
Published in Transactions on Machine Learning Research (01/2026)

Communication-Efficient Federated AUC Maximization with
Cyclic Client Participation

Umesh Vangapally∗ Z2008841@students.niu.edu
Wenhan Wu† wwu25@uncc.edu
Chen Chen‡ chen.chen@crcv.ucf.edu
Zhishuai Guo∗ zguo@niu.edu
∗Department of Computer Science, Northern Illinois University
†Department of Computer Science, University of North Carolina at Charlotte
‡Center for Research in Computer Vision, University of Central Florida

Reviewed on OpenReview: https: // openreview .net/ forum? id= 18yPFLbVRy

Abstract

Federated AUC maximization is a powerful approach for learning from imbalanced data in
federated learning (FL). However, existing methods typically assume full client availability,
which is rarely practical. In real-world FL systems, clients often participate in a cyclic
manner: joining training according to a fixed, repeating schedule. This setting poses unique
optimization challenges for the non-decomposable AUC objective. This paper addresses
these challenges by developing and analyzing communication-efficient algorithms for feder-
ated AUC maximization under cyclic client participation. We investigate two key settings:
First, we study AUC maximization with a squared surrogate loss, which reformulates the
problem as a nonconvex-strongly-concave minimax optimization. By leveraging the Polyak-
Łojasiewicz (PL) condition, we establish a state-of-the-art communication complexity of
Õ(1/ϵ1/2) and iteration complexity of Õ(1/ϵ). Second, we consider general pairwise AUC
losses. We establish a communication complexity of O(1/ϵ3) and an iteration complex-
ity of O(1/ϵ4). Further, under the PL condition, these bounds improve to communication
complexity of Õ(1/ϵ1/2) and iteration complexity of Õ(1/ϵ). Extensive experiments on
benchmark tasks in image classification, medical imaging, and fraud detection demonstrate
the superior efficiency and effectiveness of our proposed methods.

1 Introduction

FL enables collaborative model training without centralizing raw data, making it invaluable for privacy-
sensitive domains like healthcare, finance and mobile computing (Pati et al., 2022; McMahan et al., 2017;
Konečnỳ et al., 2016; Hard et al., 2018; Kairouz et al., 2021c). However, most FL research focuses on
Empirical Risk Minimization (ERM) (Yu et al., 2019b; Stich, 2018; Mohri et al., 2019), which is ill-suited for
imbalanced data, as it minimizes aggregate surrogate losses that do not directly address model bias toward
majority classes (Elkan, 2001). In contrast, directly optimizing metrics such as the Area Under the ROC
Curve (AUC) has been shown to better capture performance under class imbalance (Ying et al., 2016; Cortes
& Mohri, 2003; Rakotomamonjy, 2004; Yuan et al., 2021b).

Building on prior work (Gao et al., 2013; Ying et al., 2016; Zhao et al., 2011b; Kotlowski et al., 2011; Gao &
Zhou, 2015; Calders & Jaroszewicz, 2007; Charoenphakdee et al., 2019a), deep AUC maximization problem
can be formulated as:

min
w∈Rd

Ez∈S+Ez′∈S−ψ(h(w; z), h(w; z′)). (1)

where S+ and S− denote the sets of positive and negative samples, respectively. The function ψ(·, ·) is
a surrogate loss, and h(w; z) represents the prediction score of input data z by a deep neural network
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parameterized by w. Recent work has extended AUC maximization to the federated setting (Guo et al.,
2020; Yuan et al., 2021a; Guo et al., 2023a). Guo et al. (2020); Yuan et al. (2021a) studied AUC maximization
with a squared surrogate loss, reformulating the problem as a minimax optimization without explicit pairwise
coupling. Guo et al. (2023a) considered a more general pairwise AUC formulation by allowing clients to share
prediction scores. However, a major limitation of these methods is the assumption of full client availability in
every communication round. They either require all clients to participate or randomly sample a subset each
round—conditions rarely met in practice. Real-world FL systems often exhibit cyclic client participation,
where clients join training in a fixed, repeating schedule (Cho et al., 2023). Cyclic Client Participation
(CyCP) is a structured approach designed to transition FL from idealized models to practical, real-world
deployments where client availability is inherently intermittent due to factors such as battery limitations and
unstable network connectivity (Huba et al., 2022; Paulik et al., 2021). By enforcing a guarantee that all clients
or client groups participate within a defined meta epoch, CyCP offers significant benefits over purely random
sampling: it ensures comprehensive data coverage across the entire population—an important property for
mitigating non-IID data bias (Cho et al., 2023; Zhu et al., 2023)—and, critically, this controlled, predictable
participation frequency enhances privacy preservation by strictly limiting how often each client contributes
with the global model (Kairouz et al., 2021a). While convergence guarantees have been established for ERM
under such settings (Cho et al., 2023; Crawshaw & Liu, 2024; Wang & Ji, 2022), the non-decomposable
nature of the AUC objective introduces unique challenges that remain unexplored.

To make federated AUC maximization practical under realistic deployment conditions, we study this problem
under cyclic client participation for two key classes of surrogate losses. First, for the squared surrogate loss
ψ(a, b) = (1 − a + b)2, Problem (1) can be reformulated as a minimax optimization problem (Ying et al.,
2016). The minimax formulation does not require explicit construction of positive–negative pairs, making
it naturally well-suited for online learning, where data arrive sequentially, and for federated settings, where
data reside across many devices—since it simplifies implementation and avoids cross-client pair management.
Previous studies (Guo et al., 2020; Yuan et al., 2021a; Sharma et al., 2022; Deng & Mahdavi, 2021) developed
communication-efficient algorithms for such minimax problems, but all assume full client participation.

Second, we consider general pairwise surrogate losses (e.g., sigmoid) for Problem (1). The minimax refor-
mulation above does not cover all AUC surrogate losses (Zhao et al., 2011a; Kotlowski et al., 2011; Gao &
Zhou, 2015; Calders & Jaroszewicz, 2007; Charoenphakdee et al., 2019a). In particular, symmetric pairwise
losses have been shown to be more robust to label noise than the squared surrogate loss (Charoenphakdee
et al., 2019b; Zhu et al., 2022). It generalizes to tasks such as bipartite ranking and metric learning (Cohen
et al., 1997; Clémençon et al., 2008; Kotlowski et al., 2011; Dembczynski et al., 2012; Radenović et al., 2016;
Wu et al., 2017). While Guo et al. (2023a) provided a communication-efficient federated algorithm for this
objective, their analysis relies on random client sampling. In contrast, cyclic participation introduces deter-
ministic delays, as only specific clients are active at each step. The specific formulations of these two types
of problems are presented in Section 4 and 5, respectively. We discuss the compatibility of our proposed
algorithms with multiple specific AUC-consistent losses in Appendix G.

Our contributions are as follows.
Federated Nonconvex-Strongly-Concave Minimax Problems. Under cyclic participation, both pri-
mal (v) and dual (α) updates are complicated by deterministic client scheduling, which breaks the common
independent sampling assumption. Consequently, global gradient estimates become biased, invalidating
existing convergence analyses in (Guo et al., 2020; Yuan et al., 2021a). To this end, we use a stagewise
algorithm, where each stage comprises multiple full cycles of communication with all client groups in a pre-
defined sequence. Our analysis constructs auxiliary sequences that track model states at cycle boundaries.
These anchors enable us to bound the drift caused by biased updates within each cycle and disentangle
the complex error propagation across client groups. By exploiting the strong concavity in α, we further
control the dual dynamics. Under the Polyak–Łojasiewicz (PL) condition, our method achieves a communi-
cation complexity of Õ(1/ϵ1/2), matching the best-known rate in the full-participation setting (Guo et al.,
2020)—demonstrating that cyclic participation does not inherently degrade efficiency.

Federated Pairwise Optimization. For general pairwise objectives, the key challenge is to handle the
coupling between different clients to construct the loss function. We design an active–passive algorithm that
decomposes gradients into components computed locally (active) and via shared information from others
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(passive). Our analysis traces model updates back to the start of the previous cycle, where all components
are virtually evaluated at states independent of current updates, thus mitigating bias. Unlike (Guo et al.,
2023a), our approach must handle a delay of two full cycles, making the error dynamics more complex.
Nevertheless, our algorithm achieves the same Õ(1/ϵ3) communication complexity (and improved rates
under PL), confirming that efficient pairwise optimization remains feasible under cyclic participation.
Empirical Evaluation We validate our methods on benchmark datasets in diverse domains, including
CIFAR-10, CIFAR-100 (image classification), ChestMNIST (medical imaging), and a large-scale insurance
fraud detection dataset. Results consistently demonstrate the effectiveness and efficiency of our proposed
algorithms under cyclic client participation.

2 Related Work
Our work lies at the intersection of federated optimization for non-ERM objectives and the study of client
participation schemes. We briefly review both areas.

2.1 Federated Non-ERM Optimization

While the FL literature is dominated by Empirical Risk Minimization (ERM), there is growing interest in
non-ERM objectives such as minimax and compositional optimization, motivated by applications like AUC
maximization (Ying et al., 2016) and distributionally robust optimization (Namkoong & Duchi, 2016).

