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Abstract

Relative pose estimation for RGB-D cameras is crucial
in a number of applications. A typical approach relies on
RANSAC to find a triplet pair of 3D point correspondences
from which relative pose can be derived. A key aspect to
this work ensures the geometric consistency of the triplet,
i.e., pairwise distances between 3D points are preserved
between the two views. Observe, however, that depth val-
ues are typically an order of magnitude less precise than
feature locations, leading to large distance thresholds and
admission of numerous false positives. This paper proposes
that the constraint of 3D distance can be cast as a 2D con-
straint which we refer to as the Geometric Correspondence
Constraint (GCC). This constraint states that given one pair
of correspondences, the two images are partitioned into a
family nested of curves such that corresponding points must
lie on corresponding curves. This can act as a filter in
the RANSAC process with significant savings in computa-
tion and with increased robustness and accuracy as demon-
strated in experiments using TUM, ICL-NUIM, and RGBD
Scene v2 datasets.

1. Introduction
Relative pose estimation from image pairs is a fundamen-
tal and ubiquitous problem for many computer vision tasks,
e.g. visual odometry [9, 13, 47, 48, 52], SLAM [14, 25,
39, 41, 55], 3D scene reconstruction [23, 44, 49] and scene
completion [38, 43, 51], etc. A robust feature-based estima-
tion process typically follows a three-step paradigm [11],
namely, (i) detect and extract features, e.g., SIFT [24] or
SuperPoint [8]; (ii) measure pairwise feature similarity and
form a rank-ordered list of potential matches; (iii) apply
RANSAC by selecting a certain number of matches from
the top M rank-ordered list that is large enough to sup-
port the formation of hypotheses but small enough to have
a small rate of outliers, e.g., M = 150 [12], or a ratio of
the number of matches such as 0.2 [26] and 1 in [1, 33]
(taking all matches). The selected matches are used to cal-
culate a camera pose as a competing hypothesis, and iterate
N loops to achieve a certain level of success p. The output
is a hypothesis approximately consistent with inliers which

(a)

(b)
Figure 1. (a) 50 potential matches selected from a rank-ordered
list of correspondences between a pair of RGB-D images. (b)
A pair of correspondence which is manually determined to be
veridical is selected (white square tokens). Each remaining corre-
spondence is probed as to whether the pair falls on corresponding
curves using the proposed geometric correspondence consistency
constraint. Those potential matches that fail this test are shown in
black tokens and excluded as nonviable correspondences.

is a comparably large subset of all the matches.
While this RANSAC approach to feature-based rela-

tive pose estimation has had tremendous success in visual
odometry (VO), SLAM, and structure-from-motion (SfM)
pipelines, there are also instances of failure, especially (i)
when image pairs experience partial overlap [36], (ii) im-
ages are blurred due to drastic camera motion [3], and (iii))
when there is repetitive textures [15]. However, existing
methods typically set a maximal RANSAC iterations as ef-
ficiency prioritizes over accuracy, e.g., Nmax = 300 [28],
320 [26], 1000 [1], 8000 [33], or 10000 [30]. Thus, any
method that can further boost up efficiencies such that a
higher number of RANSAC iterations can be applied will
lead to more successful systems.

Relative pose estimation for RGB-D cameras also falls
under this RANSAC based paradigm. RGB-D images can
be both viewed as images with an augmented depth map or
as surfaces in 3D as represented, for example, by an unor-
ganized cloud of 3D points or a mesh. The classic (Horn’s)
method [17] uses three pairs of correspondences to solve for



a relative pose. A RANSAC approach is used in presence
of outliers. However, in contrast to RGB relative pose esti-
mation where the five correspondences can be selected in-
dependently, the three correspondences are constrained un-
der rigid transformation to preserve pairwise distances in
the RGB-D case. This constraint can be used to sift out
geometrically inconsistent triplets and significantly reduce
non-veridical correspondences.

This paper argues that the enforcement of 3D geometric
consistency maintains a large number of false positives be-
cause of a large discrepancy in depth accuracy and image
feature accuracy. This motivates a reformulation of the 3D
geometric consistency as a 2D geometric consistency con-
straint (GCC). Specifically, this paper shows that preserva-
tion of distances between pairs of features is equivalent to
feature lying on corresponding curves in a partitioned im-
age space. This reduces false positives as demonstrated
by experiments. In addition, the paper also demonstrates
the practical advantages of using the GCC as a filter in a
RANSAC scheme for improved efficiency and accuracy.

