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Abstract
Nearest Neighbor Machine Translation (kNN-
MT) has achieved great success in domain
adaptation tasks by integrating pre-trained Neu-
ral Machine Translation (NMT) models with
domain-specific token-level retrieval. How-
ever, the reasons underlying its success have
not been thoroughly investigated. In this pa-
per, we comprehensively analyze kNN-MT
through theoretical and empirical studies. Ini-
tially, we provide new insights into the working
mechanism of kNN-MT as an efficient tech-
nique to implicitly execute gradient descent on
the output projection layer of NMT, indicating
that it is a specific case of model fine-tuning.
Subsequently, we conduct multi-domain ex-
periments and word-level analysis to exam-
ine the differences in performance between
kNN-MT and entire-model fine-tuning. Our
findings suggest that: (i) Incorporating kNN-
MT with adapters yields comparable transla-
tion performance to fine-tuning on in-domain
test sets, while achieving better performance on
out-of-domain test sets; (ii) Fine-tuning signif-
icantly outperforms kNN-MT on the recall of
in-domain low-frequency words, but this gap
could be bridged by optimizing the context rep-
resentations with additional adapter layers.1

1 Introduction

In recent years, Nearest Neighbor Machine Trans-
lation (kNN-MT) and its variants (Khandelwal
et al., 2021; Zheng et al., 2021a,b; Jiang et al.,
2021; Wang et al., 2022a) have provided a new
paradigm and achieved strong performance for
fast domain adaptation through retrieval pipelines.
Unlike model fine-tuning, which requires addi-
tional parameter updates or introduces external
adapter layers, kNN-MT combines traditional Neu-
ral Machine Translation (NMT) models (Bahdanau

∗This work was done when Ruize Gao was interning at
Tencent AI Lab.

†Corresponding authors.
1Our code is open-sourced at https://github.com/

RuizGao/knnmt-meta-optimizer.

et al., 2015; Vaswani et al., 2017; Hassan et al.,
2018) with a token-level k-nearest-neighbour re-
trieval mechanism. This allows for direct access
to domain-specific datastores, improving transla-
tion accuracy without the need for supervised fine-
tuning. Although kNN-MT has achieved great suc-
cess in domain adaptation tasks, its working mech-
anism is still an open problem that has not been
thoroughly investigated.

In this paper, we propose a novel perspective
to understand kNN-MT by describing it as a spe-
cial case of fine-tuning, specifically a process of
meta-optimization on the Output Projection Layer
(OPL) of NMT, and establish connections between
kNN-MT and model fine-tuning (Section 3). Our
novel perspective on kNN-MT posits that (i) the
working mechanism of kNN-MT is to implicitly
execute gradient descent on OPL, producing meta-
gradients via forward computation based on k-
nearest-neighbors, and (ii) explicit fine-tuning on
OPL shares a similar gradient format with the meta-
gradients obtained by kNN-MT, according to the
derivation of back-propagation. As illustrated in
Figure 1, kNN-MT and explicit OPL fine-tuning
share a dual view of gradient descent-based opti-
mization. The key difference between them lies
in the method for computing gradients: kNN-MT
produces meta-gradients through forward compu-
tation and interpolation, while fine-tuning method
computes gradients of OPL via back-propagation.
Hence, it is reasonable to understand kNN-MT as
an implicit form of model fine-tuning.

To provide empirical evidence for our under-
standing, we carry out experiments based on multi-
domain datasets (Section 4.1). Specifically, we
compare the model predictions of kNN-MT and
explicit OPL fine-tuning on five domain adaptation
tasks. As expected, the predictions of kNN-MT is
highly similar to that of explicit OPL fine-tuning.
These findings support our understanding that kNN-
MT performs implicit OPL fine-tuning.

https://github.com/RuizGao/knnmt-meta-optimizer
https://github.com/RuizGao/knnmt-meta-optimizer
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Figure 1: kNN-MT implicitly executes gradient descent on the Output Projection Layer (OPL) of NMT and produces
meta-gradients via forward computation based on k-nearest-neighbors. The meta-optimization process of kNN-MT
shares a dual view with explicit OPL fine-tuning that updates the parameters of OPL with back-propagated gradients.

Next, we conduct comprehensive multi-domain
experiments and word-level analysis to examine
the differences in translation performance between
kNN-MT and other popular fine-tuning methods,
such as entire-model fine-tuning and adapter-based
fine-tuning (Section 4.2 and 4.3). Our empirical
results suggest that: (i) Introducing kNN-MT on
top of adapter-based fine-tuning obtains compara-
ble translation performance to entire-model fine-
tuning on in-domain test sets, while achieving bet-
ter performance on out-of-domain test sets. (ii)
The entire-model fine-tuning significantly outper-
forms kNN-MT in terms of the recall of in-domain
low-frequency words, but this difference can be
mitigated by optimizing the context representations
with lightweight adapter layers.

2 Background

2.1 Neural Machine Translation

NMT employs an encoder-decoder model with neu-
ral networks that are parameterized by fθ to estab-
lish the mapping between the source sentence x
and its corresponding target sentence y. For the
decoding stage, at time step m, NMT utilizes the
context representation h ∈ Rdin , which is generated
from the source sentence x and the current target
context ŷ<m, to predict the next-token probability:

h = fθ(x, ŷ<m),

pNMT(ym|x, ŷ<m) = softmax(WOh),
(1)

where WO ∈ R|Y|×din represents the parameter
matrix of OPL in the NMT model and |Y| is the
vocabulary size.

2.2 Nearest Neighbor Machine Translation
Khandelwal et al. (2021) propose kNN-MT that
enhances pre-trained NMT models on the general
domain by incorporating a translation memory re-
triever. It enables the models to leverage external
in-domain knowledge and improve the quality of
in-domain translations. This approach is generally
formulated in two processes: datastore construction
and inference with kNN retrieval.

