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Abstract

Health monitoring is important for the safe operation of battery systems. We use
recursive spatiotemporal Gaussian processes to model the resistance of lithium
iron phosphate batteries from field data. These processes scale linearly with the
number of data points, allowing online monitoring. The kernels separate the time-
dependent and operating-point-dependent resistance contributions. We develop
probabilistic fault probabilities based on time-dependent resistance estimates. The
fault analysis underlines that often, only a single cell shows abnormal behavior,
consistent with weakest-link failure for cells connected in series, amplified by
local resistive heating. The results further the understanding of how battery packs
degrade and fail in the field and demonstrate the potential of online monitoring.
The data set contains 28 battery systems returned to the manufacturer for warranty,
each with eight cells in series, totaling 224 cells and 133 million data rows. The
data and code are openly available.
Disclaimer: This extended abstract is based on [1].

1 Introduction

Lithium-Ion Batteries (LIBs) are essential for Electric Vehicles (EVs), grid storage, mobile appli-
cations, consumer electronics, and more. Over the last 30 years, remarkable advances have led to
long-lasting cells with high energy efficiency and density [2]. Safe operation of LIBs is vital to
protect life and property and to strengthen trust in LIBs. In the past, LIB fires erupted in many
different applications, including EVs [3], stationary storage [4], and electric bicycles [5]. Monitoring
batteries during operation is important to have a chance of detecting electrical or mechanical abuse of
the system or the onset of accelerated cell degradation, which is critical to reducing the potential of
such fires. Faults are abnormal events that cause the system to behave in an unintended way or stop
operating. Battery system faults can be auxiliary, sensor, or battery faults. Fault detection methods
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can be categorized as signal-based or model-based. Much research considers fast signal-based fault
detection for battery systems [6–8]. Model-based fault detection methods complement signal-based
fault detection because they are usually computationally more complex and slower. However, they
can potentially detect certain faults earlier and improve robustness (see [9–15]). In particular, battery
system faults, which are often due to slow battery degradation, can be addressed by a model to
estimate State Of Health (SOH) batteries [16–19].

Physics-based, machine learning, and empirical methods are available to model the cycling and
degradation behavior of battery cells and systems [20–27]. Choosing an appropriate model is
important to optimally use the available data [20]. Physics-based battery models are often challenging
to parameterize with battery field data, i.e., time series data consisting of noisy temperature, current,
and voltage measurements corresponding to the system, module, and cell level [28]. Equivalent
Circuit Models (ECMs) are an alternative because they are easier to parameterize with limited
data [21] and are applicable to field data [16]. We apply spatiotemporal Gaussian Processes (GPs)
[29, 30] to battery field data with uncontrolled operational conditions [1], that is, the device is in
the hands of the customer, who can use and potentially abuse the battery system. We build on a
hybrid approach that uses GPs and ECMs developed in [16] for single-cell lead-acid batteries and
adapt the model to Lithium-Iron-Phosphate (LFP) battery systems. This hybrid approach estimates
an operational point-dependent and a temperature-dependent resistance as two resistors in series [16].
We developed fault probabilities [1], which allow monitoring the homogeneity of cell resistances and
the probability of a single cell exceeding a maximum resistance threshold. The data set contains 28
systems and 133 million data rows. The data and associated Python package BattGP are available as
open source. This data set is the first field data set of batteries that failed in the field.

2 Data and Model

The data set contains data from 28 portable 24 V LFP battery systems, each with eight cells in series
(224 cells in total), with approximately 160 Ah nominal capacity per cell. The specific use case of
each system is unknown, but battery systems of this size are typically used as power sources for
recreational vehicles, solar energy storage, and more. All battery systems in this data set showed
some form of unsatisfactory behavior and were returned to the manufacturer. This can be motivated
by personal judgment, Battery Management System (BMS) warnings, or customer support advice.
This data set comprises a very small fraction of the batteries sold in this version. Therefore, this data
set is biased and not representative of the operational data of the entire population of this system type.
An improved version replaced this battery system type. The battery system manufacturer provided
the data set for this study and allowed its open-source release under the condition of anonymity.