Federated Minimax Optimization. Several works have studied federated minimax problems (Guo et al.,
2020; Yuan et al., 2021a; Deng & Mahdavi, 2021; Sharma et al., 2022). Closest to ours, Guo et al. (2020)
and Yuan et al. (2021a) address AUC maximization by reformulating it as a nonconvex–strongly-concave
minimax problem. They leverage the PL condition and employ stagewise algorithms that solve a sequence
of subproblems. Guo et al. (2020) achieved an iteration complexity of O(1/(µ2ϵ)) and a communication
complexity of O(1/(µ3/2ϵ1/2)), where µ is the PL modulus. Yuan et al. (2021a) later incorporated variance
reduction techniques to further reduce the communication complexity. A key limitation of these approaches
is their assumption of full or independently random client participation, which our work relaxes.

Federated Compositional Optimization. Compositional objectives introduce a nested structure that
is especially challenging in FL. Gao et al. (2022) analyze a simpler setting where each client k has entirely
local inner (gk) and outer (fk) functions, avoiding inter-client coupling. In contrast, Guo et al. (2023a)
consider a more general pairwise objective, where data across clients are inherently coupled. Their algorithm
employs an active–passive gradient decomposition strategy and achieves linear speedup under random client
sampling. Other heuristic approaches exist (Wu et al., 2022; Li & Huang, 2022), though they generally lack
rigorous theoretical guarantees.

2.2 Client Participation in Federated Learning

Various client participation schemes have been explored in FL to balance efficiency, scalability, and robust-
ness. The simplest strategy is full participation, where all clients perform local updates in every round (Stich,
2018; Yu et al., 2019a;b). Unbiased client sampling selects a random subset of clients each round (Karim-
ireddy et al., 2020; Jhunjhunwala et al., 2022; Yang et al., 2021a), while biased sampling prioritizes clients
based on predefined rules (Ruan et al., 2021) or data characteristics such as local loss values (Cho et al.,
2020; Goetz et al., 2019). Asynchronous participation has also been proposed to accommodate heterogeneous
client speeds and availability (Yu et al., 2019b; Wang & Ji, 2022). More recently, cyclic client participation,
where clients join in a fixed, repeating order, has gained attention for its practical and privacy advantages
(Kairouz et al., 2021b). This structured scheduling addresses diverse availability challenges. In cross-device
FL, clients may operate in different time zones or charge their devices at preferred times (Cho et al., 2023;
Yang et al., 2018). In cross-silo FL, clients such as hospitals face planned constraints, including managing
large local datasets, internal network security, or scheduled IT maintenance windows. Convergence guaran-
tees for cyclic participation in ERM have been established by Cho et al. (2023) and later strengthened with
variance reduction by Crawshaw & Liu (2024). However, all of these methods focus exclusively on ERM. Our
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work bridges this gap by developing communication-efficient algorithms and providing rigorous convergence
analyses for both federated AUC maximization under the realistic setting of cyclic client participation.

3 Preliminaries and Notations

We begin by establishing standard definitions and notations used throughout the paper. A function f is
said to be C-Lipschitz continuous if for all x,x′ in its domain, |f(x) − f(x′)| ≤ C|x − x′|. A differentiable
function f is L-smooth if its gradient is Lipschitz continuous, meaning |∇f(x)−∇f(x′)| ≤ L|x− x′|.

We consider a federated learning environment with N clients, which are further divided into K groups.
The global datasets D1 (positive set) and D2 (negative set) are partitioned into N non-overlapping subsets
distributed across these clients, denoted as D1 = D1

1 ∪ D2
1 ∪ . . . ∪ DN1 and D2 = D1

2 ∪ D2
2 ∪ . . . ∪ DN2 . Here,

Ez∼D denotes the empirical expectation over dataset D.

We divide the N clients into K disjoint groups, each containing N/K clients, denoted by Gk for k ∈
[K]. During training, the server cycles through these groups in a fixed, pre-determined order (G1, . . . ,GK),
implementing a cyclic participation pattern. In each communication round, M clients are selected uniformly
at random without replacement from the active group.

This framework is especially relevant for real-world federated learning applications. For instance, in cross-
device FL, mobile devices can be grouped by regions or time zones, while random sampling within each group
provides flexibility especially when the number of clients in a group is large. For simplicity, the framework
can also be interpreted as a fully deterministic schedule in the special case of K = N or M = N/K, where
all clients in the active group participate in every round; in this case, the theoretical guarantees still hold.

The AUC for a scoring function h : X → R is defined as:

AUC(h) = Pr(h(x) ≥ h(x′)|y = 1, y′ = −1), (2)

where z = (x, y) and z′ = (x′, y′) are drawn independently from the data distribution P.

Notations. Let w ∈ Rd denote the model parameters. In the minimax formulation, we define v = (w, a, b)
as the primal variable, where a, b ∈ R. For the stagewise algorithms, vs0 and αs0 denote the initialization at
the beginning of stage s.

Within each stage, ve,km,t denotes the variable at epoch e, client group k, client m, and iteration t. The
notation ve,km represents the final output of client m in group k at epoch e. The group-level aggregation is
given by

ve,k = 1
|Ge,k|

∑
m∈Ge,k

ve,km ,

which is the average output of all participating clients in group k during epoch e.

The same notation convention applies to we,k
m,t and αe,km,t. A complete list of symbols used in this paper is

provided in Appendix A.

4 Minimax Optimization

To maximize AUC, we adopt the surrogate loss formulation in (1). Following Ying et al. (2016), we use the
squared surrogate loss ψ(a, b) = (1 − a + b)2, which reformulates the AUC maximization problem as the
following minimax optimization:

min
w,a,b

max
α

f(w, a, b, α) = Ez[F (w, a, b, α; z)], (3)

where

F (w, a, b, α; z) =(1− p)(h(w; z)− a)2I[y=1] + p(h(w; z)− b)2I[y=−1]

+ 2(1 + α)(ph(w; z)I[y=−1] − (1− p)h(w; z)I[y=1])− p(1− p)α2.
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Let v := (w, a, b) denote the set of primal variables. This reformulation enables a natural decomposition
across clients, leading to the following federated optimization problem:

min
w∈Rd

(a,b)∈R2

max
α∈R

f(w, a, b, α) = 1
K

K∑
k=1

1
|Gk|

∑
m∈Gk

fk,m(w, a, b, α), (4)

where fk,m(w, a, b, α) = Ez∼Pk,m
[F (w, a, b, α; zk)] and Pk,m denotes the local data distribution on client m

of group k.

We now present our algorithm for federated AUC maximization under the practical constraint of cyclic client
participation. At the s-th stage, we construct a strongly convex–strongly concave subproblem centered at
the previous stage’s output vs0. The local objective for client m in group k is defined as:

min
v

max
α

fk,m(v, α) + γ

2 |v− vs0|2. (5)

While our approach builds on the stagewise framework of Guo et al. (2020); Yuan et al. (2021a), the key
novelty lies in the intra-stage optimization: we introduce multiple cycle epochs and provide a theoretical
analysis that handles deterministic client ordering—an aspect that poses significant technical challenges. The
detailed procedure for a single stage is outlined in Algorithm 1, and the overarching multi-stage framework
is presented in Algorithm 2. Each stage initializes the primal and dual variables using the outputs from the
previous stage. Within a stage, the algorithm runs for multiple epochs, during which all client groups are
visited multiple times. Each client group samples a subset of clients to participate, performs I local update
steps, and then passes the updated primal and dual variables to the next client group. The primal variables
are updated via stochastic gradient descent, while the dual variable is updated via stochastic gradient ascent.
After completing a stage, the step sizes and number of epochs are adjusted before proceeding to the next
stage.

We define the following key quantities for our analysis:

ϕ(v) = max
α

f(v, α), ϕs(v) = ϕ(v) + γ

2 ∥v− vs−1∥2, fs(v, α) = f(v, α) + γ

2 ∥v− vs−1∥2,

F sk,m(v, α; zk,m) = F (v, α; zk,m) + γ

2 ∥v− vs−1∥2,v∗
ϕ = arg min

v
ϕ(v), v∗

ϕs
= arg min

v
ϕs(v).

(6)

Our convergence analysis is based on the following standard assumptions:

Assumption 4.1. (i) Initialization: There exist v0,∆0 > 0 such that ϕ(v0)− ϕ(v∗
ϕ) ≤ ∆0.

(ii) PL condition: ϕ(v) satisfies the µ-PL condition, i.e., µ(ϕ(v) − ϕ(v∗)) ≤ 1
2∥∇ϕ(v)∥2; (iii) Smoothness:

For any z, f(v, α; z) is ℓ-smooth in v and α. ϕ(v) is L-smooth, i.e., ∥∇ϕ(v1)−∇ϕ(v2)∥ ≤ L∥v1 − v2∥;(iv)
Bound gradients: ∥∇vf

s
k,m(v, α; z)∥2 ≤ G2; (v) Bounded variance:

E[∥∇vfk,m(v, α)−∇vFk,m(v, α; z)∥2] ≤ σ2,

E[|∇αfk,m(v, α)−∇αFk,m(v, α; z)|2] ≤ σ2.
(7)

Remark. These assumptions are consistent with prior literature (Guo et al., 2020; Yuan et al., 2021a). The
PL condition for minimax AUC maximization has been theoretically and empirically verified (Guo et al.,
2023b). Since f(v, α; z) is ℓ-smooth in v, it is also ℓ-weakly convex in v. Accordingly, in the subsequent
analysis we choose γ = 2ℓ, which guarantees that the subproblem (5) in each stage becomes ℓ-strongly convex
in v.