2. Related Work

Approaches of finding relative pose from a pair of RGB-D
images can be briefly categorized into three families:
Classic Method (Horn’s Method): The classic ap-
proach [17, 34] typically begins by extracting visual de-
scriptors [24] from 2D images or geometric descriptors [29]
from RGB-D scans, constructs 3D-3D correspondences
based on descriptor similarity, and finds an analytic solution
of rigid transformation that optimally aligns the correspon-
dences in a least squares sense. The relative pose can be
found by using all correspondences [2, 5], or by running un-
der a RANSAC scheme for robust estimation where a min-
imal of 3D triplet correspondence forms one RANSAC hy-
pothesis [31, 37, 46]. Typically, geometric constraints, e.g.,
pairwise 3D point distances should be preserved under rigid
transformation [17, 37], are used to rule out non-veridical
correspondences before solving for a relative pose.
Iterative Reweighted Least-Square (IRLS)
Method: The least-square structure from the classic
method can be cast as an energy function and solved
iteratively by a gradient-based numerical optimizer, or, it
can be framed as a weighted Procrustes problem [10, 40]
and solved by a weighted variant of Kabsch’s algo-
rithm [6]. This is particularly popular in many learning
based methods [10, 38, 40, 45, 46, 54] as part of its
differentiable alignment module. The confidence of each
correspondence is adaptively weighted based on descriptor
similarity [4, 38, 46], geometric constraints from pairwise
distances or surface normal angles [20, 43], etc.
Iterative Closest Point (ICP): Given an initial pose, cor-
respondences can be constructed by first projecting points

arising from the first image to the second image using
an initial pose, and find the nearest point observed on
the second image. The relative pose is then solved by
iteratively minimizing an energy function based on pho-
tometric [7] and geometric residuals [27, 48] of corre-
spondences. This iterative closest point method is espe-
cially popular in many real-time RGB-D visual odometry
or SLAM pipelines [14, 22, 28, 55] as the frame baselines
are typically small so that an initial pose sources from some
camera motion model.

3. Notation and Formulation
Consider first the process of estimating the relative pose
of two RGB cameras with unknown relative pose (R, T ),
where R is the rotation matrix and T is the translation vec-
tor. Consider an RGB image point γi = (ξi, ηi, 1)

T with
depth ρi in the image of camera one that is in correspon-
dence with an RGB-D point γi = (ξi, ηi, 1)

T with depth ρi
in the image of camera two. Let Γi = ρiγi and Γi = ρiγi be
the corresponding 3D points in each camera, respectively,
so that Γi = RΓi + T , or

ρiγi = ρiRγi + T i = 1, 2, . . . , 5. (1)

Thus, each correspondence (γi, γi) gives three equations.
In the case of RGB images the depths (ρi, ρi) are un-
known, so that two of these equations are used to elim-
inate the unknown depths, leaving only one equation
to constrain (R, T ), the well-known epipolar constraint,
γT
i [T ]× Rγi = 0. Due to metric ambiguity, namely, the

simultaneous scaling of T and depths (ρi, ρi) which leaves
the equations intact, there are only five unknowns in (R, T ),
thus requiring five correspondences to solve for the pose.
What is important to note is that in the general case, the
knowledge of one correspondence (γi, γi) does not con-
strain the remaining correspondences

(
γj , γj

)
in any form.

In the process of estimating the relative pose of RGB-D,
however, the depths (ρi, ρi) are known, so that the Equa-
tion Γi = RΓi + T provides three equations for each cor-
respondence. Observe that since depths are known, there
is no longer any metric ambiguity so that the pose un-
knowns (R, T ) involve six unknowns. It would then ap-
pear that only two pairs of correspondences which give six
equations should suffice to solve for relative pose. How-
ever, it is well-known that three pairs of correspondences
are required. Thus, the resulting nine equations in six un-
knowns must be constrained. Indeed, the key observa-
tion is that once a first pair of correspondences ((Γi =
(γi, ρi),Γi = (γi, ρi))) is fixed, the second pair of corre-
spondences (Γj = (γj , ρj),Γj = (γj , ρj))) must be con-
sistent with it. Specifically, observe that{

Γi = RΓi + T
Γj = RΓj + T

⇒ Γi − Γj = R(Γi − Γj), (2)



(a) (b)
Figure 2. (a) Geometric constraint in pairwise triplet 3D point distances. Note how the constraint (orange) are largely affected by the depth
error depicted by the truncated cones (pink), compared to the error-less case (green). Large perturbations of feature locations (shown in
red) do not necessarily endow inconsistency of triplet 3D point distance constraint (red), leading to a false positive when using the 3D
constraint. (b) In practice, the threshold used for the 3D constraint (the shell of the sphere centered at Γi) must be generous to include the
perturbations of Γj , whereas the perturbation on the 2D image space (a curve band) is small.

so that
∥Γi − Γj∥2 =

∥∥Γi − Γj

∥∥2 . (3)

The simple geometric interpretation is that lengths be-
tween corresponding features must be preserved under a
rigid transformation. This constraint reduces the number
of equations per correspondence from three equations to
two equations. Similarly, a third pair of correspondences
(Γk = (γk, ρk),Γk = (γk, ρk)) must be consistent with
both the first and the second correspondences. These three
constraints reduce the nine equations to six equations in six
unknowns. The important observation is that contrary to
RGB relative pose estimation where the selection of five
correspondences is an independent process, the selection of
three correspondences for RGB-D relative pose estimation
is constrained: pairwise distances among correspondences
must be the same in the two cameras.

The 3D registration algorithms have indeed taken ad-
vantages of this constraint. Specifically, SAC-COT [42]
samples triplet correspondences from two clouds of 3D
points and rank-orders them based on the 3D pairwise dis-
tance constraint, forming a guided sampling scheme under a
RANSAC loop; FGR [53] and similarly [20] filter out spu-
rious triplet 3D correspondences by a tuple test on point-to-
point distance before aligning point cloud fragments. Such
geometric consistency is also used to score triplet corre-
spondences in [43], effectively guiding a network to learn
relative pose from wide-baseline RGB-D images.

