
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SPG: Sandwiched Policy Gradient for Mask Diffu-
sion Language Models

Anonymous authors
Paper under double-blind review

Abstract

Diffusion large language models (dLLMs) are emerging as an efficient alternative
to autoregressive models due to their ability to decode multiple tokens in parallel.
However, aligning dLLMs with human preferences or task-specific rewards via
reinforcement learning (RL) is challenging because their intractable log-likelihood
precludes the direct application of standard policy gradient methods. While prior
work uses surrogates like the evidence lower bound (ELBO), these one-sided
approximations can introduce significant policy gradient bias. To address this, we
propose the Sandwiched Policy Gradient (SPG) that leverages both an upper and a
lower bound of the true log-likelihood. Experiments show that SPG significantly
outperforms baselines based on ELBO or one-step estimation. Specifically, SPG
improves the accuracy over state-of-the-art RL methods for dLLMs by 3.6% in
GSM8K, 2.6% in MATH500, 18.4% in Countdown and 27.0% in Sudoku.

75

80

85

Ac
cu

ra
cy

 (%
)

77.2

80.580.681.5
82.5

86.1+3.6%

GSM8K

30.0

32.5

35.0

37.5

40.0

42.5

32.432.2

36.0
37.437.4

40.0
+2.6%

MATH500

20

40

60

16.8
21.1

30.9

52.3
43.0

70.7
+18.4%

Countdown

0

20

40

60

80

100

27.726.932.532.1

67.0

94.0
+27.0%

Sudoku

LLaDA-8B-Instruct LLaDA-1.5 D1 WD1 UniGRPO SPG (ours)

Figure 1: Test accuracy of SPG and baseline methods on four mathematical and logical reasoning
benchmarks. All methods are evaluated with a generation length of 256 in 128 denoising steps. Full
results are provided in Table 1.

1 Introduction

Diffusion models, originally pioneered for high-fidelity image generation (Song et al., 2020; Ho et al.,
2020), have recently emerged as a powerful and efficient paradigm for text generation (Austin et al.,
2021; Campbell et al., 2022; Sun et al., 2022; Lou et al., 2023; Sahoo et al., 2024; Shi et al., 2024).
These models operate in a discrete space but share architectural similarities with their continuous
counterparts (Peebles & Xie, 2023). They employ a fixed noising process that progressively corrupts
text data, while a neural network is trained to learn the reverse, denoising process. For instance,
Masked Diffusion Language Model (MDLM) (Sahoo et al., 2024) uses random masking as its
forward noising process and optimizes an Evidence Lower Bound (ELBO) of the log-likelihood.
This ELBO-based objective has been widely adopted by subsequent large-scale diffusion language
models (dLLMs), including LLaDA (Nie et al., 2025) and DREAM (Gong et al., 2024).

A key advantage of dLLMs over their autoregressive (AR) counterparts is their ability to decode
multiple tokens in parallel. This parallelism can significantly reduce inference latency, making it an
attractive alternative for scalable language modeling (Wang et al., 2025a; Labs et al., 2025).

Aligning large language models with human preferences (Ouyang et al., 2022) or task-specific
rewards (e.g., inducing reasoning behavior) (Shao et al., 2024; Guo et al., 2025) typically requires
a post-training stage of reinforcement learning (RL). However, applying RL to dLLMs remains

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 2: The training process of SPG for MDLM. Left: From a prompt c, we generate responses
{xj}gj=1. We then maximize a lower bound on the likelihood πθ(x

j | c) for high-reward responses
while minimizing an upper bound for low-reward ones. Right: The upper/lower bound of likelihood
is estimated via Monte Carlo using a block-wise masking strategy. The example shows a sequence
of length 9 with a block size of 3, where the current generation block is highlighted in yellow.

underexplored. A principal challenge is the computationally intractable log-likelihood of dLLMs,
which is essential for accurate policy gradient estimation. To circumvent this, recent works (Zhao
et al., 2025; Yang et al., 2025; Zhu et al., 2025; Tang et al., 2025) adapt standard RL and preference
optimization algorithms, such as GRPO (Shao et al., 2024) and DPO (Rafailov et al., 2023), by using
the ELBO or a one-step estimation as a surrogate for the true likelihood. While straightforward, this
approximation leads to misaligned policy gradients, and potential suboptimal performance.

To address these limitations, we propose Sandwiched Policy Gradient (SPG), a novel reinforcement
learning algorithm for diffusion language models that computes a more robust and less biased policy
gradient. As illustrated in Figure 2, our core idea is to “sandwich” the intractable log-likelihood of
a generated sequence: we maximize a tractable lower bound for positive-reward sequences while
minimizing an upper bound for negative-reward ones. To ensure a stable estimation of these bounds,
we also propose a block-wise masking strategy that better aligns data distributions during policy
rollout and optimization. SPG achieves state-of-the-art performance on four mathematical and
logical reasoning benchmarks, improving accuracy by up to 3.6% on GSM8K, 2.6% on MATH500,
18.4% on Countdown, and 27.0% on Sudoku compared to the state-of-the-art RL algorithms for
diffusion language models.

In summary, our main contributions are:

• A new policy gradient algorithm, SPG, which reduces bias by optimizing sandwiched variational
bounds based on reward.

• A block-wise masking technique that improves the stability of the training objective’s estimation.
• State-of-the-art results among RL algorithms for diffusion language models on four reasoning

benchmarks, demonstrating the effectiveness of our approach.

2 Background

In this section, we provide a brief overview of the masked diffusion language model (MDLM) and
reinforcement learning for text diffusion models.

Notation. We denote scalars by lowercase letters (x), vectors by bold lowercase (x), and sequences
byx1:n. [k] represents {1, . . . , k}. Cat(x | p) is the categorical distribution overxwith probabilities
p, and U [a, b] denotes the uniform distribution in [a, b]. Throughout the paper, we use i ∈ [n] for
position of the token, j ∈ [g] for a sequence in a group of rollouts, and t for the diffusion timestep.
For discrete time processes, t ∈ [T], while for continuous-time Markov chains, t ∈ [0, 1].

2.1 Masked Diffusion Language Models

Diffusion models for language learn to generate text by reversing a gradual noising process. Specif-
ically, Masked Diffusion Language Models (MDLMs) (Sahoo et al., 2024) start with clean text x1:n

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

and corrupt it into zt ≡ zt,1:n over a continuous timestep t ∈ [0, 1] by progressively replacing tokens
with a special [mask] token. At t = 0, the data is original (z0 = x), while at t = 1, the sequence
is fully masked (z1 is all [mask] tokens). Each token is corrupted independently according to the
forward transition kernel:

qt|0(zt,i | xi) = Cat
(
zt,i | αtxi + (1− αt)m

)
, (1)

where m is the one-hot representation of the [mask] token. The noise schedule, αt ∈ [0, 1], is a
strictly decreasing function, such as the linear schedule αt = 1− t, with α0 = 1 and α1 = 0.

In the reverse process, a neural network, which we denote as the policy πθ, is then trained to perform
the reverse process: predicting the original tokens x from a corrupted version zt. The transition
from zt to zs (s < t) is parameterized with πθ as follows:

pθ(zs | zt) = q (zs | zt,x = πθ(· | zt)) =

{
Cat(zs; zt), zt ̸= m,

Cat
(
zs;

(1−αs)m+(αs−αt)πθ(·|zt)
1−αt

)
, zt = m.

The policy is achieved by maximizing the Evidence Lower Bound (ELBO) of the log-likelihood of
each clean sequence x ∼ pdata, which simplifies to the following objective:

LELBO(x;θ) = Et,zt

[n∑
i=1

w(t) · 1(zt,i = m) · log πθ(xi | zt)
]
, (2)

where w(t) = α′
t/(αt − 1) is a time-dependent loss weight, and the expectation is over a random

timestep t ∼ U [0, 1] and the corrupted sequence zt ∼ qt|0(· | x). In essence, this objective trains
the model to “fill in the blanks” by predicting the original tokens at masked positions. For a more
comprehensive overview of MDLM, please refer to Appendix B and Sahoo et al. (2024).

2.2 Reinforcement Learning for Diffusion Language Models

Reinforcement Learning (RL) aligns a language model with desired objectives by treating it as
a policy πθ that generates a response x to a prompt c. A reward function R(c,x) provides a
scalar score for the response, and the training goal is to update θ to maximize the expected reward:
J (θ) := Ex∼πθ(·|c)[R(c,x)]. This objective is commonly optimized using policy gradient methods,
which rely on the following gradient estimator.

∇θJ (θ) = Ex∼πθ(·|c)

[
R(c,x)∇θ log πθ(x | c)

]
. (3)

The Intractability Challenge. A central challenge in applying RL to diffusion models is that the
policy’s log-likelihood, log πθ(x | c), is intractable and cannot be computed directly. To overcome
this, prior work (Zhu et al., 2025; Yang et al., 2025) approximates this term using its ELBO, effectively
replacing log πθ(x | c) with a score derived from the pre-training objective in Equation (2).

However, this popular workaround introduces a critical flaw. The ELBO is only a lower bound on the
true log-likelihood (ELBO ≤ log πθ). Consequently, the RL objective is only a valid lower bound on
the true expected reward if all rewards R(c,x) are non-negative. This constraint prevents the model
from effectively learning from negative feedback (i.e., penalizing bad outputs) and is incompatible
with advanced RL algorithms that use relative or negative rewards (Shao et al., 2024), biasing the
final policy. Our work aims to resolve this limitation.

3 Sandwiched Policy Gradient with Evidence Bounds

We introduce SPG, a novel policy gradient algorithm designed for masked diffusion language models
(Algorithm 1). Our method aims to address a critical issue in applying reinforcement learning to
dLLMs by creating a valid optimization objective based on tractable bounds of the model’s evidence.

3.1 A Lower Bound Objective for Policy Optimization

Our approach is based on group relative policy optimization (Shao et al., 2024; Liu et al., 2025b).
For a given prompt c, we generate a group of g responses {xj}gj=1 from the policy πθ. We then

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Algorithm 1 SPG: Sandwiched Policy Gradient for Masked dLLMs
Require: prompt distribution D, number of completions per prompt g, number of inner updates µ,

forward process q, number of Monte Carlo samples m, initial policy π0, learning rate ϵ.
1: Initialize πθ ← π0

2: while not converged do
3: Sample a prompt c ∼ D, then g completions {xj ∼ πθ(· | c)}gj=1

4: ∀j ∈ [g], compute reward R(c,xj) and advantage Aj(xj , c)
5: for gradient update iterations {1, . . . , µ} do
6: ∀j ∈ [g], generate m perturbed samples {zj

tτ }
m
τ=1 ∼ q(· | xj)

7: Compute the sandwiched policy gradient ∇JSPG(θ) where:

JSPG(θ) = E
[
1

g

g∑
j=1

(
1Aj≥0 ·AjLELBO(x

j | c;θ) + 1Aj<0 ·AjL̃EUBO(x
j | c;θ)

)]
,

8: and LELBO, L̃EUBO are estimated from {zj
tτ }

m
τ=1, using Equation 2 and 7.

9: Perform gradient update: θ ← θ + ϵ∇JSPG(θ)

10: return πθ

compute the advantage Aj(c,xj) := R(c,xj) − 1
g

∑g
ȷ=1 R(c,xȷ). Moreover, we transform the

conventional policy optimization objective as an advantage-weighted log-likelihood objective, for
reasons that will be clear later:

J group(θ) = Ec,{xj}∼πsg[θ]

[
1

g

g∑
j=1

Aj(xj , c) log πθ(x
j | c)

]
, (4)

where sg[θ] indicates that gradients are not computed for the policy that generates the samples. This
objective encourages generations with positive advantages (Aj > 0) and discourages those with
negative advantages (Aj < 0).

For dLLMs, the log-likelihood log πθ is intractable. A common surrogate is the evidence lower
bound (ELBO). While maximizing the ELBO is a valid way to increase the true log-likelihood,
minimizing the ELBO for negatively-rewarded samples does not guarantee a reduction in the true
log-likelihood. To address this, we propose a sandwiched objective. For samples with positive
advantages, we maximize the ELBO. For samples with negative advantages, we instead minimize a
tractable evidence upper bound (EUBO), LEUBO. This creates a true lower bound for the original
objective:

JSPG(θ) = E
[
1

g

g∑
j=1

(
1Aj≥0 ·AjLELBO(x

j | c;θ) + 1Aj<0 ·AjLEUBO(x
j | c;θ)

)]
, (5)

where the expectation is take with respect to c, {xj} ∼ πsg[θ]. Since LELBO ≤ log πθ ≤ LEUBO, it
follows thatJSPG(θ) ≤ J group(θ). Maximizing this tractable bound therefore serves as a valid proxy
for optimizing the true objective.

