Under review as a conference paper at ICLR 2026

SPG: SANDWICHED PoLicy GRADIENT FOR MAskK DIFFU-
SION LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Diffusion large language models (dLLMs) are emerging as an efficient alternative
to autoregressive models due to their ability to decode multiple tokens in parallel.
However, aligning dLLMs with human preferences or task-specific rewards via
reinforcement learning (RL) is challenging because their intractable log-likelihood
precludes the direct application of standard policy gradient methods. While prior
work uses surrogates like the evidence lower bound (ELBO), these one-sided
approximations can introduce significant policy gradient bias. To address this, we
propose the Sandwiched Policy Gradient (SPG) that leverages both an upper and a
lower bound of the true log-likelihood. Experiments show that SPG significantly
outperforms baselines based on ELBO or one-step estimation. Specifically, SPG
improves the accuracy over state-of-the-art RL methods for dLLMs by 3.6% in
GSMBSK, 2.6% in MATHS500, 18.4% in Countdown and 27.0% in Sudoku.

GSMS8K MATH500 Countdown Sudoku

70.7 100
42.5 +2.6% 1 +18.4% 1

94.0

+3.6% T gg1 +27.0% 1

80

©
v

52.3 67.0
43.0 60

40

82.5
81.5

37.437.4
80.580.6

®
o

77.2

Accuracy (%)

20

N
v

0
LLaDA-8B-Instruct LLaDA-1.5 D1 WwD1 I UniGRPO HEl SPG (ours)

Figure 1: Test accuracy of SPG and baseline methods on four mathematical and logical reasoning
benchmarks. All methods are evaluated with a generation length of 256 in 128 denoising steps. Full
results are provided in Table E}

1 INTRODUCTION

Diffusion models, originally pioneered for high-fidelity image generation (Song et al., 2020;/Ho et al.,
2020), have recently emerged as a powerful and efficient paradigm for text generation (Austin et al.,
2021; |Campbell et al., |2022; |Sun et al.| 2022} |Lou et al., [2023}; |Sahoo et al.| |2024; |Shi et al.| [2024).
These models operate in a discrete space but share architectural similarities with their continuous
counterparts (Peebles & Xiel [2023). They employ a fixed noising process that progressively corrupts
text data, while a neural network is trained to learn the reverse, denoising process. For instance,
Masked Diffusion Language Model (MDLM) (Sahoo et al., 2024) uses random masking as its
forward noising process and optimizes an Evidence Lower Bound (ELBO) of the log-likelihood.
This ELBO-based objective has been widely adopted by subsequent large-scale diffusion language
models (dLLMs), including LLaDA (Nie et al.,|2025)) and DREAM (Gong et al.| 2024).

A key advantage of dLLMs over their autoregressive (AR) counterparts is their ability to decode
multiple tokens in parallel. This parallelism can significantly reduce inference latency, making it an
attractive alternative for scalable language modeling (Wang et al.,|2025a}; [Labs et al., 2025)).

Aligning large language models with human preferences (Ouyang et al. [2022) or task-specific
rewards (e.g., inducing reasoning behavior) (Shao et al.l |2024; |Guo et al., [2025) typically requires
a post-training stage of reinforcement learning (RL). However, applying RL to dLLMs remains

Under review as a conference paper at ICLR 2026

Monte Carlo Est. of £ and L
Clean Sequence x’

\/\\
Perturbed Sequence z/ ~ g(-|x’)

Random Masking

Prompt ¢ Upper Bound := exp ([:E(;B()(.’I,']: (’))

Response x’ A, e)<0 |

Response X/ A,)< 0
. J\/\-‘Lﬂg(mj | C) Block-Wise Masking (Ours)

Response x* A¥(x%, ¢) > 0 " Lower Bound := exp (LELB()(wji c))

clean token mask token

Figure 2: The training process of SPG for MDLM. Left: From a prompt ¢, we generate responses
{z’ }9_,. We then maximize a lower bound on the likelihood 7¢ (2’ | ¢) for high-reward responses
while minimizing an upper bound for low-reward ones. Right: The upper/lower bound of likelihood
is estimated via Monte Carlo using a block-wise masking strategy. The example shows a sequence
of length 9 with a block size of 3, where the current generation block is highlighted in yellow.

underexplored. A principal challenge is the computationally intractable log-likelihood of dLLMs,
which is essential for accurate policy gradient estimation. To circumvent this, recent works (Zhao
et al., 2025} [Yang et al.| 2025} Zhu et al., [2025} [Tang et al., [2025) adapt standard RL and preference
optimization algorithms, such as GRPO (Shao et al.,|2024) and DPO (Rafailov et al.,[2023)), by using
the ELBO or a one-step estimation as a surrogate for the true likelihood. While straightforward, this
approximation leads to misaligned policy gradients, and potential suboptimal performance.

To address these limitations, we propose Sandwiched Policy Gradient (SPG), a novel reinforcement
learning algorithm for diffusion language models that computes a more robust and less biased policy
gradient. As illustrated in Figure [2| our core idea is to “sandwich” the intractable log-likelihood of
a generated sequence: we maximize a tractable lower bound for positive-reward sequences while
minimizing an upper bound for negative-reward ones. To ensure a stable estimation of these bounds,
we also propose a block-wise masking strategy that better aligns data distributions during policy
rollout and optimization. SPG achieves state-of-the-art performance on four mathematical and
logical reasoning benchmarks, improving accuracy by up to 3.6% on GSMS8K, 2.6% on MATHS500,
18.4% on Countdown, and 27.0% on Sudoku compared to the state-of-the-art RL algorithms for
diffusion language models.

In summary, our main contributions are:

* A new policy gradient algorithm, SPG, which reduces bias by optimizing sandwiched variational
bounds based on reward.

* A block-wise masking technique that improves the stability of the training objective’s estimation.

* State-of-the-art results among RL algorithms for diffusion language models on four reasoning
benchmarks, demonstrating the effectiveness of our approach.

2 BACKGROUND

In this section, we provide a brief overview of the masked diffusion language model (MDLM) and
reinforcement learning for text diffusion models.

Notation. We denote scalars by lowercase letters (x), vectors by bold lowercase (), and sequences
by @1.,,. [k] represents {1, ..., k}. Cat(x | p) is the categorical distribution over & with probabilities
p, and U|a, b] denotes the uniform distribution in [a, b]. Throughout the paper, we use i € [n] for
position of the token, j € [g] for a sequence in a group of rollouts, and ¢ for the diffusion timestep.
For discrete time processes, ¢ € [T'], while for continuous-time Markov chains, ¢ € [0, 1].

2.1 Maskep DirrusioN LANGUAGE MODELS

Diffusion models for language learn to generate text by reversing a gradual noising process. Specif-
ically, Masked Diffusion Language Models (MDLMs) (Sahoo et al., [2024)) start with clean text x1.y,

Under review as a conference paper at ICLR 2026

and corrupt it into z; = z; 1., Over a continuous timestep ¢ € [0, 1] by progressively replacing tokens
with a special [mask] token. Att = 0, the data is original (zy = x), while at t = 1, the sequence
is fully masked (z; is all [mask] tokens). Each token is corrupted independently according to the
forward transition kernel:

@jo(ze,i | ;) = Cat(ze; | u; + (1 — a)m), (1
where m is the one-hot representation of the [mask] token. The noise schedule, a; € [0,1], is a
strictly decreasing function, such as the linear schedule oy = 1 — ¢, with g = 1 and a; = 0.

In the reverse process, a neural network, which we denote as the policy g, is then trained to perform
the reverse process: predicting the original tokens & from a corrupted version z;. The transition
from z; to z, (s < t) is parameterized with 7g as follows:

Cat(zs; z¢), Z; # m,

Po(zs | 2t) = q(2s |z, = mo(- | 21)) = {Cat (Zs; (1_“S)m+§‘isa:“t)”"("z")) oz =m.

The policy is achieved by maximizing the Evidence Lower Bound (ELBO) of the log-likelihood of
each clean sequence & ~ pga,, Which simplifies to the following objective:

Leipo(x;0) = E; ., {Z w(t) - 1(z; = m) - log me(; | zt)] : 2)
=1

where w(t) = aj/(a: — 1) is a time-dependent loss weight, and the expectation is over a random
timestep ¢ ~ U0, 1] and the corrupted sequence z; ~ g;o(- |). In essence, this objective trains
the model to “fill in the blanks” by predicting the original tokens at masked positions. For a more
comprehensive overview of MDLM, please refer to Appendix|B|and Sahoo et al.|(2024)).

2.2 REINFORCEMENT LEARNING FOR DIFFUSION LANGUAGE MODELS

Reinforcement Learning (RL) aligns a language model with desired objectives by treating it as
a policy mg that generates a response x to a prompt ¢. A reward function R(c,x) provides a
scalar score for the response, and the training goal is to update 6 to maximize the expected reward:
J(0) := Egrry(.|c)[R(c, x)]. This objective is commonly optimized using policy gradient methods,
which rely on the following gradient estimator.

VoJ(0) = Egny(|c) | R(c,x)Velogma(x | C)|. 3)

The Intractability Challenge. A central challenge in applying RL to diffusion models is that the
policy’s log-likelihood, log g (x | ¢), is intractable and cannot be computed directly. To overcome
this, prior work (Zhu et al.||2025;|Yang et al | 2025)) approximates this term using its ELBO, effectively
replacing log g (x | ¢) with a score derived from the pre-training objective in Equation .

However, this popular workaround introduces a critical flaw. The ELBO is only a lower bound on the
true log-likelihood (ELBO < log 7g). Consequently, the RL objective is only a valid lower bound on
the true expected reward if all rewards R(c, x) are non-negative. This constraint prevents the model
from effectively learning from negative feedback (i.e., penalizing bad outputs) and is incompatible
with advanced RL algorithms that use relative or negative rewards (Shao et al.| [2024)), biasing the
final policy. Our work aims to resolve this limitation.

3 SANDWICHED PoLicy GRADIENT WITH EVIDENCE BoUNDS

We introduce SPG, a novel policy gradient algorithm designed for masked diffusion language models
(Algorithm [T)). Our method aims to address a critical issue in applying reinforcement learning to
dLLMs by creating a valid optimization objective based on tractable bounds of the model’s evidence.

3.1 A Lower BouNp OBJECTIVE FOR PoLicy OPTIMIZATION

Our approach is based on group relative policy optimization (Shao et al., 2024} [Liu et al., [2025b).
For a given prompt ¢, we generate a group of g responses {x’ }?:1 from the policy mg. We then

Under review as a conference paper at ICLR 2026

Algorithm 1 SPG: Sandwiched Policy Gradient for Masked dLLMs

Require: prompt distribution D, number of completions per prompt g, number of inner updates i,
forward process g, number of Monte Carlo samples m, initial policy g, learning rate €.
1: Initialize my < 7o
2: while not converged do

3: Sample a prompt ¢ ~ D, then g completions {x/ ~ my(- | ¢)} G=1
4: Vj € [g], compute reward R(c, z’) and advantage A7 (7, ¢)

5: for gradient update iterations {1, ..., u} do

6: Vj € [g], generate m perturbed samples {sz ym o ~g(c | 2
7: Compute the sandwiched policy gradient V Jspg(0) where:

1 , . . _
jspc,(e) = E|:g Z (]]_Ajzo ~AJ£ELBO($j ‘ C;G) +]].Aj<0 . AJLEUBO(IBJ | c; 0)) :|,

j=1
8: and L1 go, EEUBO are estimated from {ng ™ ., using Equation and
9: Perform gradient update: 6 < 0 + ¢V Jspc(0)

10: return 7y

compute the advantage A’(c,z’) := R(c,x?) — % 7_1 R(c,27). Moreover, we transform the

conventional policy optimization objective as an advantage-weighted log-likelihood objective, for
reasons that will be clear later:

jgroup(g) _]Ec’{mj}ng[e] l: ZAJ mj 10g 770(:3] | C) (4)

where sg[6)] indicates that gradients are not computed for the policy that generates the samples. This
objective encourages generations with positive advantages (A’ > 0) and discourages those with
negative advantages (47 < 0).