4. Reformatting the 3D Constraint as a 2D
Constraint

It is well-known that the image feature locations are known
fairly precisely, while the depth is relatively less precise by
an order of magnitude, as sketched in Figure 2(a). The fea-
ture localization error is represented by a disc of allowable
perturbation on the image plane while depth localization is
an interval along the ray from the camera center to the im-
age feature resulting in a truncated cone whole length is typ-

ically an order of magnitude longer than the radius of the
base. The constraint that the distance between 3D points
must be preserved across views, is∣∣∥Γi − Γj∥ −

∥∥Γi − Γj

∥∥∣∣ < τ3D. (4)

The threshold τ3D must represent the allowable perturba-
tions of the 3D points within the truncated cone. Consider
(Γi,Γi) as a given pair and Γj as a 3D point whose corre-
sponding 3D point Γj needs to be found. Considering only
the error Γj experiences under truncated cone, the threshold
τ3D must be generous enough to include the perturbations
of Γj , i.e., the truncated cone in Figure 2(b). Such a large
threshold, however, permits the inclusion of numerous erro-
neous correspondences that are not necessarily close in the
image space. The goal of this paper is to consider pertur-
bations in the image space, which as will turn out, include
only points with a small 2D band, Figure 2(b). This is much
more selective in seeking proper correspondences.

This observation motivates a reformulation of the 3D
constraint directly in the 2D image domain where pertur-
bation of image features can be directly controlled. The 2D
formulation also assumes a given point pair correspondence
(Γi = (γi, ρi),Γi = (γi, ρi)) and probes the consistency
of a candidate point correspondence (Γj = (γj , ρj),Γj =
(γj , ρj)) by consideration in the image domain, i.e., Equa-

tion 3 is expanded as ∥ρiγi − ρjγj∥2 =
∥∥ρiγi − ρjγj

∥∥2.
In this approach, the first correspondence is given so that
(γi, ρi) and (γi, ρi) are known. Similarly, in probing the
pairing ((γj , ρj), (γj , ρj)), the first point (γj , ρj) can be
assumed to be known, while searching (γj , ρj) which are
consistent with the givens. Finally, consider that the depth
map is known so that ρj can be derived given γj . Expanding
this equation gives.

ρ2jγ
T
j γj − 2ρiρj(γ

T
i γj) + γT

i γiρ
2
i

=ρ2jγ
T
j γj − 2ρiρj(γ

T
i γj) + ρ2i (γ

T
i γi) = ∥Γi − Γj∥2 = r2,

(5)



Figure 3. A veridical correspondence (γi, γi) partitions the space
of correspondences (γj , γj) into a nested set of curves (identified
by a common color) so that if γj falls on a curve in image one, γj

must fall on the corresponding curve in image two, and vice versa.

where the only unknowns are (ξj , ηj), the coordinate of
γj = (ξj , ηj , 1)

T . This single equation in two unknowns
gives the locus of γj for any γj , namely, a curve!

Several observations are in order. First, observe that the
symmetry in Equation 5 implies that if the locus of corre-
spondences γj for a given γj is a curve, then given any point
γj on that curve, the space of γj consistent with γj is also
a curve. Furthermore, any pair of points each selected from
the corresponding pair of points satisfy Equation 5. This is
in analogy with a pair of corresponding epipolar lines when
any point on one line matches any point on the second line.

Second, observe that when the correspondence (γi, γi) is
given, a perturbation of γj changes the right side of Equa-
tion 5 denoted by r2. The resulting pair of curves that result
from this perturbations cannot intersect the previous pair of
curves. Thus, further changes in γj produces a family of
non-intersecting, nested curves indexed by r as the exam-
ple in Figure 3 illustrates. Since γj and conversely γj are
free to be anywhere in the image, the constraint of consis-
tency with (γi, γi) represented by Equation 5 is referred to
as geometric correspondence consistency (GCC), partition-
ing two images into a collection of nested pairs of corre-
sponding curves, Figure 1. The GCC states that a pair of
points (γj , γj) must live on corresponding pairs of curves.

Figure 4. A scene surface S viewed by two cameras. Assuming the
correspondence (γi, γi) both come from a 3D point Γi, a sphere
of radius r centered at Γi (shown in red), and S intersect at a curve
Ĉ (green). The curve Ĉ projects to 2D curves C and C in image
i and image j, respectively. This demonstrates that any feature γj
lying on curve C must have its correspondence on curve C.

A geometrical interpretation of this constraint is illumi-
nating. Consider a scene surface S which is viewed by two
RGB-D cameras, Figure 4 whose relative pose is unknown.
Assume that a correspondence, say ((γi, ρi), (γi, ρi)) aris-
ing from a common point Γi = ρiγi expressed in camera

one, and expressed as Γi = ρiγi in camera two, is known,
as described earlier. Then, for any point in camera one, γj
with depth ρj , the 3D point Γj = ρjγj is known in camera
one, while the point corresponding to it, γj , is unknown.
Equation 3 describes the locus of Γj as a sphere centered at
Γi with radius r = |Γj − Γi|. Since Γj also lies on the sur-
face S, the locus of Γj is the intersection of the sphere and
scene surface, as shown by the green curve Ĉ in Figure 4,
which when projected on the second camera, it traces out
2D curves. Similarly, this curve when projected on the first
image gives curve C. Thus, any point on C can only have its
correspondences on C, and conversely, any point on C can
only have its correspondences on C.