3.2 A Tractable Evidence Upper Bound

To effectively penalize negatively-rewarded samples by minimizing their log-likelihood, we require
a tractable EUBO, which we derive in the following theorem based on the Rényi variational bound.
Theorem 1 (Evidence Upper Bound for Masked Diffusion). Assume the forward denoising process
has T steps with a monotonic schedule αt. For any β ≥ 1 and a sequence x1:n, we have:

LEUBO(x1:n;θ) =
1

β

n∑
i=1

log

T−1∑
t=1

Ezt+1

[
αt − αt+1

1− αt+1
·1(zt+1,i = m)·πβ

θ (xi | zt+1)

]
+C(T), (6)

where C(T) := 1
β logEz1:T∼q(·|x)

[
q(z1:T | x)−n

]
is a constant independent of θ.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Here, β ≥ 1 is a hyperparameter that controls the tightness of the bound, with values closer to 1
yielding a tighter bound. The expectation is taken over the timestep t ∼ U [0, 1] and the noised latent
zt ∼ qt|0(· | x).
Corollary 1. Taking the limit of T →∞, we have:

∇θLEUBO(x1:n;θ) = ∇θ

(
L̃EUBO(x1:n;θ) + C(T)

)
= ∇θL̃EUBO(x1:n;θ), where

L̃EUBO(x1:n;θ) =
1

β

n∑
i=1

logEt,zt

[
w(t) · 1(zt,i = m) · πβ

θ (xi | zt)
]
.

(7)

In practice, we estimate L̃EUBO using Monte Carlo sampling and plug it in Equation 5 in place of
LEUBO. The proof and theoretical analysis are provided in Appendix C.

Remark. A key structural difference from LELBO is that the logarithm in LEUBO (Equation (6))
appears outside the expectation. Therefore, in practice, due to Jensen’s inequality, applying the
concave logarithm to a Monte Carlo estimate of the expectation’s argument yields a biased estimate
of the true EUBO. While it is possible to derive a looser but unbiased bound using inequalities like
log(x) ≤ x − 1, we found this approach empirically worse by widening the gap to the true log-
likelihood, as shown in Table 10. We therefore retain the tighter, albeit slightly biased, formulation.

3.3 Practical Considerations

Block-Wise Masking Strategy for Monte Carlo Estimation. In practice, we approximate LELBO
and L̃EUBO in Equation (5) via Monte Carlo sampling: for each xj , we randomly sample m timesteps
{tτ}mτ=1 and generate the corresponding partially masked samples {zj

tτ }
m
τ=1 ∼ q(· | xj). One

straightforward approach as used in Yang et al. (2025) would be to apply random masking to clean
sequences. However, recent dLLMs like LLaDA (Nie et al., 2025) employ a block-wise semi-
autoregressive unmasking strategy during generation and achieve state-of-the-art performance over
random unmasking. As a result, the policy rollout process actually encounters a much narrower and
more structured set of partially masked sequences than with fully random masking.

To better align data distributions during policy rollout and optimization, we adopt a block-wise
masking strategy rather than random masking. As depicted in Figure 2, the sequence is divided into
several blocks, and a random block is selected, with all preceding blocks left clean and all following
blocks fully masked. Within the chosen block, tokens are randomly masked. Additionally, following
D1 (Zhao et al., 2025), we lightly perturb the prompt and clean blocks by randomly masking tokens
with a small probability pmask = 0.15 to enhance stability and generalization.

Altogether, our block-wise masking strategy improves the stability of the objective’s estimation and
the efficiency of policy optimization. While similar block-wise masking approaches have been
explored in concurrent work for supervised fine-tuning or block diffusion models (Sun et al., 2025;
Wang et al., 2025b), our focus is on RL for full-attention masked dLLMs. As shown in Figure 6, our
models trained with block-wise masking generalize well to various inference strategies.

Mixture of Upper and Lower Bound for Negative Advantage Traces. Monte Carlo estimation
of Equation (6) leads to a biased estimation to L̃EUBO and potentially requires a substantial number of
samples to get reliable approximations, resulting in high computational costs and instability during
training. To address these challenges, we use a mixture of L̃EUBO and LELBO as a more practical
log-likelihood approximation for negative advantage traces:

L̃Mix(x | c;θ) := ω · L̃EUBO(x | c;θ) + (1− ω) · LELBO(x | c;θ) (8)

where 0 ≤ ω ≤ 1 is a blend coefficient. Intuitively, the upper bound L̃EUBO sharpens the model
decisions by applying a β-power adjustment to the original model output, acting as a strong correction
signal for negative advantage traces. In contrast, the lower bound LELBO is easier and more stable
to estimate with a small number of Monte Carlo samples, but it tends to introduce larger, systematic
bias relative to the true log-likelihood. In particular, as a conservative approximation, LELBO alone is
insufficient for effectively penalizing negative advantage traces, thus limiting its efficacy. Therefore,
combining them allows us to harness the strengths of each, resulting in a more effective log-likelihood

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

estimation in practice. In the following proposition, we formalize the advantages of using the mixture
by deriving the gradient of the mixture loss and analyzing the variance of the gradient.
Proposition 1 (Optimal Mixture Strictly Reduces Variance). Fix a coordinate k and let ρβ :=

w(t, zt)π
β
θ (xi | zt, c)/E

[
w(t, zt)π

β
θ (xi | zt, c)

]
, where w(t, zt) := w(t)1(zt = m). Then, the

gradient of mixture objective (8) is given by
gω,k = ((1− ω)w(t, zt) + ωρβ) ∂θk

log πθ(x | zt, c). (9)
If Var((ρβ − w(t, zt))∂θk

log πθ(x | zt, c)) > 0, then Var[gω,k] is a strictly convex quadratic in ω
and thus admits a unique minimizer ω⋆

k. Moreover,

Var[gω⋆
k,k

] < min
{
Var[g0,k], Var[g1,k]

}
,

A proof for the above proposition is provided in Appendix D.1. A few remarks are in order:

• Confidence-aware weighting: The mixture gradient in Equation (9) realizes a confidence-aware
weighting: uncertain tokens with small πβ

θ (xi | zt, c), indicating a low recovery chance, have a
smaller weight, while confident tokens with large πβ

θ (xi | zt, c) are upweighted. The sharpness
is controlled by parameter β and the blend by ω. Furthermore, the convex interpolation of
the confidence-aware coefficient of the upper bound with the lower bound ensures clipping tiny
gradients to a minimum value and thus prevents vanishing gradients.

• Lower variance and more stable training: According to Proposition 1, the gradient of the
optimal mixture, i.e., gω⋆

k,k
, has strictly smaller coordinate-wise variance than the gradient of

either the lower bound (g0,k) or the upper bound (g1,k)1. In our experiments, we fix β and ω as
hyperparameters for simplicity. These values can also be adaptively adjusted during training to
better match the evolving training dynamics and data distribution.

Thus, the mixture approach offers theoretical advantages over using either the upper or lower bound
alone, as supported by our experimental results in Section 4. Further discussions of the mixture
approach and empirical evidence of reduced gradient variance are provided in Appendix D.2 and
Figure 7, and Appendix D.3 presents a toy example illustrating the distinct behaviors of the lower
and upper bounds.

4 Experiments

In this section, we present experimental results highlighting the superior performance of SPG across
various benchmarks. Further, we provide detailed analysis and ablations of SPG to assess the
contribution of each component, examine the influence of key hyperparameters, and evaluate the
robustness of our approach under different inference strategies.

4.1 Experimental Setup and Main Results

Experimental Setup. We conduct RL fine-tuning with SPG following the experimental settings
in D1 (Zhao et al., 2025) and WD1 (Tang et al., 2025). We employ LLaDA-8B-Instruct (Nie
et al., 2025), a state-of-the-art open-sourced dLLM without post-training, as the base model, and
experiment on four benchmarks: two for mathematical reasoning (GSM8K (Cobbe et al., 2021) and
MATH500 (Lightman et al., 2023)) and two for logical reasoning (Countdown (Pan et al., 2025)
and Sudoku (Arel, 2025)). We follow the same train-test splitting, reward functions, and evaluation
protocol as D1 and WD1, except for Sudoku. For Sudoku, to avoid train-test leakage, we take the
training set from D1 and split the data by Sudoku answers, ensuring that the test set contains entirely
new puzzle solutions. This guarantees that the model cannot solve test puzzles merely by memorizing
possible answers. All experiments are conducted in the zero-shot setting, except for Sudoku, where
3-shot generation is used for both training and evaluation2. For all models, we employ Low-Rank

1Proposition 1 extends directly to a single, coordinate-independent optimizer ω⋆ obtained by minimizing
the sum of coordinate-wise variances.

2We use 3-shot generation for Sudoku because zero-shot is too difficult for this task, resulting in very few
meaningful RL rollouts. Few-shot examples used in our experiments are provided in Appendix E.3.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Model performance on four reasoning benchmarks. The best results are bolded and the
second best are underlined. SPG consistently outperforms all other methods. We denote the absolute
gain of test accuracy to the previous state-of-the-art in green.

GSM8K (0-shot) MATH500 (0-shot) Countdown (0-shot) Sudoku (3-shot)
Model / Seq Len 128 256 512 128 256 512 128 256 512 128 256 512
LLaDA-8B-Inst. 69.5 77.2 79.8 28.2 32.4 34.6 18.8 16.8 16.8 5.7 27.7 26.2
LLaDA-1.5 70.4 80.5 81.9 26.8 32.2 35.8 21.9 21.1 21.5 7.4 26.9 29.0
D1 72.2 80.6 81.3 31.4 36.0 39.4 30.9 30.9 34.4 7.2 32.5 29.3
WD1 74.6 81.5 83.0 31.0 37.4 39.0 48.8 52.3 50.8 33.1 32.1 22.5
UniGRPO 74.9 82.5 82.7 32.4 37.4 39.4 44.5 43.0 57.0 59.0 67.0 62.9
SPG w/ EUBO 77.1 83.8 83.9 33.2 37.6 39.4 68.4 71.5 68.0 81.2 87.1 89.9
SPG w/ Mixture 78.5+3.6 86.1+3.6 84.5+1.5 33.4+1.0 40.0+2.6 41.8+2.4 68.8+20 70.7+18 70.3+13 82.9+24 94.0+27 93.1+30

0 2000 4000 6000
Steps

0.5

1.0

1.5

2.0

2.5

3.0

Re
wa

rd

GSM8K

0 1000 2000 3000 4000
Steps

1.0

1.2

1.4

1.6

1.8
MATH500

0 2000 4000 6000
Steps

0.2

0.4

0.6

0.8

Countdown

0 500 1000 1500 2000 2500
Steps

0.2

0.4

0.6

0.8

1.0

Sudoku

D1 WD1 UniGRPO SPG (ours)

Figure 3: Reward dynamics of SPG w/ Mixture during RL training, compared with D1, WD1, and
UniGRPO. SPG consistently leads to faster convergence and higher reward level. We report mean
and standard deviation over a rolling window of 50 steps.

Adaptation (LoRA) with a rank of r = 128 and scaling factor α = 64. For SPG, we report results
using both L̃EUBO (i.e., SPG w/ EUBO) and L̃Mix (i.e., SPG w/ Mixture) for negative advantage
traces. We select the value of β in the EUBO from {1.0, 1.5, 2.0} based on the best average test
accuracy across all generation lengths, and fix the mixture coefficient ω at 0.5. Further experimental
details are in Appendix E.1 and Appendix E.2.

Baselines. We compare our method with several recent RL algorithms for dLLMs, including
D1 (Zhao et al., 2025), WD1 (Tang et al., 2025), and UniGRPO (Yang et al., 2025). For D1 and
WD1, we reproduce results using the official codebases and instructions, and for fair comparison, we
omit the additional SFT stage in D1 across all models. For UniGRPO, since the code is not publicly
available and the original work focuses on vision-language multimodal models, we reimplement the
algorithm within our setup. For consistency, we set the number of inner gradient updates µ to 4 for all
models, following GRPO (Shao et al., 2024). We also evaluate LLaDA-1.5 (Zhu et al., 2025) under
our settings, which fine-tune LLaDA-8B-Instruct using VRPO, a preference optimization approach
on 350K preference pairs.