For dLLMs, the log-likelihood log 7e is intractable. A common surrogate is the evidence lower
bound (ELBO). While maximizing the ELBO is a valid way to increase the true log-likelihood,
minimizing the ELBO for negatively-rewarded samples does not guarantee a reduction in the true
log-likelihood. To address this, we propose a sandwiched objective. For samples with positive
advantages, we maximize the ELBO. For samples with negative advantages, we instead minimize a
tractable evidence upper bound (EUBO), Lrypo- This creates a true lower bound for the original
objective:

g
Tspc (0 { Z Laizo - A Lerpo(2’ | ¢;0) + Lajco - A Levso (@ | ¢;0)) |, (5)

where the expectation is take with respect to ¢, {x’/} ~ Tegi0)- Since Lerpo < logme < Lguso. it
follows that Jspg(0) < J&°(0). Maximizing this tractable bound therefore serves as a valid proxy
for optimizing the true objective.

3.2 A TractaBLE EviDENCE UPPER BoUND

To effectively penalize negatively-rewarded samples by minimizing their log-likelihood, we require
a tractable EUBO, which we derive in the following theorem based on the Rényi variational bound.

Theorem 1 (Evidence Upper Bound for Masked Diffusion). Assume the forward denoising process
has T steps with a monotonic schedule o;. For any 5 > 1 and a sequence x1.,,, we have:

I -

«
Levpo(T1.0; 0 Zlog ZEZHI [tﬂ (21114 = m)-mh (@ | ze01) | +C(T), (6)

where C(T) := % logE., ;nq(|2) [q(zlzT | m)fn} is a constant independent of 6.

4

Under review as a conference paper at ICLR 2026

Here, § > 1 is a hyperparameter that controls the tightness of the bound, with values closer to 1
yielding a tighter bound. The expectation is taken over the timestep ¢ ~ /[0, 1] and the noised latent
ze ~ quo(- |).

Corollary 1. Taking the limit of T — oo, we have:

VoLrupo(Ti:n;0) = Ve <£~EUBO(w1:n§ 0) + C(T)) = VoLruso(®1.n;0), where

5 1 & 8 (N
EEUBO(:vlm; 9) = B Zlog]Et,Zt [w(t) .]l(zm = ’rn,) . 7T9 (:13z | Zt):| .
i=1

In practice, we estimate Leuso using Monte Carlo sampling and plug it in Equation |5|in place of
Lgugo. The proof and theoretical analysis are provided in Appendix [C]

Remark. A key structural difference from Lgipo is that the logarithm in Lgygo (Equation (6))
appears outside the expectation. Therefore, in practice, due to Jensen’s inequality, applying the
concave logarithm to a Monte Carlo estimate of the expectation’s argument yields a biased estimate
of the true EUBO. While it is possible to derive a looser but unbiased bound using inequalities like
log(x) < = — 1, we found this approach empirically worse by widening the gap to the true log-
likelihood, as shown in Table[E} We therefore retain the tighter, albeit slightly biased, formulation.

3.3 PracTIiCAL CONSIDERATIONS

Bloclf-Wise Masking Strategy for Monte Carlo Estimation. In practice, we approximate Lg o
and Lgypo in Equation (5)) via Monte Carlo sampling: for each 7, we randomly sample m timesteps

{t-}7, and generate the corresponding partially masked samples {2/ }7-, ~ ¢(- | 7). One
straightforward approach as used in Yang et al.|(2025) would be to apply random masking to clean
sequences. However, recent dLLMs like LLaDA (Nie et al., 2025) employ a block-wise semi-
autoregressive unmasking strategy during generation and achieve state-of-the-art performance over
random unmasking. As a result, the policy rollout process actually encounters a much narrower and

more structured set of partially masked sequences than with fully random masking.

To better align data distributions during policy rollout and optimization, we adopt a block-wise
masking strategy rather than random masking. As depicted in Figure[2] the sequence is divided into
several blocks, and a random block is selected, with all preceding blocks left clean and all following
blocks fully masked. Within the chosen block, tokens are randomly masked. Additionally, following
D1 (Zhao et al.;[2025)), we lightly perturb the prompt and clean blocks by randomly masking tokens
with a small probability pna = 0.15 to enhance stability and generalization.

Altogether, our block-wise masking strategy improves the stability of the objective’s estimation and
the efficiency of policy optimization. While similar block-wise masking approaches have been
explored in concurrent work for supervised fine-tuning or block diffusion models (Sun et al.| 2025
Wang et al.,[2025b)), our focus is on RL for full-attention masked dLLMs. As shown in Figure[6] our
models trained with block-wise masking generalize well to various inference strategies.

Mixture of Upper and Lower Bound for Negative Advantage Traces. Monte Carlo estimation
of Equation (6) leads to a biased estimation to Leuso and potentially requires a substantial number of
samples to get reliable approximations, resulting in high computational costs and instability during
training. To address these challenges, we use a mixture of EEUBO and Lgpo as a more practical
log-likelihood approximation for negative advantage traces:

EMix(CC | C; 0) =W EEUBo(w | C; 0) + (]. — w) . ,CELBo(m | C; 0) (8)

where 0 < w < 1 is a blend coefficient. Intuitively, the upper bound Lgygo sharpens the model
decisions by applying a S-power adjustment to the original model output, acting as a strong correction
signal for negative advantage traces. In contrast, the lower bound Lg; po is easier and more stable
to estimate with a small number of Monte Carlo samples, but it tends to introduce larger, systematic
bias relative to the true log-likelihood. In particular, as a conservative approximation, Lg go alone is
insufficient for effectively penalizing negative advantage traces, thus limiting its efficacy. Therefore,
combining them allows us to harness the strengths of each, resulting in a more effective log-likelihood

Under review as a conference paper at ICLR 2026

estimation in practice. In the following proposition, we formalize the advantages of using the mixture
by deriving the gradient of the mixture loss and analyzing the variance of the gradient.

Proposition 1 (Optimal Mixture Strictly Reduces Variance). Fix a coordinate k and let pg =
w(t, z)ml (x; | 2, ¢)/E [w(t,zt)wg(mi | zt,c)}, where w(t, z,) = w(t)1(z = m). Then, the
gradient of mixture objective (|8)) is given by

Guk = (1 —w)w(t, z) + wpg) O, log me(x | ¢, c). 9)

If Var((pg — w(t, z¢))0g, log me(x | 21, €)) > 0, then Var[g,,] is a strictly convex quadratic in w
and thus admits a unique minimizer wy. Moreover,

Var[gwi’k] < min{ Var[go. k] Var[ng]},

A proof for the above proposition is provided in Appendix[D.1] A few remarks are in order:

+ Confidence-aware weighting: The mixture gradient in Equation (9) realizes a confidence-aware
weighting: uncertain tokens with small wg (z; | 2z, ¢), indicating a low recovery chance, have a

smaller weight, while confident tokens with large ﬂg (z; | z¢,c) are upweighted. The sharpness
is controlled by parameter 5 and the blend by w. Furthermore, the convex interpolation of
the confidence-aware coefficient of the upper bound with the lower bound ensures clipping tiny
gradients to a minimum value and thus prevents vanishing gradients.

» Lower variance and more stable training: According to Proposition [I} the gradient of the
optimal mixture, i.e., Gut ks has strictly smaller coordinate-wise variance than the gradient of

either the lower bound (go 1) or the upper bound (g;, k In our experiments, we fix § and w as
hyperparameters for simplicity. These values can also be adaptively adjusted during training to
better match the evolving training dynamics and data distribution.

Thus, the mixture approach offers theoretical advantages over using either the upper or lower bound
alone, as supported by our experimental results in Section f] Further discussions of the mixture
approach and empirical evidence of reduced gradient variance are provided in Appendix [D.2] and
Figure[7] and Appendix [D.3] presents a toy example illustrating the distinct behaviors of the lower
and upper bounds.

4 EXPERIMENTS

In this section, we present experimental results highlighting the superior performance of SPG across
various benchmarks. Further, we provide detailed analysis and ablations of SPG to assess the
contribution of each component, examine the influence of key hyperparameters, and evaluate the
robustness of our approach under different inference strategies.

4.1 EXPERIMENTAL SETUP AND MAIN RESULTS

Experimental Setup. We conduct RL fine-tuning with SPG following the experimental settings
in D1 (Zhao et al., [2025) and WD1 (Tang et al. 2025). We employ LLaDA-8B-Instruct (Nie
et al., 2025), a state-of-the-art open-sourced dLLM without post-training, as the base model, and
experiment on four benchmarks: two for mathematical reasoning (GSMS8K (Cobbe et al., |2021)) and
MATHS00 (Lightman et al., [2023)) and two for logical reasoning (Countdown (Pan et al., [2025]))
and Sudoku (Arel, [2025)). We follow the same train-test splitting, reward functions, and evaluation
protocol as D1 and WD, except for Sudoku. For Sudoku, to avoid train-test leakage, we take the
training set from D1 and split the data by Sudoku answers, ensuring that the test set contains entirely
new puzzle solutions. This guarantees that the model cannot solve test puzzles merely by memorizing
possible answers. All experiments are conducted in the zero-shot setting, except for Sudoku, where
3-shot generation is used for both training and evaluatiorﬂ For all models, we employ Low-Rank

"Proposition [1| extends directly to a single, coordinate-independent optimizer w* obtained by minimizing
the sum of coordinate-wise variances.

>We use 3-shot generation for Sudoku because zero-shot is too difficult for this task, resulting in very few
meaningful RL rollouts. Few-shot examples used in our experiments are provided in Appendix @

Under review as a conference paper at ICLR 2026

Table 1: Model performance on four reasoning benchmarks. The best results are bolded and the
second best are underlined. SPG consistently outperforms all other methods. We denote the absolute
gain of test accuracy to the previous state-of-the-art in green.

GSMBSK (0-shot) MATHS00 (0-shot) Countdown (0-shot) Sudoku (3-shot)
Model / Seq Len 128 256 512 128 256 512 128 256 512 128 256 512
LLaDA-8B-Inst. 69.5 712 79.8 28.2 324 34.6 18.8 16.8 16.8 5.7 27.7 26.2

LLaDA-1.5 70.4 80.5 81.9 26.8 322 35.8 219 21.1 21.5 7.4 26.9 29.0
DI 722 80.6 81.3 31.4 36.0 39.4 30.9 30.9 34.4 72 325 29.3
WDI1 74.6 81.5 83.0 31.0 37.4 39.0 48.8 52.3 50.8 33.1 32.1 22.5
UniGRPO 74.9 82.5 82.7 324 37.4 394 445 43.0 57.0 59.0 67.0 62.9
SPG w/ EUBO 77.1 83.8 83.9 33.2 37.6 39.4 68.4 71.5 68.0 81.2 87.1 89.9

SPG w/ Mixture ~ 78.5.36 86136 84.5.5 334u0 40.0.26 41824 68.8:0 70.7+15 70.3:13 82.9:24 94.0.7 93.1.30

GSM8K MATH500 Countdown Sudoku
3.0 18 0.8 1.0
2.5 1.6 0.8
° 0.6 '
20
g 1.4 h v 0.6
Q15 f 0.4
12 0.4
1.0 :
05 1.0 0.2 02
0 2000 4000 6000 0 1000 2000 3000 4000 0O 2000 4000 6000 0 500 1000 1500 2000 2500
Steps Steps Steps Steps
D1 WD1 —— UniGRPO —— SPG (ours)

Figure 3: Reward dynamics of SPG w/ Mixture during RL training, compared with D1, WDI1, and
UniGRPO. SPG consistently leads to faster convergence and higher reward level. We report mean
and standard deviation over a rolling window of 50 steps.