In practice, given (γj , γj), the distance of γj from C
must be below a threshold,

d
(
γj , C (γj |(γi, γi))

)
< τ2D, (6)

where τ2D is twice the feature location error ∆, Figure 5.
The critical point is that the false positives allowed by this
constraint in the image plane are significantly fewer than
those in 3D, Figure 2. This observation is experimentally
validated in Figure 7.

Figure 5. The geometric correspondence consistency constrains
a correspondence (γ, ρ) and (γ, ρ) to lie on the corresponding
curves with respect to a reference point correspondence (γ0, ρ0)
and (γ0, ρ0). Due to noise in feature location and depth measure-
ment, the observed correspondence γi is a perturbation of the true
corresponding point γ∗ by d

∗
.

More specifically, the computation of the distance from
γj from the curve C (γj |(γi, γi)) requires an exploration
of this curve. However, a first-order approximation of this
distance can be derived by first defining a radial map:

Definition 4.1. The radial map of an RGB-D image with
respect to a reference point (γ0, ρ0) is defined as

r(ξ, η) = ∥ρ(ξ, η)γ(ξ, η)− ρ0γ0∥ . (7)

The key use of a radial map is that given a candidate pair
of correspondences

(
(γj , ρj) ,

(
γj , ρj

))
, γj and γj must

share the same radial value. Now, consider a pair of cor-
respondences (γ, γ). Let γ̂ denote an arbitrary point of the
curve C corresponding to γ. Define the closest point to γ
on C as γ∗ and the distance of γ from the curve as d

∗
, i.e.,

γ∗ = argmin
γ̂,r(γ̂)=r(γ)

d (γ, γ̂) , d
∗
= min

γ̂,r(γ̂)=r(γ)
d (γ, γ̂) .

(8)



Then, d
∗

can be estimated as:

Proposition 1. Let r and r be the radial maps of the first
and second images, with respect to (γ0, ρ0) and (γ0, ρ0),
respectively. Given a putative correspondence, (γ, γ), the
first-order approximation of d

∗
is

d
∗
=

r(ξ, η)|r(ξ, η)− r(ξ, η)|∥∥∥∥(ρ||γ||2 − ρ0γ
T
0 γ
)
∇ρ+ ρ

[
ρξ − ρ0ξ0
ρ η − ρ0η0

]∥∥∥∥ , (9)

where ρ(ξ, η) is the depth at γ(ξ, η).

The proof is given in the supplementary materials. The
above proposition allows for an examination of each can-
didate correspondence (γ, γ): if d

∗
< τ2D = 2∆, then the

correspondence is consistent with (γ0, γ0); otherwise, it is
discarded.
GCC is immune to depth errors: The question arises as
the extent by which the expected large depth errors affect
the performance of GCC. The distance d

∗
in Equation 9 has

dependency on depth values (ρ0, ρ0, ρ, ρ) which are notori-
ously noisy. These errors, in a typical RGBD sensor, e.g.,
the Microsoft Kinect which is used in the TUM-RGBD and
RGBD Scene v2 datasets, are in the range of 1-3 cm for
depths of 2-5 m [18]. Similarly, the depth error distribu-
tion of SIFT features for the synthetically perturbed depths
modeled in the ICL-NUIM dataset, is in the range of 1-
4 cm, Figure 6(a). Differentiating d

∗
with respect to each

of the variables (ρ0, ρ0, ρ, ρ) measures how slight changes
in depth affect d

∗
, as shown in Figure 6(b) which demon-

strates the effect of realistic levels of depth errors on d
∗

is
in the range of subpixel for (ρ, ρ) and in the range below 2
pixels for (ρ0, ρ0), both well below the threshold of 3 pixels
used throughout this paper.

(a) (b)
Figure 6. (a) The synthetically modeled depth error distribution
of SIFT features in the ICL-NUIM dataset. Bin size is 0.01 (m).
(b) The effect of changes in ρ0, ρ0, ρ, and ρ on d

∗
is well below

threshold.

Robustness of GCC relative to depth noise. Gaussian is
added to feature locations and the depths in this experiment.
Following realistic data models, the variance of depth noise
is a factor higher than the image localization noise. Fig-
ure 7 compares the translation error for the 3D filtering and
our 2D GCC filtering. It is clear that 2D GCC filter pose
estimation is more accurate.

Figure 7. Relative translation errors for varying amount of depth
noise, 2D vs 3D GCC

5. GCC Filtered RANSAC
The GCC constraint provides a filter where a triplet of cor-
respondences can be checked for consistency, thus aborting
the expensive validation phase for inconsistent triplets in a
RANSAC scheme. Observe Table 1 that the overall cost
of RANSAC is dominated by the second validation stage
which dwarfs the first hypothesis formulation stage by a
factor of 32µs compared to 1µs. The GCC filter cost is
∼0.73µs so that over 1% of the hypotheses need to be fil-
tered out for it to be cost effective. This of course depends
on the outlier ratio.