Generation and Evaluation Setup. For both RL rollouts and evaluation, we use the semi-
autoregressive confidence-based decoding strategy, following LLaDA, D1 and WD1. We apply
the same generation setup as D1, with the denoising timestep set to half the total sequence length.
The sequence is divided into blocks of 32 tokens, and in diffusion step, we unmask the 2 tokens
with the highest confidence (measured by the probability of the sampled token) within the current
incomplete block. During RL rollout, to encourage diverse outputs, we use a generation length of 256
and a sampling temperature of 0.9 across all benchmarks, except for sudoku, where the temperature
is set to 0.3 as in D1. During evaluation, the sampling temperature is set to 0.0. We evaluate the
models every 100 steps, reporting results from the checkpoint that achieves the highest average test
accuracy across generation lengths of 128, 256, and 512.

Results. We provide the performance of SPG on each benchmark in comparison to the base
model and other baselines in Table 1. Both SPG w/ EUBO and SPG w/ Mixture consistently
achieve significant improvements over the baselines across all tasks and generation lengths, with
the Mixture approach that combines ELBO and EUBO for negative advantage traces yielding the
best performance. In particular, at a generation length of 256, SPG w/ Mixture improves the test
accuracy over the previous state-of-the-art by 3.6% on GSM8K, 2.6% on MATH500, 18% on

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Ablations on log-likelihood estimation meth-
ods for negative advantage traces. The best results are
bolded and the second best are underlined. We denote
the gain of test accuracy to SPG w/ ELBO in green.

Model GSM8K MATH500 Countdown Sudoku
SPG wo/ neg 77.4 32.7 45.5 68.8
SPG w/ ELBO 80.9 37.4 67.1 82.4
SPG w/ EUBO 81.6 36.7 69.3 86.1
SPG w/ Mixture 83.1+2.2 38.4+1.0 69.9+2.8 90.0+7.6

Table 3: Ablations on the masking strate-
gies in Monte Carlo estimation. We denote
the absolute gain of test accuracy to random
masking for each model in green.

Model Masking MATH500 Countdown
SPG w/ EUBO random 36.7 45.4

block-wise 36.7+0.0 69.3+23.9

SPG w/ Mixture random 36.9 62.8
block-wise 38.4+1.5 69.9+7.1

Countdown, and 27% on Sudoku, showcasing the effectiveness of SPG to conduct RL for dLLMs.
Reward dynamics throughout training are illustrated in Figure 3, where SPG shows a rapid and steady
increase in reward over the optimization steps, further demonstrating its efficiency and robustness.
We provide additional results and comparisons to the baselines in Table 4 and Appendix F.1.

4.2 Ablations and Further Analysis

We conduct a series of ablation studies to gain deeper insights from the following aspects:

• The contribution of each individual component, including log-likelihood estimation methods for
negative advantage traces (Table 2) and the masking strategy in Monte Carlo estimation (Table 3).

• The effect of key hyperparameters, including β that controls the tightness of the upper bound and
the mixture coefficient ω (Figure 5).

• The robustness of our approach under various inference strategies (Figure 6).

Due to computational constraints, some ablation experiments are conducted on a representative
mathematical reasoning benchmark (MATH500) and a logical reasoning benchmark (Countdown).
Unless otherwise noted, we report average test accuracy across generation lengths 128, 256, and 512
for the ablation studies, with detailed results for each generation length provided in Appendix F.2.
We also investigate alternative log-likelihood estimation methods for positive advantage traces in
place of ELBO, as detailed in Table 11 and Appendix F.2.

0 500 1000 1500 2000 2500
Steps

0.2

0.4

0.6

0.8

1.0

Re
wa

rd

SPG w/ ELBO
SPG w/ EUBO
SPG w/ Mixture

Figure 4: Reward dynamics of
different methods on Sudoku.

Ablations on Algorithm Components. We first study the impact
of different log-likelihood estimation methods for negative advan-
tage traces in Table 2. Specifically, we compare our approach using
L̃EUBO or L̃Mix with those using LELBO (SPG w/ ELBO) or omitting
the negative advantage loss entirely (SPG wo/ neg). Removing the
negative advantage loss results in a substantial performance drop,
highlighting the importance of negative advantage penalties to RL.
Additionally, both Mixture and EUBO methods outperform ELBO
(except for EUBO in MATH500), showcasing the benefits of evi-
dence upper bound regularization for negative rewards. We provide
complete results for each generation length in Table 6.

The effect of log-likelihood estimation methods is further illustrated by the reward dynamics of each
model in Figure 4, taking Sudoku as an example. SPG w/ ELBO converges rapidly during training but
plateaus early, as minimizing the lower bound does not necessarily minimize the true log-likelihood
for negative advantage traces. In contrast, SPG w/ EUBO achieves higher final rewards but converges
more slowly and less stably. Combining both, SPG w/ Mixture attains fast, stable convergence and
high rewards, leading to an effective balance. This aligns with our discussions in Section 3.3.

We also conduct ablations on the masking strategies in Monte Carlo estimation of LELBO, L̃EUBO,
and L̃Mix. As shown in Table 3, the block-wise masking strategy outperforms random masking,
demonstrating the importance of aligning input distributions between policy rollout and optimization.
We provide complete results for each generation length in Table 7.

Ablations on Key Hyperparameters β and ω. We first examine the effect of β, a crucial hyper-
parameter in evidence upper bound estimation, in panels (a)-(d) of Figure 5. In general, a relatively
small value of β (i.e., close to 1.0) leads to a tighter bound and thus better performance. Nevertheless,

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0.5 1.0 1.5 2.0
81.0

81.5

82.0

82.5

83.0

Av
er

ag
e

Ac
cu

ra
cy

 (%
)

81.6

83.1
(a) GSM8K

0.5 1.0 1.5 2.0

36

37

38

36.7

38.4
(b) MATH500

0.5 1.0 1.5 2.0
66

68

70

72

69.3

69.9

(c) Countdown

0.5 1.0 1.5 2.0

40

60

80 86.1

90.0
(d) Sudoku

0.0 0.5 1.0
36.5

37.0

37.5

38.0

38.5 38.4
(e) MATH500

0.0 0.5 1.0

68

70

70.9
(f) Countdown

SPG w/ EUBO SPG w/ Mixture

Figure 5: (a)-(d): ablations on the effect of β in the upper bound; (e)-(f): ablations on the mixture
coefficient ω. The best performed β ≥ 1 and ω ∈ [0, 1] are marked by triangle in each setting.

30

40

50

60

70

Av
er

ag
e

Ac
cu

ra
cy

 (%
)

37.537.8
43.8

52.6
57.3

68.7
73.5

+16.2%

Semi-AR, Block=16,
Confidence

38.540.2
45.9

58.158.2

70.773.2
+15.0%

Semi-AR, Block=32,
Confidence

42.943.3
49.2

53.5

64.0
70.072.7

+8.7%

Semi-AR, Block=64,
Confidence

28.8
32.6

36.4
43.1

51.0
55.2

65.6+14.6%

Semi-AR, Block=32,
Random

27.5
32.4

38.140.2
44.5

57.5
61.2

+16.7%

Full Sequence,
Confidence

27.728.8
34.0

37.9

46.3
52.955.7

+9.4%

Full Sequence,
Random

LLaDA-8B-Instruct LLaDA-1.5 D1 WD1 UniGRPO SPG w/ EUBO SPG w/ Mixture

Figure 6: Ablations on inference strategies, including different combinations of decoding orders (i.e.,
semi-autoregressive (semi-AR) decoding with varying block sizes and full sequence decoding) and
unmasking approaches (i.e., confidence-based and random unmasking). We set generation length
to 256 and report the average accuracy across four benchmarks. SPG consistently outperforms all
baselines by a large margin across different inference strategies.

SPG consistently performs well across a range of β values on most tasks, indicating its robustness.
For our main results in Table 1, we fix ω = 0.5 and select the optimal β ≥ 1, resulting in β = 1.0
for Sudoku and β = 1.5 for the other three benchmarks, except for Countdown with SPG w/ EUBO
where β = 2.0. Besides, since the ELBO corresponds to the case of β = 0 theoretically and EUBO
corresponds to β ≥ 1, we also investigate intermediate values 0 < β < 1, which may serve as an
implicit mixture of lower and upper bounds. However, it is unstable in Sudoku and underperform
SPG w/ Mixture on most benchmarks.

We also experiment on the effect of the mixture coefficient ω, keeping β fixed at its optimal value
determined for ω = 0.5 as mentioned before. As illustrated in panels (e)-(f) of Figure 5, combining
lower and upper bounds with ω ∈ (0, 1) leads to better performance than leveraging either bound
solely, resulting in an inverted U-shaped curve. This observation is consistent with our analysis in
Proposition 1 and Section 3.3. We provide complete ablation results of β and ω for each generation
length in Table 8 and Table 9.

Ablations on Inference Strategies. In the above experiments, we adopt a consistent state-of-
the-art inference setup during both RL rollout and evaluation, i.e., confidence-based, block-wise
semi-autoregressive generation with a block size of 32. The same configuration and block size are
also used in our block-wise masking strategy. This raises the question of whether our approach
generalizes well to alternative inference strategies. To assess this, we evaluate the base model
and all RL fine-tuned models using various inference strategies, as shown in Figure 6. Despite
being trained under confidence-based semi-AR decoding, SPG consistently outperforms all baselines
by a substantial margin across all inference strategies, demonstrating its robustness and strong
generalizability. Complete results for each benchmark individually are provided in Table 12.

5 Conclusion

We propose SPG, a novel reinforcement learning algorithm for diffusion large language models.
SPG addresses the intractable log-likelihood in dLLMs by maximizing a tractable lower bound on
positive reward sequences and minimizing an upper bound on negative ones, resulting in a more
robust and less biased policy gradient. Additionally, we propose a block-wise masking strategy for
Monte Carlo estimation to enhance optimization stability and efficiency. Extensive experiments on
four mathematical and logical reasoning benchmarks demonstrate the superior performance of SPG,
achieving significant improvement over baselines and the state-of-the-art performance.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Ethics Statement

The paper studies methods for language generation, specifically targeting mathematical and logical
reasoning tasks. Our research does not involve human subjects.

Reproducibility Statement

Assumptions and complete proofs of theoretical results are provided in Appendices C, D.1 and D.2.
We include complete algorithm description, implementation details, experimental settings and dataset
information in Section 4 and Appendix E.

Use of Large Language Models

LLMs are slightly used to polish writing.

References
Arel. Arel’s sudoku generator. https://www.ocf.berkeley.edu/ arel/sudoku/main.html, 2025.

Marianne Arriola, Aaron Gokaslan, Justin T Chiu, Zhihan Yang, Zhixuan Qi, Jiaqi Han, Sub-
ham Sekhar Sahoo, and Volodymyr Kuleshov. Block diffusion: Interpolating between autoregres-
sive and diffusion language models. arXiv preprint arXiv:2503.09573, 2025.

Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne Van Den Berg. Structured
denoising diffusion models in discrete state-spaces. Advances in neural information processing
systems, 34:17981–17993, 2021.

Kevin Black, Michael Janner, Yilun Du, Ilya Kostrikov, and Sergey Levine. Training diffusion models
with reinforcement learning. arXiv preprint arXiv:2305.13301, 2023.

Andrew Campbell, Joe Benton, Valentin De Bortoli, Thomas Rainforth, George Deligiannidis, and
Arnaud Doucet. A continuous time framework for discrete denoising models. Advances in Neural
Information Processing Systems, 35:28266–28279, 2022.

Andrew Campbell, Jason Yim, Regina Barzilay, Tom Rainforth, and Tommi Jaakkola. Generative
flows on discrete state-spaces: Enabling multimodal flows with applications to protein co-design.
arXiv preprint arXiv:2402.04997, 2024.

Kevin Clark, Paul Vicol, Kevin Swersky, and David J Fleet. Directly fine-tuning diffusion models
on differentiable rewards. arXiv preprint arXiv:2309.17400, 2023.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. arXiv
preprint arXiv:2307.08691, 2023.

