GPT-4 may struggle with accurately identifying specific letters or characters
within words. Example: "How many words in the following sentence start
with a consonant?”

Final Pattern C

Complex Counting or Identification Tasks: GPT-4 often struggles with
accurately counting or identifying specific elements in complex sentences
or lists. This can lead to incorrect answers when the question requires
counting words, characters, or instances of a specific criterion in a more intricate
context.

23

Published as a conference paper at COLM 2024

Create questions that require GPT-4 to count or identify specific elements in
complex sentences or lists. This can include tasks like counting words with a
specific number of letters in a long sentence, identifying words that start with a
specific letter in a paragraph or that contain a specific letter at specific position, or
counting characters in a sentence with multiple punctuation marks and special
characters. Avoid simple and straightforward questions that GPT-4 can easily
answer correctly.

F.4 Pattern D

Initial Pattern D

Complex Logical Reasoning and Paradoxes: GPT-4 may not be able to han-
dle questions involving paradoxes or complex logical reasoning. Example:
"If knaves always lie and knights always tell the truth, and you ask a person
if they are a knight and they say no, what are they?"

Final Pattern D

Complex Logical Reasoning and Paradoxes: GPT-4 may struggle with
questions involving complex logical reasoning, hypothetical scenarios with
multiple variables, or paradoxes. These questions often require a more so-
phisticated understanding of logic and reasoning than the model is capable of
handling.
Example: "If knaves always lie and knights always tell the truth, and you
ask a person if they are a knight and they say no, what are they?"
- Focus on questions that involve multiple variables and logical steps that
need to be connected in order to arrive at a correct answer.
Example: "Imagine a scenario where the Edinburgh and Northern Railway has
a rule that trains can only stop at stations with prime-numbered platforms, and
every station has a platform number that is doubled each time a train arrives. If a
train starts at platform 1 and continues to the next station with a prime-numbered
platform, what would be the platform number of the 4th station it stops at?"
- Create hypothetical scenarios that involve conditions or constraints that make the
question more challenging to answer.
- Include paradoxical elements or contradictions in the question that make it
difficult to provide a straightforward answer.
- Avoid questions that can be answered with a general analysis or by providing
relevant information about a specific topic, as GPT-4 is likely to answer these
correctly.

F.5 Pattern E

Initial Pattern E

Complex Syntactic Structures and Multiple Clauses: GPT-4 struggles to
accurately parse sentences with complex structures and multiple clauses,
leading to incorrect identification of specific words or relationships between
words.
To generate questions that challenge GPT-4, create sentences with multiple
clauses, embedded phrases, and complex relationships between words and
ask GPT-4 to parse the sentence or identify specific words or relationships
between words. This will make it difficult for GPT-4 to parse the sentence
accurately and identify the correct answer

Final Pattern E

Complex Syntactic Structures and Multiple Clauses: GPT-4 struggles to
accurately parse sentences with complex structures and multiple clauses,

24

Published as a conference paper at COLM 2024

leading to incorrect identification of specific words or relationships between
words.
To generate questions that challenge GPT-4, create long and complex sen-
tences with multiple clauses, embedded phrases, and complex relationships
(such as dependency or constituency) between words. Then, ask GPT-4 to parse
the sentence, identify specific words or dependency or constituency relationships
between words, or rephrase the sentence.
For example: 1. "I’m a student very close to the VCU area that’s looking for an
apartment or house to move in to with another person/people." What are the words
in the previous sentence, which form a constituency with the second word that
begins with letter ’a’?
2. "Unfortunately, I currently have no funding or capacity to advise interns
or visiting students. Please consult the EdiNLP web site for more information
on potential supervisors." What are the words in the previous sentence, which
hold a dependency with "funding" or what are the predicative words in the above
sentences?
This will make it difficult for GPT-4 to parse the sentence accurately and identify the
correct answer. Avoid fact-based questions that do not require complex linguistic
analysis.