The GCC filter increases the hypothesis formulation cost
but it avoids the costly second stage for many hypotheses.
Formally, in order to achieve a success rate p, the number
of RANSAC iterations N is required to be higher than

N ≃ log(1− p)

log(1− (1− e)s)
, (10)

where e is the proportion of outliers, and s is the number of
samples required to form a hypothesis (s = 3 in our case).
For example, with e = 70% and p = 99%, the required
number of iterations is 169. This number changes rapidly
with outlier ratio so that with e = 80%, N = 574.

The main effect of the GCC filter is to remove inconsis-
tent hypotheses, thus effectively reducing the outlier ratio,
Figure 8(a). This in turn reduces the required number of
RANSAC iterations by a factor µ,

µ =
N

N
=

[log(1− (1− e)s)]

[log(1− (1− e)s)]
. (11)

It is interesting that the ratio µ is independent of the prob-
ability of success p and is exponentially increasing with

Steps Classic (µs) GCC (µs)
Hypothesis formulation cost 0.960 1.691

Absolute Pose Estimation per hypothesis 1.203 1.203
Find Number of inliers per hypothesis 31.061 31.061
Hypothesis support measurement cost 32.264 32.264

Average cost of evaluating a hypothesis 33.224 33.955

Table 1. The computation cost of the classic RANSAC scheme is
dominated by the second stage of hypothesis support measurement
as compared to the first hypothesis formulation stage.



outlier ratio e, Figure 8(b). Table 2 summarizes the time
savings as a result of this filter, where the hypotheses are
selected from the top M = 250 of the rank-ordered list. Ob-
serve that the GCC filter significantly reduces the computa-
tional cost of the RANSAC scheme, or equivalently, it in-
creases the success rate under the same time budget.

(a) (b)
Figure 8. (a) The scatter plot of e and e, namely, the outlier ratios
before and after the GCC filter is applied and (b) the ratio of the
number of required iterations before and after applying the GCC
filter to TUM-RGBD [35] dataset for success probability of 0.99.
Note that the scale is too small to appropriate that at (0.2, 0.3, 0.4,
0.5, 0.6) the value of µ is (5, 7, 12, 21, 37), respectively.

6. Algorithm

The detailed algorithm of the GCC-filtered RANSAC, Al-
gorithm 1, is presented here. First, gradient depths of
all image feature correspondences are computed. In each
RANSAC iteration, a nested examination of candidate cor-
respondences (γ1, γ1) and (γ2, γ2) given (γ0, γ0) based on
the first-order approximation of d

∗
, Equation 9, is used.

Specifically, two random point pairs (γ0, γ0) and (γ1, γ1)
are picked from the top rank-ordered list of correspon-
dences, from which the higher ranked correspondence is
(γ0, γ0). Secondly, since one image does not necessar-
ily prevail another, a bidirectional examination is adopted,
i.e., the forward direction distance df,1 of γ1 from the
curve C(γ1|(γ0, γ0)) and the backward direction distance
db,1 of γ1 from the curve C(γ1|(γ0, γ0)) are computed. If
both distances df,1 and db,1 are greater than τ2D, (γ0, γ0)
and (γ1, γ1) are discarded and the RANSAC loop is reit-
erated. Otherwise, a third correspondence (γ2, γ2) is ran-
domly picked from the top rank-ordered list of correspon-
dences and examined by the same bidirectional approach,

giving distances df,2 and db,2. Thus, only if the four dis-
tances df,1, db,1, df,2, and db,2 are below τ2D does a camera
pose hypothesis is formulated and validated which follows
the standard RANSAC scheme. Code is publicly available
in https://github.com/Brown-LEMS/RGBD_
Geometric_Correspondence_Consistency.

Algorithm 1: GCC Filtered RANSAC
Input : Feature correspondences and their depths
Output : Relative camera pose

1 Initialization: Nmax = 0
2 Compute interpolated gradient depths of all correspondences
3 for i = 1 to MAX RANSAC Iterations do
4 (γ0, γ0) and (γ1, γ1)← top rank-ordered list
5 Compute r(ξ, η) and r(ξ, η)

6 df,1 ← d
∗
// forward direction

7 db,1 ← d∗ // backward direction
8 if df,1 < τ2D and db,2 < τ2D then
9 (γ2, γ2)← top rank-ordered list

10 df,2 ← d
∗
// forward direction

11 db,2 ← d∗ // backward direction
12 if df,2 < τ2D and db,2 < τ2D then

// hypothesis formation
13 Estimate the camera relative pose (R, T ).