Each battery system consists of 8 prismatic cells in series. Each system has one load current sensor
and each cell has one voltage sensor. The four temperature sensors are placed between adjacent cells;
thus, each temperature sensor is shared by two cells (Fig. 1a). Furthermore, these battery systems
have active cell balancing. The available measurements for the systems range from a single month
to five years. Consequently, the number of data rows per system varies from several thousand to
millions, depending on the duration of battery operation. The data set contains a total of 133 million
rows. More technical specifications are described in Sec. A.7, Tab. 2. As an example, the 24.2 million
data rows associated with system 8 are visualized in Sec. A.8, Fig. 5.

GPs, f(x) ∼ GP(µ(x), k(x, x′)), defined by a mean function µ(x) and a covariance function
k(x, x′), are nonparametric probabilistic models defining a distribution of functions [31]. GPs are
suitable for modeling the time- and operating point behavior of batteries [1, 16, 17]. We base our
analysis on a GP-ECM modeling framework that uses an ECM consisting of two series resistors
modeled by two additive kernels (Fig. 1b) suggested by [16]. A Radial Basis Function (RBF) kernel
models the current, State Of Charge (SOC), and temperature-dependent resistance. The resulting RBF
kernel function estimates are infinitely many times differentiable, roughly in agreement with smooth
experimental results [32]. A non-stationary Wiener velocity kernel models time-dependent resistance,
which is expected to increase with increasing degradation. We use a linear approximate Open-Circuit
Voltage (OCV) because the exact OCV was not available (Sec. A.6, Fig. 4). Any deviation from
the true OCV will lead to a biased resistance; however, this bias is only a function of SOC and
will therefore affect mainly the SOC dimension of the RBF kernel (Fig. 3b). Furthermore, even if a
precisely measured OCV would be available at the beginning of life, the OCV is expected to change
with degradation. The GP-ECM algorithm consists of the following steps for a single cell. Voltage,
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Figure 1: a) Battery system with 8 cells, temperature sensors (red) shared by two cells. b) ECM model
with illustrations of random draws from the kernel functions. Adapted from [1].

current, SOC, and time are extracted and down-selected to use only data points with significant
information for the learning task and to avoid sparse extreme conditions where little data are available
or the simple R-R model is less suitable. We use only discharge data because, in the data set, more
dynamics are present during discharging (see Tab. 1 for selection criteria). In an online setting, the
ECM-GP needs to be updated continuously with new data arriving. The computational complexity
of exact GPs scales with O(n3), where n is the number of data points, making it computationally
infeasible to update the model continuously with new data arriving. Therefore, we use a recursive
spatiotemporal GP, which scales linearly with the number of data points [16, 29, 30], allowing the
processing of millions of data points on a laptop computer and suitable for the use in embedded BMS
systems. The spatiotemporal GP approach is described mathematically in Sec. A.1. Our approach is
motivated by [16] but not identical. We generate an independent model for each cell, resulting in
eight models for each battery system. The hyperparameters were optimized as outlined in Sec. A.3.
Identical hyperparameters are used for all battery systems because the hyperparameters characterize
the system behavior, and all systems are identical in construction.

3 Results

Figure 2 shows the time-dependent resistance modeled by the Wiener velocity kernel at the same
reference operating point (−15A, 90% SOC, 25◦C) for systems 6, 8 and 9, selected as a showcase
for this extended abstract. Systems 6 and 8 show seasonal temperature variations. These variations
pose challenges for the GP framework because the Wiener velocity kernel resistance estimates are
affected by the temperature variations, with lower temperatures leading to higher resistance estimates
(e.g., [32, 33]). Consequently, using the resistance time derivative for forecasting (as suggested in
[16] for lead-acid batteries) appears challenging for lithium-ion batteries. Furthermore, the resistance
time derivative at time t0 should not be used for forecasting as it can be significantly influenced
by data t > t0. Systems 6 and 9 show a single cell behaving differently than the remaining cells.
Battery system 8 shows an increasing resistance trajectory for all cells at roughly the same time.
Their resistance trajectories suggest that these systems were healthy for most of their operation, with
degradation accelerating toward the end of use. These resistance patterns can have a wide variety of
root causes. To further understand the cause of individual degradation, a mechanical inspection of the
systems would be necessary, but this cannot be done because the returned battery systems are not
physically available to the authors.