F.6 Pattern F

Initial Pattern F

Recursive and Unusual Patterns: Questions that require recursive opera-
tions, such as replacing characters within a word multiple times, can be
challenging for GPT-4. Example: "What is the outcome of replacing all the
’t’s in the word ’tomato’ with ’potato’?”
GPT-4 might struggle with questions involving unusual patterns or tasks
that require non-standard processing. Examples: "How many words in the
following sentence have an odd number of letters?", "How many words in
this sentence contain exactly three vowels?", and "How far is Aigre located
north of Angoulême?"

Final Pattern F

Recursive and Unusual Patterns: GPT-4 might struggle with questions
involving unusual patterns or tasks that require non-standard processing,
such as recursive replacements or unconventional counting tasks.
a. Increase the complexity of the unusual patterns or tasks, such as incorporating
more steps or multi-level replacements in the questions.
b. Combine multiple unusual patterns or tasks within a single question to increase
the difficulty.
c. Focus on generating questions that require unconventional counting tasks or
identifying patterns across multiple words or phrases.
By increasing the complexity and incorporating multiple unusual patterns or tasks
within a single question, we can generate questions that are more likely to induce
GPT-4 to generate incorrect answers. However, it is essential to ensure that the
generated questions remain answerable and can be answered by a short phrase.

F.7 Pattern G

Initial Pattern G

Temporal Ambiguity or Confusion with Specific Events: GPT-4 might have
difficulty understanding the significance of specific time frames mentioned
in the question and could provide information about the subject’s career

25

Published as a conference paper at COLM 2024

or life in general, rather than focusing on the specific time frame. To
generate questions with this pattern, include precise time frames (e.g.,
specific months or years) that might be challenging for GPT-4 to pinpoint
accurately.

Final Pattern G

Temporal Ambiguity or Confusion with Specific Events: GPT-4 might have
difficulty understanding the significance of specific time frames mentioned
in the question and could provide information about the subject’s career
or life in general, rather than focusing on the specific time frame. To
generate questions with this pattern, include precise time frames (e.g.,
specific months or years. But do not be too specific, e.g., specific dates or hours)
that might be challenging for GPT-4 to pinpoint accurately, and also mention
specific events or accomplishments that occurred during those time frames. This
will make it more difficult for GPT-4 to provide a correct answer without addressing
the specific event or accomplishment.

F.8 Pattern H

Initial Pattern H

Text Manipulation or Transformation: GPT-4 can make errors when per-
forming text manipulation or transformation tasks, such as replacing letters,
shifting letters in the alphabet, or sorting words. These errors can be due to
the complexity of the task or limitations in GPT-4’s processing capabilities.
Create questions that require GPT-4 to perform complex text manipula-
tion or transformation tasks, such as replacing specific letters with others,
shifting letters in the alphabet, or sorting words alphabetically.

Final Pattern H

Text Manipulation or Transformation: GPT-4 can make errors when per-
forming complex text manipulation or transformation tasks, such as replac-
ing specific letters with others based on certain conditions, shifting letters
in the alphabet by varying amounts, or sorting words based on multiple
criteria. These errors can be due to the complexity of the task or limitations
in GPT-4’s processing capabilities.
Create questions that require GPT-4 to perform complex text manipulation
or transformation tasks, such as:
- Replacing specific letters with others based on their position in the word
or the alphabet.
- Shifting letters in the alphabet by different amounts depending on their position
in the word or other conditions.
- Sorting words based on multiple criteria, such as alphabetically and by
length.
Avoid questions that involve simple text manipulation tasks, such as sorting words
alphabetically or replacing a single letter with another. To increase the difficulty,
ask questions that combine multiple manipulation or transformation.

G Self-Challenge Llama-3-70B

We apply our framework to Llama-3-70B (Dubey et al., 2024) and discover 19 patterns (due
to limited space, we only show the pattern names) as shown in Table 6.