Our first step is to establish a bound on the suboptimality gap within a stage (Lemma 4.2).
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Algorithm 1 One Stage Federated Minimax (OSFM)
On Server:
Initialization: v1,0, α1,0

for e ∈ [E] cycle-epochs do
for k ∈ [K] do

Sample M clients from k-th client set uniformly at random w/o replacement to get client set Ge,k
Send global model ve,k−1 to clients in Ge,k
Each client m ∈ Ge,k in parallel do:

ve,km , αe,km ← LocalUpdate(ve,k−1, αe,k−1)
ve,k = 1

|Ge,k|
∑

m∈Ge,k

ve,km

αe,k = 1
|Ge,k|

∑
m∈Ge,k

αe,km

end for
ve+1,0 = ve,K , αe+1,0 = α(e,K)

end for
Output: 1

E

∑
e

1
K

∑
k ve,k, 1

E

∑
e

1
K

∑
k α

e,k

LocalUpdate(v0, α0):
for t ∈ [I] do

Sample mini-batch ze,km,t from local dataset
Update ve,km,t = ve,km,t−1 − η∇vf(ve,km,t, α

e,k
m,t; ze,km,t)

Update αe,km,t = αe,km,t−1 + η∇αf(ve,km,t, α
e,k
m,t; ze,km,t)

end for
Return vI , αI

Algorithm 2 Federated Minimax with Cyclic Client Participation (CyCp-Minimax)
Initialization: Primal variable x1,0, Client Groups δ(k), k ∈ [K]
for s ∈ [S] do

vs, αs = OSFM(vs−1, αs−1, ηs, Es)
end for

Lemma 4.2. Suppose Assumption 4.1 holds and by running Algorithm 1 for one stage with output denoted
by (v̄, ᾱ), we have

fs(v̄, α)− fs(v, ᾱ) ≤ 1
E

E−1∑
e=0

[fs(ve+1,0, α)− fs(v, αe+1,0)]

≤ 1
E

E−1∑
e=0

[
⟨∂vf

s(ve,0, αe,0),ve+1,0 − v⟩︸ ︷︷ ︸
A1

+ ⟨∂αfs(ve,0, αe,0), α− αe+1,0⟩︸ ︷︷ ︸
A2

+ 3ℓ+ 3ℓ2/µ2

2 ∥ve+1,0 − ve,0∥2 + 2ℓ(αe+1,0 − αe,0)2︸ ︷︷ ︸
A3

− ℓ3∥v− ve,0∥2 − µ2

3 (αe,0 − α)2
]
.

The resulting bound contains terms like A1 and A2 that couple the randomness from different client groups.
To decouple these dependencies, we introduce novel virtual sequences v̂e,0, ṽe,0, α̂e,0, and α̃e,0 (Lemmas
4.3 and B.4). These sequences are purely conceptual and do not require any actual computation. Different
from (Guo et al., 2020; Yuan et al., 2021a), these virtual sequences further depend on virtual estimates of
gradient e.g, evaluating gradient using current data and old model. These sequences are carefully designed
to isolate the “signal” (the true gradient) from the “noise” (the stochastic gradient error) and to manage the
bias introduced by the cyclic schedule.

6



Published in Transactions on Machine Learning Research (01/2026)

Lemma 4.3. Define v̂e+1,0 = ve,0 − η
K∑
k=1

1
M

∑
m∈Ge,k

I∑
t=1
∇vf

s
k,m(ve,0, αe,0) and

ṽe+1,0 = ṽe,0 − η

M

K∑
k=1

∑
m∈Ge,k

I∑
t=1

(
∇vF

s
k (ve,0, αe,0; ze,km,t)−∇vf

s
k(ve,0, αe,0)

)
, for t > 0; ṽ0 = v0. (8)

then we have

Ee,0[A1] ≤ 6η̃Kσ2

MKI
+ 6ℓ
KMI

∑
k

∑
m∈Ge,k

∑
t

E(∥ve,0 − ve,km,t∥2 + ∥αe,0 − αe,km,t∥2) + ℓ

3∥v
e+1,0 − v∥2

+ 1
2ηKIE(∥ve,0 − v∥2 − ∥ve,0 − ve+1,0∥2 − ∥ve+1,0 − v∥2) + 1

2ηKI (∥v− ṽe,0∥2 − ∥v− ṽe+1,0∥2),

where Ee,0 denotes expectation with respect to all randomness realized prior to epoch e.

With the help of the two virtual sequences v̂e,0 and ṽe,0, we have successfully disentangled the interdepen-
dency between different clients and covert the bounds into standard variance bound plus model drift, i.e.,
the second term on the RHS.

Putting things together, we have the convergence analysis for one stage of the Algorithm as
Lemma 4.4. Suppose Assumption 4.1 holds. Running one stage of Algorithm 1 ensures that

E[fs(v̄, α)− fs(v, ᾱ)] ≤ 1
4ηEKI ∥v0 − v∥2 + 1

4ηEKI ∥α0 − α∥2 +
(

3ℓ2

2µ2
+ 3ℓ

2

)
36η2I2K2G2 + 3ησ2

M
,

Remark. Lemma above shows that the bound for the output of a stage (Algorithm 1) depends on the
quality of its inputs, v0 and α0, which are the outputs of th e previous stage. By employing a stagewise
algorithm (Algorithm 2) and setting parameters appropriately, we can ensure that the duality gap decreases
exponentially across stages. Extending the one-stage result to the full double-loop (Algorithm 2) procedure
yields the following theorem.

Theorem 4.5. Define L̂= L + 2ℓ, c = µ/L̂

5+µ/L̂ . Set γ = 2ℓ, ηs = η0 exp(−(s − 1)c), Ts =
212

η0 min(ℓ,µ2) exp((s − 1)c). To return vS such that E[ϕ(vS) − ϕ(v∗
ϕ)] ≤ ϵ, it suffices to choose S ≥

O

(
5L̂+µ
µ max

{
log
( 2∆0

ϵ

)
, logS + log

[
2η0
ϵ

12(σ2)
5K

]})
. The iteration complexity is Õ

(
L̂

µ2Mϵ

)
and the com-

munication complexity is Õ
(

K
µ3/2ϵ1/2

)
by setting Is = Θ( 1

K
√
Mηs

), where Õ suppresses logarithmic factors.

Remark. Linear Speedup and Efficiency: The iteration complexity exhibits linear speedup with respect
to the number of simultaneous participating clients M , i.e., Õ(1/(Mϵ)). This indicates that the proposed
algorithm efficiently leverages parallelism even under cyclic participation. The need for a smaller communi-
cation interval (scaled by K) as the number of groups increases arises naturally from the cyclic participation
protocol. A larger K introduces longer delays between consecutive client updates, heightening staleness and
drift. Adapting the local update count Is based on K effectively balances communication efficiency against
the resulting error.

Comparison to Prior Work: Our communication complexity matches the dependency on µ and ϵ achieved
by Guo et al. (2020); Yuan et al. (2021a) under the more idealistic assumption of random client sampling.
Thus, our analysis demonstrates that cyclic participation does not degrade the asymptotic convergence rate.
To our knowledge, this is the first such guarantee for federated minimax optimization.

5 Pairwise Objective

In this section, we study a broader class of federated pairwise optimization problems, which generalizes AUC
maximization to arbitrary pairwise loss functions. We propose a novel algorithm and provide convergence
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analysis for this setting under cyclic client participation, both with and without assuming the PL condition.
We consider the following federated pairwise objective:

min
w∈Rd

F (w) = 1
N

N∑
i=1

Ez∈Di
1

1
N

N∑
j=1

Ez′∈Dj
2
ψ(h(w; z), h(w; z′)). (9)

A major challenge in optimizing equation 9 is that its gradient inherently couples data across all clients. Let
∇1ψ(·, ·) and ∇2ψ(·, ·) denote the partial derivatives of ψ with respect to its first and second arguments,
respectively. We decompose the global gradient as:

∇F (w) = 1
N

N∑
i=1

Ez∈Di
1

1
N

N∑
j=1

Ez′∈Dj
2
∇1ψ(h(w; z), h(w; z′))∇h(w; z)︸ ︷︷ ︸

∆i1

+ 1
N

N∑
i=1

Ez′∈Di
2

1
N

N∑
j=1

Ez∈Dj
1
∇2ψ(h(w; z), h(w; z′))∇h(w; z′)︸ ︷︷ ︸

∆i2

.

Defining the local gradient component as ∇Fi(w) := ∆i1 + ∆i2, the global gradient can be expressed
compactly as ∇F (w) = 1

N

∑N
i=1∇Fi(w).

The difficulty in computing ∆i1 and ∆i2 lies in its dependence on global information—specifically, the
expectation over all clients’ datasets Dj2 and Dj1:

∆i1 = Ez∈Di
1

1
N

N∑
j=1

Ez′∈Dj
2
∇1ψ(h(w; z)︸ ︷︷ ︸

local

, h(w; z′)︸ ︷︷ ︸
global

)∇h(w; z)︸ ︷︷ ︸
local

, (10)

which local components can be computed by each client using its own data but global components depend
on data from all clients.