Adaptation (LoRA) with a rank of » = 128 and scaling factor o = 64. For SPG, we report results
using both Lgygo (i.e., SPG w/ EUBO) and Ly, (i.e., SPG w/ Mixture) for negative advantage
traces. We select the value of 8 in the EUBO from {1.0,1.5,2.0} based on the best average test
accuracy across all generation lengths, and fix the mixture coefficient w at 0.5. Further experimental
details are in Appendix [E.T]and Appendix [E.2]

Baselines. We compare our method with several recent RL algorithms for dLLMs, including
D1 (Zhao et al.; 2025), WD1 (Tang et al.l [2025), and UniGRPO (Yang et al.| [2025)). For D1 and
WD, we reproduce results using the official codebases and instructions, and for fair comparison, we
omit the additional SFT stage in D1 across all models. For UniGRPO, since the code is not publicly
available and the original work focuses on vision-language multimodal models, we reimplement the
algorithm within our setup. For consistency, we set the number of inner gradient updates p to 4 for all
models, following GRPO (Shao et al.l[2024). We also evaluate LLaDA-1.5 (Zhu et al., [2025)) under
our settings, which fine-tune LLaDA-8B-Instruct using VRPO, a preference optimization approach
on 350K preference pairs.

Generation and Evaluation Setup. For both RL rollouts and evaluation, we use the semi-
autoregressive confidence-based decoding strategy, following LLaDA, D1 and WD1. We apply
the same generation setup as D1, with the denoising timestep set to half the total sequence length.
The sequence is divided into blocks of 32 tokens, and in diffusion step, we unmask the 2 tokens
with the highest confidence (measured by the probability of the sampled token) within the current
incomplete block. During RL rollout, to encourage diverse outputs, we use a generation length of 256
and a sampling temperature of 0.9 across all benchmarks, except for sudoku, where the temperature
is set to 0.3 as in D1. During evaluation, the sampling temperature is set to 0.0. We evaluate the
models every 100 steps, reporting results from the checkpoint that achieves the highest average test
accuracy across generation lengths of 128, 256, and 512.

Results. We provide the performance of SPG on each benchmark in comparison to the base
model and other baselines in Table [I Both SPG w/ EUBO and SPG w/ Mixture consistently
achieve significant improvements over the baselines across all tasks and generation lengths, with
the Mixture approach that combines ELBO and EUBO for negative advantage traces yielding the
best performance. In particular, at a generation length of 256, SPG w/ Mixture improves the test
accuracy over the previous state-of-the-art by 3.6% on GSM8K, 2.6% on MATHS500, 18% on

Under review as a conference paper at ICLR 2026

Table 2: Ablations on log-likelihood estimation meth- Table 3: Ablations on the masking strate-
ods for negative advantage traces. The best results are gies in Monte Carlo estimation. We denote
bolded and the second best are underlined. We denote the absolute gain of test accuracy to random
the gain of test accuracy to SPG w/ ELBO in green. masking for each model in green.

Model GSMS8K MATHS00 Countdown Sudoku _ Model Masking MATHS500 Countdown
SPG w/ EUBO random 36.7 454

SPG wo/ 774 32.7 455 68.8

SPG W ELBO 809 374 e 84 block-wise 36700 69330

SPG w/ EUBO 81.6 36.7 69.3 86.1 SPG w/ Mixture random 36.9 62.8

SPG w/ Mixture 83.1.22 38.4:1.0 69.9:25 90.0:7.6 block-wise 38.4415 69.9.:7.1

Countdown, and 27% on Sudoku, showcasing the effectiveness of SPG to conduct RL for dLLMs.
Reward dynamics throughout training are illustrated in Figure[3| where SPG shows a rapid and steady
increase in reward over the optimization steps, further demonstrating its efficiency and robustness.
We provide additional results and comparisons to the baselines in Table [d and Appendix [F.1]

4.2 ABLATIONS AND FURTHER ANALYSIS
We conduct a series of ablation studies to gain deeper insights from the following aspects:

* The contribution of each individual component, including log-likelihood estimation methods for
negative advantage traces (Table2)) and the masking strategy in Monte Carlo estimation (Table [3).

* The effect of key hyperparameters, including /3 that controls the tightness of the upper bound and
the mixture coefficient w (Figure[5).

* The robustness of our approach under various inference strategies (Figure [6)).

Due to computational constraints, some ablation experiments are conducted on a representative
mathematical reasoning benchmark (MATH500) and a logical reasoning benchmark (Countdown).
Unless otherwise noted, we report average test accuracy across generation lengths 128, 256, and 512
for the ablation studies, with detailed results for each generation length provided in Appendix
We also investigate alternative log-likelihood estimation methods for positive advantage traces in
place of ELBO, as detailed in Table [TT)and Appendix [F.2]

Ablations on Algorithm Components. We first study the impact 1o
of different log-likelihood estimation methods for negative advan-
tage traces in Table[2] Specifically, we compare our approach using -
Leuso or Lyiix with those using Lg; go (SPG w/ ELBO) or omitting g 0.6
the negative advantage loss entirely (SPG wo/ neg). Removing the =

negative advantage loss results in a substantial performance drop, D Ared
highlighting the importance of negative advantage penalties to RL. 02 s ROWiMixture
Additionally, both Mixture and EUBO methods outperform ELBO O N eps B
(except for EUBO in MATHS500), showcasing the benefits of evi- Fjgure 4: Reward dynamics of
dence upper bound regularization for negative rewards. We provide {ifferent methods on Sudoku.
complete results for each generation length in Table [0

The effect of log-likelihood estimation methods is further illustrated by the reward dynamics of each
model in Figure[d] taking Sudoku as an example. SPG w/ ELBO converges rapidly during training but
plateaus early, as minimizing the lower bound does not necessarily minimize the true log-likelihood
for negative advantage traces. In contrast, SPG w/ EUBO achieves higher final rewards but converges
more slowly and less stably. Combining both, SPG w/ Mixture attains fast, stable convergence and
high rewards, leading to an effective balance. This aligns with our discussions in Section[3.3]

We also conduct ablations on the masking strategies in Monte Carlo estimation of Lg; o, LEUBO,
and Lyi,. As shown in Table [3] the block-wise masking strategy outperforms random masking,
demonstrating the importance of aligning input distributions between policy rollout and optimization.
We provide complete results for each generation length in Table

Ablations on Key Hyperparameters 0 and w. We first examine the effect of 3, a crucial hyper-
parameter in evidence upper bound estimation, in panels (a)-(d) of Figure[5] In general, a relatively
small value of 3 (i.e., close to 1.0) leads to a tighter bound and thus better performance. Nevertheless,

Under review as a conference paper at ICLR 2026

~ (a) GSM8K (b) MATH500 (c) Countdown (d) Sudoku (e) MATH500 (f) Countdown

< 83.1 384 1 90.0 385 38.4 70.9

§830 T 38 9.0 0

5825 70 2 6. 38.0 70

E 82.0 81.6 37 367 o 9.360 375 N

()

Gois /\/\ 36 \/\ 40 37.0

0810 66 36.5

Z 05 10 15 20 05 10 15 20 05 10 15 20 05 10 15 20 00 05 10 00 05 10
B B B B w w

—— SPG w/ EUBO —=— SPG w/ Mixture

Figure 5: (a)-(d): ablations on the effect of 5 in the upper bound; (e)-(f): ablations on the mixture
coefficient w. The best performed 8 > 1 and w € [0, 1] are marked by triangle in each setting.

Semi-AR, Block=16, Semi-AR, Block=32, Semi-AR, Block=64, Semi-AR, Block=32, Full Sequence, Full Sequence,
- Confidence Confidence Confidence Random Confidence Random
N 73.5 70. 773.2 70. o72 7
=70 +16.2% 1 68.7 +15.0% 1 : +8.7% 1., +14.6% 1 65.6 +16.7% 1 +9.4% 1
[. 61.2
O 60 57.3 58.158.2 57.5
3 52.6 @ 253-5 51'055‘2 52,905
é 50 43.8 45.9 42.943.3 43.1 44.5) 36:3)
© 40{37.887.8 38.540-2 36.4 38.140:2 37.9
= 32.6 32.4 £
© 30 28.8 27.5 27.128.8
>
< LLaDA-8B-Instruct LLaDA-1.5 D1 WD1 N UniGRPO I SPG w/ EUBO N SPG w/ Mixture

Figure 6: Ablations on inference strategies, including different combinations of decoding orders (i.e.,
semi-autoregressive (semi-AR) decoding with varying block sizes and full sequence decoding) and
unmasking approaches (i.e., confidence-based and random unmasking). We set generation length
to 256 and report the average accuracy across four benchmarks. SPG consistently outperforms all
baselines by a large margin across different inference strategies.

SPG consistently performs well across a range of 3 values on most tasks, indicating its robustness.
For our main results in Table[T] we fix w = 0.5 and select the optimal 8 > 1, resulting in § = 1.0
for Sudoku and 3 = 1.5 for the other three benchmarks, except for Countdown with SPG w/ EUBO
where 8 = 2.0. Besides, since the ELBO corresponds to the case of 3 = 0 theoretically and EUBO
corresponds to 5 > 1, we also investigate intermediate values 0 < 8 < 1, which may serve as an
implicit mixture of lower and upper bounds. However, it is unstable in Sudoku and underperform
SPG w/ Mixture on most benchmarks.

We also experiment on the effect of the mixture coefficient w, keeping [fixed at its optimal value
determined for w = 0.5 as mentioned before. As illustrated in panels (e)-(f) of Figure@ combining
lower and upper bounds with w € (0, 1) leads to better performance than leveraging either bound
solely, resulting in an inverted U-shaped curve. This observation is consistent with our analysis in
Proposition[I]and Section We provide complete ablation results of 3 and w for each generation
length in Table[8]and Table

Ablations on Inference Strategies. In the above experiments, we adopt a consistent state-of-
the-art inference setup during both RL rollout and evaluation, i.e., confidence-based, block-wise
semi-autoregressive generation with a block size of 32. The same configuration and block size are
also used in our block-wise masking strategy. This raises the question of whether our approach
generalizes well to alternative inference strategies. To assess this, we evaluate the base model
and all RL fine-tuned models using various inference strategies, as shown in Figure [6| Despite
being trained under confidence-based semi-AR decoding, SPG consistently outperforms all baselines
by a substantial margin across all inference strategies, demonstrating its robustness and strong
generalizability. Complete results for each benchmark individually are provided in Table [T2}

5 CONCLUSION

We propose SPG, a novel reinforcement learning algorithm for diffusion large language models.
SPG addresses the intractable log-likelihood in dLLMs by maximizing a tractable lower bound on
positive reward sequences and minimizing an upper bound on negative ones, resulting in a more
robust and less biased policy gradient. Additionally, we propose a block-wise masking strategy for
Monte Carlo estimation to enhance optimization stability and efficiency. Extensive experiments on
four mathematical and logical reasoning benchmarks demonstrate the superior performance of SPG,
achieving significant improvement over baselines and the state-of-the-art performance.

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

The paper studies methods for language generation, specifically targeting mathematical and logical
reasoning tasks. Our research does not involve human subjects.

REPRODUCIBILITY STATEMENT

Assumptions and complete proofs of theoretical results are provided in Appendices and[D.2}
We include complete algorithm description, implementation details, experimental settings and dataset
information in Section fland Appendix [E]

UsE oF LARGE LANGUAGE MODELS

LLMs are slightly used to polish writing.

REFERENCES
Arel. Arel’s sudoku generator. https://www.ocf.berkeley.edu/ arel/sudoku/main.html, 2025.

Marianne Arriola, Aaron Gokaslan, Justin T Chiu, Zhihan Yang, Zhixuan Qi, Jiaqi Han, Sub-
ham Sekhar Sahoo, and Volodymyr Kuleshov. Block diffusion: Interpolating between autoregres-
sive and diffusion language models. arXiv preprint arXiv:2503.09573, 2025.

Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne Van Den Berg. Structured
denoising diffusion models in discrete state-spaces. Advances in neural information processing
systems, 34:17981-17993, 2021.

Kevin Black, Michael Janner, Yilun Du, Ilya Kostrikov, and Sergey Levine. Training diffusion models
with reinforcement learning. arXiv preprint arXiv:2305.13301, 2023.

Andrew Campbell, Joe Benton, Valentin De Bortoli, Thomas Rainforth, George Deligiannidis, and
Arnaud Doucet. A continuous time framework for discrete denoising models. Advances in Neural
Information Processing Systems, 35:28266-28279, 2022.

Andrew Campbell, Jason Yim, Regina Barzilay, Tom Rainforth, and Tommi Jaakkola. Generative
flows on discrete state-spaces: Enabling multimodal flows with applications to protein co-design.
arXiv preprint arXiv:2402.04997, 2024.

Kevin Clark, Paul Vicol, Kevin Swersky, and David J Fleet. Directly fine-tuning diffusion models
on differentiable rewards. arXiv preprint arXiv:2309.17400, 2023.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. arXiv
preprint arXiv:2307.08691, 2023.

Ying Fan, Olivia Watkins, Yuqing Du, Hao Liu, Moonkyung Ryu, Craig Boutilier, Pieter Abbeel,
Mohammad Ghavamzadeh, Kangwook Lee, and Kimin Lee. Dpok: Reinforcement learning for
fine-tuning text-to-image diffusion models. Advances in Neural Information Processing Systems,
36:79858-79885, 2023.

Shansan Gong, Mukai Li, Jiangtao Feng, Zhiyong Wu, and LingPeng Kong. Diffuseq: Sequence to
sequence text generation with diffusion models. arXiv preprint arXiv:2210.08933, 2022.

Shansan Gong, Shivam Agarwal, Yizhe Zhang, Jiacheng Ye, Lin Zheng, Mukai Li, Chenxin An,
Peilin Zhao, Wei Bi, Jiawei Han, et al. Scaling diffusion language models via adaptation from
autoregressive models. arXiv preprint arXiv:2410.17891, 2024.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

10

Under review as a conference paper at ICLR 2026

Xiaochuang Han, Sachin Kumar, and Yulia Tsvetkov. Ssd-Im: Semi-autoregressive simplex-
based diffusion language model for text generation and modular control. arXiv preprint
arXiv:2210.17432, 2022.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840-6851, 2020.

Inception Labs, Samar Khanna, Siddhant Kharbanda, Shufan Li, Harshit Varma, Eric Wang, Sawyer
Birnbaum, Ziyang Luo, Yanis Miraoui, Akash Palrecha, et al. Mercury: Ultra-fast language
models based on diffusion. arXiv preprint arXiv:2506.17298, 2025.

Xiang Li, John Thickstun, Ishaan Gulrajani, Percy S Liang, and Tatsunori B Hashimoto. Diffusion-
Im improves controllable text generation. Advances in neural information processing systems, 35:
4328-4343, 2022.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The Tivelfth
International Conference on Learning Representations, 2023.

Zhiyuan Liu, Yicun Yang, Yaojie Zhang, Junjie Chen, Chang Zou, Qingyan Wei, Shaobo Wang, and
Linfeng Zhang. dllm-cache: Accelerating diffusion large language models with adaptive caching.
github, 2025a.

Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee, and Min
Lin. Understanding r1-zero-like training: A critical perspective. arXiv preprint arXiv:2503.20783,
2025b.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Aaron Lou, Chenlin Meng, and Stefano Ermon. Discrete diffusion modeling by estimating the ratios
of the data distribution. arXiv preprint arXiv:2310.16834, 2023.

Xinyin Ma, Runpeng Yu, Gongfan Fang, and Xinchao Wang. dkv-cache: The cache for diffusion
language models. arXiv preprint arXiv:2505.15781, 2025.

Shen Nie, Fengqi Zhu, Zebin You, Xiaolu Zhang, Jingyang Ou, Jun Hu, Jun Zhou, Yankai Lin, Ji-
Rong Wen, and Chongxuan Li. Large language diffusion models. arXiv preprint arXiv:2502.09992,
2025.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in neural information processing systems, 35:27730—
27744, 2022.

Jiayi Pan, Junjie Zhang, Xingyao Wang, Lifan Yuan, Hao Peng, and Alane Suhr. Tinyzero.
https://github.com/Jiayi-Pan/TinyZero, 2025. Accessed: 2025-01-24.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of
the IEEE/CVF international conference on computer vision, pp. 4195-4205, 2023.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in neural information processing systems, 36:53728-53741, 2023.

Alfréd Rényi. On measures of entropy and information. In Proceedings of the fourth Berkeley
symposium on mathematical statistics and probability, volume 1: contributions to the theory of
statistics, volume 4, pp. 547-562. University of California Press, 1961.

Subham Sahoo, Marianne Arriola, Yair Schiff, Aaron Gokaslan, Edgar Marroquin, Justin Chiu,
Alexander Rush, and Volodymyr Kuleshov. Simple and effective masked diffusion language
models. Advances in Neural Information Processing Systems, 37:130136-130184, 2024.

11

Under review as a conference paper at ICLR 2026

Subham Sekhar Sahoo, Justin Deschenaux, Aaron Gokaslan, Guanghan Wang, Justin Chiu, and
Volodymyr Kuleshov. The diffusion duality. arXiv preprint arXiv:2506.10892, 2025a.

Subham Sekhar Sahoo, Zhihan Yang, Yash Akhauri, Johnna Liu, Deepansha Singh, Zhoujun Cheng,
Zhengzhong Liu, Eric Xing, John Thickstun, and Arash Vahdat. Esoteric language models. arXiv
preprint arXiv:2506.01928, 2025b.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International conference on machine learning, pp. 1889-1897. PMLR,
2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemati-
cal reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Jiaxin Shi, Kehang Han, Zhe Wang, Arnaud Doucet, and Michalis Titsias. Simplified and generalized
masked diffusion for discrete data. Advances in neural information processing systems,37:103131—
103167, 2024.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. arXiv preprint
arXiv:2011.13456, 2020.

Bowen Sun, Yujun Cai, Ming-Hsuan Yang, and Yiwei Wang. Blockwise sft for diffusion lan-
guage models: Reconciling bidirectional attention and autoregressive decoding. arXiv preprint
arXiv:2508.19529, 2025.

Haoran Sun, Lijun Yu, Bo Dai, Dale Schuurmans, and Hanjun Dai. Score-based continuous-time
discrete diffusion models. arXiv preprint arXiv:2211.16750, 2022.

Xiaohang Tang, Rares Dolga, Sangwoong Yoon, and Ilija Bogunovic. wdl: Weighted policy
optimization for reasoning in diffusion language models. arXiv preprint arXiv:2507.08838, 2025.

Tim Van Erven and Peter Harremos. Rényi divergence and kullback-leibler divergence. IEEE
Transactions on Information Theory, 60(7):3797-3820, 2014.

Chenyu Wang, Masatoshi Uehara, Yichun He, Amy Wang, Tommaso Biancalani, Avantika Lal,
Tommi Jaakkola, Sergey Levine, Hanchen Wang, and Aviv Regev. Fine-tuning discrete diffusion
models via reward optimization with applications to dna and protein design. arXiv preprint
arXiv:2410.13643, 2024.

Xu Wang, Chenkai Xu, Yijie Jin, Jiachun Jin, Hao Zhang, and Zhijie Deng. Diffusion llms can do
faster-than-ar inference via discrete diffusion forcing. arXiv preprint arXiv:2508.09192, 2025a.

Yinjie Wang, Ling Yang, Bowen Li, Ye Tian, Ke Shen, and Mengdi Wang. Revolutionizing reinforce-
ment learning framework for diffusion large language models. arXiv preprint arXiv:2509.06949,
2025b.

Chengyue Wu, Hao Zhang, Shuchen Xue, Zhijian Liu, Shizhe Diao, Ligeng Zhu, Ping Luo, Song
Han, and Enze Xie. Fast-dllm: Training-free acceleration of diffusion llm by enabling kv cache
and parallel decoding. arXiv preprint arXiv:2505.22618, 2025.

Ling Yang, Ye Tian, Bowen Li, Xinchen Zhang, Ke Shen, Yunhai Tong, and Mengdi Wang. Mmada:
Multimodal large diffusion language models. arXiv preprint arXiv:2505.15809, 2025.

Siyan Zhao, Devaansh Gupta, Qinging Zheng, and Aditya Grover. d1: Scaling reasoning in diffusion
large language models via reinforcement learning. arXiv preprint arXiv:2504.12216, 2025.

Lin Zheng, Jianbo Yuan, Lei Yu, and Lingpeng Kong. A reparameterized discrete diffusion model
for text generation. arXiv preprint arXiv:2302.05737, 2023.

Fengqi Zhu, Rongzhen Wang, Shen Nie, Xiaolu Zhang, Chunwei Wu, Jun Hu, Jun Zhou, Jianfei
Chen, Yankai Lin, Ji-Rong Wen, et al. Llada 1.5: Variance-reduced preference optimization for
large language diffusion models. arXiv preprint arXiv:2505.19223, 2025.

12

Under review as a conference paper at ICLR 2026

A REeLATED WORK

Diffusion Language Models. Building on the remarkable success of diffusion models for image
generation in continuous domains (Song et al., 2020; |Ho et al., 2020), researchers have explored
their extension to discrete data such as text. Initial attempts focused on training continuous diffusion
models in the text embedding space (Li et al.l 2022} |Gong et al., 2022} [Han et al., [2022} |Sahoo
et al., 2025a), while they face challenges in optimization and generalization due to the discrete
nature of text data. Masked diffusion models (Lou et al., 2023 Zheng et al.} 2023 |Campbell et al.,
2024; [Sahoo et al.| [2024; |Shi et al.l |2024)) address this by defining the diffusion process directly in
the discrete token space, using random masking as the forward process, and have achieved strong
empirical results. Block Diffusion (Arriola et al.|[2025) further advances this direction by combining
the strengths of autoregressive models, such as the capability to generate variable-length outputs and
using KV cache to accelerate inference, with the benefits of diffusion language models like parallel
decoding and flexible, any-order generation within blocks. Recently, large-scale diffusion language
models trained with masked diffusion objectives have demonstrated performance competitive with
similarly sized autoregressive models (Nie et al.,|2025; (Gong et al., [2024). More recent works (Wu
et al., [2025; |[Ma et al} [2025; [Liu et al.| 2025a} [Sahoo et al.l [2025a;b) have introduced caching and
parallel decoding algorithms that greatly enhance the inference efficiency of dLLMs.

Reinforcement Learning for LLMs and Reasoning. Reinforcement learning has proven highly
effective at enhancing the reasoning abilities of large language models (LLMs) during post-training.
Algorithms such as Proximal Policy Optimization (PPO) and Trust Region Policy Optimization
(TRPO) constrain policy updates to a trust region, reducing variance and promoting stable learning
by preventing excessive shifts from the reference policy (Schulman et al., 2015} [2017). Building
on these methods, Group Relative Policy Optimization (GRPO) (Shao et al., [2024) introduces
group-relative rewards, enabling efficient training without the need for an additional value (critic)
model. GRPO and its variants have demonstrated strong empirical performance in state-of-the-
art models such as DeepSeek-R1 (Guo et al., 2025), particularly on mathematical reasoning tasks,
where incorporating long reasoning traces with self-reflection and verification steps yields significant
improvements.