However, we find that (1) those patterns are mostly covered by GPT-4. For example, GPT-4
pattern B covers Llama patterns H and J, GPT-4 pattern E covers Llama patterns O, Q
and S. (2) some GPT-4 patterns are not found by Llama3. For example, GPT-4 patterns C

26

Published as a conference paper at COLM 2024

ID Pattern Name

L-A Misleading context with a provided date
L-B Irrelevant information with a date
L-C Lack of explicit current date
L-D Inconsistent or implicit information
L-E Assumption of Existence
L-F Ambiguity and Vagueness
L-G Lack of Context
L-H Overfitting and Bias
L-I Misinterpretation of Syntax and Semantics
L-J Inability to Handle Novel or Unseen Data
L-K Misinterpretation of Context
L-L Incomplete or Partial Analysis
L-M Misunderstanding of Instructions
L-N Limited Knowledge or Training Data
L-O Linguistic Complexity
L-P Format or Presentation Errors
L-Q Complex Sentence Structures
L-R Pronoun Resolution
L-S Dependency Identification

Table 6: A list of names of patterns discovered by Llama-3-70B.

(Complex Counting or Identification Tasks), D (Complex Logical Reasoning and Paradoxes), H (Text
Manipulation or Transformation).

We further optimize Llama pattern E. We then find Llama-3-70B cannot generate queries
that induce Llama-3-70B to hallucinate.

H Examples of New Queries

Table 7 presents the examples of new queries for each pattern. We see that those new queries
contain the features of corresponding patterns, and are diverse in domains.

I Evaluation Validation

To validate the effectiveness, we first compare the gold labels and model-evaluate labels
of GPT-4 responses on the full 1,835 instances, where GPT-4 evaluation achieves 85.35
precision, 95.89 recall and 90.31 F-1. As GPT-4 evaluation can be biased to GPT-4 output (Liu
et al., 2023), we further construct a small set that consists of 115 instances, where each gold
response is completely annotated by human annotators without the assistance of GPT-4. The
GPT-4 evaluation achieves 87.14 precision, 96.83 recall and 91.73 F-1 on this set, which we
consider is good enough. Such a higher-recall and lower-precision evaluation indicates that
GPT-4 is highly reliable in identifying correct answers but with a few errors in classifying
incorrect responses as “correct”. It also suggests that the model performance evaluated by
GPT-4 can be slightly overestimated or higher than its real performance.

We also experiment with the evaluation method following Wang et al. (2023), i.e., asking
LLMs to explain why the model-generated response is correct or not, and then give a label
for the response. However, we do not observe significant improvement.

J Analyses of Model Performance on Different Domains

Figure 3 shows the breakdown of model performance on different domains. Generally, GPT-
4 shows the best performance on all domains, and gives the most smooth curve compared
with other models. In contrast, Llama 2 models show worse performance, and give more
sharp curves, indicating they are less stable and generalizable across domains, compared
with GPT-4 and Turbo.

27

Published as a conference paper at COLM 2024

ID Pattern Name Example

A Assumption of Existence During the “Karpov Invitational” tournament, what
unique rule did Anatoly Karpov introduce to encourage
faster and more aggressive play?

B Bias towards More popular
or Well-known Information
and Overgeneralization

In the context of the Philippine drug war, which specific
law enforcement unit was disbanded in 2017 due to its
controversial involvement in extrajudicial killings?

C Complex Counting or Identi-
fication Tasks

In the sentence, “Joey Votto is known for his exceptional
plate discipline and ability to get on base,” how many
words have the letter ’e’ as the third character and end
with the letter ’n’?

D Complex Logical Reasoning
and Paradoxes

If Muirchertach Ua Briain had a rule that he could only
levy taxes on years with a prime number of battles, and the
number of battles doubled each year, which year would
be the fourth time he levied taxes if his first tax year had 5
battles?

E Complex Syntactic Structures
and Multiple Clauses

The entrance of Abney Park Cemetery features elaborate
iron gates, designed by the architect William Hosking, that
exhibit the Victorian Gothic architectural style. What are
the words in the previous sentence that hold a dependency
relationship with “iron gates”?