To address this challenge while maintaining the cyclic participation constraint, we adopt an active–passive
strategy. To estimate ∆i,1, each client i computes the active parts using its own data while the passive
parts are contributed by other clients through previously shared global information. Specifically, for the k-th
group in the e-th epoch, we estimate the global term by sampling he−1

2,ξ ∈ H
e−1
2 without replacement and

compute an estimator of ∆i1 by

Ge,ki,t,1 = ∇1ψ(h(we,k
m,t; ze,km,t,1)︸ ︷︷ ︸
active

, he−1
2,ξ︸︷︷︸

passive

)∇h(we,k
m,t; ze,km,t,1)︸ ︷︷ ︸
active

, (11)

and similarly ∆i2 by

Ge,km,t,2 = ∇1ψ( he−1
1,ξ︸︷︷︸

passive

, h(we,k
m,t; ze,km,t,2)︸ ︷︷ ︸
active

, )∇h(we,k
m,t; ze,km,t,2)︸ ︷︷ ︸
active

, (12)

where local components in Ge,ki,t,1 are referred as active parts, while global components are referred as passive
parts. The passive parts he−1

2,ξ and he−1
1,ξ are constructed by sampling scores from the previous epoch (e− 1).

And ξ = (k̃, m̃, t̃, ze−1,k̃
m̃,t̃,2 ) represents a random variable that captures the randomness in the sampled group

k̃ ∈ {1, . . . ,K}, sampled client m̃ ∈ {1, . . . ,Gk̃}, iteration index t̃ ∈ {1, . . . , I}, data sample ze−1,k̃
m̃,t̃,1 ∈ D

j
1 and

ze−1,k̃
m̃,t̃,2 ∈ D

j
2 for estimating the global component in (10). This delayed estimation bring two challenges: a

latency error of using old estimates and interdependence between randomness of different epochs and clients.

Our algorithm design and analysis differ from Guo et al. (2023a) in two key aspects: (1) the passive compo-
nents are from the previous epoch rather than the previous round, introducing greater latency but necessary

8
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for cyclic analysis; (2) the deterministic cyclic order creates more complex interdependency between clients
than random sampling. Unlike our minimax analysis where we could trace back to the start of the current
cycle, here we must reference the previous cycle’s initial state (we−1,0) to establish independence, which
increases the analytical complexity. A single loop algorithm is shown in Algorithm 3, and a double loop al-
gorithm for leveraging PL condition is shown in 4. The One-Stage Federated Pairwise (Algorithm 3: OSFP)
algorithm executes a single stage of federated optimization by iterating over multiple epochs. Within each
epoch, it sequentially processes each client group. For every group, the server samples a subset of clients
and broadcasts the current global model along with reference prediction sets. Each selected client then
performs a LocalUpdate procedure, which maintains buffers of past predictions, samples new data points,
computes pairwise losses and their gradients, and updates the local model using stochastic gradient steps.
After completing local computations, clients return the updated models and prediction sets to the server,
which aggregates them to update the global model. Once all epochs are completed, OSFP outputs the
averaged global model. Furthermore, if the PL condition is satisfied, an outer loop (Algorithm 4) repeatedly
calls OSFP over multiple stages, adjusting learning rates and epoch schedules to progressively refine the
model.

Our analysis relies on the following standard assumptions for pairwise optimization in problem (9).
Assumption 5.1. (i) ψ(·) is differentiable, Lψ-smooth and Cψ-Lipschitz. (ii) h(·; z)
is differentiable, Lh-smooth and Ch-Lipschitz on w for any z ∈ S1 ∪ S2. (iii)
Ez∈Si

1
Ej∈[1:N ]Ez′∈Sj

2
∥∇1ψ(h(w; z), h(w; z′))∇h(w; z) +∇2ψ(h(w; z), h(w; z′))∇h(w; z′)−∇Fi(w)∥2 ≤ σ2.

(iv) ∃D such that ∥∇Fi(w)−∇F (w)∥2 ≤ D2, ∀i.
Theorem 5.2. Suppose Assumption 5.1 holds. Running Algorithm 3 ensures that

1
E

E∑
e=1

E∥∇F (we−1)∥2 ≤ O
(
F (we,0)− F (w∗)

ηIKE
+ η2I2K2D2 + 24η σ

2

M

)
. (13)

Remark. Since η̃ = ηI. By setting η = ϵ2M , I = 1
MKϵ , E = 1

ϵ3 , the iteration complexity is EKI = O( 1
Mϵ4 ),

which demonstrates a linear-speedup by M , and communication cost is EK = O(Kϵ3 ). These results matches
the results in (Guo et al., 2023a) of full client participation setting. This demonstrates that our algorithm
successfully handles the additional challenges of cyclic participation without sacrificing asymptotic efficiency.
It is important to note that the prediction scores (He1,He2) incur no additional computation, as they simply
reuse the scores generated during local updates. Since (He1,He2) stores only the prediction scores from the
previous communication round, the required memory is O(IMK), where I is the communication interval, K
is the number of client groups, and M is the number of simultaneously participating clients per group. This
storage cost is negligible compared with the number of parameters in a modern neural network and can be
adjusted in practice by tuning M or I. Each client’s local buffers, Bi,1 and Bi,2, are of size O(I), which stores
sufficient historical predictions used to construct the loss function at every local update iteration. Shuffling
these buffers is essential to ensure that, over time, each client has the opportunity to interact with every
other client.

Under the additional assumption that F (w) satisfies the µ-PL condition, which is commonly used in pairwise
optimization (Yang et al., 2021c), we obtain significantly improved convergence rates as follows.
Theorem 5.3. Suppose Assumption 5.1 holds and F (·) satisfies a µ-PL condition. To achieve an ϵ-stationary

point by running Algorithm 4, the iteration complexity is Õ
(

1
µ2Mϵ

)
and the communication complexity is

Õ

(
K

µ3/2ϵ1/2

)
by setting Is = Θ( 1√

Kηs

), where Õ suppresses logarithmic factors.

Remark. Linear Speedup: Both Theorem 5.2 and 5.3 confirm linear speedup with respect to the number
of simultaneously participating clients M , demonstrating efficient use of parallel resources even under cyclic
participation.

Impact of PL Condition: The PL condition dramatically reduce the iteration complexity from O(1/ϵ4)
to Õ(1/ϵ) and the communication complexity from O(1/ϵ3) to Õ(1/µ3/2ϵ1/2).

9
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Algorithm 3 One Stage Federated Pairwise (OSFP)
1: On Server
2: Initialize H1

1,H1
2 by one initial epoch

3: for e ∈ [E] do
4: He+1

1 ,He+1
2 = ∅

5: for k ∈ [K] do
6: Sample M clients from k-th client set uniformly at random w/o replacement to get client set Ge,k
7: Send global model we,k−1 to clients in Se,k
8: Clients Se,k in parallel do:
9: Sample without replacement Re,ki,1 ,R

e,k
i,2 from He1,He2, respectively.

10: Send Re,ki,1 ,R
e,k
i,2 to client i for all i ∈ [N ]

11: we,k
m ,He,km,1,H

e,k
m,2 ← LocalUpdate(we,k−1)

12: Add ∪m∈Ge,kHe,km,1 to He+1
1 and ∪m∈Ge,kHe,km,2 to He+1

2
13: Compute we,k = 1

|Ge,k|
∑
m∈Ge,k we,k

m .
14: end for
15: end for
16: Return 1

E

∑
e

1
K

∑
k we,k

m,K

17: On Client LocalUpdate
18: On Client i: Require parameters η,K
19: Initialize model w0

i,K and initialize Buffer Bi,1,Bi,2 = ∅
20: Receives w̄e,k−1 from the server and set we,k

i,0 = w̄e,k−1

21: Receive Re,ki,1 ,R
e,k
i,2 from the server

22: Shuffle Re,ki,1 ,R
e,k
i,2 and place the results into buffers Bi,1,Bi,2

23: Sample K points from Di1, compute their predictions using model w0
i,K denoted by H0

i,1
24: Sample K points from Di2, compute their predictions using model w0

i,K denoted by H0
i,2

25: for k = 0, ..,K − 1 do
26: Sample ze,km,t,1 from Dm1 , sample ze,km,t,2 from Dm2 ⋄ or sample two mini-batches of data
27: Take next he−1

ξ and he−1
ζ from Bm,1 and Bm,2, resp.

28: Compute h(we,k
m,t; ze,km,t,1) and h(we,k

m,t; ze,km,t,2)
29: Add h(we,k

m,k; ze,km,t,1) into He,km,1 and add h(we,k
m,t; ze,km,t,2) into He,km,2

30: Compute Ge,km,t,1 and Ge,km,t,2 according to (11) and (12)
31: we,k

m,t+1 = we,k
m,t − η(Ge,km,t,1 +Ge,km,t,2)

32: end for
33: Sends we,k

m,t to the server
34: Sends He,km,1,H

e,k
m,2 to the server

Algorithm 4 Federated Pairwise AUC Under PL Condition (CyCP-Pairwise)
Initialization: w0
for s ∈ [S] do

ws, αs = OSFP(ws−1, ηs, Es)
end for
Return wS , αS
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General Impact: The problem we consider is general enough to extend beyond AUC maximization to
applications such as bipartite ranking, metric learning, and other client-coupled tasks. For instance, consider
the contrastive loss commonly used in metric learning (Hadsell et al., 2006):

ψ(h(w; z1), h(w; z2)) = 1
2 δ(z1, z2) ∥h(w; z1)−h(w; z2)∥2+1

2 (1−δ(z1, z2))
(

max(0,m−∥h(w; z1)−h(w; z2)∥)
)2
,

(14)
where δ(z1, z2) = 1 if z1 and z2 are similar, and 0 otherwise, and h(w; z) denotes the embedding of data
point z produced by model w. This loss naturally fits into the formulation in Problem 9 when the data pairs
are distributed across multiple clients.