We propose to define a battery pack consisting of cells in series to have an acceptable resistance
distribution if the internal resistances of each cell are within a resistance band centered around a
robust estimate of the mean of the other cells. We use the Hodge-Lehman estimator [34] to estimate
the location (i.e., the mean) of cell resistances. A derivation of the resistance band probabilities is
shown in Sec. A.4. The spatiotemporal GP walks forward in time using a Kalman filter. To calculate
the fault probabilities, we use the Kalman filter resistance estimates at time tk, which depend only on
data up to time tk (Fig. 2 bottom). We set b = 0.55mΩ based on the resistance spread observed at the
beginning of life for the investigated systems. The forward fault probabilities need a certain amount
of data to settle in, here in the order of 30–200 days (Fig. 2 bottom), depending on the usage of the
system. During this initial period, the GP learns the operating characteristics of the systems (Fig. 3).
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Figure 2: a) System 6, b) System 8, c) System 9. Top: Time-dependent Wiener velocity kernel
resistance at −15A, 90% SOC, 25◦C. Top middle: Average daily temperatures. Top bottom: data
points. Bottom: Forward Kalman filter based resistance distribution fault probabilities for each cell
in color. Variance of the GP resistance mean in black. Adapted from [1].

System 6: The fault probability for cell 8 is significantly higher than for the other cells even after the
Kalman filter settled in after approximately 200 days. After 500 days, the fault probability of cell 8
starts increasing and crosses 0.5 shortly before 800 days. The remaining cells have a very low fault
probability.
System 8: Around 1100–1200 days, multiple cell resistance fault probabilities and the weakest link
statistic increase sharply, coinciding with the lower temperatures. Around 1300 days, the weakest
link statistic reaches values close to 1, which is consistent with the increasing spread between cell
resistances. System 8 reached an equivalent full cycle count of 1531 cycles, with seasonal temperature
variations but a long-term upward resistance trend with increasingly inhomogeneous resistance as
commonly observed by cell-to-cell variability [35].
System 9: The fault probabilities increase quickly around day 250 for cell 2. In contrast, the other
cells have a low fault probability, except for cell 1, which might be affected because it shares a
temperature sensor with cell 2. The operating characteristics, i.e., R(I , SOC, T ), modeled by the
RBF kernel (Fig. 3), are consistent with physical expectations and experimental data from [32]. The
current-dependent resistance shows a downward trend with increasing discharge current [36, 37].
The SOC dependent resistance is fairly flat. Some unexpected small upward and downward trends
can be attributed to the linear pseudo OCV (Sec. A.6, Fig. 4). The temperature characteristics show
increasing resistance at low and very high temperatures, which is in line with physical expectations
(for more details, see SI of [1]). Here, we’d like to point out further challenges. First, the influence
of seasonal temperature variations on the Wiener velocity kernel currently prevents using resistance
derivatives for forecasting. Second, reducing the time and data it takes for the Kalman filter to settle
in is important. Pre-initializing the matrices of the spatiotemporal GP based on laboratory test data
could be a possible pathway. Third, the cells share common operating characteristics; however, there
are also cell-to-cell variations and sensor bias affecting the operating characteristics (Figs. 3, 2 and
[35]). Coupling the individual cell GPs could further improve robustness.
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Figure 3: Operating characteristics for all cells of system 8 at t = 1476 days, using 319.278 data
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4 Conclusion

Health monitoring is important for the safe operation of battery systems. We use a recursive
spatiotemporal GP-ECM framework to analyze faults from battery field data. The estimated time-
dependent resistance is one possible SOH metric for lithium-ion battery packs. Furthermore, we
developed resistance fault probabilities using the individual cell resistance of the cells in a pack,
which is suitable for early online monitoring. The results show that often, a single cell with abnormal
performance can cause the end of a system’s use and suggest that such faults can be detected with the
proposed framework. Abnormal performance can occur after heavy use due to degradation or other
issues. Furthermore, the results support that if a cell has a higher resistance early on, this can already
be an indicator that this cell will age faster than the remaining cells. Physically, this could occur by
enhanced resistive heating of the most degraded cell, thereby accelerating its degradation [38], which
has been observed in the case of lithium-ion batteries connected in series [39].