The datastore is a translation memory that con-
verts bilingual sentence pairs into a set of key-value
pairs. For a given target domain bilingual corpus
{(x,y)}, the context representation fθ(x,y<m)
generated by the pre-trained NMT model at each
timestep m is used as the key, and the m-th tar-
get token ym is treated as the corresponding value,
resulting in a key-value pair. The entire corpus
contributes to the datastore D, which is comprised
of all key-value pairs:

D =
⋃
(x,y)

{(fθ(x,y<m), ym),∀ym ∈ y}. (2)

During inference, the model utilizes the current
context representation h = fθ(x, ŷ<m) at the m-th
decoding step to produce a probability distribution
over a restricted vocabulary obtained through a
nearest-neighbor approach:

pkNN(ym|x, ŷ<m) ∝∑
(Km

j ,Vm
j )∈N (h)

1ym=Vm
j
· exp(

d(Km
j ,h)

T
),

(3)
where T denotes the temperature to control the
sharpness of the softmax function and N (h) =
{(Km

j ,Vm
j )}kj=1 is the set of k nearest-neighbors



retrieved from D using a pre-defined distance func-
tion d(., .). In practice, we can use either the dot-
product function or negative l2 distance to imple-
ment d(., .). Xu et al. (2023) have demonstrated
that the performance of these two functions is al-
most identical, so we adopt the dot-product func-
tion for theoretical analysis in this paper. Finally,
kNN-MT interpolates the vanilla NMT prediction
pNMT with the kNN prediction pkNN to obtain the
final next-token probability:

p(ym|x, ŷ<m) = λ · pkNN(ym|x, ŷ<m)

+ (1− λ) · pNMT(ym|x, ŷ<m),
(4)

where λ is a tuned interpolation coefficient. In
addition, this prediction way could also be substi-
tuted with other kNN variants (Zheng et al., 2021a;
Wang et al., 2022a; Dai et al., 2023b) to achieve
better model performance or inference speed.

2.3 Dual Form Between Gradient Descent
Based Optimization and Attention

Irie et al. (2022) present that linear layers optimized
by gradient descent have a dual form of linear at-
tention, which motivates us to view kNN-MT as
meta-optimizers. Concretely, a linear layer opti-
mized via gradient descent can be formulated as:

F(q) = (W0 +∆W )q, (5)

where q ∈ Rdin is the input representation, and
W0,∆W ∈ Rdout×din are the initialized parameter
matrix and the updated matrix, respectively. In the
back-propagation algorithm, ∆W is computed by
accumulating n training inputs to this layer Q =
(q1, ...,qn) ∈ Rdin×n and corresponding (back-
propagation) error signals E = (e1, ..., en) ∈
Rdout×n obtained by gradient descent:

∆W =

n∑
i=1

ei ⊗ qi = EQ⊤. (6)

The dual form of a linear layer trained by gradi-
ent descent is a key-value memory with attention
storing the entire training experience:

F(q) = (W0 +∆W )q

= W0q+EQ⊤q

= W0q+ LinearAttn(Q,E,q),

(7)

where LinearAttn(K,V,q) denotes the linear at-
tention operation, and we regard the training inputs
Q as keys, the error signals E as values, and the

current input q as the query. Instead of using the
regular softmax-normalized dot product attention,
which is Attention(K,V,q) = Vsoftmax(K⊤q),
we investigate the working mechanism of kNN-MT
under a relaxed linear attention form, following the
approach of Irie et al. (2022).

3 kNN-MT Performs Implicit Gradient
Descent on Output Projection Layer

In this section, we first demonstrate that probability
distribution in kNN-MT, including pkNN and pNMT,
is equivalent to Transformer attention. On top of
that, we argue that kNN-MT implicitly performs
gradient descent on OPL, producing meta-gradients
via forward computation and interpolation based on
k-nearest-neighbors. Next, we draw comparisons
between kNN-MT and explicit OPL fine-tuning,
establishing connections between these two forms.

3.1 Output Distributions are Attentions
Let h = fθ(x, ŷ<m) be the context representation
at each timestep m, and we obtain the nearest neigh-
bors set N (h) = {(Km

j ,Vm
j )}kj=1 from the datas-

tore D. Let Km = [Km
1 ,Km

2 , ...,Km
k ] ∈ Rdin×k

and Vm = [Vm
1 ,Vm

2 , ...,Vm
k ] ∈ R|Y|×k denote

matrices representing all key and value vectors in
N (h), in which we replace the original token value
with a one-hot vector for Vm

j . Then, we reformu-
late the computation of pkNN in Equation (3):

pkNN(ym|x, ŷ<m) =Vmsoftmax(
K⊤

mh

T
)

=Attention(
Km

T
,Vm,h),

(8)
where we use the dot-product function for the dis-
tance metric d(., .). According to the above equa-
tion, pkNN is a key-value memory with attention
storing all nearest neighbors from the datastore.

For the computation of pNMT, we introduce an
identity matrix I|Y| and convert it into attention
format:

pNMT(ym|x, ŷ<m) = softmax(WOh)

= I|Y|softmax(WOh)

= Attention(W⊤
O , I|Y|,h),

(9)
where W⊤

O = [Emb1,Emb2, ...,Emb|Y|] ∈
Rdin×|Y| is the matrix that represents key vectors
for each token in vocabulary. Similarly, pNMT is a
key-value memory with attention storing all repre-
sentations of the entire vocabulary.



3.2 kNN-MT as Meta-Optimization

For the ease of qualitative analysis, we follow Irie
et al. (2022) to understand the working mechanism
of kNN-MT under a relaxed linear attention form,
i.e., we remove the softmax operation in the compu-
tation of pkNN and pNMT, resulting in the following
rewritten expressions for pkNN and pNMT:

pNMT(ym|x, ŷ<m) ≈ FNMT(h)

= LinearAttn(W⊤
O , I|Y|,h) = WOh,

pkNN(ym|x, ŷ<m) ≈ FkNN(h)

= LinearAttn(
Km

T
,Vm,h) =

VmK⊤
mh

T
.

(10)

Then the next-token prediction probability of kNN-
MT is the weighted sum of two attentions:

p(ym|x, ŷ<m) = λ · pkNN + (1− λ) · pNMT

= pNMT + λ · (pkNN − pNMT)

≈ FNMT(h) + λ · (FkNN(h)−FNMT(h)).
(11)

Combing Equation (7), (10) and (11), we derive
the dual form between gradient descent-based opti-
mization and kNN-MT:

Fall(h) =FNMT(h) + λ · (FkNN(h)−FNMT(h))

=WOh+ λ · (VmK⊤
mh

T
−WOh)

=WOh+
λ

T
· (VmK⊤

mh− T ·WOh)

=WOh+
λ

T
· (LinearAttn(Km,Em,h)

− T

2
· ∂(∥WO∥2)

∂WO
h)

=WOh+
λ

T
·∆WkNNh

=(WO +
λ

T
·∆WkNN)h = F ′

NMT(h),

(12)
where ∆WkNN = EmK⊤

m − T
2 · ∂(∥WO∥2)

∂WO
repre-

sents the total gradient including a linear layer (dual
form) and l2-regularization objective, Km stands
for nearest-neighbors training inputs to the output
projection layer in NMT, and Em = Vm is the
corresponding error signals obtained by gradient
descent. As shown in the above equations, the in-
troduced probability difference, i.e., pkNN − pNMT,
is equivalent to parameter updates ∆WkNN that af-
fect WO. We can also regard EmK⊤

m = VmK⊤
m

as some meta-gradients, which are leveraged to
compute the updated parameter matrix ∆WkNN.