Privacy Considerations. The two algorithmic frameworks proposed in this work require clients to share
model parameters—and, for pairwise objectives, to additionally share prediction scores—to enable collabora-
tive optimization, consistent with prior literature (Guo et al., 2023a; McMahan et al., 2017). However, such
information exchange can introduce privacy risks, as model updates and related signals may potentially leak
information about individual data points (Zhu et al., 2019). These risks can be mitigated through several
techniques, including: 1) adding noise to ensure differential privacy (Abadi et al., 2016; McMahan et al.,
2018; Truex et al., 2020; Wei et al., 2020); 2) quantization (Kang et al., 2024; Youn et al., 2023; Xu et al.,
2025); 3) dropout (Jain et al., 2015); and 4) homomorphic encryption during aggregation (Jin et al., 2023;
Fang & Qian, 2021).

6 Experiments

We evaluate our proposed method on four distinct datasets: CIFAR-10, CIFAR-100, ChestMNIST, and an
Insurance fraud dataset to demonstrate the robustness of the proposed algorithms across domains (computer
vision, medical imaging, and tabular data) under challenging non-IID and imbalanced conditions.

For CIFAR-10 and CIFAR-100 (Krizhevsky et al., 2009), we reformulate the multi-class tasks as binary
classification problems by designating one class as positive and the rest as negative. To induce class imbal-
ance, 95% of positive samples in CIFAR-10 and 50% in CIFAR-100 are removed. ChestMNIST (Yang et al.,
2021b) is framed as a binary task predicting the presence of a mass. Training data is distributed across 100
clients using a Dirichlet distribution with concentration parameter dir to simulate heterogeneity. ResNet18
(He et al., 2016) is used for Cifar-10/100 and DenseNet121 Huang et al. (2017) is used for ChestMNIST.

The Insurance fraud dataset is constructed from Medicare Part B claims (2017–2022) from the Centers for
Medicare & Medicaid Services (CMS) (Centers for Medicare & Medicaid Services (CMS), 2016). Providers
are labeled as fraudulent based on the List of Excluded Individuals and Entities (LEIE) (Office of Inspector
General, U.S. Department of Health & Human Services, 2016). Each U.S. state is treated as a separate
client, resulting in 50 clients with naturally heterogeneous data. A chronological split is used: 2017–2020 for
training, 2021 for validation, and 2022 for testing. The linear model is used for the insurance data.

We compare our methods with cyclic-participation baselines: CyCp-FedAVG (Cho et al., 2023), Amplified
FedAVG (A-FedAVG) (Wang & Ji, 2022), and Amplified SCAFFOLD (A-SCAFFOLD) (Crawshaw & Liu,
2024). We also include Random Sampling Minimax (RS-Minimax) and Random Sampling PSM (RS-PSM).
These two methods are adapted from Guo et al. (2020) and Guo et al. (2023a) and rely on randomly
sampling clients in each round. Step sizes are tuned in [1e-1, 1e-2, 1e-3]. We use a surrogate loss ψ(h1, h2) =

1
1+exp((h1−h2)/λ) where the scaling factor λ is tuned in [1, 1e-1, 1e-2, 1e-3]. Regularization factor ρ for
minimax AUC is tuned in [1e-1, 1e-2, 1e-3]. All algorithms are trained for 100 epochs, with stagewise
algorithms tuned for initial stage length [1,10,50], decay factor [0.1,0.2,0.5], and stage scaling [2,5,10]. The
reported results in all tables are mean and std of three runs of an algorithm

We first set dir= 0.5 for CIFAR-10/100 and evaluate two settings: (1) Original labels, using naturally
imbalanced labels; (2) Flipped labels, where 20% of positive labels are randomly flipped to negative. Test AUC
results are shown in Tables 1 and 2. Our proposed methods (Minimax and PSM) consistently outperform
all baselines across datasets and settings. For instance, on CIFAR-100, PSM improves AUC by 5–6%
over the best baseline; on the Insurance dataset, PSM surpasses FedAVG by over 4%. Under label flips,
Minimax and PSM also significantly outperform baselines. Our proposed methods, CyCP-Minimax and
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CyCP-PSM, achieve superior performance to these random-sampling baselines in most cases since random
sampling does not ensure comprehensive population coverage, which is essential for mitigating non-IID
bias. We also emphasize that random sampling implicitly assumes that all sampled clients are available to
participate, an assumption that often breaks down in real-world federated environments. In contrast, cyclic
client participation overcomes these limitations by utilizing predictable participation.

Sensitivity to Heterogeneity and Label Noise We further examine the impact of heterogeneity (Dirich-
let concentration dir) and label noise (flip ratio flip) on CIFAR-10, CIFAR-100, and ChestMNIST (Tables
3, 4 and 5). The trends are consistent: 1) As heterogeneity increases (smaller Dirichlet α), baseline methods
exhibit significant drops in AUC, while Minimax and PSM remain stable. 2) Under high label-flip rates
(flip=0.2), our methods maintain competitive performance, sometimes exceeding the clean-label baselines
(e.g., PSM on CIFAR-10). 3) These observations confirm that the proposed algorithms better align client
objectives despite data inconsistency and label corruption, validating their theoretical design for robust
federated AUC optimization.

Ablation on Communication Efficiency Figure 1 presents an ablation study on the communication
interval I, which controls the number of local updates before synchronization. Both Minimax and PSM
maintain stable test AUC even as I increases, demonstrating that the proposed methods can tolerate in-
frequent communication without loss of convergence quality. This property makes them well-suited for
bandwidth-constrained federated environments, where communication cost dominates training time.

Overall, the experimental results demonstrate that: 1) Performance: Minimax and PSM achieve consistent
and significant AUC improvements over state-of-the-art baselines across diverse modalities. 2) Robustness:
They remain resilient under severe class imbalance and label noise. 3) Scalability: The methods scale
effectively to large heterogeneous client populations and tolerate sparse communication. Together, these
results substantiate the practical advantages of our proposed algorithms for real-world federated learning
scenarios involving non-IID, imbalanced, and noisy data distributions.

Table 1: Experimental Results on Original Labels. (dir=0.5 for Cifar-10/100)

Cifar-10 Cifar-100 ChestMNIST Insurance

CyCp-FedAVG 0.7836 ± 0.0020 0.8894 ± 0.0012 0.6012 ± 0.0016 0.7339 ± 0.0035
A-FedAVG 0.7950 ± 0.0014 0.9137 ± 0.0028 0.5994 ± 0.0025 0.7384 ± 0.0030
A-SCAFFOLD 0.7993 ± 0.0018 0.9105 ± 0.0017 0.6015 ± 0.0022 0.7412 ± 0.0021
RS-Minimax 0.8153 ± 0.0025 0.9392 ± 0.0029 0.5697 ± 0.0031 0.7419 ± 0.0013
RS-Pairwise 0.8357 ± 0.0012 0.9688 ± 0.0010 0.6118 ± 0.0020 0.7619 ± 0.0011
CyCp-Minimax 0.8446 ± 0.0015 0.9318 ± 0.0014 0.6163 ± 0.0026 0.7616 ± 0.0017
CyCp-Pairwise 0.8480 ± 0.0008 0.9694 ± 0.0013 0.6256 ± 0.0015 0.7778 ± 0.0002

Table 2: Experimental Results on Flipped Labels (dir=0.5 for Cifar-10/100, flip=20%)

Cifar-10 Cifar-100 ChestMNIST Insurance

CyCp-FedAVG 0.7739 ± 0.0031 0.8781 ± 0.0019 0.5927 ± 0.0008 0.7292 ± 0.0029
A-FedAVG 0.7891 ± 0.0020 0.8951 ± 0.0023 0.5901 ± 0.0013 0.7298 ± 0.0035
A-SCAFFOLD 0.7950 ± 0.0025 0.9066 ± 0.0024 0.5987 ± 0.0011 0.7307 ± 0.0036
RS-Minimax 0.8170 ± 0.0021 0.9185 ± 0.0019 0.5587 ± 0.0026 0.7517 ± 0.0038
RS-Pairwise 0.8201 ± 0.0017 0.9480 ± 0.0020 0.6004 ± 0.0009 0.7173 ± 0.0043
Minimax 0.8316 ± 0.0006 0.9275 ± 0.0015 0.6150 ± 0.0007 0.7505 ± 0.0041
CyCp-Pairwise 0.8424 ± 0.0038 0.9455 ± 0.0020 0.6077 ± 0.0012 0.7722 ± 0.0018

We show ablation experiments over the communication interval in Figure 1. We can see that the algorithms
can tolerate a large number of local update steps I without degrading the performance, which verifies the
communication-efficiency of the proposed algorithms.