Data and Code Availability The associated Python software BattGP is available on GitHub:
https://github.com/JoachimSchaeffer/BattGP. The dataset is available on Zenodo: https:
//zenodo.org/records/13715694.
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A Appendix

Disclaimer: The derivations and mathematical description below are copied from [1]. The other parts
of this appendix are also based on [1].

A.1 GPs

GPs are a flexible modeling framework that excels in the case of limited data by making a point
estimate and modeling the covariance associated with the prediction. GPs are nonparametric prob-
abilistic models fully defined by a mean function µ(x) and a covariance function k(x, x′) where
x, x′ ∈ XD. A GP is usually written as

f(x) ∼ GP(µ(x), k(x, x′)), (1)

making it explicit that GPs describe a distribution of functions. The GP posterior predictions are
normally distributed, i.e., any marginal distribution of a GP is Gaussian. Furthermore, all joint
distributions associated with a finite number of elements of the index set are multivariate normal
distributions (e.g., [31] for further information). Assuming that we have no noisy observations
(xo,i, yo,i) with yo,i = f(xo,i) + ϵi, where ϵi is Gaussian noise with variance σ2

n, the predictive GP
equations are

µ|o(X∗) = K(X∗, Xo)[K(Xo, Xo) + σ2
nI]

−1yo (2)

Σ|o(X∗) = K(X∗, X∗)−K(X∗, Xo)[K(Xo, Xo) + σ2
nI]

−1K(Xo, X∗), (3)

where X∗ = [x∗,1 · · · x∗,n∗ ] denotes the n∗ test locations, Xo = [xo,1 · · · xo,no ] denotes the
training locations with responses yTo = [yo,1 · · · yo,no

], and K(X1, X2) denotes the covariance
matrix that is constructed by applying the kernel function to all pairs of column vectors from X1 and
X2 (for a full derivation, see [31]).

The training of a GP refers to the choice of kernel function and the optimization of associated hyper-
parameters, usually based on optimizing the marginal likelihood of the training data. Subsequently,
the posterior distribution can be calculated for points of interest by inference, using (2, 3).

SE Kernel: The Squared Exponential (SE) kernel is a smooth, infinitely many times differentiable
kernel which only depends on the distance of data points and is given for one-dimensional x by

kSE(x, x
′) = σ2

SE exp

(
−|x− x′|2

2l2

)
. (4)

We use three input dimensions – current, SOC, and temperature – and combine three one-dimensional
RBF kernels to

kSE,3ARD(x, x
′) =

3∏
d=1

σ2
SE,d exp

(
−|xd − x′

d|2

2l2d

)
= σ2

SE,3 exp

(
3∑

d=1

−|xd − x′
d|2

2l2d

)
, (5)

which is known as the SE-ARD kernel (ARD denotes “automatic relevance detection” because each
length scale represents the importance of its associated direction; for more information, see [40]).
There are four hyperparameters associated with the three-dimensional SE-ARD kernel: the output
scale σ2

SE, 3, the length scale associated with the current dimension l1 = lI, the length scale associated
with the SOC dimension l2 = lSOC, and the length scale associated with the temperature dimension
l3 = lT.

Wiener Velocity Kernel: The Wiener Velocity (WV) model corresponds to the integrated Wiener
process [41]. The WV covariance function or kernel is defined by

kWV(t, t
′) = σ2

WV

(
min3{t, t′}

3
+ |t− t′| min2{t, t′}

2

)
. (6)

The WV kernel has one hyperparameter: the WV output scale, σ2
WV.

The resulting kernel is

k(x, t, x′, t′) = kSE,3ARD(x, x
′) + kWV(t, t

′). (7)

Including the noise variance σ2
n, there are six hyperparameters which define the characteristics of the

GP used in this article.
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Spatiotemporal GPs A large number of data points are recorded during the operation of a battery.
Ideally, all samples that fulfill the data selection criteria are used, but a classical exact GP prevents
this due to the unfavorable scaling of compute and memory usage. To address this issue, we follow
[30, 41] and leverage the fact that we can interpret the GP as a spatiotemporal GP. For lead-acid
batteries, a spatiotemporal GPs approach has been shown in [16].

A temporal GP, i.e., a GP that depends on only one variable, can be written as a Kalman filter [29, 41],
which makes it scale linearly with the number of data points, with the restriction that the data points
must be given in a sorted manner. Here, the variable is actually time; therefore, this does not impose
further restrictions.