// hypothesis support measurement
14 N ←#. hypothesis supports.
15 if N > Nmax then
16 (R∗, T ∗)← (R, T )
17 N ← Nmax

18 end
19 else
20 Back to step 4.
21 end
22 else
23 Back to step 4.
24 end
25 end
26 return (R∗, T ∗)

7. Experiments

The development of the GCC filter speedup the RANSAC
process significantly, especially for cases with a large num-
ber of outliers. The significant speedup can boost the
RANSAC efficiency in some applications or it can enable its
use when it was previously viewed as prohibitive. Specifi-
cally, we demonstrate this on three examples: (i) pose esti-

e = 60-70%
32,318 image pairs

e = 70-80%
22,975 image pairs

e = 80-90%
13,808 image pairs

e = 90-95%
6,235 image pairs

e = 95-99%
4,532 image pairs

Classic GCC- F Classic GCC- F Classic GCC- F Classic GCC- F Classic GCC- F
# of RANSAC iterations (99% success rate) 169 44 420 85 3752 533 21375 876 681274 14374

Hypothesis formation cost (ms) 0.16 0.29 0.40 0.71 3.60 6.35 20.52 36.15 654.02 1152.04
Hypothesis support measurement cost (ms) 5.45 1.43 13.55 2.74 121.05 17.19 689.64 28.26 21980.62 463.76

Total Cost (ms) 5.61 1.72 13.95 3.45 124.65 23.54 710.16 64.41 22634.64 1615.80

Table 2. A comparison of the computation cost of the classic RANSAC and the GCC-filtered (GCC-F) RANSAC for 99% success rate over
the entire TUM-RGBD dataset, 132,946 image pairs, with successful pose estimation defined as having less than 0.5 degree in rotation and
0.05 meters in translation. Image pairs are generated by each image and one subsequent image at intervals ranging from 1 to 30 frames.
The resultant image pairs are then categorized by the observed outlier ratio.

https://github.com/Brown-LEMS/RGBD_Geometric_Correspondence_Consistency
https://github.com/Brown-LEMS/RGBD_Geometric_Correspondence_Consistency


(a) (b) (c)
Figure 9. Distribution of outlier ratio e for image pairs gener-
ated from the (a) TUM-RGBD [35], (b) ICL-NUIM [16], and
(c) RGBD Scene v2 [19] datasets. Number of image pairs are
132,946, 38,085, and 39,325, respectively. Bin size is 0.05.

mation in wide baseline cameras when the number of fea-
tures is reduced and the ratio of outliers is increased, (ii)
in visual odometry, and (iii) as a replacement of the mo-
tion constant stage in a visual odometry or visual SLAM by
doing a full pose estimation instead. Each is discussed af-
ter discussing datasets and metrics used in the experiments,
and the performances of GCC in 2D against GCC in 3D.
Datasets: For all the experiments, we use three popu-
lar datasets, namely, TUM-RGBD [35], ICL-NUIM [16],
and RGBD Scenes v2 [19]. First, six sequences
are selected from the TUM-RGBD dataset, namely,
fr1 desk (fr1/desk), fr1 room (fr1/room), fr1 xyz (fr1/xyz),
fr2 desk (fr2/desk), fr3 long office household (fr3/office),
and fr3 structure texture near (fr3/struct) are used. These
sequences were chosen to cover a diverse set of conditions:
The first three sequences exhibit blurry images and illumi-
nation variations; the fourth sequence exhibits a generic tex-
tureless scene; and, the last two sequences exhibit mixtures
of texture/textureless and planar/non-planar scenes. Sec-
ond, all eight sequences of the ICL-NUIM dataset are used,
exhibiting low contrast and low texture synthetic indoor
scenes with artificial depth noise. Finally, all 14 sequences
of RGBD Scene v2 dataset are used, exhibiting low illumi-
nation, repetitive features, homogeneous indoor scenes with
a large portion of the image having no depth values. Image
resolutions are identical and relatively small (480×640).

Pairs of images were selected from each dataset by pair-
ing each image with an image that is some interval of frames
away, ranging from 1 to 30 time-steps. The generated pairs
were then categorized by the outlier ratio into bins. Out-
lier ratio distributions are shown in Figure 9, for 132,946,
38,085, and 39,325 image pairs generated from the TUM-
RGBD, ICL-NUIM, and RGBD Scene v2 datasets, respec-
tively. Observe that all datasets have pairs with a high out-
lier ratio, but in particular, the high outlier ratio category
dominates the RGBD Scene v2 dataset.
Metrics: The relative pose error (RPE) [50] is used to mea-
sure the estimation accuracy. RPE measures both rotation
and translation drifts of one frame n with respect to another
frame n−∆, where ∆ is the number of frames apart. ∆ = 1
in our experiments, if otherwise specified.
GCC in 3D versus GCC in 2D for Relative Pose Estima-
tion: Equation 4 shows how GCC in 3D is done in practice.
However, since depth uncertainty typically grows with its
value, in practice the distance error between pairwise 3D

points can be normalized, i.e., the corresponding 3D point
pairs (Γi,Γi) and (Γj ,Γj) are consistent if

2
∣∣∥Γi − Γj∥ −

∥∥Γi − Γj

∥∥∣∣∣∣∥Γi − Γj∥+
∥∥Γi − Γj

∥∥∣∣ < τ3D. (12)

We refer Equation 4 and 12 as the unnormalized and nor-
malized constraint for GCC in 3D, respectively, both of
which are used to compare their effectiveness with that in
2D in terms of relative pose estimation accuracy. As demon-
strated in Table 3 running over the TUM-RGBD dataset,
GCC in 2D is superior in both outlier removal (speed) and
accuracy, including normalized constraint for GCC in 3D,
e.g., there is a 47.5% improvement for translation in wide
baseline image pairs.