For more ablation experiments, please refer to Appendix F.
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Table 3: Results with different Dirichlet parameter dir and flip ratio flip on Cifar-10

dir=0.1,flip=0 dir=0.1,flip=0.2 dir=10,flip=0 dir=10,flip=0.2

CyCp-FedAVG 0.7581 ± 0.0023 0.6800 ± 0.0030 0.8227 ± 0.0025 0.8199 ± 0.0019
A-FedAVG 0.7732 ± 0.0029 0.7015 ± 0.0028 0.8354 ± 0.0033 0.8254 ± 0.0015
A-SCAFFOLD 0.7815 ± 0.0016 0.7119 ± 0.0024 0.8336 ± 0.0019 0.8315 ± 0.0011
RS-Minimax 0.7976 ± 0.0021 0.8083 ± 0.0025 0.8154 ± 0.0031 0.8086 ± 0.0016
RS-Pairwise 0.8059 ± 0.0014 0.7712 ± 0.0027 0.8304 ± 0.0032 0.8217 ± 0.0023
CyCp-Minimax 0.8184 ± 0.0018 0.8095 ± 0.0017 0.8702 ± 0.0023 0.8511 ± 0.0008
CyCp-Pairwise 0.8283 ± 0.0012 0.7828 ± 0.0020 0.8626 ± 0.0027 0.8540 ± 0.0014

Figure 1: Ablation Study: The effect of communication interval I.

Table 4: Results with different Dirichlet parameter dir and flip ratio flip on Cifar-100

dir=0.1,flip=0 dir=0.1,flip=0.2 dir=10,flip=0 dir=10,flip=0.2

CyCp-FedAVG 0.9203 ± 0.0009 0.8774 ± 0.0018 0.9587 ± 0.0025 0.9363 ± 0.0024
A-FedAVG 0.9230 ± 0.0014 0.8825 ± 0.0026 0.9605 ± 0.0030 0.9402 ± 0.0023
A-SCAFFOLD 0.9199 ± 0.0021 0.8906 ± 0.0015 0.9627 ± 0.0027 0.9421 ± 0.0016
RS-Minimax 0.9216 ± 0.0011 0.9123 ± 0.0022 0.9520 ± 0.0018 0.9266 ± 0.0030
RS-Pairwise 0.9243 ± 0.0015 0.9180 ± 0.0024 0.9601 ± 0.0017 0.9475 ± 0.0026
CyCp-Minimax 0.9299 ± 0.0013 0.9148 ± 0.0017 0.9610 ± 0.0023 0.9564 ± 0.0019
CyCp-Pairwise 0.9308 ± 0.0016 0.9123 ± 0.0028 0.9669 ± 0.0015 0.9525 ± 0.0021

Table 5: Results with different Dirichlet parameter dir and flip ratio flip on ChestMNIST

dir=0.1,flip=0 dir=0.1,flip=0.2 dir=10,flip=0 dir=10,flip=0.2

CyCp-FedAVG 0.5584 ± 0.0006 0.5329 ± 0.0003 0.6561 ± 0.0013 0.6197 ± 0.0017
A-FedAVG 0.5580 ± 0.0004 0.5334 ± 0.0006 0.6572 ± 0.0015 0.6201 ± 0.0013
A-SCAFFOLD 0.5573 ± 0.0004 0.5341 ± 0.0002 0.6568 ± 0.0016 0.6233 ± 0.0019
RS-Minimax 0.5245 ± 0.0011 0.5155 ± 0.0004 0.6541 ± 0.0008 0.6232 ± 0.0017
RS-Pairwise 0.5502 ± 0.0007 0.5338 ± 0.0009 0.6545 ± 0.0012 0.6293 ± 0.0014
CyCp-Minimax 0.5553 ± 0.0010 0.5362 ± 0.0005 0.6431 ± 0.0012 0.6318 ± 0.0018
CyCp-Pairwise 0.5598 ± 0.0009 0.5498 ± 0.0004 0.6595 ± 0.0010 0.6356 ± 0.0023
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7 Conclusion

This paper studies federated optimization of non-ERM objectives, with a focus on AUC maximization un-
der the practical constraint of cyclic client participation. We propose communication-efficient algorithms
designed for this setting. For minimax-reformulated AUC, we introduce a stagewise method with auxiliary
sequences to manage cyclic dependencies. For general pairwise losses, we develop an active-passive strategy
that shares prediction scores across clients. We provide theoretical guarantees on both iteration and com-
munication complexity, and validate the effectiveness of our algorithms on diverse tasks involving 50–100
clients.

8 Limitations and Future Work

Our work has several limitations. First, the fast communication rate of Õ(1/ϵ1/2) depends on the PL con-
dition, which may limit the generalizability of the associated algorithms. Second, the convergence rates in
both the PL and non-PL regimes have not yet reached known lower bounds, leaving room for improvement.
Third, developing methods to formally ensure differential privacy remains an open question. Finally, ex-
tending our approach beyond AUC maximization to a broader class of non-ERM objectives constitutes an
important direction for future research.
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A Notations

Table 6: Notations

w ∈ Rd Model parameters of the neural network, variables to be trained
we,k
m,t ∈ Rd Model parameters of machine m of group k at epoch e, iteration t, stage index is omitted when context ic clear

a, b, α ∈ R1 Introduced variables in minimax objective function
v = (w, a, b) ∈ Rd+2 Primal variable in minimax objective function.
we,k,ve,k, αe,k Outputs of group/round k of epoch e. Averages over all participating clients.
z A data point
zi A data point from machine i
ze,km,t A data point sampled on machine m of group k at epoch e, iteration t

ze,km,t,1, z
e,k
m,t,2 Two independent data points (positive and negative, respectively) sampled on machine m of group k at epoch e, iteration t

h(w; z) ∈ R1 The prediction score of data z by network w
[X] The set of integers {1, 2, . . . , X}, where X is an integer.
Ge,km,t,1, G

e,k
m,t,2 Local stochastic estimators of components of gradient

He1,He2 Global buffers of historical prediction scores for positive and negative data.
He,km,1,H

e,k
m,2 Collected historical prediction scores on machine m of group/round k at epoch e

Re,ki,1 ,R
e,k
i,2 Trasmitted buffer from server to client

he−1
ϵ , he−1

ζ Predictions scores sampled from the collected scores of epoch e− 1

B Analysis of CyCp Minimax

B.1 Auxiliary Lemmas

For the stagewise algorithm for minimax problem, we define the duality gap of s-th stage at a point (v, α)
as

Gaps(v, α) = max
α′

fs(v, α′)−min
v′

fs(v′, α). (15)

Before we show the proofs, we first present the auxiliary lemmas from Yan et al. (2020).
Lemma B.1 (Lemma 1 of Yan et al. (2020)). Suppose a function f(v, α) is λ1-strongly convex in v and
λ2-strongly concave in α. Consider the following problem

min
v∈X

max
α∈Y

f(v, α),

where X and Y are convex compact sets. Denote v̂f (α) = arg min
v′∈X

f(v′, α) and α̂f (v) = arg max
α′∈Y

f(v, α′).
Suppose we have two solutions (v0, α0) and (v1, α1). Then the following relation between variable distance
and duality gap holds

λ1

4 ∥v̂f (α1)− v0∥2 + λ2

4 ∥α̂f (v1)− α0∥2 ≤max
α′∈Y

f(v0, α
′)− min

v′∈X
f(v′, α0)

+ max
α′∈Y

f(v1, α
′)− min

v′∈X
f(v′, α1).

(16)

□

Lemma B.2 (Lemma 5 of Yan et al. (2020)). We have the following lower bound for Gaps(vs, αs)

Gaps(vs, αs) ≥
3
50Gaps+1(vs+1

0 , αs+1
0 ) + 4

5(ϕ(vs+1
0 )− ϕ(vs0)),

where vs+1
0 = vs and αs+1

0 = αs, i.e., the initialization of (s+ 1)-th stage is the output of the s-th stage.

B.2 Lemmas

Utilizing the strong convexity/concavity and smoothness of f(·, ·), we have the following lemma.
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Lemma B.3. Suppose Assumption 4.1 holds and by running Algorithm 1 with input (v0,0, α0,0). For any
(v, α), the outputs (v̄, ᾱ) satisfies

fs(v̄, α) − fs(v, ᾱ) ≤ 1
E

E−1∑
e=0

[fs(ve+1,0, α) − fs(v, αe+1,0)]

≤ 1
E

E−1∑
e=0

[
⟨∂vf

s(ve,0, αe,0),ve+1,0 − v⟩︸ ︷︷ ︸
A1

+ ⟨∂αf
s(ve,0, αe,0), α− αe+1,0⟩︸ ︷︷ ︸

A2

+ 3ℓ+ 3ℓ2/µ2

2 ∥ve+1,0 − ve,0∥2 + 2ℓ(αe+1,0 − αe,0)2︸ ︷︷ ︸
A3

− ℓ

3∥v − ve,0∥2 − µ2

3 (αe,0 − α)2
]
.