In summary, we introduce a new perspective to
explain kNN-MT as a process of meta-optimization
on the output projection layer of NMT, in which
kNN-MT produces meta-gradients via the computa-
tion of pkNN − pNMT based on k-nearest-neighbors
N (h) = {(Km

j ,Vm
j )}kj=1 and implicitly applies

gradients to the original output projection layer.

3.3 Comparing kNN-MT with Fine-tuning
As the Equation (12) indicates that the nearest-
neighbors set N (h) = {(Km

j ,Vm
j )}kj=1 serves as

the training inputs to the output projection layer in
the dual form of kNN-MT, we proceed to compare
the meta-optimization of kNN-MT with explicit
OPL fine-tuning. This explicit OPL fine-tuning ap-
proach maximizes the log-likelihood of the nearest-
neighbors set:

L(WO) =
k∑

j=1

log pNMT(Vm
j |Km

j )− α

2
· ∥WO∥2

=
k∑

j=1

Vm
j

⊤ log(softmax(WOKm
j ))− α

2
· ∥WO∥2,

(13)
where α is the hyper-parameter of l2-regularization
objective and we optimize the parameter matrix of
OPL using Km

j and Vm
j as input and label, respec-

tively. By applying the back-propagation algorithm,
we obtain the updated matrix ∆WFT as follows:

∆WFT =
∂L(WO)

∂WO

=
k∑

j=1

(Vm
j − softmax(WOKm

j ))Km
j

⊤ − α ·WO

=
k∑

j=1

(Vm
j − Pm

j )Km
j

⊤ − α ·WO

= (Vm −Pm)K⊤
m − α ·WO,

(14)
where Pm

j = softmax(WOKm
j ) is the prediction

probability of NMT for the context representa-
tion Km

j , Pm = [Pm
1 ,Pm

2 , ...,Pm
k ] ∈ R|Y|×k rep-

resents all prediction probabilities for the entire
nearest-neighbours set, and the complete deriva-
tion process is presented in Appendix A.1. In the
case of standard gradient descent, the new parame-
ter matrix of OPL, i.e., W ′

O, is computed as:

W ′
O = WO + η ·∆WFT

= WO + η ·
(
(Vm −Pm)K⊤

m − α ·WO

)
,

(15)



Methods Training Data Error Signals Gradients Optimizer

kNN-MT (Km, Vm) Vm
λ
T · (VmK⊤

m − T ·WO) Computation & Interpolation
OPL-FT (Km, Vm) Vm −Pm η ·

(
(Vm −Pm)K⊤

m − α ·WO
)

SGD

Table 1: The similarities and differences between kNN-MT and explicit OPL fine-tuning, where error signals and
gradients are provided in Equation (12) and (14).

where η is the learning rate. Similar to Equa-
tion (12), Km denotes training inputs and Em =
Vm − Pm is the corresponding error signals via
explicit OPL fine-tuning.

Table 1 displays similarities and differences be-
tween kNN-MT and explicit OPL fine-tuning, both
of which aim to maximize the log-likelihood of
a nearest-neighbor set N (h) = {(Km

j ,Vm
j )}kj=1.

The main distinction lies in the fact that kNN-MT
generates meta-gradients through forward computa-
tion and interpolation, while fine-tuning computes
gradients of OPL through back-propagation. More-
over, we discover that explicit OPL fine-tuning
produces gradient formats that are so similar to
meta-gradients acquired through kNN-MT. There-
fore, it is reasonable to view kNN-MT as an im-
plicit model fine-tuning process on OPL, in which
kNN-MT produces a distinct parameter matrix W ′

O
at each decoding time step. As kNN-MT only in-
volves the optimization of OPL compared to entire-
model fine-tuning, its performance is evidently con-
strained by the context representations produced
by the base NMT model.

4 Experiments

In this section, we begin by comparing the model
predictions of kNN-MT and explicit OPL fine-
tuning (OPL-FT) using multi-domain datasets to
verify our earlier analysis. Then we carry out com-
prehensive multi-domain experiments and word-
level analysis to gain a better understanding of the
translation performance differences between kNN-
MT and current popular fine-tuning methods.

4.1 kNN-MT v.s. Explicit OPL Fine-tuning
Setup. We mainly compare kNN-MT and OPL-
FT on five domain adaptation datasets, including
multi-domain German-English datasets in Khan-
delwal et al. (2021) (IT, Law, Medical, and Ko-
ran), and the IWSLT’14 German-English transla-
tion dataset. The details of multi-domain datasets
are listed in Appendix A.2. The pre-trained NMT
model from the WMT’19 German-English news
translation task winner (Ng et al., 2019) is used

as the basic model for kNN-MT and OPL-FT. We
employ both inner-product (IP) and negative l2-
distance (L2) as distance metrics, in which the data-
store size and hyper-parameter settings for kNN-
MT are included in Appendix A.3 and we main-
tain consistency with previous work (Zheng et al.,
2021a) for most details. As for OPL-FT, the pa-
rameter of OPL is trained with the same k-nearest-
neighbors retrieved by kNN-MT via either IP or
L2 at each timestep. We perform a grid search
and use the perplexity (PPL) on the validation set
to determine the optimal learning rate and hyper-
parameter for SGD optimization. More details are
presented in Appendix A.3. As kNN-MT and OPL-
FT only involve the optimization of OPL, we adopt
a teacher-forcing decoding strategy and evaluate
the similarity between them by measuring the mean
and variance of the difference between their model
predictions on the golden label. Specifically, for
the test set containing n target tokens, the mean
M(·) and variance V (·) are computed as:

M(A−B) =
1

n

n∑
i=1

(pA(yi)− pB(yi)) ,

V (A−B) =
1

(n− 1)

n∑
i=1

(pA(yi)− pB(yi)

−M(A−B))2,

where A,B ∈ {NMT, kNN-MT,OPL-FT,FT}
and p(yi) denotes the model prediction probability
on each golden label yi.