A spatiotemporal GP [41] is a GP that depends on multiple variables, of which one can be regarded
as the time variable, the others being the spatial variables,

x =

[
t
xs

]
.

This concept leads to an infinite-dimensional Kalman filter that propagates the mean and variance
functions over the time points. When using only a finite number of spatial vectors, this eventually
leads to a classical, finite-dimensional Kalman filter [41].

We cannot restrict the actual measured data locations to a finite set. Therefore, we combine the
spatiotemporal approach with the recursive approach from Huber [30]. In this approach, the spatial
part of the GP is not represented exactly, but is represented by nb predefined basis vectors xs,b,i that
are collected into

Xb = [xs,b,1 xs,b,2 · · · xs,b,nb ].

Combining these two approaches leads to the following procedure, which is similar but not identical
to the method used in [16]. The difference is mentioned below.

The state z of the Kalman filter,

z =

[
zt
zs

]
,

comprises two parts. zt corresponds to the representation of the temporal kernel. In the case of the
Wiener velocity kernel, it contains two scalar values; the first represents the mean value, and the
second is the time derivative of the mean value [41]. zs corresponds to the spatial kernel, and for the
Huber approach [30], these are the mean values at the specified basis vectors Xb.

Evaluation Given the state zk|k and its covariance matrix Pk|k at the time tk and built with all
information available until tk, the mean and covariance at this time point can be calculated by

µ|k(Xq, tk) = Hzk|k (8)

Σ|k(Xq, tk) = Kqq +HPk|kH
T −HsKbbH

T
s . (9)

The mean and the covariance of the GP at nq spatial vectors xs,q,i are collected into Xq similar to
Xb. Furthermore, we use the abbreviations

Kbb ∈ Rnb×nb , (Kbb)i,j = ks(xs,b,i, xs,b,j),

Kqq ∈ Rnq×nq , (Kqq)i,j = ks(xs,q,i, xs,q,j),

for the covariance at the basis vectors and the covariance at the queried locations, respectively.

The measurement matrix

H = [Ht Hs] (10)

is partitioned according to z. The temporal part

Ht =

1 0
...

...
1 0

, (11)
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reflects that for the Wiener velocity kernel with the chosen representation, the first associated state
corresponds to the mean. The spatial part is

Hs = KqbK
−1
bb , (12)

with

Kqb ∈ Rnq×nb , (Kqb)i,j = ks(xs,q,i, xs,b,j)

given by [30]. Here, our approach differs from the approach described in [16]. In (12), only the inverse
of Kbb is needed, which is known a priori and can be calculated offline. In [16], the corresponding
term includes an additional part that depends on the current state; thus, the inverse must be calculated
in each step anew.

Prediction step The prediction step of the Kalman filter is performed identically to [16],

zk|k−1 = A(Ts)zk−1|k−1

Pk|k−1 = A(Ts)Pk−1|k−1A
T(Ts) +Q(Ts)

with

P (0) =

[
Pt(0) 0
0 Ps(0)

]
, A(Ts) =

[
At(Ts) 0

0 I

]
, Q(Ts) =

[
Qt(Ts) 0

0 0

]
,

where Ts = tk − tk−1 is the length of the time step that may be different for each prediction step.
The structure of these matrices shows the decoupling of the two parts, i.e., the spatial state is not
influenced by the time step. However, due to the correction step, the covariance matrix will not retain
its initial block diagonal structure.

For the Wiener velocity kernel (6), which is used as temporal kernel, the corresponding matrices are

Pt(0) =

[
0 0
0 0

]
, At(Ts) =

[
1 Ts

0 1

]
, Qt(Ts) = σ2

WV

[
T 3
s /3 T 2

s /2

T 2
s /2 Ts

]
.

The initial value for the spatial covariance matrix is Ps(0) = Kbb. [41, 16]

Correction step When new measurements (Xm,k, ym,k) arrive, the Kalman filter performs a
correction step

zk|k = zk|k−1 +Kk(ym,k −Hkzk|k−1)

Pk|k = Pk|k−1 −KkHkPk|k−1.