F Recursive and Unusual Pat-
terns

If the words “rapid,” “accurate,” and “scalable” are used
to describe the ideal characteristics of a COVID-19 test,
and you were to arrange these words based on the sum of
the positions of their vowels in the alphabet, which word
would come first?

G Temporal Ambiguity or Con-
fusion with Specific Events

During the fall of 1989, Ray Cooper participated in a con-
cert tour with a famous rock band. What was the name of
that band?

H Text Manipulation or Trans-
formation

In the context of Martin Nolan’s work, replace the first and
last letters of each word in the phrase “auction house exec-
utive director” with their corresponding opposite letters
in the alphabet (A <- >Z, B <- >Y, etc.), and then sort the
transformed words by length in descending order.

Table 7: Examples of new queries generated by GPT-4.

Train Dev Test
Count of instances 500 325 1,010
Avg Query 34.22 36.94 4.48
Avg Gold R 61.61 63.67 38.19
Avg GPT-4 R 82.40 84.50 73.97

Table 8: Data statistics for fine-tuning data split by difficulty. Avg: averaged token length. R:
Response.

K Analysis of Few-shot Performance on Data Split by Difficulty

We investigate whether fine-tuned models can be improved on data that is most challenging
to GPT-4. In particular, we take all instances where GPT-4 fails (human evaluation) as test
set (1,010), and randomly split the rest data into train (500) and dev sets (325). The statistic
is shown in Table 8.

Table 9 shows the results. First, we see that GPT-4 evaluation can highly overestimate the
model performance on this most challenging test set compared with on other test sets. This
can be because that those instances are very to challenge to GPT-4 itself in terms of diverse

28

Published as a conference paper at COLM 2024

Figure 3: Breakdown analysis of zero-shot performance under different individual domains.
The IDs of domains are corresponding to IDs in Table 5 in Appendix E, respectively.

ID # G-4† G-4 L-2 L-2∗

A 58 0.00 10.34 1.72 29.31↑
B 76 0.00 13.16 2.63 3.95↑
C 180 0.00 3.33 1.11 5.00↑
D 73 0.00 15.07 1.37 1.37
E 109 0.00 9.17 5.50 6.42↑
F 134 0.00 10.45 0.75 1.49↑
G 134 0.00 9.96 2.24 7.46↑
H 246 0.00 2.85 1.22 0.00↓
all 1,010 0.00 7.52 1.81 4.95↑

Table 9: Model performance on data split by difficulty.

factors, including their internal knowledge, and GPT-4 can fail to detect errors in model
response, and thus be more biased.

L Analyses on Pattern A

Pattern A finds that GPT-4 tends to hallucinate when the input queries contain non-existent
entities, which are mostly created by combining several existent entities into one. Interest-
ingly, fine-tuned models show the most improvement on this pattern, thus we manually
investigate further by looking into the model outputs.

Overall, we find that fine-tuned Llama 2 gets higher accuracy on such a pattern because it
has learnt to reject to answer (“There is no ...”).

Take the below case for example:

Query: How did the Edinburgh and Northern Railway’s experimental solar-
powered train perform in terms of energy efficiency during its trial run in 1858?

Gold: There was no solar-powered train in 1858 actually. But the first solar cell
was invented in 1883 by Charles Fritts.

GPT-4 (zero): I’m sorry, but there seems to be a mix-up in the information
you provided. The Edinburgh and Northern Railway was a railway company
in Scotland that operated from 1847 to 1862. Solar power technology was not
available during that time period, and the first solar cell was invented in 1954 by

29

Published as a conference paper at COLM 2024

ID Dist-3 Dist-4

A 87.02 93.93
B 87.71 94.42
C 74.56 84.33
D 81.68 90.76
E 82.03 88.74
F 75.30 86.65
G 82.62 92.00
H 46.19 59.41

all 70.23 82.05

Table 10: Distinct scores of SC-G4.

word sorting Dist-3 Dist-4

wo. prefix 41.63 49.39
w. prefix 8.72 9.98

Table 11: Distinct scores of BigBench word-sorting task.