Results. As shown in Table 2, we find that kNN-
MT has a more similar model prediction with OPL-
FT (lower mean/variance) compared to the base
NMT model or entire model fine-tuning (FT). The
experimental results indicate that kNN-MT and
OPL-FT are closer than other tuned models. These
findings provide empirical evidence supporting our
understanding that kNN-MT performs implicit
OPL fine-tuning. Additionally, we observe that
kNN-MT achieves a slightly higher mean of model
predictions than OPL-FT on average. We suspect
that this is because kNN-MT solely utilizes the



IT Law Medical Koran IWSLT Avg.

kNN-MT - NMT .073 / 0̇37 .137 / .055 .133 / .057 .064 / 0̇41 .008 / 0̇14 .083 / 0̇41
OPL-FT - NMT .064 / .043 .098 / .055 .100 / .059 .061 / .044 .026 / .011 .070 / .042
FT - NMT .120 / .102 .147 / .077 .152 / .093 .107 / .066 .038 / .024 .113 / .072
FT - kNN-MT 0̇47 / .066 .010 / 0̇44 .019 / 0̇46 0̇43 / 0̇41 .034 / .044 0̇31 / .048
FT - OPL-FT .056 / .079 .049 / .049 .051 / .056 .046 / .048 0̇12 / .027 .043 / .052

IP

kNN-MT - OPL-FT .010 / .024 0̇39 / .023 0̇33 / .022 .003 / .026 -.018 / .011 .013 / .021

kNN-MT - NMT .081 / 0̇37 .135 / .049 .137 / .056 .052 / 0̇37 .017 / .024 .082 / 0̇41
OPL-FT - NMT .064 / .043 .098 / .055 .100 / .059 .061 / .043 .026 /.011 .070 / .042
FT - NMT .702 / .133 .147 / .077 .152 / .093 .107 / .066 .038 / .024 .113 / .072
FT - kNN-MT 0̇39 / .064 .012 / 0̇42 .016 / 0̇44 .055 / .040 0̇11 / .040 0̇27 / .046
FT - OPL-FT .056 / .079 .049 / .049 .051 / .056 0̇46 / .048 .012 / .027 .043 / .052

L2

kNN-MT - OPL-FT .017 / .024 0̇35 / .018 0̇37 / .022 -.019 / .023 -.001 / 0̇22 .014 / .022

Table 2: The mean/variance (↓) of the golden label probability differences between base NMT, entire-model
fine-tuning (FT), kNN-MT and explicit OPL fine-tuning (OPL-FT) over each multi-domain test set.

Model # Params IT Law Medical Koran IWSLT Avg. OOD Avg. # Speed

NMT - 38.35 45.48 40.06 16.26 39.12 35.85 35.36 1.00×

OPL-FT 43.03M 41.26 51.51 47.56 21.27 40.50 40.42 19.62 1.00×
kNN-MT - 45.60 61.64 53.77 20.66 39.90 44.31 17.79 0.74×
AK-MT 1.2K 47.40 63.32 56.38 20.77 40.04 45.58 31.69 0.72×

Adapter(r = 64) 3.96M 43.55 52.46 48.32 21.62 41.65 41.52 31.74 0.97×
Adapter(r = 128) 7.90M 44.17 53.98 49.05 21.91 41.54 42.13 31.28 0.97×
Adapter(r = 256) 15.77M 45.27 55.55 51.32 22.38 41.57 43.22 31.06 0.95×

FT 269.75M 49.08 63.61 58.43 22.99 41.57 47.06 22.84 1.00×
AK-MTAdapter(r=256) 15.77M 49.34 64.42 57.27 23.04 41.52 47.12 29.50 0.72×

Table 3: The BLEU score (%) and decoding speed of all models on multi-domain test sets, including IT, Law,
Medical, Koran, and IWSLT. “# Params” refers to the number of fine-tuned parameters. The test sets of the other
four domains are integrated as out-of-domain (OOD) test sets for each domain and “OOD Avg.” represents the
average performance of all models on OOD test sets. For detailed results on the OOD test sets, please refer to
Appendix A.4. “# Speed” indicates the relative inference speed using vanilla NMT as a baseline with a batch size of
50k tokens.

label of k-nearest-neighbors as error signals to up-
date the models, without considering the prediction
of the NMT model, which may weaken the label
signal.

4.2 Translation Performance

Setup. As kNN-MT could be viewed as a spe-
cial case of model fine-tuning, we further com-
pare the translation performance of two kNN-based
models, i.e., traditional kNN-MT and adaptive
kNN-MT (AK-MT) (Zheng et al., 2021a), with
other popular fine-tuning methods, including entire-
model fine-tuning (FT) and adapter-based fine-
tuning (Adapter). We adopt the previous multi-
domain datasets for this experiment but integrate
the test sets of the other 4 domains as the out-of-
domain (OOD) test set for each domain. The eval-
uation metric is SacreBLEU, a case-sensitive deto-

kenized BLEU score (Papineni et al., 2002).
All experiments are conducted based on the

Fairseq toolkit (Ott et al., 2019). For the Adapter,
we build adapter layers according to the approach
proposed in Houlsby et al. (2019), with intermedi-
ate dimensions r selected from {64, 128, 256}. For
kNN-based models, we adopt L2 as the distance
metric and the same hyper-parameters as the pre-
vious section. We also explore the performance of
combining AK-MT and Adapter (AK-MTAdapter),
which keeps the same hyper-parameters to AK-MT.
The Adam algorithm (Kingma and Ba, 2015) is
used for FT, Adapter and OPL-FT2, with a learning
rate of 1e-4 and a batch size of 32k tokens. The
training process is executed on 4 NVIDIA Tesla

2It is difficult to dynamically update the parameter matrix
of OPL during beam search, so we directly use all training data
to optimize the parameter matrix of OPL in this experiment.



V100 GPUs and the maximum number of training
steps is set to 100k with validation occurring every
500 steps. During decoding, the beam size is set to
4 with a length penalty of 0.6.

Results. As illustrated in Table 3, we evaluate the
translation performance of all models and obtain
the following findings:

• OPL-FT, which optimizes the parameter matrix
of OPL, also brings significant improvements.
This proves that only updating the parameter of
OPL could achieve relatively high domain adap-
tation performance for NMT since it already pro-
duces precise context representation due to the
large-scale model pre-training.

• During inference, kNN-MT dynamically select
the most appropriate training data for optimiza-
tion at each step, resulting in better performance
than OPL-FT. However, kNN-MT falls short of
FT by 2.75 BLEU score, despite outperforming
the Adapter on most domain adaptation tasks.
AK-MT achieves better performance than kNN-
MT but is still weaker than FT, highlighting the
necessity of tuning the context representations
generated by the original NMT model.

• Combining Adapter and AK-MT achieves com-
parable translation quality to FT with better per-
formance on OOD test sets (average gain of 6.66
BLEU score). It indicates optimizing the con-
text representations with additional adapter lay-
ers could further improve kNN-MT.