Ying Fan, Olivia Watkins, Yuqing Du, Hao Liu, Moonkyung Ryu, Craig Boutilier, Pieter Abbeel,
Mohammad Ghavamzadeh, Kangwook Lee, and Kimin Lee. Dpok: Reinforcement learning for
fine-tuning text-to-image diffusion models. Advances in Neural Information Processing Systems,
36:79858–79885, 2023.

Shansan Gong, Mukai Li, Jiangtao Feng, Zhiyong Wu, and LingPeng Kong. Diffuseq: Sequence to
sequence text generation with diffusion models. arXiv preprint arXiv:2210.08933, 2022.

Shansan Gong, Shivam Agarwal, Yizhe Zhang, Jiacheng Ye, Lin Zheng, Mukai Li, Chenxin An,
Peilin Zhao, Wei Bi, Jiawei Han, et al. Scaling diffusion language models via adaptation from
autoregressive models. arXiv preprint arXiv:2410.17891, 2024.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Xiaochuang Han, Sachin Kumar, and Yulia Tsvetkov. Ssd-lm: Semi-autoregressive simplex-
based diffusion language model for text generation and modular control. arXiv preprint
arXiv:2210.17432, 2022.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Inception Labs, Samar Khanna, Siddhant Kharbanda, Shufan Li, Harshit Varma, Eric Wang, Sawyer
Birnbaum, Ziyang Luo, Yanis Miraoui, Akash Palrecha, et al. Mercury: Ultra-fast language
models based on diffusion. arXiv preprint arXiv:2506.17298, 2025.

Xiang Li, John Thickstun, Ishaan Gulrajani, Percy S Liang, and Tatsunori B Hashimoto. Diffusion-
lm improves controllable text generation. Advances in neural information processing systems, 35:
4328–4343, 2022.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The Twelfth
International Conference on Learning Representations, 2023.

Zhiyuan Liu, Yicun Yang, Yaojie Zhang, Junjie Chen, Chang Zou, Qingyan Wei, Shaobo Wang, and
Linfeng Zhang. dllm-cache: Accelerating diffusion large language models with adaptive caching.
github, 2025a.

Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee, and Min
Lin. Understanding r1-zero-like training: A critical perspective. arXiv preprint arXiv:2503.20783,
2025b.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Aaron Lou, Chenlin Meng, and Stefano Ermon. Discrete diffusion modeling by estimating the ratios
of the data distribution. arXiv preprint arXiv:2310.16834, 2023.

Xinyin Ma, Runpeng Yu, Gongfan Fang, and Xinchao Wang. dkv-cache: The cache for diffusion
language models. arXiv preprint arXiv:2505.15781, 2025.

Shen Nie, Fengqi Zhu, Zebin You, Xiaolu Zhang, Jingyang Ou, Jun Hu, Jun Zhou, Yankai Lin, Ji-
Rong Wen, and Chongxuan Li. Large language diffusion models. arXiv preprint arXiv:2502.09992,
2025.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in neural information processing systems, 35:27730–
27744, 2022.

Jiayi Pan, Junjie Zhang, Xingyao Wang, Lifan Yuan, Hao Peng, and Alane Suhr. Tinyzero.
https://github.com/Jiayi-Pan/TinyZero, 2025. Accessed: 2025-01-24.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of
the IEEE/CVF international conference on computer vision, pp. 4195–4205, 2023.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in neural information processing systems, 36:53728–53741, 2023.

Alfréd Rényi. On measures of entropy and information. In Proceedings of the fourth Berkeley
symposium on mathematical statistics and probability, volume 1: contributions to the theory of
statistics, volume 4, pp. 547–562. University of California Press, 1961.

Subham Sahoo, Marianne Arriola, Yair Schiff, Aaron Gokaslan, Edgar Marroquin, Justin Chiu,
Alexander Rush, and Volodymyr Kuleshov. Simple and effective masked diffusion language
models. Advances in Neural Information Processing Systems, 37:130136–130184, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Subham Sekhar Sahoo, Justin Deschenaux, Aaron Gokaslan, Guanghan Wang, Justin Chiu, and
Volodymyr Kuleshov. The diffusion duality. arXiv preprint arXiv:2506.10892, 2025a.

Subham Sekhar Sahoo, Zhihan Yang, Yash Akhauri, Johnna Liu, Deepansha Singh, Zhoujun Cheng,
Zhengzhong Liu, Eric Xing, John Thickstun, and Arash Vahdat. Esoteric language models. arXiv
preprint arXiv:2506.01928, 2025b.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International conference on machine learning, pp. 1889–1897. PMLR,
2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemati-
cal reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Jiaxin Shi, Kehang Han, Zhe Wang, Arnaud Doucet, and Michalis Titsias. Simplified and generalized
masked diffusion for discrete data. Advances in neural information processing systems, 37:103131–
103167, 2024.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. arXiv preprint
arXiv:2011.13456, 2020.

Bowen Sun, Yujun Cai, Ming-Hsuan Yang, and Yiwei Wang. Blockwise sft for diffusion lan-
guage models: Reconciling bidirectional attention and autoregressive decoding. arXiv preprint
arXiv:2508.19529, 2025.

Haoran Sun, Lijun Yu, Bo Dai, Dale Schuurmans, and Hanjun Dai. Score-based continuous-time
discrete diffusion models. arXiv preprint arXiv:2211.16750, 2022.

Xiaohang Tang, Rares Dolga, Sangwoong Yoon, and Ilija Bogunovic. wd1: Weighted policy
optimization for reasoning in diffusion language models. arXiv preprint arXiv:2507.08838, 2025.

Tim Van Erven and Peter Harremos. Rényi divergence and kullback-leibler divergence. IEEE
Transactions on Information Theory, 60(7):3797–3820, 2014.

Chenyu Wang, Masatoshi Uehara, Yichun He, Amy Wang, Tommaso Biancalani, Avantika Lal,
Tommi Jaakkola, Sergey Levine, Hanchen Wang, and Aviv Regev. Fine-tuning discrete diffusion
models via reward optimization with applications to dna and protein design. arXiv preprint
arXiv:2410.13643, 2024.

Xu Wang, Chenkai Xu, Yijie Jin, Jiachun Jin, Hao Zhang, and Zhijie Deng. Diffusion llms can do
faster-than-ar inference via discrete diffusion forcing. arXiv preprint arXiv:2508.09192, 2025a.

Yinjie Wang, Ling Yang, Bowen Li, Ye Tian, Ke Shen, and Mengdi Wang. Revolutionizing reinforce-
ment learning framework for diffusion large language models. arXiv preprint arXiv:2509.06949,
2025b.

Chengyue Wu, Hao Zhang, Shuchen Xue, Zhijian Liu, Shizhe Diao, Ligeng Zhu, Ping Luo, Song
Han, and Enze Xie. Fast-dllm: Training-free acceleration of diffusion llm by enabling kv cache
and parallel decoding. arXiv preprint arXiv:2505.22618, 2025.

Ling Yang, Ye Tian, Bowen Li, Xinchen Zhang, Ke Shen, Yunhai Tong, and Mengdi Wang. Mmada:
Multimodal large diffusion language models. arXiv preprint arXiv:2505.15809, 2025.

Siyan Zhao, Devaansh Gupta, Qinqing Zheng, and Aditya Grover. d1: Scaling reasoning in diffusion
large language models via reinforcement learning. arXiv preprint arXiv:2504.12216, 2025.

Lin Zheng, Jianbo Yuan, Lei Yu, and Lingpeng Kong. A reparameterized discrete diffusion model
for text generation. arXiv preprint arXiv:2302.05737, 2023.

Fengqi Zhu, Rongzhen Wang, Shen Nie, Xiaolu Zhang, Chunwei Wu, Jun Hu, Jun Zhou, Jianfei
Chen, Yankai Lin, Ji-Rong Wen, et al. Llada 1.5: Variance-reduced preference optimization for
large language diffusion models. arXiv preprint arXiv:2505.19223, 2025.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A Related Work

Diffusion Language Models. Building on the remarkable success of diffusion models for image
generation in continuous domains (Song et al., 2020; Ho et al., 2020), researchers have explored
their extension to discrete data such as text. Initial attempts focused on training continuous diffusion
models in the text embedding space (Li et al., 2022; Gong et al., 2022; Han et al., 2022; Sahoo
et al., 2025a), while they face challenges in optimization and generalization due to the discrete
nature of text data. Masked diffusion models (Lou et al., 2023; Zheng et al., 2023; Campbell et al.,
2024; Sahoo et al., 2024; Shi et al., 2024) address this by defining the diffusion process directly in
the discrete token space, using random masking as the forward process, and have achieved strong
empirical results. Block Diffusion (Arriola et al., 2025) further advances this direction by combining
the strengths of autoregressive models, such as the capability to generate variable-length outputs and
using KV cache to accelerate inference, with the benefits of diffusion language models like parallel
decoding and flexible, any-order generation within blocks. Recently, large-scale diffusion language
models trained with masked diffusion objectives have demonstrated performance competitive with
similarly sized autoregressive models (Nie et al., 2025; Gong et al., 2024). More recent works (Wu
et al., 2025; Ma et al., 2025; Liu et al., 2025a; Sahoo et al., 2025a;b) have introduced caching and
parallel decoding algorithms that greatly enhance the inference efficiency of dLLMs.

Reinforcement Learning for LLMs and Reasoning. Reinforcement learning has proven highly
effective at enhancing the reasoning abilities of large language models (LLMs) during post-training.
Algorithms such as Proximal Policy Optimization (PPO) and Trust Region Policy Optimization
(TRPO) constrain policy updates to a trust region, reducing variance and promoting stable learning
by preventing excessive shifts from the reference policy (Schulman et al., 2015; 2017). Building
on these methods, Group Relative Policy Optimization (GRPO) (Shao et al., 2024) introduces
group-relative rewards, enabling efficient training without the need for an additional value (critic)
model. GRPO and its variants have demonstrated strong empirical performance in state-of-the-
art models such as DeepSeek-R1 (Guo et al., 2025), particularly on mathematical reasoning tasks,
where incorporating long reasoning traces with self-reflection and verification steps yields significant
improvements.

Reinforcement Learning for Diffusion Language Models. Numerous studies have explored RL-
based fine-tuning algorithms for diffusion models with continuous objectives (Fan et al., 2023; Black
et al., 2023; Clark et al., 2023). While RL algorithms have achieved notable success to LLMs
and continuous diffusion models, their applications to diffusion language models in the discrete
space remain underexplored. DRAKES (Wang et al., 2024) leverages reward backpropagation along
the denoising trajectory, but is computationally intensive for large scale models as the gradients
are propagated through each denoising step. Alternatively, methods like D1 (Zhao et al., 2025)
and UniGRPO Yang et al. (2025) utilize the GRPO framework, approximating the log-likelihood
through either a one-step unmasking (as in D1) or Monte Carlo estimation using the ELBO (as in
UniGRPO). VRPO (Zhu et al., 2025) adapts DPO (Rafailov et al., 2023) to fine-tune dLLMs by
applying MC estimation of the ELBO. WD1 (Tang et al., 2025) starts from the GRPO formulation
and the same log-likelihood estimation as in D1, while avoiding direct estimation of the old and
reference policy log-likelihoods by integrating them into a weighted policy optimization objective.
Despite these advances, a principled analysis of RL algorithms for dLLMs, especially the challenging
log-likelihood estimation, is missing. This results in substantial bias in the optimization objective
and suboptimal performance.

B Basics of dLLMs

In this section, we provide a more self-contained overview of masked dLLMs. Please also refer to
Sahoo et al. (2024) for more details.

Notation. We denote scalars by lowercase letters (x), vectors by bold lowercase (x), and sequences
by x1:n. A superscript (e.g., xj) denotes an item’s index within a group. We define the set of the first
k integers as [k] := {1, . . . , k} and the k-dimensional probability simplex as ∆k−1. Distributions
include the categorical Cat(· | p) and the uniform U [a, b]. Throughout the paper, we use the

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

following primary indices: i ∈ [n] for position, j ∈ [g] for a sequence in a group, and t ∈ [0, 1] for
the continuous diffusion timestep.

We start from a discrete time version of the diffusion models with finite t ∈ [T]. Assume a one-hot
categorical variable x ∈ {e1, . . . , ek} ⊂ ∆k−1. Further assume we gradually corrupt x into an
absorbing state m (i.e., e[mask]) with transition matrix Qt at time t. Then:

q(zt | x) = Cat(zt | Qtx) = Cat(zt |
t∏

τ=1

Qτx).