Bell Labs. Therefore, it is not possible for the Edinburgh and Northern Railway to
have had an experimental solar-powered train in 1858. (correct)

Llama 2-Chat (zero): The Edinburgh and Northern Railway’s experimental
solar-powered train, which ran in 1858, was able to achieve an energy
efficiency of around 15%. This means that for every unit of energy used to power
the train, it was able to travel approximately 15 units of distance. While this may
not seem particularly impressive by modern standards... (incorrect)

Llama 2-Chat (fine-tuned on data randomly-split): There is no record of an
Edinburgh and Northern Railway’s experimental solar-powered train trial run in
1858. (correct)

Llama 2-Chat (fine-tuned on data spilt by domain): Thank you for your
question! However, I must point out that there is no record of an Edin-
burgh and Northern Railway’s experimental solar-powered train in 1858....
(correct)

we see that the fine-tuned Llamas successfully identify that this query can contain non-
factual content, which is considered correct, but it fails to respond informatively as GPT-4
and human. We further investigate the outputs of Llama-2-Chat (7B) fine-tuned on randomly
split data, and find that over 50% of queries under pattern A are rejected in a similar way by
it.

Moreover, it is noticeable that the cross-domain fine-tuned Llama (domain split) also suc-
cessfully rejects such questions. Recall that in this setting, we constrain the domains in the
training and testing sets. In other words, pattern knowledge is shareable while domain
knowledge is not. The results indicate that the fine-tuned Llama effectively learns the hid-
den features of these patterns and can apply them across different domains. We hypothesize
that it is possible that LLMs can sense such uncertainty within themselves (also note the
uncertainty can exist across domains). By fine-tuning on such data, LLMs can be better
at distinguishing between factual and certain entities and non-factual ones, and refuse to
answer questions with non-existent entities or events, rather than generating non-factual
responses.

30

Published as a conference paper at COLM 2024

M Diversity Evaluation of SC-G4 Queries

We use the Distinct score (Li et al., 2015) to evaluate the diversity of generated queries. We
report dist-3 and dist-4 in Table 10. Higher scores indicate the data are more diverse. For
comparison, we show the results of the BigBench word-sorting task (bench authors, 2023)
in Table 11, which is similar to our pattern H. Generally, we see that queries in SC-G4 are
diverse from each other.

31

	Introduction
	Self-Challenge Framework
	Pattern Summarization
	Pattern Evaluation
	Pattern Optimization
	Iterative Self-Challenge

	Discovering Error Patterns in GPT-4 and Constructing SC-G4 Benchmark
	Seed Instance Collection
	Error Pattern Discovery
	The SC-G4 Benchmark

	Benchmarking LLMs on SC-G4 and Investigating Error Generalization across LLMs
	Experimental Setup
	Result and Analysis
	Zero-shot Performance
	Few-shot Performance

	Findings and Highlights

	Conclusion
	Ethics Statement
	Related Work
	Details of Prompts
	Summarization Prompt
	Generation Prompt
	Optimization Prompt
	Evaluation Prompt

	Details of Annotation
	GPT-4 Response Verification and Gold Response Annotation
	Quality Control
	Annotator Background and Compensation
	Estimated Human Performance on SC-G4

	Seed Instance Collection
	Full Domain Information
	GPT-4 Error Patterns
	Pattern A
	Pattern B
	Pattern C
	Pattern D
	Pattern E
	Pattern F
	Pattern G
	Pattern H

	Self-Challenge Llama-3-70B
	Examples of New Queries
	Evaluation Validation
	Analyses of Model Performance on Different Domains
	Analysis of Few-shot Performance on Data Split by Difficulty
	Analyses on Pattern A
	Diversity Evaluation of SC-G4 Queries