All in all, as a meta-optimizer on OPL, kNN-MT
works quite well on domain adaptation tasks but
still requires tuning of the context representations
generated by the original model to achieve compa-
rable performance to FT.

4.3 Word-Level Empirical Analysis
Setup. Apart from the BLEU score, we conduct
a word-level analysis to investigate the translation
differences between kNN-MT and FT, and deter-
mine the bottleneck of kNN-MT. Specifically, we
analyze the translation results of kNN-MT, AK-
MT, FT, and AK-MTAdapter by calculating the re-
call of different target words.3 We first use spaces
as delimiters to extract target words and define
the domain-specific degree of each word w as

3As shown in Appendix A.6, we calculate the precision,
recall, and F1 score (P/R/F1) for each word in the translation
results and observe that the correlation between translation
performance and word recall is strongest.

γ(w) = fID(w)
fGD(w) , where fID(.) and fGD(.) are the

word frequencies in domain-specific and general-
domain training data, respectively.4 Then we split
the target words into four buckets based on γ:
{0 ≤ γ(w) < 1, 1 ≤ γ(w) < 2, 2 ≤ γ(w) <
5, γ(w) ≥ 5}, with words having a higher do-
main frequency ratio γ indicating a higher degree
of domain-specificity. To better illustrate the gap
between kNN-based methods and FT, we define
incremental word recall ∆R for kNN-MT, AK-MT
and AK-MTAdapter as the difference in word recall
compared to FT: ∆R(w) = R(w)−RFT(w).

Results. Figure 2a presents ∆R values for words
in different buckets, indicating that compared to FT,
kNN-MT and AK-MT have poor word recalls for
words with γ(w) ≥ 2, particularly when γ(w) ≥ 5.
However, AK-MTAdapter achieves comparable per-
formance to FT, suggesting that enhancing the con-
text representations with adapter layers could han-
dle this issue. Moreover, we focus on words with
γ(w) ≥ 5 and evaluate word recalls in different
buckets based on word frequency, dividing words
into four buckets based on their in-domain fre-
quency ranking: top 1%, top 1~5%, top 5~20%,
and top 20~100%. As shown in Figure 2b, for in-
domain low-frequency words, particularly those
ranking behind top 20%, kNN-MT and AK-MT
perform significantly worse than FT in terms of
word recall. Similarly, AK-MTAdapter yields com-
parable word recall to FT. These results demon-
strate that the performance differences between
kNN-based models and FT mainly lie in the low re-
call of in-domain low-frequency words, which can
be alleviated by optimizing context representations
with additional adapter layers.

Nearest Neighbors Analysis. We verify the per-
formance of kNN retrieval for the words with
γ(w) ≥ 5 to better understand the quality of con-
text representations. We use the teacher-forcing
decoding strategy to calculate the non-retrieval
rate of words in each bucket, where a word is de-
fined as non-retrieval if any sub-word of it is not
retrieved in the k-nearest-neighbors of AK-MT and
AK-MTAdapter. The k-nearest-neighbors of kNN-
MT and AK-MT are exactly the same. Figure 3
shows that the non-retrieval rate (Unretrieved%)
of AK-MT increases as word frequency decreases,
consistent with the results of word recall in Figure

4We manually check the entire dictionary with γ and find
that most words with γ ≥ 2 are real in-domain words.
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Figure 2: Incremental word recall ∆R of different words on multi-domain test sets. We plot the mean ∆R of five
datasets with standard deviation in both figures. For the left figure (a), we count word recalls in different buckets
based on γ, while for the right figure (b), we focus on words with γ(w) ≥ 5 and calculate word recalls in different
buckets based on word frequency.
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Figure 3: The non-retrieval rate (Unretrieved%) of the
words with γ(w) > 5 on multi-domain test sets. We
plot the mean of five datasets with standard deviation.

2b. It indicates that the context representations
of in-domain low-frequency words are not ef-
fectively trained at the pre-training stage, re-
sulting in poor word recalls. With adapter-based
fine-tuning, we enhance the context representations
for in-domain low-frequency words and thus im-
prove the word recall of AK-MT. We also intro-
duce more metrics to evaluate the property of the
nearest-neighbors set and please refer more details
in Appendix A.6.

5 Related Work

Retrieval-augmented methods have attracted much
attention from the community and achieved re-
markable performance on various tasks, includ-
ing language modeling (Khandelwal et al., 2020;
He et al., 2021; Nie et al., 2022; Xu et al., 2023;
Wang et al., 2023), machine translation (Khandel-
wal et al., 2021; Zheng et al., 2021a,b; Jiang et al.,
2021; Wang et al., 2022b; Du et al., 2022, 2023),
question answering (Guu et al., 2020; Lewis et al.,

2020; Xiong et al., 2021), and dialogue genera-
tion (Fan et al., 2021; Thulke et al., 2021).

For the NMT system, Khandelwal et al. (2021)
propose kNN-MT that utilizes a kNN classifier
over a large datastore with traditional NMT mod-
els (Bahdanau et al., 2015; Vaswani et al., 2017;
Hassan et al., 2018) to achieve significant improve-
ments. Recently, several attempts have been made
by most researchers to improve the robustness and
scalability. Meng et al. (2022) and Martins et al.
(2022a) propose fast versions of kNN-MT. Zheng
et al. (2021a) develop adaptive kNN-MT by dynam-
ically determining the number of retrieved tokens
k and interpolation λ at each step, while Martins
et al. (2022b) attempt to retrieve chunks of tokens
from the datastore instead of a single token. Wang
et al. (2022a) adopt a lightweight neural network
and the cluster-based pruning method to reduce re-
trieval redundancy. Dai et al. (2023b) improve both
decoding speed and storage overhead by dynami-
cally constructing an extremely small datastore and
introducing a distance-aware adapter for inference,
and further observe the similar behaviours between
kNN-based methods and translation memory ap-
proaches (Gu et al., 2018; Zhang et al., 2018; Hao
et al., 2023).

Despite the great success of the kNN-MT family,
the working mechanism of these methods remains
an open question. Zhu et al. (2023) analyze the
relationship between the datastore and NMT model
to better understand the behaviour of kNN-MT. To
the best of our knowledge, we are the first to pro-
vide a meta-optimization perspective for kNN-MT,
i.e., kNN-MT performs implicit gradient descent
on the output projection layer.