Reinforcement Learning for Diffusion Language Models. Numerous studies have explored RL-
based fine-tuning algorithms for diffusion models with continuous objectives (Fan et al.,[2023};|Black
et al.l 2023} (Clark et al., 2023). While RL algorithms have achieved notable success to LLMs
and continuous diffusion models, their applications to diffusion language models in the discrete
space remain underexplored. DRAKES (Wang et al.|[2024) leverages reward backpropagation along
the denoising trajectory, but is computationally intensive for large scale models as the gradients
are propagated through each denoising step. Alternatively, methods like D1 (Zhao et al.l 2025)
and UniGRPO |Yang et al,| (2025) utilize the GRPO framework, approximating the log-likelihood
through either a one-step unmasking (as in D1) or Monte Carlo estimation using the ELBO (as in
UniGRPO). VRPO (Zhu et al., 2025) adapts DPO (Rafailov et al.| 2023) to fine-tune dLLMs by
applying MC estimation of the ELBO. WD1 (Tang et al., |2025) starts from the GRPO formulation
and the same log-likelihood estimation as in D1, while avoiding direct estimation of the old and
reference policy log-likelihoods by integrating them into a weighted policy optimization objective.
Despite these advances, a principled analysis of RL algorithms for dLLMs, especially the challenging
log-likelihood estimation, is missing. This results in substantial bias in the optimization objective
and suboptimal performance.

B Basics or DLLMs

In this section, we provide a more self-contained overview of masked dLLMs. Please also refer to
Sahoo et al.| (2024)) for more details.

Notation. We denote scalars by lowercase letters (x), vectors by bold lowercase (x), and sequences
by x1.,,. A superscript (e.g.,) denotes an item’s index within a group. We define the set of the first
k integers as [k] := {1,...,k} and the k-dimensional probability simplex as A*~1. Distributions
include the categorical Cat(- | p) and the uniform U[a,b]. Throughout the paper, we use the

13

Under review as a conference paper at ICLR 2026

following primary indices: ¢ € [n] for position, j € [g] for a sequence in a group, and ¢ € [0, 1] for
the continuous diffusion timestep.

We start from a discrete time version of the diffusion models with finite ¢ € [T"]. Assume a one-hot
categorical variable & € {ey,...,e,} € AF~1. Further assume we gradually corrupt z into an
absorbing state m (i.€., €[qasx)) With transition matrix Q) at time ¢. Then:

t
q(z; |) = Cat(z; | Q) = Cat(z; | H Q.x)

Here, z, is also a one-hot categorical random variable in AF-1 In practice, one could choose Q,
such that:
q(z¢ | ®) = Cat(z; | v + (1 — o)m).

Here, a; = 1,a7 = 0,0} < 0.
Normally, the goal is to construct the lower bound of the evidence (ELBO) and maximize it. For this

particular case, consider the discretized Markov chain with 7" latent variables z1, zo, . . ., 2z, where
zr = m and z; = x. We use the shorthand z = z;.7 and write

p9($7 z):l
q(z |)

T—1
=E.q(|2) [bgpe(w, z1) + Z log
v t=1

Leiso(x;0) = E. g o) {log

pe(zt | Zt+1)] pe(ZT)]
q(2¢ | ze41,) q(z7 |)
N———’

=0 (10)

(I(Zt | Zt+1,33)

— o2 | Zi11)

‘] t t+1
:E]Ezf,,zt+1~q|:10g:|
t=1

— po(2: | Zi1)
N T log LO\FL1 Zt+1) |
; Fratle) Bzl ZtH’w){ o8 Q(zt | Zt+1739)

Here, log pg(, z1) = 0 because we assume z, = , and pg(zr) = ¢(zr |) because we assume
zr = m. A common method to parameterize pg is via predicting « with model 7g in g:

pe(zt \ Zt+1) = Q(Zt | Zt41, X = 7r9(~ | Zt+1))-

Now, given that z;, is either m or x (assuming m #). Then the KL term in equation
decomposes into the following.

0 Zy = 241 = T,
log po(zi|zi41) _ JO 2y =M,z =T, (Impossible) an
q(z¢ | 2441, %) logme(x | 2¢e41) 2t =X, 241 =M,
0 Zt = Zi41 = M.
Moreover, ¢(z; = @ | z¢41 = m,x) = ";’:Taffll and note that g (x | z;) = 1 when z; = x, so we
have:
Lerpo(x; 6) Z Ezpima() [1og (T | z441) (2041 = m)}

_ Z Ezii~a(la) [o, 1og 7o (x | Zt+1)} (If z¢41 = @, then log o (x | z¢+1) = 0)
(12)

Taking the above limit as 7" — oo, we have:

/

1
a
LeLpo(x; 0) :/ E.ing(|o) [t log g (| zt)} (13)
t=0 a —1

14

Under review as a conference paper at ICLR 2026

Generalization to Sequence The above is for a single categorical variable . In practice as in
language modeling, it becomes a sequence of categorical variables x1.,,. Then we write

p@(xlzn; zl:n):|

Craofsnc) =yt 08D

wl7z n -
= EfzingCleni {Zlogpe (zi | 1))} (Independence of g(- | z:))

- p@(wivzlzn)
= ZE{%‘/NQ("%/)}?}ZI |:1Og :|
i=1

q(zi | ;)

(14)

= Z Lergo(i; 0).
i=1

The key distinction from the single-token formulation (mentioned beforehand) is that the reverse
process pg is conditioned on all zy.,, instead of a single token’s z;.

C Evipence UppErR BouND FOrR DLLMs

In this section, we provide the derivation of the evidence upper bound. Following the above section,
we start from the discrete time version of the diffusion models.

Lemma 1 (Rényi Variational Bound; Rényi| (1961)); Van Erven & Harremos|(2014)). Fix an obser-
vation x. Let q(- | x) be any distribution on Z such that p(- |) < q(- | x), denoting that p(- |) is
absolutely continuous with respect to q(- | z). Then, the following holds for any 5 > 1:

B
E.nq(la) [bg p(”;’z)} < 1ogp(e) < + 108 Exarsy(o [(W’Z))] (15)

q(z | x) B (2 |)

In view of the above lemma, we derive an evidence upper bound for masked diffusion models in the
following theorem.

Theorem 1 (Evidence Upper Bound for Masked Diffusion). Assume the forward denoising process
has T steps with a monotonic schedule o. For any B > 1 and a sequence of categorical variables
x1.,, we have:

log mg(1:n) < Leuo(x1:050), (16)

where

1
1 O — Qg1
Lrugo(T1:n;0) = 3 > log) E., [ltat: W(ze414 = m) - 7 (@i | ze41) | + C(D),
; —
A7

and C(T) := % logE., ;~q(|z) [q(zLT | ac)_"} is a constant independent of 6.

Proof. We first consider the case with a single categorical variable . On the account of Lemmal[I]
and following a similar argument as in equation 10} for any 5 > 1, we can write

1 pﬂ(waz) g
log e () < Blog]EquHw) Kq(,zm)]

T—1 B
= %IOgEzlzTNQHw) |: H (pe(Zt|Zt+1>> :| (18)

i \a(ze |z,)
Note that the sequence z1.7 has a form {x, ..., x, m, ..., m}. Define the transition event:

A ={zt =, 2111 = m} (19)

15

Under review as a conference paper at ICLR 2026

Then, by the law of total expectations, equation[I8|can be expressed as:

T-1 8
1 po(2t | zt+1)
B logE., 1ng(|2) { H <

= \a(z | zev1, @)

— 1o Til]P’(A E THl<Pe(zs|zs+1)>ﬁA
3 gt:1 t)Ezeqg(|) 1 (25 | Zs11,) t

T—1
=3 log Z Bzt ~a(|a) {]l(ztﬂ =m)q(zt = x| 2141 = M, :c)(
t=1

po(2t = | 2141 = m))ﬁ]
q(zt = | zt41 = M, x)

T-1

1 Qp — Q41
=5 108 > Ea\\ymqtle) {l(zm = m)lf_ia:lwg(m | zt+1)] (20)
t=1

ERED .
S s equal
to one for any s # t. The last line uses the formula for ¢. The indicator 1(z; = m) appears in the
final expression because the terms in the bound are only non-trivial when the model must make a
prediction from a corrupted state.

The penultimate line is due to the fact that conditioned on the event Ay, the ratio

Now we generalize the above to a sequence of categorical variables * = @1.,. Similar as Equa-
tion (T8)), we have

T—-1 n B
Po\Zt,i | Zt+1
log m (1) < Blong o [Hn(t |z >) }

leiinie) th|zt+1,)

The upper bound in the RHS can be further derived as

) rf’'—1 n po(z ‘ z 1) P

—logE,, (- <“t+> }

ﬁ z1.7~q(-|x) I tl_[l zl_Il Zt i ‘ Zt4+1,T)

- _ B

1 Do Yy, |yt+1
_ IOgEZ11T~q(~Iw) z1 T | :13 H Z y1 T | fB y1 T = 21:T H (Z

6 L = ly_ t=1 ytl|yt+1’)

T—1 B

X Pel(y |yt+1

<= logE,, g |w) ZIT|:‘3 nHZ (Y1r | @) H (“

5 L i1 \4 ym | yt+1, @)

i= Yi.1
T-1 B

1 po(yi, |yl
=—log]:EZLTNQ("Z)[(z17 | x) "} (H Z '!Jl rlz) H (“

3 o Pl ytz‘yt+1’)

n T-1 B
1 po(Zti | Ze41) 1 n
:BIOgHEzhwq(-m)[H <,t Hm) + ElogEzlmq(-\m) [q(zlzT |) }
i=1 ’

=2\

1 & T pe(zei | zimn))’
:521ogEzlzT~q(.,w)[H <)) } +C(T) 1)
=1

=1 q(zei | zeq1,

Here, Yy, are copies of z1.7 enforced to agree with z;.7 using the indicator]l(yi:T = z1.7). C(T)
is a constant independent of 6, and the first term in Equation (21)) can be derived similar to the single
variable case in Equation (20):

1 — = po(zei | Zi41) ’
EZIOgEZI:TNQ('Iw) H Y2 I

=1 Q(th | Zt+1793)

—
== Z log Z Ev,\ma(e) [DLz =m) g (| >]

— Q41

16

Under review as a conference paper at ICLR 2026

Corollary 1. Taking the limit of T — oo, we have:

VoLrupo(T1:n;0) = Vo (EEUBo(wl:n; 0)+ C(T)> = VoLrupo(1.1;0), where

N 1 & (22)
Lrugo(T1:n; 0) = 3 > logE ., {w(t) (205 =m) 7w (T | 21)| -
i=1

One caveat of the above LNEUBO is that the log is outside of the expectation, which in general makes
Monte Carlo sample estimates biased. One could certainly further loosen the bound using the
inequality logz < z — 1:

1 — n
EEUBO(w) S B ZEt’Vu[O,letN‘q |"w(t) .]l(zt’i = m) . Fg(wl ‘ Zt)‘| - B
=1

But in practice we found this results in much worse performance, as demonstrated in Table [T0}
potentially due to the much larger gap between EUBO and likelihood.