Here, zt is also a one-hot categorical random variable in ∆k−1. In practice, one could choose Qt

such that:
q(zt | x) = Cat(zt | αtx+ (1− αt)m).

Here, α1 = 1, αT = 0, α′
t < 0.

Normally, the goal is to construct the lower bound of the evidence (ELBO) and maximize it. For this
particular case, consider the discretized Markov chain with T latent variables z1, z2, . . . ,zT , where
zT = m and z1 = x. We use the shorthand z = z1:T and write

LELBO(x;θ) = Ez∼q(·|x)

[
log

pθ(x, z)

q(z | x)

]
=Ez∼q(·|x)

[
log pθ(x, z1)︸ ︷︷ ︸

=0

+

T−1∑
t=1

log
pθ(zt | zt+1)

q(zt | zt+1,x)
+ log

pθ(zT)

q(zT | x)︸ ︷︷ ︸
=0

]

=

T−1∑
t=1

Ezt,zt+1∼q

[
log

pθ(zt | zt+1)

q(zt | zt+1,x)

]

=

T−1∑
t=1

Ezt+1∼q(·|x)Ezt∼q(·|zt+1,x)

[
log

pθ(zt | zt+1)

q(zt | zt+1,x)

]
.

(10)

Here, log pθ(x, z1) = 0 because we assume z1 = x, and pθ(zT) = q(zT | x) because we assume
zT = m. A common method to parameterize pθ is via predicting x with model πθ in q:

pθ(zt | zt+1) = q (zt | zt+1,x = πθ(· | zt+1)) .

Now, given that zt+1 is either m or x (assuming m ̸= x). Then the KL term in equation 10
decomposes into the following.

log
pθ(zt | zt+1)

q(zt | zt+1,x)
=


0 zt = zt+1 = x,

0 zt = m, zt+1 = x, (Impossible)
log πθ(x | zt+1) zt = x, zt+1 = m,

0 zt = zt+1 = m.

(11)

Moreover, q(zt = x | zt+1 = m,x) = αt−αt+1

1−αt+1
, and note that πθ(x | zt) = 1 when zt = x, so we

have:

LELBO(x;θ) =

T−1∑
t=1

Ezt+1∼q(·|x)

[
αt − αt+1

1− αt+1
log πθ(x | zt+1)1(zt+1 = m)

]

=

T−1∑
t=1

Ezt+1∼q(·|x)

[
αt − αt+1

1− αt+1
log πθ(x | zt+1)

]
. (If zt+1 = x, then log πθ(x | zt+1) = 0)

(12)

Taking the above limit as T →∞, we have:

LELBO(x;θ) =

∫ 1

t=0

Ezt∼q(·|x)

[
α′
t

αt − 1
log πθ(x | zt)

]
. (13)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Generalization to Sequence The above is for a single categorical variable x. In practice as in
language modeling, it becomes a sequence of categorical variables x1:n. Then we write

LELBO(x1:n;θ) = Ez1:n∼q(·|x1:n)

[
log

pθ(x1:n, z1:n)

q(z1:n | x1:n)

]
= E{zi∼q(·|xi)}n

i=1

[n∑
i=1

log
pθ(xi, z1:n)

q(zi | xi)

]
(Independence of q(· | xi))

=

n∑
i=1

E{zi′∼q(·|xi′)}n
i′=1

[
log

pθ(xi, z1:n)

q(zi | xi)

]

=

n∑
i=1

LELBO(xi;θ).

(14)

The key distinction from the single-token formulation (mentioned beforehand) is that the reverse
process pθ is conditioned on all z1:n instead of a single token’s zi.

C Evidence Upper Bound for dLLMs

In this section, we provide the derivation of the evidence upper bound. Following the above section,
we start from the discrete time version of the diffusion models.
Lemma 1 (Rényi Variational Bound; Rényi (1961); Van Erven & Harremos (2014)). Fix an obser-
vation x. Let q(· | x) be any distribution on Z such that p(· | x)≪ q(· | x), denoting that p(· | x) is
absolutely continuous with respect to q(· | z). Then, the following holds for any β ≥ 1:

Ez∼q(·|x)

[
log

p(x, z)

q(z | x)

]
≤ log p(x) ≤ 1

β
logEz∼q(·|x)

[(
p(x, z)

q(z | x)

)β
]
. (15)

In view of the above lemma, we derive an evidence upper bound for masked diffusion models in the
following theorem.
Theorem 1 (Evidence Upper Bound for Masked Diffusion). Assume the forward denoising process
has T steps with a monotonic schedule αt. For any β ≥ 1 and a sequence of categorical variables
x1:n, we have:

log πθ(x1:n) ≤ LEUBO(x1:n;θ), (16)
where

LEUBO(x1:n;θ) :=
1

β

n∑
i=1

log

T−1∑
t=1

Ezt+1

[
αt − αt+1

1− αt+1
· 1(zt+1,i = m) · πβ

θ (xi | zt+1)

]
+ C(T),

(17)
and C(T) := 1

β logEz1:T∼q(·|x)

[
q(z1:T | x)−n

]
is a constant independent of θ.

Proof. We first consider the case with a single categorical variable x. On the account of Lemma 1
and following a similar argument as in equation 10, for any β ≥ 1, we can write

log πθ(x) ≤
1

β
logEz∼q(·|x)

[(
pθ(x, z)

q(z | x)

)β
]

=
1

β
logEz1:T∼q(·|x)

[T−1∏
t=1

(
pθ(zt | zt+1)

q(zt | zt+1,x)

)β]
(18)

Note that the sequence z1:T has a form {x, . . . ,x,m, . . . ,m}. Define the transition event:

At := {zt = x, zt+1 = m} (19)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Then, by the law of total expectations, equation 18 can be expressed as:

1

β
logEz1:T∼q(·|x)

[T−1∏
t=1

(
pθ(zt | zt+1)

q(zt | zt+1,x)

)β]

=
1

β
log

T−1∑
t=1

P(At)Ez∼q(·|x)

[
T−1∏
s=1

(
pθ(zs | zs+1)

q(zs | zs+1,x)

)β
∣∣∣∣∣At

]

=
1

β
log

T−1∑
t=1

Ezt+1∼q(·|x)

[
1(zt+1 = m)q(zt = x | zt+1 = m,x)

(
pθ(zt = x | zt+1 = m)

q(zt = x | zt+1 = m,x)

)β]

=
1

β
log

T−1∑
t=1

Ezt+1∼q(·|x)

[
1(zt+1 = m)

αt − αt+1

1− αt+1
πβ
θ (x | zt+1)

]
(20)

The penultimate line is due to the fact that conditioned on the eventAt, the ratio pθ(zs|zs+1)
q(zs|zs+1,x)

is equal
to one for any s ̸= t. The last line uses the formula for q. The indicator 1(zt = m) appears in the
final expression because the terms in the bound are only non-trivial when the model must make a
prediction from a corrupted state.

Now we generalize the above to a sequence of categorical variables x = x1:n. Similar as Equa-
tion (18), we have

log πθ(x1:n) ≤
1

β
logEz1:T∼q(·|x)

[T−1∏
t=1

n∏
i=1

(
pθ(zt,i | zt+1)

q(zt,i | zt+1,x)

)β]
The upper bound in the RHS can be further derived as

1

β
logEz1:T∼q(·|x)

[T−1∏
t=1

n∏
i=1

(
pθ(zt,i | zt+1)

q(zt,i | zt+1,x)

)β]

=
1

β
logEz1:T∼q(·|x)

[
q(z1:T | x)−n

n∏
i=1

∑
yi
1:T

q(yi
1:T | x)1(yi

1:T = z1:T)

T−1∏
t=1

(
pθ(y

i
t,i | yi

t+1

q(yi
t,i | yi

t+1,x)

)β]

≤ 1

β
logEz1:T∼q(·|x)

[
q(z1:T | x)−n

n∏
i=1

∑
yi
1:T

q(yi
1:T | x)

T−1∏
t=1

(
pθ(y

i
t,i | yi

t+1

q(yi
t,i | yi

t+1,x)

)β]

=
1

β
log

(
Ez1:T∼q(·|x)

[
q(z1:T | x)−n

]
·
(n∏

i=1

∑
yi
1:T

q(yi
1:T | x)

T−1∏
t=1

(
pθ(y

i
t,i | yi

t+1

q(yi
t,i | yi

t+1,x)

)β))

=
1

β
log

n∏
i=1

Ez1:T∼q(·|x)

[T−1∏
t=1

(
pθ(zt,i | zt+1)

q(zt,i | zt+1,x)

)β]
+

1

β
logEz1:T∼q(·|x)

[
q(z1:T | x)−n

]
=
1

β

n∑
i=1

logEz1:T∼q(·|x)

[T−1∏
t=1

(
pθ(zt,i | zt+1)

q(zt,i | zt+1,x)

)β]
+ C(T) (21)

Here, yi
1:T are copies of z1:T enforced to agree with z1:T using the indicator 1(yi

1:T = z1:T). C(T)
is a constant independent of θ, and the first term in Equation (21) can be derived similar to the single
variable case in Equation (20):

1

β

n∑
i=1

logEz1:T∼q(·|x)

[T−1∏
t=1

(
pθ(zt,i | zt+1)

q(zt,i | zt+1,x)

)β]

=
1

β

n∑
i=1

log

T−1∑
t=1

Ezt+1∼q(·|x)

[
αt − αt+1

1− αt+1
· 1(zt+1,i = m) · πβ

θ (xi | zt+1)

]

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Corollary 1. Taking the limit of T →∞, we have:

∇θLEUBO(x1:n;θ) = ∇θ

(
L̃EUBO(x1:n;θ) + C(T)

)
= ∇θL̃EUBO(x1:n;θ), where

L̃EUBO(x1:n;θ) =
1

β

n∑
i=1

logEt,zt

[
w(t) · 1(zt,i = m) · πβ

θ (xi | zt)
]
.

(22)

One caveat of the above L̃EUBO is that the log is outside of the expectation, which in general makes
Monte Carlo sample estimates biased. One could certainly further loosen the bound using the
inequality log x ≤ x− 1:

LEUBO(x) ≤
1

β

n∑
i=1

Et∼U [0,1],zt∼q

[
w(t) · 1(zt,i = m) · πβ

θ (xi | zt)

]
− n

β

But in practice we found this results in much worse performance, as demonstrated in Table 10,
potentially due to the much larger gap between EUBO and likelihood.

D Additional Analysis on Upper and Lower Bounds

D.1 Proof of Proposition 1

Proposition 1 (Optimal Mixture Strictly Reduces Variance). Fix a coordinate k and let ρβ :=

w(t, zt)π
β
θ (xi | zt, c)/E

[
w(t, zt)π

β
θ (xi | zt, c)

]
, where w(t, zt) := w(t)1(zt = m). Then, the

gradient of mixture objective (8) is given by

gω,k = ((1− ω)w(t, zt) + ωρβ) ∂θk
log πθ(x | zt, c). (23)

If Var((ρβ − w(t, zt))∂θk
log πθ(x | zt, c)) > 0, then Var[gω,k] is a strictly convex quadratic in ω

and thus admits a unique minimizer ω⋆
k. Moreover,

Var[gω⋆
k,k

] < min
{
Var[g0,k], Var[g1,k]

}
,

Proof. We first derive the formulas for the gradient of each objective. Consider a specific example
xi. The gradient of the LELBO and L̃ELBO are given by:

∇θLELBO = E [w(t, zt)∇ log πθ(xi | zt, c)] (24)

∇θL̃EUBO =
E
[
w(t, zt)π

β
θ (xi | zt, c)∇ log πθ(xi | zt, c)

]
E
[
w(t, zt)π

β
θ (xi | zt, c)

] (25)

Then the gradient of the mixture objective L̃Mix is given by:

∇θL̃Mix = E
[(

(1− ω)w(t, zt) + ωρβ

)
∇θ log πθ(xi | zt, c)

]
(26)

We further compute the per-parameter (per-dimension) variance of the gradient of L̃Mix and consider
the optimal mixture coefficient ω to minimize the variance. For simplicity, we use the following
short-hand notation:

sk := ∂θk
log πθ(xi | zt, c)

We denote the k-th coordinate of the gradient ∇θL̃Mix by gω,k. Then, the coordinate-wise variance
of the gradient is given by

Var
[
gω,k

]
= E
[(
(1− ω)w + ω ρβ

)2
s2k

]
−
(
E
[(
(1− ω)w + ω ρβ

)
sk
])2

= Var(wsk) + 2ωCov(wsk, (ρβ − w)sk) + ω2 Var((ρβ − w)sk)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

where we used the shorthand w ≡ w(t, zt). The above expression is quadratic in ω and we find the
optimal ω by setting the derivative of variance to zero:

∂

∂ω
Var
[
gω,k

]
= 2 Cov

(
w sk, (ρβ − w) sk

)
+ 2ω Var

(
(ρβ − w) sk

)
= 0

⇒ ω⋆
k = −

Cov
(
w sk, (ρβ − w) sk

)
Var
(
(ρβ − w) sk

) .