6 Conclusion

In this paper, we present a new meta-optimization
perspective to understand kNN-MT and establish
connections between kNN-MT and model fine-
tuning. Our results on multi-domain datasets pro-
vide strong evidence for the reasonability of this
perspective. Additional experiments indicate that
(i) incorporating kNN-MT with adapter-based fine-
tuning achieves comparable translation quality to
entire-model fine-tuning, with better performance
on out-of-domain test sets; (ii) kNN-based mod-
els suffer from the low recall of in-domain low-
frequency words, which could be mitigated by opti-
mizing the representation vectors with lightweight
adapter layers. We hope our understanding would
have more potential to enlighten kNN-based appli-
cations and model design in the future.
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Limitations

In this section, we discuss the limitations and future
research directions of our work:

• In the theoretical interpretation of kNN-MT, we
adopt a relaxed form of attention in the compu-
tation of pkNN and pNMT for qualitative analysis,
following the approach of preview work (Irie
et al., 2022; Garg et al., 2022; Dai et al., 2023a).
Whether this conclusion is suitable for normal
attention is not rigorously proven, but empirical
results provide strong evidence of the plausibility
of this perspective.

• This paper does not include the results of com-
bining other parameter-efficient fine-tuning meth-
ods, such as Prefix-tuning (Li and Liang, 2021)
and LoRA (Hu et al., 2022), with kNN-MT. But

these methods actually share a similar composi-
tion function to optimize the context representa-
tions (He et al., 2022). We leave this exploration
as the future work.

• The word-level empirical analysis indicates that
kNN-based models suffer from the low recall
of in-domain low-frequency words. Apart from
adapter-based fine-tuning, this issue may be
mitigated by enhancing the context representa-
tions of low-frequency words via more efficient
approaches, e.g., introducing frequency-aware
token-level contrastive learning method (Zhang
et al., 2022) at the pre-training stage and leverag-
ing large-scale pre-trained models (Devlin et al.,
2019; Brown et al., 2020; Guo et al., 2020; Li
et al., 2022).

• Theoretical and empirical analysis on kNN-MT
actually could be directly applied to nearest
neighbor language models (kNN-LM) (Khandel-
wal et al., 2020). In the future, we would like to
follow this research line and do more in-depth
explorations on kNN-LM. Moreover, the theoret-
ical analysis in this paper is limited to the last
hidden states of NMT and we are also interested
in investigating the effectiveness of our analysis
on other hidden states of NMT, such as the out-
put of the last attention layer in the decoder (Xu
et al., 2023).
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A Appendix

A.1 Derivation Process of ∆WFT

According to the chain rule, the updated matrix
∆WFT is calculated as follows:

∆WFT =
∂L(WO)

∂WO

=

k∑
j=1

∂(Vm
j

⊤ log(softmax(WOKm
j )))

∂WO

− α

2
· ∂(∥WO∥2)

∂WO

=
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⊤ log(softmax(Zm
j )))

∂Zm
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·
∂Zm

j
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− α ·WO
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∂(Vm
j

⊤ log(softmax(Zm
j )))

∂Zm
j

Km
j

⊤

− α ·WO,

(16)

where Zm
j = WOKm

j and
∂Zm

j

∂WO
= Km

j
⊤. Then

we provide the derivation process for the rest part.
Assume that l denotes the vocabulary index of Vm

j ,
pi is the i-th probability computed by softmax(Zm

j )
and zi stand for the i-th value of the vector Zm

j .
The calculation of F = Vm

j
⊤ log(softmax(Zm

j ))
can be re-written as F = log(pl). When i = l, the
partial derivative of F to zi is calculated as:
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(17)

If i ̸= l, we have:

∂F
∂zi

=
1

pl
· ∂pl
∂zi

=
1

pl
·
∂( ezl∑|V|

k=1 e
zk
)
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(18)

Combining the above equations, we have:

∂F

∂Zm
j

= Vm
j − Pm

j , (19)

IT Law Medical Koran IWSLT

Train 222,927 467,309 248,009 17,982 160,239
Dev 2,000 2,000 2,000 2,000 7,283
Test 2,000 2,000 2,000 2,000 6,750

Table 4: Sentence statistics of multi-domain datasets.

IT Law Medical Koran IWSLT

Datastore Size 3.84M 19.5M 7.15M 542K 3.96M

k 8 4 4 16 32
λ 0.6 0.8 0.7 0.8 0.5IP
T 20 10 20 30 20

k 8 4 4 16 32
λ 0.7 0.8 0.8 0.8 0.5L2
T 10 10 10 100 50

Table 5: The datastore size (number of tokens) and
hyper-parameter choices (i.e., k, λ and T ) of kNN-MT
(IP) and kNN-MT (L2) in each domain.

where Vm
j is the one-hot vector whose the l-th value

is 1, and Pm
j = softmax(WOKm

j ) is the whole
vector of prediction probability. Finally, the Equa-
tion 16 is re-written as:

∆WFT =
k∑

j=1

∂Vm
j

⊤ log(softmax(Zm
j ))

∂Zm
j

Km
j

⊤

− α ·WO

=
k∑

j=1

(Vm
j − Pm

j )Km
j

⊤ − α ·WO

=(Vm −Pm)K⊤
m − α ·WO.

(20)

A.2 Dataset Statistics

We adopt a multi-domain dataset and consider do-
mains including IT, Medical, Koran and Law, to-
gether with IWSLT’14 German-English (DE-EN)
dataset in all our experiments. The sentence statis-
tics of datasets are illustrated in Table 4. For the
data preprocessing, we use the Moses toolkit to
tokenize the sentences and split the words into sub-
word units (Sennrich et al., 2016) using the bpe-
codes provided by Ng et al. (2019).

A.3 Datastore Size and Hyper-parameters

The datastore size of each domain and the choices
of hyper-parameters in kNN-MT are shown in
Table 5, in which we consider grid search on
k ∈ {2, 4, 8, 16, 32}, λ ∈ {0.1, 0.2, . . . 0.8, 0.9}
and T ∈ {5, 10, 20, 50, 100, 150, 200}. We main-
tain the same hyper-parameters for AK-MT but set
kmax = 16. For OPL-FT, we perform a grid search
to find the best learning rate lr. The search range



Dataset IT Law Medical Koran IWSLT

lr 4e-3 6e-3 6e-3 2e-3 1e-3

Table 6: The optimal learning rates for explicit OPL
fine-tuning based on the perplexity of the validation set.

for all datasets is the same. The search base values
are {1, 2, 3, 4, 5, 6, 7, 8, 9} and we scale them to 1e-
1, 1e-2, 1e-3 and 1e-4 times, i.e., we have 9× 4 =
36 values to search. In Table 6, we present the de-
tails of the selected learning rates on five datasets.
Once we obtain the optimal learning rate, the hyper-
parameter α ∈ {0, 0.01, 0.05, 0.1, 0.5, 1, 5, 10} is
further selected by the perplexity on the validation
set of each domain.