D AbpbitioNaL ANALYSIS ON UpPER AND LOWER BOUNDS

D.1 Proor ofF ProposiTioN[I]

Proposition 1 (Optimal Mixture Strictly Reduces Variance). Fix a coordinate k and let pg =
w(t,zt)wg(:ci | zt,¢)/E {w(t,zt)wg(a:i | zt,c)}, where w(t, z;) = w(t)1(z; = m). Then, the
gradient of mixture objective () is given by

Gue = (1 —w)w(t, z:) + wpg) g, log me(x | 24, C). (23)

If Var((pg — w(t, z¢))0g, logme(x | z¢,¢)) > 0, then Var|g,, | is a strictly convex quadratic in w
and thus admits a unique minimizer wy. Moreover,

Var(g,: x] < min{ Var[go 1], Var[gl,k]},

Proof. We first derive the formulas for the gradient of each objective. Consider a specific example
x;. The gradient of the Lg; go and L go are given by:

VoLeiso = E[w(t, z)Vlog me(x; | 2,)] (24)
~ E [w(mzt)wg(:ci | z¢,¢)Vlogme(x; | zt,c)}
VeoLruso = 5 (25
E [w(t, z)mj (: | 2,0)|
Then the gradient of the mixture objective Ly is given by:
Veolmix = E K(l —w)w(t, z) + wa)VQ log mo(x; | 2t, c)] (26)

We further compute the per-parameter (per-dimension) variance of the gradient of [lMix and consider
the optimal mixture coefficient w to minimize the variance. For simplicity, we use the following
short-hand notation:

s = Og,, log me(x; | 2¢,€)

We denote the k-th coordinate of the gradient Vg ZMix by g., k. Then, the coordinate-wise variance
of the gradient is given by

Var[go, k] = E[((l —w)w + wplg)2 sﬂ — (E[((l —w)w +wpg) sk])2

= Var(wsg) + 2w Cov(wsg, (pg — w)sk) + w? Var((ps — w)si)

17

Under review as a conference paper at ICLR 2026

where we used the shorthand w = w(t, z;). The above expression is quadratic in w and we find the
optimal w by setting the derivative of variance to zero:

% Var[g,,1] =2 Cov(w sy, (pg —w) s) + 2w Var((pg — w) sg) =0

B Cov(w sg, (pg —w) sk)
Var((ps — w) si)

The above yields a per-coordinate optimal wj,. Equivalently, we can write wj; as follows:

= wp =

Var(w sk) — Cov(w Sk, PB sk)

*__
Yk Var(w sy,) + Var(pg si) — 2 Cov(w sk, ps sk)

Furthermore, wj; is a minimizer of coordinate-wise variance in the non-degenerative case with
Var((pﬁ —w) sk) > 0, as the variance is strongly convex in w.

The coordinate-wise variance of gradients in Lggo (w = 0) and EELBO (w = 1), and the optimal
mixture coefficient w* are then given by

Lego : Var[gox] = Var|[w si],
Lo : Var [91,1] = Var[w si,| +2 Cov(wsy, (pg —w) si) + Var((pg — w) si),

2
(Cov(w Sk, (pg —w) sk))
Var((pg — w) si) ’

The difference between the variance of Lg;po and ﬁELBO with the optimal mixture coefficient can
then be derived as follows:

Optimal: Var[g.:] = Var|[w si| —

2
(Cov(w Sk, (pg —w) sk)>
Var((pg — w) si)

(Cov(w Sks (pg —w) Sk) + Var((pﬁ —w) sk)>2
Var((pg — w) sk)

Var[w sk] — Var [gw;,k] = >0

>0

Var|pg sk] — Var[gu; k] =
O

D.2 ApbpbitioNAL COMPARISON BETWEEN THE MIXTURE Loss AND THE LOWER AND UPPER BoUNDS

Comparing Mixture with the Lower Bound. Consider the ratio of the coefficient of score func-
tion Vglogmg(x; | z:,c) in the gradient in the case of the mixture objective (i.e., Vg Lyix in
Equation (26)) over using only the lower bound (i.e., Vg Lergo in Equation (24)):
7Tg (z; | 2, €)

E [w(t,zt)ﬂg(:ci | zt,c)}

Whiix (1 —w)w(t,z) +wpg C(l-w)tw
WELBO w(t, z¢)

Treating the expectation over all samples E [w(t7 zt)wg (z; | 2z, c)} as a constant (since it is aver-

aged), the second term in the above ratio is strictly increasing in wg (x; | z¢,c). This realizes a
confidence-aware weighting: uncertain tokens with small wg (z; | zt,), i.e., those with a low recov-

ery chance, have a smaller weight, while confident tokens with large ﬂg (x; | z:,c) are upweighted,
with sharpness being controlled by parameter 3 and the blend by w.

Comparing Mixture with the Upper Bound. We compute the ratio of coefficient of score function
in the gradient of upper bound (i.e., Vg Lgypo in Equation) over the mixture gradient:

WEUBO wpgp

WMix (1 —w)w(t,z) +wpg

18

Under review as a conference paper at ICLR 2026

GSM8K Math500 Countdown Sudoku
1.5
3 3 2.0
£
2 2 1.0 > 15
T 1.0
s 0.5
6! W ! 05
0 . 1 0.0 04 0.0
0 1000 2000 3000 0 1000 2000 3000 O 2000 4000 6000 O 1000 2000
Steps Steps Steps Steps
SPG w/ ELBO —— SPG w/ EUBO —— SPG w/ Mixture

Figure 7: Dynamics of the gradient norm of models trained with different log-likelihood estimation
methods. SPG w/ Mixture achieves lower gradient norm and more stable optimization. We report
mean and standard deviation over a rolling window of 50 steps.

Considering the above ratio, when 775 (z; | z,c) is very small, the coefficient of score function in
Ve LEuB0, WEUBO, becomes very small, preventing updates to the parameters. However, the mixing
approach maintains per-sample weights by preventing that from collapsing to (near) zero. In other
words, for each sample, the mixture coefficient computes a convex interpolation that simultaneously
floors very small EUBO weights to a minimum value and applies an uncertainty-aware capping to
large EUBO weights.

Empirical Evidence of Reduced Gradient Variance. As a practical indicator of gradient variance,
we plot the gradient norm of each model trained with different log-likelihood estimation methods for
negative advantage traces in Figure[7] When using the mixture objective, the model has consistently
smaller and more stable gradient norm throughout training, aligning well with our theoretical analysis.

D.3 Toy ExampLE FOR UPPER AND LOWER BOUNDS.

In this section, we provide a toy example highlighting the contrasting behaviors and landscapes of
the upper and lower bounds, further demonstrating the necessity to select the appropriate bound for
optimization based on the optimization direction.

Consider a simple case where the sequence length is 2 and the vocabulary size is 2, i.e., & = [x1, T3]
and V = {A, B}. Then, We can calculate Lg; o and Lgygo in closed form:

1
Leipo(z = AA) = 5 [log mo(x1 = A | MA) + log mg(x1 = A | MM) (27)
+logme(xa = A | AM) + log me (2 = A | MM)} (28)
A 1 (e = A | MA) + 72 (x; = A | MM
Leypo(T = AA) = —log< o (@1 | MA) + g (21 |)) (29)
B 2
A]
=A|AM =A| MM
n %log (7r9 (x2 | AM) 42—7r9 (x2 \)) 0

For simplicity, denote a := mg(x; = A | MA) and b := mg(x1 = A | MM), and consider the of the
likelihood of the first token x;. We have

1
Leipo(x1) = i(loga +logb) (31)
~ 1 B4 pb
Leuso(x1) = Blog (a 5) (32)

19

Under review as a conference paper at ICLR 2026

Take the partial gradient with respect to a and b respectively,

OLgso(x1) 1 OLgpo(x1) 1

da 2a b 2 59
OLguso(®1) a’ ! ~ OLgupo(T1) bt (34)
da dP b8’ Ob RN

Therefore, for EEUBO, the gradient direction is dominated by the larger one between @ and b, while
for Le1po, the gradient direction is dominated by the smaller one. Such property is illustrated in the
landscapes of —Lgpo and —Lgugo for a,b € (0, 1) in Figure

—LELBO —LEuBo

Figure 8: Landscapes of —Lg; go and —ﬁEUBo for0 < a,b < 1.

When x = AA has negative advantage, the corresponding Lg go and Lgypo are minimized. For
LE1 B0, the model benefits more from further decreasing the smaller one between probabilities a and
b. In the extreme case, Ly go = —oo when either a or b equals to zero, leaving the other term
not sufficiently decreased. Instead, when using Lgygo for negative advantage traces, the larger one
between a and b is preferentially minimized, leading to a more balanced optimization that stably
decreases the log-likelihood.

Similarly, when & = AA has positive advantage, the corresponding Lg; go and EEUBO are maximized.

Using Lg o enables effectively increasing the smaller likelihood, while Lgygo focuses on the larger
one, leading to a less efficient optimization.

E AbpbpiTioNAL EXPERIMENTAL DETAILS

E.1 DaArtasers AND REwARD FuNcTIONS

We follow the setting in D1 (Zhao et al., 2025) and WD1 (Tang et al., |2025)), using the same reward
functions and train-test splitting, except for Sudoku. The rewards are designed to encourage both
correctness and proper formatting, with varying levels of granularity tailored for each task. For
completeness, we provide details as follows.

GSMS8K. We utilize the train split of the GSM8K dataseﬂ for RL training, and evaluate model
performance on the test split. We follow the Unsloth reward setu]ﬂ utilizing five equally-weighted
additive components:

*https://huggingface.co/datasets/openai/gsm8k
*nttps://unsloth.ai/blog/rl-reasoning

20

https://huggingface.co/datasets/openai/gsm8k
https://unsloth.ai/blog/r1-reasoning

Under review as a conference paper at ICLR 2026

e XML Structure Reward: +0.125 per correct formatting tag; small penalties for extra contents
after the closing tag.

* Soft Format Reward: +0.5 for outputs matching the pattern:
<reasoning>...</reasoning><answer>...</answer>

* Strict Format Reward: +0.5 for exact formatting with correct line breaks.
* Integer Answer Reward: +0.5 if the answer is a valid integer.

* Correctness Reward: +2.0 of the answer matches the ground truth.

MATHS500. We utilize the train split of the MATH datasetE] for RL training, and evaluate model
performance on the test split. We use a format reward and a correctness reward:

* Format Reward: We award 1.00 if <answer></answer> tags are present with \boxed inside
them; 0.75 if answer tags are present without \boxed; 0.50 if answer tags are not present but
\boxed is present; 0.25 if neither the answer tags nor \boxed is present.

* Correctness Reward: We award 2.00 if the answer in \boxed { } matches the ground truth.

Countdown. We utilize the train split of the Countdown datasetﬂ for RL training, restricting to
instances that use only three numbers. We evaluate on the same set of 256 synthetically generated
countdown questions with 3 numbers as in D1 (Zhao et al. [2025). The reward covers three cases:
+1.0 if the expression reaches the target using the exact numbers; +0.1 if the numbers are correct but
does not reach the target; +0.0 otherwise.

Sudoku. We experiment on the 4x4 Sudoku dataseﬂ generated by |Arel| (2025). The original
training split contains 1M unique Sudoku puzzles covering all 288 4 x4 Soduku solutions. To avoid
train-test leakage and potential cheating by memorizing all the solutions, we randomly select 200
solutions and include all puzzles corresponding to these solutions into the new training set, resulting
in 694,006 training puzzles. We then randomly select 2 or 3 puzzles corresponding to the left 88
solutions to construct the test set, which has 256 Soduku puzzles in total.

We observe that the zero-shot setting is too difficult for the base LLaDA-8B-Instruct model, which
has test accuracy below 7% with a generation length of 256 and struggles to correctly interpret the
questions, leading to very few meaningful RL rollouts. Therefore, we instead use 3-shot for all the
Sudoku experiments. We ensure that the solutions presented in the 3-shot samples do not appear
in test set solutions, and the puzzles do not appear in both train and test set. The detailed few-shot
samples are provided in Appendix

E.2 HYPERPARAMETER SETTINGS AND IMPLEMENTATION DETAILS

We follow D1 (Zhao et al.,[2025)) for most hyperparameter settings. We employ Low-Rank Adaptation
(LoRA) with arank of » = 128 and scaling factor o = 64. The training was conducted on 8§ NVIDIA
A100-80G or NVIDIA H100-80G GPU, with the following hyperparameters: batch size of 6 per
GPU, and gradient accumulation steps of 2. We set the number of inner gradient update y as 4 for
all models. We use the AdamW optimizer (Loshchilov & Hutter, [2017), with 5; = 0.9, 82 = 0.99,
weight decay of 0.1, learning rate of 3 x 10~°, and gradient clipping at 0.2. We utilize Flash Attention
2 (Dao} 2023)and 4-bit quantization.