Xm,k is a matrix that contains the locations of the nm,k measurements, ym,k is a vector giving the
measured output for each location in Xm,k, and Hk is the measurement matrix build as in (10) with
Xq = Xm,k. The Kalman gain Kk is calculated by

Kk = Pk|k−1H
T
k (Σ|k(Xm,k) + σ2

nI)
−1 , (13)

where Σ|k(Xm,k) is given by (9) with Xq = Xm,k. This step differs from [16] by the different
evaluation mentioned above and another measurement model.

Remark 1: If nm,k = 0, i.e., no measurement data were acquired within the last time step, the
correction step can be skipped, and the algorithm proceeds with the next prediction step. Alternatively,
the algorithm could wait until new data is available and then perform a larger prediction step.

Remark 2: In a standard Kalman filter setup, the correction step can be performed iteratively for each
group of measurements that is not correlated with measurements outside this group. Consequently,
for the case here, where we model the measurement noise with the covariance matrix σ2

nI , i.e., all
measurements are uncorrelated, each measurement could be processed individually, thus rendering the
matrix inverse in (13) a scalar inversion. However, due to some simplifications in the approach of [30]
that led to the filter equations, processing each measurement individually or multiple measurements
together in a minibatch is not analytically equivalent for this application. Based on case studies, it
seems to be advantageous to add measurements in larger groups.
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Rauch-Tung-Striebel smoother Rauch-Tung-Striebel (RTS) smoother allows calculating the state
and covariance and thus the estimates µ|n(Xq, tk) and Σ|n(Xq, tk) at all time points tk under
consideration of the complete measured data of the n time points. This smoother starts with the
variables zn|n and Pn|n of the last Kalman filter correction step and iterates backward using [42]

zk|n = zk|k +Gk(zk+1|n − zk+1|k) (14)

Pk|n = Pk|k +Gk(Pk+1|n − Pk+1|k)G
T
k (15)

for k = n− 1, n− 2, . . . with

Gk = Pk|kA(tk+1 − tk)P
−1
k+1|k . (16)

The output values µ|n(Xq, tk) and their variances Σ|n(Xq, tk) for each time point tk can be calculated
by (8) and (9) by replacing zk|k with zk|n and Pk|k with Pk|n.

For evaluating equations (14), (15) and (16), the results zk|k and Pk|k of the Kalman filter are used.
Thus, these values must be stored while performing the forward filtering pass. zk+1|k and Pk+1|k
could either be stored also or calculated anew from zk|k and Pk|k by reevaluating the prediction step.

Implementation The batteries are mostly sampled with 5 s, which, with the very small magnitude
of sensible parameters for the output scale of the Wiener velocity kernel, leads to numerical issues in
performing the prediction steps.

Therefore, we define a sampling time for the updates (1 hour) and process all data captured within
this interval at the same update time point. If no data were recorded within this hour, we only perform
a new prediction step without the update to set an evaluation point for the later backward smoothing
pass.

Selection of Basis Vectors The selection of basis vectors can be done in different ways. Similarly
to [16], we found that using k-means to select the basis vectors is effective. We used 60 basis vectors
selected with k-means. However, in an online setting, there will be no data available at the beginning.
Therefore, as an alternative, we propose to place vectors linearly within the range of the data selection
criteria and set a constraint based on the length scale of the associated measurement (for more details,
see SI of [1]).

A.2 Data Selection

The data selection criteria (Tab. 1) are applied to each cell individually.

Table 1: Data Selection Criteria
Charging/Discharging Discharge only
Temperature (◦C) 10 < x < 100
Current (A) −80 < x < −5
SOC (%) 40 < x < 95

A.3 Hyperparameter Tuning

All battery systems contain the same prismatic cell type with the same specifications. Therefore, the
aim is to find a single hyperparameter set that can be used for all cells. We optimized the marginal
likelihood for all cells of systems 6 and 8 individually, using an exact GP and 20k data points for
each cell. Systems 6 and 8 have the highest equivalent full cycle count and were operated over
large temperature range. Subsequently, we chose the median of each hyperparameter, assuming that
the parameters are mutually independent. We do not formulate an optimization problem for the
spatiotemporal GP but use the hyperparameters found by the exact GP.
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A.4 Fault Probability Derivation

The Hodge-Lehman estimator is defined as the median of the mean of all possible pairs of cell
resistances, including self-pairs,