A.4 Translation Performance on
Out-of-Domain Test Sets

As shown in Table 7, we report the whole out-of-
domain results for the experiment in Section 4.2.

A.5 Translation Performance of Recent
Advancements in kNN-MT

We provide a comprehensive comparison of trans-
lation performance between recent advancements
in kNN-MT and the methods mentioned in sec-
tion 4.2. The results are shown in Table 8. The
results of FK-MT, EK-MT, CK-MT and SK-MT
are excerpted from Dai et al. (2023b).

A.6 More Details of Word-Level Analysis
We report the overall P/R/F1 results on multi-
domain test sets in Table 9. Compared with preci-
sion and F1 score, the defect of kNN-MT is more
obvious on word recall. In addition, as shown in
Table 10, we focus on words with γ(w) ≥ 5 and
calculate word recalls in different buckets based on
word frequency. For the nearest-neighbors analy-
sis, in addition to the non-retrieval rate mentioned
in section 4.3, we evaluate the following metrics:
① Gold Rank/Gold Dist: the average gold label
rank/distance in the top-k list, while taking the
rank and distance of the last word in the top-k list
(i.e., the farthest neighbor) if unretrieved; ② #Gold
Labels: the average number of gold labels in the
top-k list; ③ #Labels: the average distinct labels
in the top-k list, indicating the diversity. For in-
domain words (γ(w) ≥ 5), the detailed results of
k-nearest-neighbors analysis in above metrics are
shown in Table 11. We observe that after adapter-
based fine-tuning, the non-retrieval rate is reduced
as the average distance of the gold label increases.



Model # Params IT Law Medical Koran IWSLT Avg.

NMT - 35.10 32.54 34.74 38.55 35.87 35.36

OPL-FT 43.03M 23.56 21.01 22.81 6.97 23.73 19.62
kNN-MT - 22.55 13.51 12.69 8.49 31.70 17.79
AK-MT - 32.87 27.79 29.36 33.80 34.62 31.69

Adapter(r = 64) 3.96M 33.08 30.06 30.63 32.33 32.60 31.74
Adapter(r = 128) 7.90M 32.87 29.51 30.23 31.58 32.20 31.28
Adapter(r = 256) 15.77M 32.67 28.45 30.09 31.95 32.14 31.06

FT 269.75M 14.92 19.06 21.87 27.60 30.75 22.84
AK-MTAdapter(r=256) 15.77M 31.70 26.89 27.51 30.00 31.40 29.50

Table 7: The BLEU score (%) of all models on out-of-domain (OOD) test sets, including IT, Law, Medical, Koran,
and IWSLT. “# Params” refers to the number of fine-tuned parameters. The test sets of the other four domains are
integrated as OOD test sets for each domain and “Avg.” represents the average performance of all models on OOD
test sets.

Model IT Law Medical Koran Avg.

NMT 38.4 45.5 40.1 16.3 35.0
kNN-MT (Khandelwal et al., 2021) 45.6 61.6 53.8 20.7 45.4
FK-MT* (Meng et al., 2022) 45.5 56.0 53.6 21.2 44.1
EK-MT* (Martins et al., 2022a) 44.4 57.8 51.9 20.1 43.6
CK-MT* (Martins et al., 2022b) 44.2 59.7 53.1 19.3 44.1
SK-MT* (Dai et al., 2023b) 46.2 62.3 57.6 19.5 46.4
AK-MT (Zheng et al., 2021a) 47.4 63.3 56.4 20.8 47.0
AK-MTAdapter(r=256) 49.3 64.4 57.3 23.0 48.6

Table 8: The BLEU score (%) of recent advancements in kNN-MT and the methods mentioned in section 4.2 on
multi-domain test sets, including IT, Law, Medical and Koran.



γ(w) NMT kNN-MT AK-MT AK-MTA FT

IT
0∼1 0.597/0.632/0.614 0.672/0.656/0.664 0.709/0.681/0.695 0.743/0.676/0.708 0.730/0.673/0.700
1∼2 0.764/0.746/0.755 0.815/0.764/0.789 0.815/0.775/0.795 0.837/0.778/0.806 0.818/0.773/0.795
2∼5 0.680/0.660/0.670 0.724/0.701/0.712 0.740/0.710/0.725 0.761/0.726/0.744 0.757/0.726/0.741
5∼ 0.634/0.608/0.621 0.699/0.681/0.690 0.714/0.707/0.711 0.735/0.750/0.742 0.746/0.750/0.748
SUM 0.676/0.668/0.672 0.736/0.702/0.719 0.750/0.724/0.737 0.774/0.738/0.755 0.767/0.735/0.751

Law
0∼1 0.724/0.730/0.727 0.784/0.788/0.786 0.830/0.808/0.819 0.850/0.810/0.829 0.835/0.813/0.824
1∼2 0.820/0.805/0.812 0.875/0.862/0.868 0.884/0.872/0.878 0.891/0.875/0.883 0.885/0.869/0.877
2∼5 0.792/0.756/0.774 0.851/0.840/0.845 0.869/0.848/0.859 0.868/0.860/0.864 0.867/0.858/0.863
5∼ 0.787/0.704/0.743 0.838/0.814/0.826 0.852/0.820/0.836 0.854/0.833/0.844 0.856/0.835/0.845
SUM 0.782/0.753/0.767 0.839/0.828/0.833 0.860/0.840/0.850 0.867/0.846/0.857 0.862/0.845/0.854

Medical
0∼1 0.640/0.651/0.646 0.695/0.716/0.705 0.770/0.713/0.740 0.797/0.715/0.753 0.772/0.725/0.748
1∼2 0.737/0.729/0.733 0.797/0.764/0.780 0.822/0.789/0.805 0.837/0.795/0.816 0.814/0.795/0.804
2∼5 0.777/0.731/0.753 0.819/0.771/0.794 0.848/0.794/0.820 0.853/0.796/0.823 0.838/0.801/0.819
5∼ 0.732/0.654/0.691 0.792/0.715/0.752 0.817/0.770/0.793 0.815/0.781/0.798 0.809/0.790/0.799
SUM 0.716/0.684/0.699 0.774/0.727/0.750 0.812/0.763/0.787 0.822/0.769/0.795 0.806/0.776/0.790