For RL rollout, we use sequence length of 256 tokens, and 128 diffusion steps. We employ confidence-
based semi-autoregressive generation with block size 32, and set the temperature as 0.9 (except for
Sudoku where temperature is set as 0.3 following D1). We set number of completions per prompt g
as 6, and number of Monte Carlo estimation samples m as 2 due to computational constraint. Since
the rollout stage dominates the training time, the average time per gradient update step for SPG is
similar to that of the other baselines.

We train 6000 steps (i.e., number of gradient updates) for GSM8K and Countdown, 4000 steps for
MATHS500, and 2500 steps for Sudoku. For all RL models, we run evaluation every 100 steps with

Shttps://huggingface.co/datasets/ankner/math-500
®https://huggingface.co/datasets/Jiayi-Pan/Countdown-Tasks-3to4
"nttps://github.com/Black-Phoenix/4x4-Sudoku-Dataset

21

https://huggingface.co/datasets/ankner/math-500
https://huggingface.co/datasets/Jiayi-Pan/Countdown-Tasks-3to4
https://github.com/Black-Phoenix/4x4-Sudoku-Dataset

Under review as a conference paper at ICLR 2026

generation sequence length 128, 256, 512, and report the result of the checkpoint with the highest
average accuracy over the three generation lengths, except for the ablations on inference strategies in
Table where we only evaluate on generation length 256.

E.3 Few-SHOT SAMPLES FOR SUDOKU

Sample 1:

Question:

Solve the following Sudoku puzzle: 3014002020004130
Answer:

<reasoning>

Interpret puzzle as 4 rows of 4:

R1: 3014

R2: 0020

R3:2000

R4:4130

Fill easy singles:

R1 missing 2 — R1C2=2.

R4 missing 2 — R4C4=2.

Box D (R3-4,C3-4) then needs 1,4; column4 can only accept 1 — R3C4=1, R3C3=4.
R3 now missing 3 — R3C2=3.

Columnl missing 1 — R2C1=1.

Column2 missing 4 — R2C2=4.

Last cell R2C4=3.

Final grid:

R1: 3214

R2: 1423

R3: 2341
R4:4132
</reasoning>
<answer>
3214142323414132
</answer>

Sample 2:

Question:

Solve the following Sudoku puzzle: 0000100420013142
Answer:

<reasoning>

Interpret puzzle as 4 rows of 4:

R1: 0000

R2: 1004

R3:2001

R4:3142

Fill easy singles:

Coll missing 4 — R1C1=4.

Col4 missing 3 — R1C4=3.

Box A (R1-2,C1-2) missing 2,3 and R1 now needs 1,2 — R1C2=2, R2C2=3.
R1C3=1.

R2 now missing 2 — R2C3=2.

Col2 missing 4 — R3C2=4, then R3C3=3.

Final grid:

R1: 4213
R2: 1324

22

Under review as a conference paper at ICLR 2026

R3:2431
R4:3142
</reasoning>
<answer>
4213132424313142
</answer>

Sample 3:

Question:

Solve the following Sudoku puzzle: 2001403002001420
Answer:

<reasoning>

Interpret puzzle as 4 rows of 4:

R1: 2001

R2: 4030

R3: 0200

R4: 1420

Fill easy singles:

R1 missing 3,4; Col2 can’t be 1 so R1C2=3 — R1C3=4.
R4 missing 3 — R4C4=3.

Col4 missing 2,4; R2 must take 2 — R2C4=2 — R2C2=1.
Coll missing 3 — R3C1=3.

Col3 missing 1 — R3C3=1 — R3C4=4.

Final grid:

R1: 2341
R2:4132
R3:3214

R4: 1423
</reasoning>
<answer>
2341413232141423
</answer>

F AbbitioNaL REsuLTs
F.1 AbpbitioNaL EvaLuaTiONs TO THE MAIN RESULTS
Table 4: Complete model performance on four reasoning benchmarks compared with baselines. We

provide both the reported and the reproduced results for D1 and WD1. The best results are bolded
and the second best are underlined. SPG consistently outperforms all other models.

GSMSK (0-shot) MATHS00 (0-shot) Countdown (0-shot) Sudoku (3-shot)

Model / Seq Len 128 256 512 128 256 512 128 256 512 128 256 512
LLaDA-8B-Instruct 69.5 772 79.8 282 324 346 188 168 168 57 277 262
LLaDA-1.5 704 80.5 819 268 322 358 219 21.1 215 74 269 29.0
D1 (reported) 726 79.8 819 332 372 392 332 313 371 - - -
D1 (reproduced) 722 80.6 813 314 360 394 309 309 344 72 325 293
dl-LLaDA (reported) 732 81.1 82.1 33.8 38.6 402 348 320 422 - - -
WD (reported) - 80.8 823 - 344 39.0 - 512 46.1 - - -
WD (reproduced) 74.6 815 830 310 374 390 488 523 50.8 33.1 321 225
UniGRPO 749 825 827 324 374 394 445 430 570 590 67.0 629

SPG w/ EUBO (ours) 77.1 83.8 839 332 376 394 684 715 680 812 &7.1 899
SPG w/ mixture (ours) 78.5 86.1 84.5 334 40.0 418 688 707 703 829 94.0 93.1

Complete evaluation results. We provide the complete evaluation results, along with those re-
ported in D1 (Zhao et al.,[2025)) and WD1 (Tang et al., 2025), in Table Our reproduced numbers

23

Under review as a conference paper at ICLR 2026

closely match the reported results. d1-LLaDA (Zhao et al., 2025) denotes the model that conducts
first SFT and then RL (using D1). All other models are trained solely with RL. In D1 and d1-LLaDA,
the best result for each generation length is reported separately, whereas we select a single check-
point with the highest average accuracy across all three generation lengths, leading to slightly worse
results than the reported numbers. The reported results in WD1 are based on evaluations on fewer
checkpoints, so they are generally a bit lower than our reproduced values.

Dynamics of Completion Length. We provide the dynamics of the effective sequence length of
SPG during RL training in Figure 9] We also report the effective length of the best checkpoint in
Table[5] SPG leads to effective usage of the total given length and good adaptation to task difficulties.

GSM8K MATH500 Countdown Sudoku
260
£ 250 256
240
2 200 255
Y220
150
]
> 200 254
glso 1o
© 253
:ElGO *
0 252
0 2000 4000 6000 0 1000 2000 3000 4000 0 2000 4000 6000 0 500 1000 1500 2000 2500
Steps Steps Steps Steps
D1 WD1 —— UniGRPO —— SPG (ours)

Figure 9: Dynamics of the effective generation length of SPG during RL training, compared with
D1, WD1, and UniGRPO. SPG leads to concise solutions with better token efficiency. We report
mean and standard deviation over a rolling window of 50 steps.

Table 5: Effective sequence length of each model on four reasoning benchmarks.

GSMSK (0-shot) MATHS00 (0-shot) Countdown (0-shot) Sudoku (3-shot)
Model / Seq Len 128 256 512 128 256 512 128 256 512 128 256 512
LLaDA-8B-Instruct 114 212 257 123 235 402 111 213 407 111 232 448

LLaDA-1.5 115 214 265 123 237 407 114 215 411 112 232 419
D1 115 209 261 123 234 399 107 211 397 111 231 449
WD1 115 225 312 123 231 378 83 84 90 105 227 473
UniGRPO 114 211 257 123 235 400 100 207 374 113 230 472
SPG w/ EUBO 110 196 227 120 228 382 68 70 78 89 137 249

SPG w/ mixture 108 176 195 121 229 384 75 18 79 115 239 491

F.2 ADDITIONAL ABLATION RESULTS

In this section, we provide the complete results for each generation length and task in supplement
to Section[4.2] We also include additional ablation studies on the looser upper bound and different
log-likelihood estimation methods for positive advantage traces.

Ablations on Algorithm Components. We provide the complete results for ablations on log-
likelihood estimation methods in Table[6]and for ablations on masking strategies in Table 7}

Table 6: Ablations on log-likelihood estimation methods for negative advantage traces. The best
results are bolded and the second best are underlined.

GSMSK (0-shot) MATHS500 (0-shot) Countdown (0-shot) Sudoku (3-shot)
Model 128 256 512 Avg. 128 256 512 Avg. 128 256 512 Avg. 128 256 512 Avg.

SPG wo/ neg 720 790 813 774 282 322 378 327 438 481 445 455 550 829 684 688
SPG w/ ELBO 756 828 844 809 358 376 388 374 668 660 684 671 738 894 841 824
SPGw/EUBO 77.1 838 839 81.6 332 376 394 367 684 715 680 693 812 871 899 86.1
SPG w/ Mixture 785 86.1 845 83.0 334 400 418 384 688 707 703 69.9 829 940 931 90.0

Ablations on Key Hyperparameters S and w. We provide the complete results for ablations on
£ in Table[§]and for ablations on w in Table 9]

24

Under review as a conference paper at ICLR 2026

Table 7: Ablations on the masking strategies in Monte Carlo estimation.

MATHS500 (0-shot) Countdown (0-shot)
Model Masking 128 256 512 Avg. 128 256 512 Avg.

SPG w/ EUBO random 334 354 414 36.7 426 410 527 454
block-wise 33.2 37.6 394 36.7 684 715 68.0 693

SPG w/ Mixture random 33.8 382 388 369 523 645 71.5 628
block-wise 334 40.0 41.8 384 68.8 70.7 70.3 69.9

Table 8: Ablations on the value of 3 in the upper bound.

GSMSK (0-shot) MATHS500 (0-shot) Countdown (0-shot) Sudoku (3-shot)
Model B 128 256 512 Avg. 128 256 512 Avg. 128 256 512 Avg. 128 256 512 Avg.

050 77.7 832 845 818 328 364 412 368 71.1 688 746 715 647 534 574 585
075 772 839 845 819 310 366 400 359 707 70.7 70.7 70.7 634 657 454 582

SPG w/ EUBO 1.00 765 839 83.6 813 31.0 374 388 357 660 668 664 664 812 871 899 86.1
1.50 77.1 838 839 816 332 376 394 367 695 645 664 668 327 405 399 377
200 765 839 832 812 324 368 382 358 684 715 680 693 281 319 280 293

1.00 788 85.6 849 83.1 340 402 392 378 699 695 703 699 829 940 93.1 90.0
SPG w/ Mixture 1.50 78.5 86.1 845 83.1 334 400 418 384 688 70.7 703 699 832 860 846 846
200 78.8 857 847 831 324 388 398 370 703 69.1 695 69.6 443 605 60.7 552

Table 9: Ablations on the mixture coefficient w on MATH500 and Countdown.

SPG w/ Mixture MATHS500 (0-shot) Countdown (0-shot)

w 128 256 512 Avg. 128 256 512 Avg.
0.00 358 37.6 388 374 668 660 684 67.1
0.25 346 376 422 381 715 680 672 689
0.50 334 40.0 41.8 384 688 70.7 703 69.9
0.75 342 386 412 380 69.5 69.1 742 709
1.00 332 376 394 367 69.5 645 664 66.8

Ablations on Inference Strategies. We provide complete results for ablations on different inference
strategies in Table [];2} Note that the reported numbers of each method for “Semi-AR, Confidence,
Block=32" is in general slightly higher than the results in Table [Tjunder the same inference setting.
This is because in Table we select the checkpoint with the highest accuracy specifically for
generation length 256 to maintain consistency with other inference settings, while in Table [} we
choose the checkpoint with the highest average accuracy across generation lengths 128, 256, and
512.

Ablations on the Looser Upper Bound. As mentioned in Section and Appendix [C] a looser
but unbiased bound can be derived using inequalities like log(z) < z — 1, i.e., ELME. However,
as shown in Table [I0] this looser bound performs worse empirically than the tighter upper bound
Leuso we used, possibly due to a larger discrepancy from the true log-likelihood.