The above yields a per-coordinate optimal ω⋆
k. Equivalently, we can write ω⋆

k as follows:

ω⋆
k =

Var
(
w sk

)
− Cov

(
w sk, ρβ sk

)
Var
(
w sk

)
+Var

(
ρβ sk

)
− 2 Cov

(
w sk, ρβ sk

)
Furthermore, ω⋆

k is a minimizer of coordinate-wise variance in the non-degenerative case with
Var
(
(ρβ − w) sk

)
> 0, as the variance is strongly convex in ω.

The coordinate-wise variance of gradients in LELBO (ω = 0) and L̃ELBO (ω = 1), and the optimal
mixture coefficient ω⋆ are then given by

LELBO : Var
[
g0,k

]
= Var

[
w sk

]
,

L̃ELBO : Var
[
g1,k

]
= Var

[
w sk

]
+ 2 Cov

(
w sk, (ρβ − w) sk

)
+Var

(
(ρβ − w) sk

)
,

Optimal: Var
[
gω⋆

k,k

]
= Var

[
w sk

]
−

(
Cov

(
w sk, (ρβ − w) sk

))2
Var
(
(ρβ − w) sk

) ,

The difference between the variance of LELBO and L̃ELBO with the optimal mixture coefficient can
then be derived as follows:

Var
[
w sk

]
−Var

[
gω⋆

k,k

]
=

(
Cov

(
w sk, (ρβ − w) sk

))2
Var
(
(ρβ − w) sk

) ≥ 0

Var
[
ρβ sk

]
−Var

[
gω⋆

k,k

]
=

(
Cov

(
w sk, (ρβ − w) sk

)
+Var

(
(ρβ − w) sk

))2
Var
(
(ρβ − w) sk

) ≥ 0

D.2 Additional Comparison Between the Mixture Loss and the Lower and Upper Bounds

Comparing Mixture with the Lower Bound. Consider the ratio of the coefficient of score func-
tion ∇θ log πθ(xi | zt, c) in the gradient in the case of the mixture objective (i.e., ∇θL̃Mix in
Equation (26)) over using only the lower bound (i.e., ∇θLELBO in Equation (24)):

wMix

wELBO
=

(1− ω)w(t, zt) + ωρβ
w(t, zt)

= (1− ω) + ω
πβ
θ (xi | zt, c)

E
[
w(t, zt)π

β
θ (xi | zt, c)

]
Treating the expectation over all samples E

[
w(t, zt)π

β
θ (xi | zt, c)

]
as a constant (since it is aver-

aged), the second term in the above ratio is strictly increasing in πβ
θ (xi | zt, c). This realizes a

confidence-aware weighting: uncertain tokens with small πβ
θ (xi | zt, c), i.e., those with a low recov-

ery chance, have a smaller weight, while confident tokens with large πβ
θ (xi | zt, c) are upweighted,

with sharpness being controlled by parameter β and the blend by ω.

Comparing Mixture with the Upper Bound. We compute the ratio of coefficient of score function
in the gradient of upper bound (i.e., ∇θL̃EUBO in Equation (25)) over the mixture gradient:

wEUBO

wMix
=

ωρβ
(1− ω)w(t, zt) + ωρβ

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

0 1000 2000 3000
Steps

0

1

2

3
Gr

ad
 N

or
m

GSM8K

0 1000 2000 3000
Steps

0.0

0.5

1.0

1.5

Math500

0 2000 4000 6000
Steps

0

1

2

3

Countdown

0 1000 2000
Steps

0.0

0.5

1.0

1.5

2.0

Sudoku

SPG w/ ELBO SPG w/ EUBO SPG w/ Mixture

Figure 7: Dynamics of the gradient norm of models trained with different log-likelihood estimation
methods. SPG w/ Mixture achieves lower gradient norm and more stable optimization. We report
mean and standard deviation over a rolling window of 50 steps.

Considering the above ratio, when πβ
θ (xi | zt, c) is very small, the coefficient of score function in

∇θL̃EUBO, wEUBO, becomes very small, preventing updates to the parameters. However, the mixing
approach maintains per-sample weights by preventing that from collapsing to (near) zero. In other
words, for each sample, the mixture coefficient computes a convex interpolation that simultaneously
floors very small EUBO weights to a minimum value and applies an uncertainty-aware capping to
large EUBO weights.

Empirical Evidence of Reduced Gradient Variance. As a practical indicator of gradient variance,
we plot the gradient norm of each model trained with different log-likelihood estimation methods for
negative advantage traces in Figure 7. When using the mixture objective, the model has consistently
smaller and more stable gradient norm throughout training, aligning well with our theoretical analysis.

D.3 Toy Example for Upper and Lower Bounds.

In this section, we provide a toy example highlighting the contrasting behaviors and landscapes of
the upper and lower bounds, further demonstrating the necessity to select the appropriate bound for
optimization based on the optimization direction.

Consider a simple case where the sequence length is 2 and the vocabulary size is 2, i.e., x = [x1,x2]

and V = {A,B}. Then, We can calculate LELBO and L̃EUBO in closed form:

LELBO(x = AA) =
1

2

[
log πθ(x1 = A | MA) + log πθ(x1 = A | MM) (27)

+ log πθ(x2 = A | AM) + log πθ(x2 = A | MM)
]

(28)

L̃EUBO(x = AA) =
1

β
log
(πβ

θ (x1 = A | MA) + πβ
θ (x1 = A | MM)

2

)
(29)

+
1

β
log
(πβ

θ (x2 = A | AM) + πβ
θ (x2 = A | MM)

2

)
(30)

For simplicity, denote a := πθ(x1 = A | MA) and b := πθ(x1 = A | MM), and consider the of the
likelihood of the first token x1. We have

LELBO(x1) =
1

2
(log a+ log b) (31)

L̃EUBO(x1) =
1

β
log
(aβ + bβ

2

)
(32)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Take the partial gradient with respect to a and b respectively,

∂LELBO(x1)

∂a
=

1

2a
;
∂LELBO(x1)

∂b
=

1

2b
(33)

∂L̃EUBO(x1)

∂a
=

aβ−1

aβ + bβ
;
∂L̃EUBO(x1)

∂b
=

bβ−1

aβ + bβ
(34)

Therefore, for L̃EUBO, the gradient direction is dominated by the larger one between a and b, while
for LELBO, the gradient direction is dominated by the smaller one. Such property is illustrated in the
landscapes of −LELBO and −L̃EUBO for a, b ∈ (0, 1) in Figure 8.

Figure 8: Landscapes of −LELBO and −L̃EUBO for 0 < a, b < 1.

When x = AA has negative advantage, the corresponding LELBO and L̃EUBO are minimized. For
LELBO, the model benefits more from further decreasing the smaller one between probabilities a and
b. In the extreme case, LELBO = −∞ when either a or b equals to zero, leaving the other term
not sufficiently decreased. Instead, when using L̃EUBO for negative advantage traces, the larger one
between a and b is preferentially minimized, leading to a more balanced optimization that stably
decreases the log-likelihood.

Similarly, whenx = AA has positive advantage, the correspondingLELBO and L̃EUBO are maximized.
Using LELBO enables effectively increasing the smaller likelihood, while L̃EUBO focuses on the larger
one, leading to a less efficient optimization.

E Additional Experimental Details

E.1 Datasets and Reward Functions

We follow the setting in D1 (Zhao et al., 2025) and WD1 (Tang et al., 2025), using the same reward
functions and train-test splitting, except for Sudoku. The rewards are designed to encourage both
correctness and proper formatting, with varying levels of granularity tailored for each task. For
completeness, we provide details as follows.

GSM8K. We utilize the train split of the GSM8K dataset3 for RL training, and evaluate model
performance on the test split. We follow the Unsloth reward setup4, utilizing five equally-weighted
additive components:

3https://huggingface.co/datasets/openai/gsm8k
4https://unsloth.ai/blog/r1-reasoning

20

https://huggingface.co/datasets/openai/gsm8k
https://unsloth.ai/blog/r1-reasoning

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

• XML Structure Reward: +0.125 per correct formatting tag; small penalties for extra contents
after the closing tag.

• Soft Format Reward: +0.5 for outputs matching the pattern:
<reasoning>...</reasoning><answer>...</answer>

• Strict Format Reward: +0.5 for exact formatting with correct line breaks.
• Integer Answer Reward: +0.5 if the answer is a valid integer.
• Correctness Reward: +2.0 of the answer matches the ground truth.

MATH500. We utilize the train split of the MATH dataset5 for RL training, and evaluate model
performance on the test split. We use a format reward and a correctness reward:

• Format Reward: We award 1.00 if <answer></answer> tags are present with \boxed inside
them; 0.75 if answer tags are present without \boxed; 0.50 if answer tags are not present but
\boxed is present; 0.25 if neither the answer tags nor \boxed is present.

• Correctness Reward: We award 2.00 if the answer in \boxed{}matches the ground truth.

Countdown. We utilize the train split of the Countdown dataset6 for RL training, restricting to
instances that use only three numbers. We evaluate on the same set of 256 synthetically generated
countdown questions with 3 numbers as in D1 (Zhao et al., 2025). The reward covers three cases:
+1.0 if the expression reaches the target using the exact numbers; +0.1 if the numbers are correct but
does not reach the target; +0.0 otherwise.

Sudoku. We experiment on the 4×4 Sudoku dataset7 generated by Arel (2025). The original
training split contains 1M unique Sudoku puzzles covering all 288 4×4 Soduku solutions. To avoid
train-test leakage and potential cheating by memorizing all the solutions, we randomly select 200
solutions and include all puzzles corresponding to these solutions into the new training set, resulting
in 694,006 training puzzles. We then randomly select 2 or 3 puzzles corresponding to the left 88
solutions to construct the test set, which has 256 Soduku puzzles in total.

We observe that the zero-shot setting is too difficult for the base LLaDA-8B-Instruct model, which
has test accuracy below 7% with a generation length of 256 and struggles to correctly interpret the
questions, leading to very few meaningful RL rollouts. Therefore, we instead use 3-shot for all the
Sudoku experiments. We ensure that the solutions presented in the 3-shot samples do not appear
in test set solutions, and the puzzles do not appear in both train and test set. The detailed few-shot
samples are provided in Appendix E.3.

E.2 Hyperparameter Settings and Implementation Details

We follow D1 (Zhao et al., 2025) for most hyperparameter settings. We employ Low-Rank Adaptation
(LoRA) with a rank of r = 128 and scaling factor α = 64. The training was conducted on 8 NVIDIA
A100-80G or NVIDIA H100-80G GPU, with the following hyperparameters: batch size of 6 per
GPU, and gradient accumulation steps of 2. We set the number of inner gradient update µ as 4 for
all models. We use the AdamW optimizer (Loshchilov & Hutter, 2017), with β1 = 0.9, β2 = 0.99,
weight decay of 0.1, learning rate of 3×10−6, and gradient clipping at 0.2. We utilize Flash Attention
2 (Dao, 2023)and 4-bit quantization.

For RL rollout, we use sequence length of 256 tokens, and 128 diffusion steps. We employ confidence-
based semi-autoregressive generation with block size 32, and set the temperature as 0.9 (except for
Sudoku where temperature is set as 0.3 following D1). We set number of completions per prompt g
as 6, and number of Monte Carlo estimation samples m as 2 due to computational constraint. Since
the rollout stage dominates the training time, the average time per gradient update step for SPG is
similar to that of the other baselines.