Koran
0∼1 0.261/0.252/0.256 0.677/0.570/0.619 0.645/0.553/0.595 0.677/0.556/0.611 0.679/0.562/0.615
1∼2 0.292/0.259/0.275 0.680/0.598/0.636 0.673/0.597/0.633 0.699/0.605/0.649 0.693/0.616/0.652
2∼5 0.070/0.067/0.068 0.562/0.548/0.555 0.566/0.547/0.557 0.596/0.569/0.582 0.590/0.577/0.583
5∼ 0.082/0.078/0.080 0.554/0.521/0.537 0.548/0.525/0.536 0.582/0.549/0.565 0.575/0.556/0.566
SUM 0.175/0.165/0.170 0.612/0.557/0.583 0.604/0.554/0.578 0.635/0.568/0.600 0.630/0.577/0.602

IWSLT
0∼1 0.687/0.732/0.709 0.722/0.714/0.718 0.710/0.724/0.717 0.746/0.716/0.731 0.742/0.718/0.730
1∼2 0.789/0.786/0.787 0.801/0.792/0.796 0.800/0.793/0.796 0.813/0.797/0.805 0.809/0.799/0.804
2∼5 0.724/0.685/0.704 0.728/0.688/0.707 0.731/0.690/0.710 0.733/0.700/0.716 0.729/0.704/0.716
5∼ 0.798/0.591/0.679 0.776/0.645/0.704 0.788/0.635/0.703 0.745/0.703/0.724 0.736/0.705/0.720
SUM 0.744/0.716/0.730 0.757/0.722/0.739 0.756/0.724/0.739 0.765/0.736/0.750 0.760/0.738/0.749

Table 9: Overall P/R/F1 of all models on multi-domain test sets, in which we count P/R/F1 in different buckets
based on the domain-specific degree of each word γ(w). AK-MTA is the brief description of AK-MTAdapter(r=256).



# Words NMT kNN-MT AK-MT AK-MTA FT

IT
top 1% 993 0.751 0.767 0.786 0.809 0.802
top 1~5% 1,223 0.707 0.748 0.761 0.764 0.772
top 5~20% 1,492 0.591 0.705 0.718 0.747 0.743
top 20~100% 2,239 0.501 0.638 0.651 0.720 0.722

Law
top 1% 4,896 0.870 0.937 0.944 0.948 0.943
top 1~5% 4,013 0.684 0.806 0.816 0.833 0.836
top 5~20% 3,473 0.671 0.789 0.799 0.809 0.806
top 20~100% 2,736 0.492 0.636 0.652 0.674 0.695

Medical
top 1% 2,896 0.765 0.815 0.838 0.844 0.844
top 1~5% 2,676 0.621 0.740 0.755 0.768 0.779
top 5~20% 2,937 0.633 0.748 0.772 0.769 0.774
top 20~100% 4,339 0.618 0.717 0.738 0.761 0.776

Koran
top 1% 5,727 0.183 0.749 0.722 0.726 0.737
top 1~5% 3,502 0.023 0.505 0.486 0.521 0.545
top 5~20% 2,669 0.003 0.430 0.432 0.468 0.468
top 20~100% 2,685 0.001 0.234 0.255 0.294 0.282

IWSLT
top 1% 9,774 0.669 0.751 0.718 0.790 0.791
top 1~5% 5,856 0.519 0.599 0.566 0.634 0.640
top 5~20% 2,243 0.540 0.565 0.563 0.608 0.603
top 20~100% 1,497 0.522 0.547 0.552 0.623 0.631

Table 10: The word recall of all models on multi-domain test sets, in which we focus on words with γ(w) ≥ 5
and calculate word recalls in different buckets based on word frequency. “# Words” denotes the total number of
examples in different buckets. AK-MTA is the brief description of AK-MTAdapter(r=256).

Unretrieved% (↓) Gold Rank (↓) / Gold Dist (↓) #Gold Labels (↑) #Labels (↓)

AK-MT AK-MTA AK-MT AK-MTA AK-MT AK-MTA AK-MT AK-MTA

IT
top 1% 8.26% 7.55% 2.89 / 59.20 2.55 / 69.23 11.43 12.18 3.27 2.68
top 1~5% 12.35% 11.61% 3.25 / 65.46 3.10 / 83.58 10.04 10.70 3.75 3.28
top 5~20% 14.75% 13.74% 3.19 / 69.25 2.98 / 79.91 10.06 10.83 3.61 3.13
top 20~100% 20.63% 15.36% 2.94 / 90.12 2.52 / 100.98 9.55 10.88 3.56 2.79

Law
top 1% 1.90% 1.92% 1.44 / 29.28 1.42 / 23.56 14.19 14.46 1.73 1.59
top 1~5% 5.14% 5.17% 2.16 / 50.90 2.08 / 51.74 11.92 12.34 2.61 2.36
top 5~20% 6.06% 5.54% 2.12 / 59.40 2.01 / 61.43 11.97 12.41 2.56 2.30
top 20~100% 10.72% 8.44% 1.94 / 89.54 1.75 / 90.28 12.05 12.83 2.34 1.98

Medical
top 1% 5.52% 4.97% 2.17 / 53.94 2.07 / 62.05 12.15 12.56 2.89 2.55
top 1~5% 9.68% 7.59% 2.46 / 61.28 2.22 / 72.97 11.32 11.94 3.01 2.72
top 5~20% 9.87% 8.41% 2.24 / 60.43 2.13 / 68.29 12.08 12.58 2.62 2.37
top 20~100% 16.80% 13.55% 2.31 / 82.42 2.08 / 91.77 11.38 12.20 2.64 2.28

Koran
top 1% 7.81% 6.95% 3.00 / 62.56 2.68 / 92.52 9.85 10.79 4.07 3.21
top 1~5% 18.10% 15.13% 4.48 / 74.33 3.99 / 116.09 7.39 8.26 5.01 4.21
top 5~20% 20.57% 16.90% 4.31 / 83.25 3.80 / 124.37 7.45 8.35 4.86 4.15
top 20~100% 32.85% 27.15% 4.33 / 125.08 3.87 / 176.16 5.63 6.50 5.38 4.66

IWSLT
top 1% 8.44% 8.28% 3.11 / 54.43 2.99 / 51.16 10.92 11.27 3.08 2.81
top 1~5% 16.62% 16.26% 4.53 / 79.06 4.45 / 82.59 8.45 8.75 4.48 4.10
top 5~20% 17.92% 17.79% 4.74 / 83.92 4.60 / 88.23 8.01 8.26 4.55 4.20
top 20~100% 25.78% 23.11% 3.29 / 117.77 3.09/129.62 8.41 8.92 4.00 3.67

Table 11: Detailed results of k-nearest-neighbors analysis of in-domain words (γ(w) ≥ 5) on multi-domain test sets.
AK-MTA is the brief description of AK-MTAdapter(r=256).