Table 10: Ablations on the looser upper bound.

SPG w/ EUBO MATHS00 (0-shot) Countdown (0-shot)

B8 Upper Bound 128 256 512 Avg. 128 256 512 Avg.

1.0 [;Loose 294 354 394 347 438 652 648 579
LEuBO 31.0 374 388 357 660 668 664 664

1.5 L:Lnose 29.8 31.8 38.8 335 469 547 570 529
LruBo 332 37.6 394 367 695 645 664 66.8

Ablations on Log-Likelihood Estimations for Positive Advantage Traces. Instead of always
using Lgppo for positive advantage traces, we experiment on MATH500 and Countdown benchmarks

using both Lrypo and Ly for positive advantage traces. Correspondingly, we use w = 0.5 and the
best performed 3 as previously discussed for negative advantage traces. For the positive advantage

25

Under review as a conference paper at ICLR 2026

traces, we always use the tightest 5 = 1.0 for both Lgygo and Lyx. The results are shown in
Table([TT] indicating that using the upper bound for likelihood estimation of positive advantage traces
performs worse than using Lggo. This aligns well with our theoretical insights that the lower bound
is a better objective for log-likelihood maximization.

Table 11: Ablations on log-likelihood estimation for positive advantage traces.

Positive traces MATHS00 (0-shot) Countdown (0-shot)
Model likelihood estimation 128 256 512 Avg. 128 256 512 Avg.
SPG w/ EUBO Lruso (B =1.0) 344 362 392 366 48.1 46.7 50.8 485

LE1BO 332 37.6 394 367 684 715 68.0 69.3
SPG w/ Mixture Lyix (8 =1.0,w =0.5) 354 384 390 376 69.1 684 703 69.3

Lr1B0 334 400 418 384 688 70.7 703 69.9

Table 12: Ablations on the inference strategy. SPG leads to consistently superior performance to
baselines with different inference strategies. The best results are bolded and the second best are
underlined for each setting. We report results for generation length 256.

Inference Strategy Model GSMSK MATHS00 Countdown Sudoku Avg.
LLaDA-8B-Instruct 78.7 31.4 13.7 26.2 37.5
LLaDA-1.5 78.8 334 16.0 23.0 37.8
D1 79.7 37.2 27.0 314 43.8
Semi-AR, Confidence, Block=16 WDI 82.3 37.4 53.9 36.8 52.6
UniGRPO 82.5 36.8 46.5 63.4 57.3
SPG w/ EUBO 84.7 374 703 822 687
SPG w/ Mixture 86.4 40.8 70.7 96.2 73.5
LLaDA-8B-Instruct 77.2 324 16.8 27.7 38.5
LLaDA-1.5 80.5 322 21.1 26.9 40.2
D1 80.6 37.8 324 32.8 45.9
Semi-AR, Confidence, Block=32 WDI1 81.7 38.6 54.7 35.7 58.1
UniGRPO 82.6 38.4 449 67.0 58.2
SPG w/ EUBO 84.8 38.0 71.5 88.5 70.7
SPG w/ Mixture 86.2 40.0 71.1 95.6 73.2
LLaDA-8B-Instruct 78.6 332 27.3 32.6 42.9
LLaDA-1.5 81.0 354 20.3 36.4 433
Dl 80.9 37.6 38.3 39.8 49.2
Semi-AR, Confidence, Block=64 WDI1 82.5 374 52.3 41.8 53.5
UniGRPO 82.3 374 53.5 82.9 64.0
SPG w/ EUBO 84.3 374 69.5 88.8 70.0
SPG w/ Mixture 85.5 41.4 69.9 93.8 72.7
LLaDA-8B-Instruct 63.5 21.0 6.3 24.4 28.8
LLaDA-1.5 67.1 24.8 10.9 27.5 32.6
D1 69.7 27.4 18.4 29.9 36.4
Semi-AR, Random, Block=32 WDI1 74.1 30.8 37.5 29.9 43.1
UniGRPO 72.8 29.8 41.4 60.1 51.0
SPG w/ EUBO 74.1 314 42.6 72.6 552
SPG w/ Mixture 78.4 31.0 66.0 86.9 65.6
LLaDA-8B-Instruct 52.7 17.8 13.3 27.1 27.7
LLaDA-1.5 53.5 19.8 13.7 28.0 28.8
D1 53.0 22.6 28.5 31.8 34.0
Full Sequence, Random WDI1 54.6 23.4 43.4 30.0 37.9
UniGRPO 57.6 22.6 47.7 57.3 46.3
SPG w/ EUBO 58.5 25.2 56.6 71.3 529
SPG w/ Mixture 61.2 25.2 64.1 72.2 55.7
LLaDA-8B-Instruct 23.9 17.8 0.0 68.3 27.5
LLaDA-1.5 41.4 20.4 0.0 67.9 324
D1 57.5 22.6 0.0 723 38.1
Full Sequence, Confidence WDI 56.7 25.0 10.2 68.9 40.2
UniGRPO 50.0 24.2 8.2 95.6 44.5
SPG w/ EUBO 54.3 234 63.3 88.9 57.5
SPG w/ Mixture 58.8 24.0 65.6 96.5 61.2

26

Under review as a conference paper at ICLR 2026

F.3 QuaLitative ExamprLEs oN GSMSK

We show qualitative examples for all models on GSMS8K, with generation length 256 and diffusion
steps 128. SPG leads to more concise and accurate reasoning.

Question: Amy had two eyeshadow palettes with four colors each and three makeup sets that came
with six eyeshadow colors each. Her sister steals one of the palettes. Amy uses up half of the colors
from one makeup set. How many eyeshadow colors does she have left?

Model: LLaDA-8B-Instruct

Answer:

First, let’s determine the total number of eyeshadow colors Amy initially has. She has two eyeshadow
palettes with four colors each,

2x4=28
She also has three makeup sets with six colors each,
3x6=18

So, the total number of eyeshadow colors Amy initially has is:
8+ 18 =26

Next, her sister steals one of the palettes, which she loses completely. Therefore, the number of
colors left from the remaining palettes is:

8—4=4

Amy uses up half of the colors from one makeup set. Each makeup set has six colors, so half of
that is: 6

= =3

2
Thus, the number of colors left from the one makeup set is:

6-3=3
Adding, the total number of eyes left is:
4+3=11

</reasoning>
<answer>
</answer>

Question: Amy had two eyeshadow palettes with four colors each and three makeup sets that came
with six eyeshadow colors each. Her sister steals one of the palettes. Amy uses up half of the colors
from one makeup set. How many eyeshadow colors does she have left?

Model: D1

Answer:

Amy initially has two eyeshadow palettes with four colors each, so she has 2 x 4 = 8 colors from
the palettes. She also has three makeup sets with six colors each, so she has 3 x 6 = 18 colors
from the makeup sets. Her’s sister steals one of the palettes, so she now has 8 — 1 = 7 colors from
the palettes. Amy uses up half of the colors from one makeup set, so she uses g = 3 colors from
that set. Therefore, she has 18 — 3 = 15 colors left from the makeup sets. Adding these to the
remaining palettes palettes, she has a total of 7 + 15 = 22 eyeshadow colors left.

</reasoning>

<answer>

</answer>

Question: Amy had two eyeshadow palettes with four colors each and three makeup sets that came
with six eyeshadow colors each. Her sister steals one of the palettes. Amy uses up half of the colors
from one makeup set. How many eyeshadow colors does she have left?

Model: WDI

27

Under review as a conference paper at ICLR 2026

Answer:
First, let’s determine the total number of eyeshadow colors Amy initially has. She has two eyeshadow
palettes with four colors each:

2x4=8

Additionally, she has three makeup sets with six colors each:

3x6=18

So, together, she has:
8+ 18 =26

Next, her sister steals one of the palettes, which she loses 4 colors:
26 —4 =22

Then, Amy uses up half of the colors from one makeup set. Each makeup set has six colors, so half
of that is: 6

= =3

2
Thus, she uses 3 colors from one makeup set, leaving: 6 — 3 = 3 colors in that makeup set.
Finally, we add the remaining colors from the makeup set to the remaining colors:

22+3=25

</reasoning>
<answer>
</answer>

Question: Amy had two eyeshadow palettes with four colors each and three makeup sets that came
with six eyeshadow colors each. Her sister steals one of the palettes. Amy uses up half of the colors
from one makeup set. How many eyeshadow colors does she have left?

Model: UniGRPO

Answer:

First, let’s determine the total number of eyeshadow colors Amy initially has. She has two eyeshadow
palettes with four colors each, so she has 2 x 4 = 8 colors from the palettes. She also has three
makeup sets with six colors each, so she has 3 x 6 = 18 colors from the makeup sets. Adding
these together gives her initially 8 4+ 18 = 26 eyeshadow colors. Next, her sister steals one of the
palettes, so she now has 8 — 4 = 14 colors from the palettes. She then uses up half of the colors
from one makeup set. Since she used one makeup set, containing six colors, she used g = 3 colors
from that set. Therefore, she has 18 — 3 = 15 colors left from the makeup sets.

Finally, adding the remaining colors from the palettes and the makeup sets, Amy has 14 4 15 = 29
eyeshadow colors left.

</reasoning>

<answer>

</answer>

Question: Amy had two eyeshadow palettes with four colors each and three makeup sets that came
with six eyeshadow colors each. Her sister steals one of the palettes. Amy uses up half of the colors
from one makeup set. How many eyeshadow colors does she have left?

Model: SPG w/ EUBO

Answer:

First, let’s calculate the total number of eyeshadow colors Amy initially has:

 She has two eyeshadow palettes with four colors each: 2 x 4 = 8 colors.
* She has three makeup sets with six colors each: 3 x 6 = 18 colors.
* Adding these together gives: 8 + 18 = 2

Next, we account for the changes:

* Her sister steals one palette, so she loses 4 colors: 26 — 4 = 22

28

Under review as a conference paper at ICLR 2026

* Amy uses up half of the colors from one makeup set, which is g =3colors: 22—-3 =19

Therefore, Amy has 19 eyeshadow colors left.
</reasoning>

<answer>

</answer>

Question: Amy had two eyeshadow palettes with four colors each and three makeup sets that came
with six eyeshadow colors each. Her sister steals one of the palettes. Amy uses up half of the colors
from one makeup set. How many eyeshadow colors does she have left?

Model: SPG w/ mixture

Answer:

1. Amy initially has two eyeshadow palettes with four colors each: 2 x 4 = § colors
2. She also has three makeup sets with six colors each: 3 x 6 = 18 colors

3. Adding these together gives gives: 8 + 18 = 26 colors

4. Her sister steals one palette, so she loses: 4 colors

5. Amy uses up half of the colors from one makeup set: g = 3 colors

6. Subtracting these lost and used colors: 26 — 4 — 3 = 19 colors

</reasoning>
<answer>
</answer>

29

	Introduction
	Background
	Masked Diffusion Language Models
	Reinforcement Learning for Diffusion Language Models

	Sandwiched Policy Gradient with Evidence Bounds
	A Lower Bound Objective for Policy Optimization
	A Tractable Evidence Upper Bound
	Practical Considerations

	Experiments
	Experimental Setup and Main Results
	Ablations and Further Analysis

	Conclusion
	Related Work
	Basics of dLLMs
	Evidence Upper Bound for dLLMs
	Additional Analysis on Upper and Lower Bounds
	Proof of Proposition 1
	Additional Comparison Between the Mixture Loss and the Lower and Upper Bounds
	Toy Example for Upper and Lower Bounds.

	Additional Experimental Details
	Datasets and Reward Functions
	Hyperparameter Settings and Implementation Details
	Few-Shot Samples for Sudoku

	Additional Results
	Additional Evaluations to the Main Results
	Additional Ablation Results
	Qualitative Examples on GSM8K