Si = {1, 2, . . . , n} \ {i} (17)

θ̂Ri
(t) = medj≤k

Rj(t) +Rk(t)

2
, j, k ∈ Si, (18)

where n = 8, the number of cells. The probability of a cell i to be outside a resistance band that is 2b
wide is

p(FRi
(t)) = p(Ri(t) > θ̂Ri

(t) + b) + p(Ri(t) < θ̂Ri
(t)− b). (19)

The GP provides the mean and probabilities needed for calculating p(FRi
(t)). We propose to define

the probability of a pack resistance fault, p(FRp), as

p(FRp(t)) = 1−
∏
i

(1− p(FRi
(t)(i))) (20)

according to the true “weakest link” failure statistics for cells connected in series [43–45]. In the limit
of rare, independent failures dominated by a single cell, the pack resistance fault can be approximated
by

p(FRp(t)) ≈ max
i

p(FRi
(t)). (21)

Similarly, battery packs can be faulty or at the end of their life, if cells exceed an upper resistance
threshold,

p(FRmi(t)) = p(Ri(t) > c) (22)

p(FRm(t)) = 1−
∏
i

(1− p(FRmi
(t))) . (23)

However, in the following analysis, we only focus on the resistance distribution because the resistance
at t = 0 differs significantly between systems (Fig. 2).

A.5 Software and Hardware Details

The full GP, which was used only for hyperparameter tuning, is solved on an NVIDIA A100 GPU
with 80 GB RAM. We use the Python GPytorch framework, allowing us to solve an exact GP with
40k data points in 11 seconds on average. The recursive spatiotemporal GP is solved on a MacBook
Pro with a 10-core M1 chip, taking approximately 22 seconds for the forward Kalman filter and 6
seconds for the RTS smoother for a single cell of system 8 with 35k time steps, 320k data points, and
61 basis points.
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A.6 Open Circuit Voltage Approxiamtion

We use a linear pseudo OCV roughly corresponding to the flat region of LFP.
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Figure 4: Approximation of the flat region of the LFP OCV. Reproduced from [1].

A.7 Battery System Technical Details

Table 2: Technical specification of the battery system and summary of the associated data.
Technical Specification Data Set

Nominal voltage 24V Number of systems 28
Nominal capacity ≈ 160Ah Total number of cells 224
# Cells 8 (series) Total rows of data 133 M
# Current Sensors 1 Median of measurement intervals 5 s
# Voltage Sensors 9
# Temperature Sensors 4
# Cell Balancing Current Sensors 8

A.8 Data Visualization

Figure 5 visualizes 24.2 million rows of data associated with battery system 8, which was operated
for approximately five years. The BMS was switched on in November 2016, but frequent usage only
started about a year later. The end of continuous usage is around December 2021. However, the
system kept logging data for a couple more months afterward. The temperature profile shows seasonal
variations with higher temperatures during the northern hemisphere summer months. Furthermore,
voltage measurements and estimated SOC show that the system was primarily operated between 60
to 100% SOC with occasional discharges below 40%. Around September 2020, the usage pattern
changes, as can be seen by the current and SOC patterns. The mean subtracted cell voltages,

ũi(t) = ui(t)−
1

n− 1

n∑
j, j ̸=i

uj(t), (24)
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Figure 5: Data visualization of battery system 8. a) Cell voltages, b) Cell voltages with mean of
other cells subtracted, c) Cell voltage standard deviation, d) Battery system current, e) Cell balancing
converter current, f) State of charge, g) Temperatures (each temperature sensor neighbors two cells,
h) Data availability. Reproduced from [1].

where ui(t) is the voltage of cell i at time t, and n is the number of cells, show average deviations
below 0.1 V for the first two years of operation (Fig. 5b). With increasing usage, i.e., increasing
charge throughput and time and therefore also degradation, the average mean subtracted voltages
increase, an indicator that individual cells age differently, likely due to cell-to-cell variations (e.g.,
[35, 46]), and as a consequence, the system is less balanced. To summarize, the data of system 8
shows heavy usage over five years, totaling about 1531 equivalent full cycles. However, based on the
data visualization, it is challenging to understand further how cells degraded, whether certain cells
degraded more than others, or when the system might fail.
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