Proof. For any v and α, using Jensen’s inequality and the fact that fs(v, α) is convex in v and concave in
α,

fs(v̄, α) − fs(v, ᾱ) ≤ 1
E

E∑
e=1

(
fs(ve,0, α) − fs(v, αe,0)

)
. (17)

By ℓ-strongly convexity of fs(v, α) in v, we have

fs(ve,0, αe,0) + ⟨∂vf
s(ve,0, αe,0),v− ve,0⟩+ ℓ

2∥v
e,0 − v∥2 ≤ f(v, αe,0). (18)

By 3ℓ-smoothness of fs(v, α) in v, we have

fs(ve+1,0, α) ≤ fs(ve,0, α) + ⟨∂vf
s(ve,0, α),ve+1,0 − ve,0⟩+ 3ℓ

2 ∥v
e+1,0 − ve,0∥2

= fs(ve,0, α) + ⟨∂vf
s(ve,0, αe,0),ve+1,0 − ve,0⟩+ 3ℓ

2 ∥v
e+1,0 − ve,0∥2

+ ⟨∂vf
s(ve,0, α)− ∂vf

s(ve,0, αe,0),ve+1,0 − ve,0⟩
(a)
≤ fs(ve,0, α) + ⟨∂vf

s(ve,0, αe,0),ve+1,0 − ve,0⟩+ 3ℓ
2 ∥v

e+1,0 − ve,0∥2

+ ℓ|αe,0 − α|∥ve+1,0 − ve,0∥
(b)
≤ fs(ve,0, α) + ⟨∂vf

s(ve,0, αe,0),ve+1,0 − ve,0⟩+ 3ℓ
2 ∥v

e+1,0 − ve,0∥2

+ µ2

6 (αe,0 − α)2 + 3ℓ2

2µ2
∥v̄e+1,0 − ve,0∥2,

(19)

where (a) holds because that we know ∂vf(v, α) is ℓ-Lipschitz in α since f(v, α) is ℓ-smooth, (b) holds by
Young’s inequality, and µ2 = 2p(1− p) is the strong concavity coefficient of fs in α.
Adding (18) and (19), rearranging terms, we have

fs(ve,0, αe,0) + fs(ve+1,0, α)

≤ f(v, αe,0) + f(ve,0, α) + ⟨∂vf(ve,0, αe,0),ve+1,0 − v⟩ + 3ℓ+ 3ℓ2/µ2

2 ∥ve+1,0 − ve,0∥2

− ℓ

2∥ve,0 − v∥2 + µ2

6 (αe,0 − α)2.

(20)

We know that −f(v, α) is µ2-strong convexity of in α. Thus, we have

−fs(ve,0, αe,0) − ∂αf
s(ve,0, αe,0)⊤(α− αe,0) + µ2

2 (α− αe,0)2 ≤ −fs(ve,0, α). (21)
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Since f(v, α) is ℓ-smooth in α, we get

− fs(v, αe+1,0) ≤ −fs(v, αe,0) − ⟨∂αf
s(v, αe,0), αe+1,0 − αe,0⟩ + ℓ

2(αe+1,0 − αe,0)2

= −fs(v, αe,0) − ⟨∂αf
s(ve,0, αe,0), αe+1,0 − αe,0⟩ + ℓ

2(αe+1,0 − αe,0)2

− ⟨∂αf
s(v, αe,0) − ∂αf

s(ve,0, αe,0), αe+1,0 − αe,0⟩
(a)
≤ −fs(v, αe,0) − ⟨∂αf

s(ve,0, αe,0), αe+1,0 − αe,0⟩ + ℓ

2(αe+1,0 − αe,0)2 + ℓ∥v − ve,0∥|αe+1,0 − αe,0|

≤ −fs(v, αe,0) − ⟨∂αf
s(ve,0, αe,0), αe+1,0 − αe,0⟩ + ℓ

2(αe+1,0 − αe,0)2 + ℓ

6∥ve,0 − v∥2 + 3ℓ
2 (αe+1,0 − αe,0)2,

(22)

where (a) holds because that ∂αfs(v, α) is ℓ-Lipschitz in v.
Adding (21), (22) and arranging terms, we have

− fs(ve,0, αe,0) − fs(v, αe+1,0) ≤ −fs(ve,0, α) − fs(v, αe,0) − ⟨∂αf
s(ve,0, αe,0), αe+1,0 − α⟩

+ 2ℓ(αe+1,0 − αe,0)2 + ℓ

6∥ve,0 − v∥2 − µ2

2 (α− αe,0)2.
(23)

Adding (20) and (23), we get

fs(ve+1,0, α)− fs(v, αe+1,0) ≤ ⟨∂vf(ve,0, αe,0),ve+1,0 − v⟩ − ⟨∂αf(ve,0, αe,0), αe+1,0 − α⟩

+ 3ℓ+ 3ℓ2/µ2

2 ∥ve+1,0 − ve,0∥2 + 2ℓ(αe+1,0 − αe−1,0)2 − ℓ

3∥v
e,0 − v∥2 − µ2

3 (αe,0 − α)2.
(24)

Taking average over e, k, t, we get

fs(v̄, α) − fs(v, ᾱ) ≤ 1
E

E−1∑
e=0

[fs(ve+1,0, α) − fs(v, αe+1,0)]

≤ 1
E

E−1∑
e=0

[
⟨∂vf

s(ve,0, αe,0),ve+1,0 − v⟩︸ ︷︷ ︸
A1

+ ⟨∂αf
s(ve,0, αe,0), α− αe+1,0⟩︸ ︷︷ ︸

A2

+ 3ℓ+ 3ℓ2/µ2

2 ∥ve+1,0 − ve,0∥2 + 2ℓ(αe+1,0 − αe,0)2︸ ︷︷ ︸
A3

− ℓ

3∥v − ve,0∥2 − µ2

3 (αe,0 − α)2
]
.

In the following, we will bound the term A1 by Lemma 4.3, A2 by Lemma B.4.

Proof of Lemma 4.3 .

Proof.

⟨∇vf
s(ve,0, αe,0),ve+1,0 − v⟩ =

〈
1
K

K∑
k=1

1
M

∑
m∈Ge,k

∇vf
s
k,m(ve,0, αe,0),ve+1,0 − v

〉

=
〈

1
K

K∑
k=1

1
M

∑
m∈Ge,k

[ 1
I

∑
t

∇vf
s
k,m(ve,0, αe,0)]− 1

K

K∑
k=1

1
M

∑
m∈Ge,k

[ 1
I

∑
t

∇vF
s
k,m(ve,km,t, α

e,k
m,t; ze,km,t)],ve+1,0 − v

〉
3⃝

+
〈

1
K

K∑
k=1

1
M

∑
m∈Ge,k

[ 1
I

∑
t

∇vF
s
k,m(ve,km,t, α

e,k
m,t; ze,km,t)],ve+1,0 − v

〉
4⃝.

(25)
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Using v̂e+1,0 = ve,0 − ηI
K∑
k=1

1
M

∑
m∈Ge,k

∇vf
s(ve,0, αe,0), then we have

ve+1,0 − v̂e+1,0 = η

( K∑
k=1

1
M

∑
m∈Ge,k

I∑
t=1
∇vf

s
k,m(ve,0, αe,0)−

K∑
k=1

1
M

∑
m∈Ge,k

I∑
t=1
∇vf

s
k,m(ve,km,t, α

e,k
m,t; ze,km,t)

)
.

(26)

Hence we get

3⃝ =
〈

1
K

K∑
k=1

1
M

∑
m∈Ge,k

[ 1
I

∑
t

∇vf
s
k,m(ve,0, αe,0)]− 1

K

K∑
k=1

1
M

∑
m∈Ge,k

[ 1
I

∑
t

∇vF
s
k,m(ve,km,t, α

e,k
m,t; ze,km,t)],ve+1,0 − v̂e+1,0

〉

+
〈

1
K

K∑
k=1

1
M

∑
m∈Ge,k

[ 1
I

∑
t

∇vf
s
k,m(ve,0, αe,0)]− 1

K

K∑
k=1

1
M

∑
m∈Ge,k

[ 1
I

∑
t

∇vF
s
k,m(ve,km,t, α

e,k
m,t; ze,km,t)], v̂e+1,0 − v

〉

= ηKI

∥∥∥∥∥∥ 1
K

K∑
k=1

1
M

∑
m∈Ge,k

1
I

∑
t

[∇vf
s
k,m(ve,0, αe,0)−∇vF

s
k,m(ve,km,t, α

e,k
m,t; z

e,k
m,t)]

∥∥∥∥∥∥
2

+
〈

1
K

K∑
k=1

1
M

∑
m∈Ge,k

[ 1
I

∑
t

∇vf
s
k,m(ve,0, αe,0)]− 1

K

K∑
k=1

1
M

∑
m∈Ge,k

[ 1
I

∑
t

∇vF
s
k,m(ve,0, αe,0; ze,km,t)], v̂e+1,0 − v

〉

+
〈

1
K

K∑
k=1

1
M

∑
m∈Ge,k

[ 1
I

∑
t

∇vF
s
k,m(ve,0, αe,0; ze,km,t)]−

1
K

K∑
k=1

1
M

∑
m∈Ge,k

[ 1
I

∑
t

∇vF
s
k,m(ve,km,t, α

e,k
m,t; ze,km,t)], v̂e+1,0 − v

〉
,

(27)

where〈
1
K

K∑
k=1

1
M

∑
m∈Ge,k

[ 1
I

∑
t

∇vF
s
k,m(ve,0, αe,0; ze,km,t)]−

1
K

K∑
k=1

1
M

∑
m∈Ge,k

[ 1
I

∑
t

∇vF
s
k,m(ve,km,t, α

e,k
m,t; ze,km,t)], v̂e+1,0 − v

〉

≤ 3ℓ 1
K

K∑
k=1

1
M

∑
m∈Ge,k

1
I

∑
t

∥ve,0 − ve,km,t∥2 + ℓ

6∥v̂
e+1,0 − v∥2.