We train 6000 steps (i.e., number of gradient updates) for GSM8K and Countdown, 4000 steps for
MATH500, and 2500 steps for Sudoku. For all RL models, we run evaluation every 100 steps with

5https://huggingface.co/datasets/ankner/math-500
6https://huggingface.co/datasets/Jiayi-Pan/Countdown-Tasks-3to4
7https://github.com/Black-Phoenix/4x4-Sudoku-Dataset

21

https://huggingface.co/datasets/ankner/math-500
https://huggingface.co/datasets/Jiayi-Pan/Countdown-Tasks-3to4
https://github.com/Black-Phoenix/4x4-Sudoku-Dataset

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

generation sequence length 128, 256, 512, and report the result of the checkpoint with the highest
average accuracy over the three generation lengths, except for the ablations on inference strategies in
Table 12, where we only evaluate on generation length 256.

E.3 Few-Shot Samples for Sudoku

Sample 1:

Question:
Solve the following Sudoku puzzle: 3014002020004130
Answer:
<reasoning>
Interpret puzzle as 4 rows of 4:
R1: 3 0 1 4
R2: 0 0 2 0
R3: 2 0 0 0
R4: 4 1 3 0

Fill easy singles:
R1 missing 2 → R1C2=2.
R4 missing 2 → R4C4=2.
Box D (R3-4,C3-4) then needs 1,4; column4 can only accept 1 → R3C4=1, R3C3=4.
R3 now missing 3 → R3C2=3.
Column1 missing 1 → R2C1=1.
Column2 missing 4 → R2C2=4.
Last cell R2C4=3.

Final grid:
R1: 3 2 1 4
R2: 1 4 2 3
R3: 2 3 4 1
R4: 4 1 3 2
</reasoning>
<answer>
3214142323414132
</answer>

Sample 2:

Question:
Solve the following Sudoku puzzle: 0000100420013142
Answer:
<reasoning>
Interpret puzzle as 4 rows of 4:
R1: 0 0 0 0
R2: 1 0 0 4
R3: 2 0 0 1
R4: 3 1 4 2

Fill easy singles:
Col1 missing 4 → R1C1=4.
Col4 missing 3 → R1C4=3.
Box A (R1-2,C1-2) missing 2,3 and R1 now needs 1,2 → R1C2=2, R2C2=3.
R1C3=1.
R2 now missing 2 → R2C3=2.
Col2 missing 4 → R3C2=4, then R3C3=3.

Final grid:
R1: 4 2 1 3
R2: 1 3 2 4

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

R3: 2 4 3 1
R4: 3 1 4 2
</reasoning>
<answer>
4213132424313142
</answer>

Sample 3:

Question:
Solve the following Sudoku puzzle: 2001403002001420
Answer:
<reasoning>
Interpret puzzle as 4 rows of 4:
R1: 2 0 0 1
R2: 4 0 3 0
R3: 0 2 0 0
R4: 1 4 2 0

Fill easy singles:
R1 missing 3,4; Col2 can’t be 1 so R1C2=3 → R1C3=4.
R4 missing 3 → R4C4=3.
Col4 missing 2,4; R2 must take 2 → R2C4=2 → R2C2=1.
Col1 missing 3 → R3C1=3.
Col3 missing 1 → R3C3=1 → R3C4=4.

Final grid:
R1: 2 3 4 1
R2: 4 1 3 2
R3: 3 2 1 4
R4: 1 4 2 3
</reasoning>
<answer>
2341413232141423
</answer>

F Additional Results

F.1 Additional Evaluations to the Main Results

Table 4: Complete model performance on four reasoning benchmarks compared with baselines. We
provide both the reported and the reproduced results for D1 and WD1. The best results are bolded
and the second best are underlined. SPG consistently outperforms all other models.

GSM8K (0-shot) MATH500 (0-shot) Countdown (0-shot) Sudoku (3-shot)
Model / Seq Len 128 256 512 128 256 512 128 256 512 128 256 512
LLaDA-8B-Instruct 69.5 77.2 79.8 28.2 32.4 34.6 18.8 16.8 16.8 5.7 27.7 26.2
LLaDA-1.5 70.4 80.5 81.9 26.8 32.2 35.8 21.9 21.1 21.5 7.4 26.9 29.0
D1 (reported) 72.6 79.8 81.9 33.2 37.2 39.2 33.2 31.3 37.1 - - -
D1 (reproduced) 72.2 80.6 81.3 31.4 36.0 39.4 30.9 30.9 34.4 7.2 32.5 29.3
d1-LLaDA (reported) 73.2 81.1 82.1 33.8 38.6 40.2 34.8 32.0 42.2 - - -
WD1 (reported) - 80.8 82.3 - 34.4 39.0 - 51.2 46.1 - - -
WD1 (reproduced) 74.6 81.5 83.0 31.0 37.4 39.0 48.8 52.3 50.8 33.1 32.1 22.5
UniGRPO 74.9 82.5 82.7 32.4 37.4 39.4 44.5 43.0 57.0 59.0 67.0 62.9
SPG w/ EUBO (ours) 77.1 83.8 83.9 33.2 37.6 39.4 68.4 71.5 68.0 81.2 87.1 89.9
SPG w/ mixture (ours) 78.5 86.1 84.5 33.4 40.0 41.8 68.8 70.7 70.3 82.9 94.0 93.1

Complete evaluation results. We provide the complete evaluation results, along with those re-
ported in D1 (Zhao et al., 2025) and WD1 (Tang et al., 2025), in Table 4. Our reproduced numbers

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

closely match the reported results. d1-LLaDA (Zhao et al., 2025) denotes the model that conducts
first SFT and then RL (using D1). All other models are trained solely with RL. In D1 and d1-LLaDA,
the best result for each generation length is reported separately, whereas we select a single check-
point with the highest average accuracy across all three generation lengths, leading to slightly worse
results than the reported numbers. The reported results in WD1 are based on evaluations on fewer
checkpoints, so they are generally a bit lower than our reproduced values.

Dynamics of Completion Length. We provide the dynamics of the effective sequence length of
SPG during RL training in Figure 9. We also report the effective length of the best checkpoint in
Table 5. SPG leads to effective usage of the total given length and good adaptation to task difficulties.

0 2000 4000 6000
Steps

160

180

200

220

240

260

Ef
fe

ct
iv

e
Le

ng
th

GSM8K

0 1000 2000 3000 4000
Steps

220

230

240

250

MATH500

0 2000 4000 6000
Steps

0

50

100

150

200

250

Countdown

0 500 1000 1500 2000 2500
Steps

252

253

254

255

256

Sudoku

D1 WD1 UniGRPO SPG (ours)

Figure 9: Dynamics of the effective generation length of SPG during RL training, compared with
D1, WD1, and UniGRPO. SPG leads to concise solutions with better token efficiency. We report
mean and standard deviation over a rolling window of 50 steps.

Table 5: Effective sequence length of each model on four reasoning benchmarks.

GSM8K (0-shot) MATH500 (0-shot) Countdown (0-shot) Sudoku (3-shot)
Model / Seq Len 128 256 512 128 256 512 128 256 512 128 256 512
LLaDA-8B-Instruct 114 212 257 123 235 402 111 213 407 111 232 448
LLaDA-1.5 115 214 265 123 237 407 114 215 411 112 232 419
D1 115 209 261 123 234 399 107 211 397 111 231 449
WD1 115 225 312 123 231 378 83 84 90 105 227 473
UniGRPO 114 211 257 123 235 400 100 207 374 113 230 472
SPG w/ EUBO 110 196 227 120 228 382 68 70 78 89 137 249
SPG w/ mixture 108 176 195 121 229 384 75 78 79 115 239 491

F.2 Additional Ablation Results

In this section, we provide the complete results for each generation length and task in supplement
to Section 4.2. We also include additional ablation studies on the looser upper bound and different
log-likelihood estimation methods for positive advantage traces.

Ablations on Algorithm Components. We provide the complete results for ablations on log-
likelihood estimation methods in Table 6 and for ablations on masking strategies in Table 7.

Table 6: Ablations on log-likelihood estimation methods for negative advantage traces. The best
results are bolded and the second best are underlined.

GSM8K (0-shot) MATH500 (0-shot) Countdown (0-shot) Sudoku (3-shot)
Model 128 256 512 Avg. 128 256 512 Avg. 128 256 512 Avg. 128 256 512 Avg.
SPG wo/ neg 72.0 79.0 81.3 77.4 28.2 32.2 37.8 32.7 43.8 48.1 44.5 45.5 55.0 82.9 68.4 68.8
SPG w/ ELBO 75.6 82.8 84.4 80.9 35.8 37.6 38.8 37.4 66.8 66.0 68.4 67.1 73.8 89.4 84.1 82.4
SPG w/ EUBO 77.1 83.8 83.9 81.6 33.2 37.6 39.4 36.7 68.4 71.5 68.0 69.3 81.2 87.1 89.9 86.1
SPG w/ Mixture 78.5 86.1 84.5 83.0 33.4 40.0 41.8 38.4 68.8 70.7 70.3 69.9 82.9 94.0 93.1 90.0

Ablations on Key Hyperparameters β and ω. We provide the complete results for ablations on
β in Table 8 and for ablations on ω in Table 9.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Table 7: Ablations on the masking strategies in Monte Carlo estimation.

MATH500 (0-shot) Countdown (0-shot)
Model Masking 128 256 512 Avg. 128 256 512 Avg.
SPG w/ EUBO random 33.4 35.4 41.4 36.7 42.6 41.0 52.7 45.4

block-wise 33.2 37.6 39.4 36.7 68.4 71.5 68.0 69.3
SPG w/ Mixture random 33.8 38.2 38.8 36.9 52.3 64.5 71.5 62.8

block-wise 33.4 40.0 41.8 38.4 68.8 70.7 70.3 69.9

Table 8: Ablations on the value of β in the upper bound.

GSM8K (0-shot) MATH500 (0-shot) Countdown (0-shot) Sudoku (3-shot)
Model β 128 256 512 Avg. 128 256 512 Avg. 128 256 512 Avg. 128 256 512 Avg.

0.50 77.7 83.2 84.5 81.8 32.8 36.4 41.2 36.8 71.1 68.8 74.6 71.5 64.7 53.4 57.4 58.5
0.75 77.2 83.9 84.5 81.9 31.0 36.6 40.0 35.9 70.7 70.7 70.7 70.7 63.4 65.7 45.4 58.2

SPG w/ EUBO 1.00 76.5 83.9 83.6 81.3 31.0 37.4 38.8 35.7 66.0 66.8 66.4 66.4 81.2 87.1 89.9 86.1
1.50 77.1 83.8 83.9 81.6 33.2 37.6 39.4 36.7 69.5 64.5 66.4 66.8 32.7 40.5 39.9 37.7
2.00 76.5 83.9 83.2 81.2 32.4 36.8 38.2 35.8 68.4 71.5 68.0 69.3 28.1 31.9 28.0 29.3
1.00 78.8 85.6 84.9 83.1 34.0 40.2 39.2 37.8 69.9 69.5 70.3 69.9 82.9 94.0 93.1 90.0

SPG w/ Mixture 1.50 78.5 86.1 84.5 83.1 33.4 40.0 41.8 38.4 68.8 70.7 70.3 69.9 83.2 86.0 84.6 84.6
2.00 78.8 85.7 84.7 83.1 32.4 38.8 39.8 37.0 70.3 69.1 69.5 69.6 44.3 60.5 60.7 55.2

Table 9: Ablations on the mixture coefficient ω on MATH500 and Countdown.

SPG w/ Mixture MATH500 (0-shot) Countdown (0-shot)
ω 128 256 512 Avg. 128 256 512 Avg.
0.00 35.8 37.6 38.8 37.4 66.8 66.0 68.4 67.1
0.25 34.6 37.6 42.2 38.1 71.5 68.0 67.2 68.9
0.50 33.4 40.0 41.8 38.4 68.8 70.7 70.3 69.9
0.75 34.2 38.6 41.2 38.0 69.5 69.1 74.2 70.9
1.00 33.2 37.6 39.4 36.7 69.5 64.5 66.4 66.8

Ablations on Inference Strategies. We provide complete results for ablations on different inference
strategies in Table 12. Note that the reported numbers of each method for “Semi-AR, Confidence,
Block=32” is in general slightly higher than the results in Table 1 under the same inference setting.
This is because in Table 12, we select the checkpoint with the highest accuracy specifically for
generation length 256 to maintain consistency with other inference settings, while in Table 1, we
choose the checkpoint with the highest average accuracy across generation lengths 128, 256, and
512.