Baseline
(frames)

GCC in 3D
(Unnormalized)

GCC in 3D
(Normalized)

GCC in 2D
(Eq. (6))

14 1.08 / 0.34 1.62 / 0.35 0.77 / 0.32
22 1.27 / 0.37 1.71 / 0.36 0.81 / 0.38
30 1.31 / 0.40 1.90 / 0.45 0.90 / 0.41

Table 3. The relative pose accuracy (translation (cm) / rotation
(degree)) comparisons for GCC acting in the 2D and 3D space for
wide-baseline image pairs in fr3/office sequence of TUM-RGBD
dataset. The thresholds are empirically optimal for each method,
i.e., 0.1 (m) and 0.05 for GCC in 3D for unnormalized and nor-
malized cases, and 1 (pixel) for GCC in 2D.

Wide-Baseline Relative Pose Estimation in RGBD Se-
quences: Table 4 shows the performances of the GCC filter
as compared to the classic RANSAC with geometry con-
straint acting in 3D space on a diverse set of baselines of
TUM-RGBD pairs that are 1, 7, 14, 221 and 30 frames
apart. The comparison is close roughly under a fixed bud-
get of computational time so that the number of RANSAC
iterations is 3000 and 8000 for the traditional and GCC
RANSAC, respectively, but even then the GCC was signifi-
cantly faster. The estimation errors are significantly smaller
for GCC, especially in the wide baseline category. More
experiments are given in the supplementary material.

Name
Narrow 1f
C / G-F

7f apart
C / G-F

14f Med.
C / G-F

22f apart
C / G-F

Wide 30f
C / G-F

fr1/
desk

1.14 / 0.9
0.56 / 0.5

5.85 / 3.01
0.67 / 0.65

7.90 / 4.23
4.46 / 0.79

48.89 / 4.16
40.92 / 0.80

81.41 / 7.02
68.00 / 1.02

fr1/
room

0.77 / 0.69
0.41 / 0.36

17.85 / 4.38
13.55 / 1.18

66.29 / 5.70
26.57 / 2.60

137.54 / 6.3
68.52 / 3.40

157.41 / 8.80
89.10 / 6.10

fr1/
xyz

0.53 / 0.49
0.32 / 0.36

1.30 / 1.00
0.67 / 0.62

1.90 / 1.41
0.94 / 0.82

34.32 / 3.24
34.23 / 1.8

38 / 3.8
40.62 / 2.7

fr2/
desk

2.62 / 0.89
0.72/ 0.49

6.9 / 2.47
6.4 / 2.3

9.81 / 3.56
9.79/ 3.49

34.32 / 4.39
12.9 / 4.22

14.41 / 4.97
13.6 / 5.1

fr3/
struct

1.21 / 0.99
0.81/ 0.60

1.4 / 1.01
0.81 / 0.73

1.53 / 1.02
0.87 / 0.77

1.53 / 1.07
0.90 / 0.8

1.96 / 1.4
1.03/ 0.9

fr3/
office

0.57 /0.45
0.69 / 0.24

0.83 / 0.75
0.51 / 0.3

1.09 / 0.77
0.75 / 0.32

1.30 / 0.81
0.81 / 0.38

1.88 / 0.9
0.87 / 0.41

Table 4. Pose estimation errors (RPEtrans (cm) in the top row and
RPErot (degree) in the bottom row) for classic RANSAC (C) and
GCC-filtered RANSAC (G-F) across different baselines.



GCC in Visual Odometry: The performance of the GCC-
filtered RANSAC is compared to prevailing methods in-
cluding ACO [21], Edge DVO [7], and PLP-SLAM [32]
in Tables 5, 6, and 7 for the three datasets. The number
of RANSAC iterations is set to 3000. It is important to
note that no refinement or bundle adjustment has been in-
corporated in the GCC filter results. The GCC filer gives by
a wide margin the best pose estimations accuracy in ICL-
NUIM and RGBD Scene v2 datasets. In the TUM-RGBD
dataset, the accuracy is generally the best but not always and
not necessarily by a wide margin. Note that for PLP-SLAM,
loop closure and global bundle adjustment are turned off.

fr1/desk fr1/room fr1/xyz fr2/desk fr3/struct fr3/office
ACO 1.00/0.59 0.56/0.39 0.88/1.12 0.49/0.57 1.59/0.83 0.47/0.35
Edge DVO 17.32/15.17 × 1.57/5.37 1.34/2.76 1.63/0.98 1.04/0.56
PLP-SLAM 1.07/0.84 1.68/2.57 4.86/1.32 3.43/3.93 2.56/3.66 4.12/1.93
Ours 1.05/0.59 0.78/0.38 0.56/0.36 0.72/0.49 1.38/0.76 0.75/0.32
Boldfaced: the best. Underlined: the second best. ×: Estimations diverged.