Ablations on the Looser Upper Bound. As mentioned in Section 3.2 and Appendix C, a looser
but unbiased bound can be derived using inequalities like log(x) ≤ x − 1, i.e., L̃Loose. However,
as shown in Table 10, this looser bound performs worse empirically than the tighter upper bound
L̃EUBO we used, possibly due to a larger discrepancy from the true log-likelihood.

Table 10: Ablations on the looser upper bound.

SPG w/ EUBO MATH500 (0-shot) Countdown (0-shot)
β Upper Bound 128 256 512 Avg. 128 256 512 Avg.

1.0 L̃Loose 29.4 35.4 39.4 34.7 43.8 65.2 64.8 57.9
L̃EUBO 31.0 37.4 38.8 35.7 66.0 66.8 66.4 66.4

1.5 L̃Loose 29.8 31.8 38.8 33.5 46.9 54.7 57.0 52.9
L̃EUBO 33.2 37.6 39.4 36.7 69.5 64.5 66.4 66.8

Ablations on Log-Likelihood Estimations for Positive Advantage Traces. Instead of always
usingLELBO for positive advantage traces, we experiment on MATH500 and Countdown benchmarks
using both L̃EUBO and L̃Mix for positive advantage traces. Correspondingly, we use ω = 0.5 and the
best performed β as previously discussed for negative advantage traces. For the positive advantage

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

traces, we always use the tightest β = 1.0 for both L̃EUBO and L̃Mix. The results are shown in
Table 11, indicating that using the upper bound for likelihood estimation of positive advantage traces
performs worse than using LELBO. This aligns well with our theoretical insights that the lower bound
is a better objective for log-likelihood maximization.

Table 11: Ablations on log-likelihood estimation for positive advantage traces.

Positive traces MATH500 (0-shot) Countdown (0-shot)
Model likelihood estimation 128 256 512 Avg. 128 256 512 Avg.

SPG w/ EUBO L̃EUBO (β = 1.0) 34.4 36.2 39.2 36.6 48.1 46.7 50.8 48.5
LELBO 33.2 37.6 39.4 36.7 68.4 71.5 68.0 69.3

SPG w/ Mixture L̃Mix (β = 1.0, ω = 0.5) 35.4 38.4 39.0 37.6 69.1 68.4 70.3 69.3
LELBO 33.4 40.0 41.8 38.4 68.8 70.7 70.3 69.9

Table 12: Ablations on the inference strategy. SPG leads to consistently superior performance to
baselines with different inference strategies. The best results are bolded and the second best are
underlined for each setting. We report results for generation length 256.

Inference Strategy Model GSM8K MATH500 Countdown Sudoku Avg.
LLaDA-8B-Instruct 78.7 31.4 13.7 26.2 37.5
LLaDA-1.5 78.8 33.4 16.0 23.0 37.8
D1 79.7 37.2 27.0 31.4 43.8

Semi-AR, Confidence, Block=16 WD1 82.3 37.4 53.9 36.8 52.6
UniGRPO 82.5 36.8 46.5 63.4 57.3
SPG w/ EUBO 84.7 37.4 70.3 82.2 68.7
SPG w/ Mixture 86.4 40.8 70.7 96.2 73.5
LLaDA-8B-Instruct 77.2 32.4 16.8 27.7 38.5
LLaDA-1.5 80.5 32.2 21.1 26.9 40.2
D1 80.6 37.8 32.4 32.8 45.9

Semi-AR, Confidence, Block=32 WD1 81.7 38.6 54.7 35.7 58.1
UniGRPO 82.6 38.4 44.9 67.0 58.2
SPG w/ EUBO 84.8 38.0 71.5 88.5 70.7
SPG w/ Mixture 86.2 40.0 71.1 95.6 73.2
LLaDA-8B-Instruct 78.6 33.2 27.3 32.6 42.9
LLaDA-1.5 81.0 35.4 20.3 36.4 43.3
D1 80.9 37.6 38.3 39.8 49.2

Semi-AR, Confidence, Block=64 WD1 82.5 37.4 52.3 41.8 53.5
UniGRPO 82.3 37.4 53.5 82.9 64.0
SPG w/ EUBO 84.3 37.4 69.5 88.8 70.0
SPG w/ Mixture 85.5 41.4 69.9 93.8 72.7
LLaDA-8B-Instruct 63.5 21.0 6.3 24.4 28.8
LLaDA-1.5 67.1 24.8 10.9 27.5 32.6
D1 69.7 27.4 18.4 29.9 36.4

Semi-AR, Random, Block=32 WD1 74.1 30.8 37.5 29.9 43.1
UniGRPO 72.8 29.8 41.4 60.1 51.0
SPG w/ EUBO 74.1 31.4 42.6 72.6 55.2
SPG w/ Mixture 78.4 31.0 66.0 86.9 65.6
LLaDA-8B-Instruct 52.7 17.8 13.3 27.1 27.7
LLaDA-1.5 53.5 19.8 13.7 28.0 28.8
D1 53.0 22.6 28.5 31.8 34.0

Full Sequence, Random WD1 54.6 23.4 43.4 30.0 37.9
UniGRPO 57.6 22.6 47.7 57.3 46.3
SPG w/ EUBO 58.5 25.2 56.6 71.3 52.9
SPG w/ Mixture 61.2 25.2 64.1 72.2 55.7
LLaDA-8B-Instruct 23.9 17.8 0.0 68.3 27.5
LLaDA-1.5 41.4 20.4 0.0 67.9 32.4
D1 57.5 22.6 0.0 72.3 38.1

Full Sequence, Confidence WD1 56.7 25.0 10.2 68.9 40.2
UniGRPO 50.0 24.2 8.2 95.6 44.5
SPG w/ EUBO 54.3 23.4 63.3 88.9 57.5
SPG w/ Mixture 58.8 24.0 65.6 96.5 61.2

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

F.3 Qualitative Examples on GSM8K

We show qualitative examples for all models on GSM8K, with generation length 256 and diffusion
steps 128. SPG leads to more concise and accurate reasoning.

Question: Amy had two eyeshadow palettes with four colors each and three makeup sets that came
with six eyeshadow colors each. Her sister steals one of the palettes. Amy uses up half of the colors
from one makeup set. How many eyeshadow colors does she have left?
Model: LLaDA-8B-Instruct
Answer:
First, let’s determine the total number of eyeshadow colors Amy initially has. She has two eyeshadow
palettes with four colors each,

2× 4 = 8

She also has three makeup sets with six colors each,

3× 6 = 18

So, the total number of eyeshadow colors Amy initially has is:

8 + 18 = 26

Next, her sister steals one of the palettes, which she loses completely. Therefore, the number of
colors left from the remaining palettes is:

8− 4 = 4

Amy uses up half of the colors from one makeup set. Each makeup set has six colors, so half of
that is:

6

2
= 3

Thus, the number of colors left from the one makeup set is:

6− 3 = 3

Adding, the total number of eyes left is:

4 + 3 = 11

</reasoning>
<answer>
11

</answer>

Question: Amy had two eyeshadow palettes with four colors each and three makeup sets that came
with six eyeshadow colors each. Her sister steals one of the palettes. Amy uses up half of the colors
from one makeup set. How many eyeshadow colors does she have left?
Model: D1
Answer:
Amy initially has two eyeshadow palettes with four colors each, so she has 2× 4 = 8 colors from
the palettes. She also has three makeup sets with six colors each, so she has 3 × 6 = 18 colors
from the makeup sets. Her’s sister steals one of the palettes, so she now has 8− 1 = 7 colors from
the palettes. Amy uses up half of the colors from one makeup set, so she uses 6

2 = 3 colors from
that set. Therefore, she has 18 − 3 = 15 colors left from the makeup sets. Adding these to the
remaining palettes palettes, she has a total of 7 + 15 = 22 eyeshadow colors left.
</reasoning>
<answer>
22

</answer>

Question: Amy had two eyeshadow palettes with four colors each and three makeup sets that came
with six eyeshadow colors each. Her sister steals one of the palettes. Amy uses up half of the colors
from one makeup set. How many eyeshadow colors does she have left?
Model: WD1

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Answer:
First, let’s determine the total number of eyeshadow colors Amy initially has. She has two eyeshadow
palettes with four colors each:

2× 4 = 8

Additionally, she has three makeup sets with six colors each:

3× 6 = 18

So, together, she has:
8 + 18 = 26

Next, her sister steals one of the palettes, which she loses 4 colors:

26− 4 = 22

Then, Amy uses up half of the colors from one makeup set. Each makeup set has six colors, so half
of that is:

6

2
= 3

Thus, she uses 3 colors from one makeup set, leaving: 6− 3 = 3 colors in that makeup set.
Finally, we add the remaining colors from the makeup set to the remaining colors:

22 + 3 = 25

</reasoning>
<answer>
25

</answer>

Question: Amy had two eyeshadow palettes with four colors each and three makeup sets that came
with six eyeshadow colors each. Her sister steals one of the palettes. Amy uses up half of the colors
from one makeup set. How many eyeshadow colors does she have left?
Model: UniGRPO
Answer:
First, let’s determine the total number of eyeshadow colors Amy initially has. She has two eyeshadow
palettes with four colors each, so she has 2 × 4 = 8 colors from the palettes. She also has three
makeup sets with six colors each, so she has 3 × 6 = 18 colors from the makeup sets. Adding
these together gives her initially 8 + 18 = 26 eyeshadow colors. Next, her sister steals one of the
palettes, so she now has 8 − 4 = 14 colors from the palettes. She then uses up half of the colors
from one makeup set. Since she used one makeup set, containing six colors, she used 6

2 = 3 colors
from that set. Therefore, she has 18− 3 = 15 colors left from the makeup sets.
Finally, adding the remaining colors from the palettes and the makeup sets, Amy has 14+ 15 = 29
eyeshadow colors left.
</reasoning>
<answer>
29

</answer>

Question: Amy had two eyeshadow palettes with four colors each and three makeup sets that came
with six eyeshadow colors each. Her sister steals one of the palettes. Amy uses up half of the colors
from one makeup set. How many eyeshadow colors does she have left?
Model: SPG w/ EUBO
Answer:
First, let’s calculate the total number of eyeshadow colors Amy initially has:

• She has two eyeshadow palettes with four colors each: 2× 4 = 8 colors.
• She has three makeup sets with six colors each: 3× 6 = 18 colors.
• Adding these together gives: 8 + 18 = 2

Next, we account for the changes:
• Her sister steals one palette, so she loses 4 colors: 26− 4 = 22

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

• Amy uses up half of the colors from one makeup set, which is 6
2 = 3 colors: 22− 3 = 19

Therefore, Amy has 19 eyeshadow colors left.
</reasoning>
<answer>
19

</answer>

Question: Amy had two eyeshadow palettes with four colors each and three makeup sets that came
with six eyeshadow colors each. Her sister steals one of the palettes. Amy uses up half of the colors
from one makeup set. How many eyeshadow colors does she have left?
Model: SPG w/ mixture
Answer:

1. Amy initially has two eyeshadow palettes with four colors each: 2× 4 = 8 colors
2. She also has three makeup sets with six colors each: 3× 6 = 18 colors
3. Adding these together gives gives: 8 + 18 = 26 colors
4. Her sister steals one palette, so she loses: 4 colors
5. Amy uses up half of the colors from one makeup set: 6

2 = 3 colors
6. Subtracting these lost and used colors: 26− 4− 3 = 19 colors

</reasoning>
<answer>
19

</answer>

29

	Introduction
	Background
	Masked Diffusion Language Models
	Reinforcement Learning for Diffusion Language Models

	Sandwiched Policy Gradient with Evidence Bounds
	A Lower Bound Objective for Policy Optimization
	A Tractable Evidence Upper Bound
	Practical Considerations

	Experiments
	Experimental Setup and Main Results
	Ablations and Further Analysis

	Conclusion
	Related Work
	Basics of dLLMs
	Evidence Upper Bound for dLLMs
	Additional Analysis on Upper and Lower Bounds
	Proof of Proposition 1
	Additional Comparison Between the Mixture Loss and the Lower and Upper Bounds
	Toy Example for Upper and Lower Bounds.

	Additional Experimental Details
	Datasets and Reward Functions
	Hyperparameter Settings and Implementation Details
	Few-Shot Samples for Sudoku

	Additional Results
	Additional Evaluations to the Main Results
	Additional Ablation Results
	Qualitative Examples on GSM8K