Table 5. RPEtrans(cm) / RPErot(degree) comparisons on selected se-
quences of the TUM-RGBD dataset against modern VO pipelines.

s0
1

s0
2

s0
3

s0
4

s0
5

s0
6

s0
7

s0
8

s0
9

s1
0

s1
1

s1
2

s1
3

s1
4

ACO
1.98
1.52

2.27
1.41

2.48
1.08

2.94
1.47

3.57
1.59

3.82
1.55

3.64
1.48

3.84
2.11

1.74
1.16

1.72
1.32

2.15
1.06

1.91
2.07

1.71
1.30

2.82
1.46

Edge
DVO

2.00
2.22

2.02
2.42

2.01
2.40

2.01
2.26

2.98
1.03

2.97
0.99

2.98
1.00

2.99
1.15

3.01
1.05

3.00
1.08

3.01
1.17

3.00
1.01 × ×

PLP-
SLAM

2.09
1.39

2.78
1.76

3.69
1.36

2.55
2.14

2.81
2.06

3.11
1.98

2.32
1.26

3.33
1.19

1.82
1.25

1.30
1.84

2.49
3.24

1.45
2.98

2.89
1.74

3.06
2.61

Ours
0.68
0.1

0.70
0.09

0.75
0.10

0.83
0.11

0.96
0.15

1.03
0.15

1.02
0.14

1.07
0.15

0.71
0.13

0.70
0.12

0.75
0.12

0.69
0.11

0.67
0.14

0.49
0.16

Boldfaced: the best. Underlined: the second best. ×: Estimations diverged.

Table 7. RPEtrans(cm) and RPErot(degree) comparisons of the
RGBD Scene v2 dataset, with RPEtrans above and RPErot below
in each method.

GCC with Refinement for Visual Odometry: In a typical
visual odometry, robust camera pose estimation is typically
achieved by a two-stage approach: first producing an ini-
tial pose by a constant motion assumption [22, 25, 28, 39],
and second, refining the initial pose by minimizing some
energy function, e.g., reprojection errors [28], 3D point
cloud distance [22], color and depth rendering loss [39], etc.
The constant motion assumption is used because RANSAC
pose estimation is too expensive. However, the significant
speedup in the GCC filter while maintaining or improving
accuracy is enabling a new approach: replace the initial
stage with pose estimation. This is expected to improve the
initial pose so that the refinement stage iterations to conver-
gence are reduced. In addition, the probability of converg-
ing to local minima is reduced. In an experiment to verify
this approach, the initial pose estimation stage of the CVO-
SLAM [22] is replaced with the GCC filter with the number
of GCC iterations set to 100. Note that for this experiment,
CVO-SLAM is operating in a tracking mode.

Figure 10 (a) and (b) report the cumulative distribution
function (CDF) of the log10 iteration numbers for the pose

lr kt0 lr kt1 lr kt2 lr kt3 of kt0 of kt1 of kt2 of kt3

ACO
2.19
0.55

2.46
0.48

3.12
0.56

2.79
0.48

1.59
0.51

2.13
0.49

3.36
0.55

1.76
0.39

Edge
DVO × 1.51

0.18
3.68
0.12 × 1.95

0.16 × 2.46
0.36 ×

PLP-
SLAM

0.61
0.33

0.97
0.55

0.44
0.58

1.41
0.73

1.79
1.52

2.03
0.32

0.71
0.25

1.12
1.23

Ours
0.12
0.03

0.11
0.02

0.14
0.02

0.15
0.06

0.45
0.19

0.29
0.07

1.18
0.92

0.19
0.04

Boldfaced: the best. Underlined: the second best. ×: Estimations diverged.

Table 6. RPEtrans(cm) and RPErot(degree) comparisons of the ICL-
NUIM dataset, with RPEtrans above and RPErot below in each
method.

refinement stage and the log10 processing times in millisec-
onds of the robust estimation procedure, respectively. Evi-
dently, 80% of the poses from the GCC filtered RANSAC
are so accurate that it reaches to the convergence condition
in the first iteration of the refinement stage, giving around
two orders of magnitude fewer iterations. The curve for
the processing time in the case of using constant motion
model is consistent with the iteration numbers as the time
of producing an initial pose is ignorable. Nevertheless, as
the number of refinement iteration grows, the processing
time becomes around 1.5 orders of magnitude slower than
the GCC filtered RANSAC. Note that the processing time
of the GCC filtered RANSAC includes the time for gradi-
ent depth computation in Equation 9.

(a) (b)
Figure 10. The cumulative distribution function (CDF) of the (a)
log10 iteration numbers in the refinement stage, and (b) processing
time (ms) of pose estimation when an initial pose is given by the
GCC-RANSAC versus the constant speed assumption. The values
were calculated from a total of 49,600 image pairs from the TUM-
RGBD, ICL-NUIM, and RGBD Scene v2 datasets. Being more
accurate is interpreted as having the curve close to the top left.

8. Conclusion
This paper proposes a novel way to enforce the 3D geo-
metric constraint of length preservation in the image do-
main. Casting this constraint in 2D avoids the large number
of false positives arising from unreasonably large distance
thresholds that arise from asymmetric error distributions be-
tween depth and image localization. The paper demon-
strates that working directly in the image domain is more
accurate and more robust and validates it by both experi-
ments in a synthetic setting and in realistic applications.
Acknowledgment. The support of NSF award 2312745 is
gratefully acknowledged.
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