(28)

Define another auxiliary sequence as

ṽe+1,0 = ṽe,0 − η

M

K∑
k=1

∑
m∈Ge,k

I∑
t=1

(
∇vF

s
k,m(ve,0, αe,0; ze,km,t)−∇vf

s
k,m(ve,0, αe,0)

)
, for t > 0; ṽ0 = v0. (29)

Denote

Θe(v) =

 1
M

K∑
k=1

∑
m∈Ge,k

I∑
t=1

(
∇vf

s
k,m(ve,0, αe,0)−∇vF

s
k,m(ve,0, αe,0; ze,km,t)

)⊤

v + 1
2η ∥v− ṽe,0∥2. (30)

Hence, for the auxiliary sequence α̃t, we can verify that

ṽe+1,0 = arg min
v

Θe(v). (31)
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Since Θe(v) is 1
η -strongly convex, we have

1
2η ∥v − ṽe+1,0∥2 ≤ Θe(v) − Θe(ṽe+1,0)

=

(
1
M

K∑
k=1

∑
m∈Ge,k

I∑
t=1

(
∇vf

s
k,m(ve,0, αe,0) − ∇vF

s
k,m(ve,0, αe,0; ze,k

m,t)
))⊤

v + 1
2η ∥v − ṽe,0∥2

−

(
1
M

K∑
k=1

∑
m∈Ge,k

I∑
t=1

(
∇vf

s
k,m(ve,0, αe,0) − ∇vF

s
k,m(ve,0, αe,0; ze,k

m,t)
))⊤

ṽe+1,0 − 1
2η ∥ṽe+1,0 − ṽe,0∥2

=

(
1
M

K∑
k=1

∑
m∈Ge,k

I∑
t=1

(
∇vf

s
k,m(ve,0, αe,0) − ∇vF

s
k,m(ve,0, αe,0; ze,k

m,t)
))⊤

(v − ṽe,0) + 1
2η ∥v − ṽe,0∥2

−

(
1
M

K∑
k=1

∑
m∈Ge,k

I∑
t=1

(
∇vf

s
k,m(ve,0, αe,0) − ∇vF

s
k,m(ve,0, αe,0; ze,k

m,t)
))⊤

(ṽe+1,0 − ṽe,0) − 1
2η ∥ṽe+1,0 − ṽe,0∥2

≤

(
1
M

K∑
k=1

∑
m∈Ge,k

I∑
t=1

(
∇vf

s
k,m(ve,0, αe,0) − ∇vF

s
k,m(ve,0, αe,0; ze,k

m,t)
))⊤

(v − ṽe,0) + 1
2η ∥v − ṽe,0∥2

+ η

2

∥∥∥∥ 1
M

K∑
k=1

∑
m∈Ge,k

I∑
t=1

(
∇vf

s
k,m(ve,0, αe,0) − ∇vF

s
k,m(ve,0, αe,0; ze,k

m,t)
) ∥∥∥∥2

.

(32)

Multiplying 1/KI on both sides and adding this with (27), we get

3⃝ ≤ηKI
∥∥∥∥ 1
MKI

K∑
k=1

∑
m∈Ge,k

I∑
t=1

(
∇vf

s
k(ve,0, αe,0)−∇vF

s
k (ve,km,t, α

e,k
m,t; z

e,k
m,t)

)∥∥∥∥2

+ ηKI

2

∥∥∥∥ 1
MKI

K∑
k=1

∑
m∈Ge,k

I∑
t=1

(
∇vf

s
k(ve,0, αe,0)−∇vF

s
k (ve,0, αe,0; ze,km,t)

)∥∥∥∥2

+ 1
2ηKI ∥v− ṽe,0∥2 − 1

2ηKI ∥v− ṽe+1,0∥2

+
〈

1
MKI

K∑
k=1

∑
m∈Ge,k

I∑
t=1

(
∇vf

s
k(ve,0, αe,0)−∇vF

s
k (ve,0, αe,0; ze,km,t)

)
, v̂e+1,0 − ṽe,0

〉
.

(33)

where

E

〈
1

MKI

K∑
k=1

∑
m∈Ge,k

I∑
t=1

(
∇vf

s
k(ve,0, αe,0)−∇vF

s
k (ve,0, αe,0; ze,km,t)

)
, v̂e+1,0 − ṽe,0

〉
= 0. (34)

4⃝ can be bounded as

4⃝ = − 1
ηKI

⟨ve+1,0 − ve,0,ve+1,0 − v⟩ = 1
2ηKI (∥ve,0 − v∥2 − ∥ve,0 − ve+1,0∥2 − ∥ve+1,0 − v∥2). (35)
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Plugging (33) and (35) into (25) and noting ηKI ≤ O(1), we get

Ee,0
〈
∇vf(ve,0, αe,0),ve+1,0 − v

〉
≤ 3ηKIE

∥∥∥∥∥∥ 1
MKI

K∑
k=1

∑
m∈Ge,k

I∑
t=1

(
∇vF

s
k (ve,0, αe,0; ze,km,t)−∇vf

s
k(ve,0, αe,0)

)∥∥∥∥∥∥
2

+ 5ℓ
KMI

∑
k

∑
m∈Ge,k

∑
t

E(∥ve,0 − ve,km,t∥2 + ∥αe,0 − αe,km,t∥2)

+ 1
2ηKIE(∥ve,0 − v∥2 − ∥ve,0 − ve+1,0∥2 − ∥ve+1,0 − v∥2)

+ 1
2ηKI (∥v− ṽe,0∥2 − ∥v− ṽe+1,0∥2) + ℓ

3E∥v̂
e+1,0 − v∥2

≤ 6η̃Kσ2

MKI
+ 6ℓ
KMI

∑
k

∑
m∈Ge,k

∑
t

E(∥ve,0 − ve,km,t∥2 + ∥αe,0 − αe,km,t∥2) + ℓ

3∥v
e+1,0 − v∥2

+ 1
2ηKIE(∥ve,0 − v∥2 − ∥ve,0 − ve+1,0∥2 − ∥ve+1,0 − v∥2) + 1

2ηKI (∥v− ṽe,0∥2 − ∥v− ṽe+1,0∥2),

where the last inequality uses

∥v̂e+1,0 − v∥2 ≤ 2∥v̂e+1,0 − ve+1,0∥2 + 2∥ve+1,0 − v∥2, (36)

and ∥v̂e+1,0 − ve+1,0∥2 is addressed similarly as before in 3⃝.

Similarly, A2 can be bounded as

Lemma B.4. Define α̂e+1,0 = αe,0 + η
K∑
k=1

1
M

∑
m∈Ge,k

I∑
t=1
∇αfsk,m(ve,0, αe,0).

α̃e+1,0 = α̃e,0 + η

M

K∑
k=1

∑
m∈Ge,k

I∑
t=1

(
∇αF sk (ve,0, αe,0; ze,km,t) +∇αfsk(ve,0, αe,0)

)
, for t > 0; α̃0 = α0. (37)

Ee,0
〈
∇αf(ve,0, αe,0), αe+1,0 − α

〉
≤ 6η̃Kσ2

MKI
+ 6ℓ
KMI

∑
k

∑
m∈Ge,k

∑
t

E(∥ve,0 − ve,km,t∥2 + ∥αe,0 − αe,km,t∥2) + ℓ

3E∥α
e+1,0 − α∥2

+ 1
2ηKIE(∥αe,0 − α∥2 − ∥αe,0 − αe+1,0∥2 − ∥αe+1,0 − α∥2) + 1

2ηKIE(∥α− α̃e,0∥2 − ∥α− α̃e+1,0∥2).

□

With the above lemmas, we are ready to give the convergence in one stage.

B.3 Convergence Analysis of a Single Stage in CyCp-Minimax

We have the following lemma to bound the convergence for the subproblem in each s-th stage.
Lemma B.5. (One call of Algorithm 1) Let (v̄, ᾱ) be the output of Algorithm 1. Suppose Assumption 4.1
hold. By running Algorithm 1 with given input v0, α0 for T iterations, γ = 2ℓ, and η ≤ min( 1

3ℓ+3ℓ2/µ2
, 1

4ℓ ),
we have for any v and α

E[fs(v̄, α)− fs(v, ᾱ)] ≤ 1
ηT
∥v0 − v∥2 + 1

ηT
(α0 − α)2 +

(
3ℓ2

2µ2
+ 3ℓ

2

)
36η2I2D2︸ ︷︷ ︸

A1

+3ησ2

K
,
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where µ2 = 2p(1− p) is the strong concavity coefficient of f(v, α) in α.

Proof. By the updates of w, we obtain

E∥ve+1,0 − ve,0∥2 = η̃2E

∥∥∥∥∥∥ 1
MI

K∑
k=1

∑
m∈Ge,k

∑
t

(∇vf
s
k,m(ve,km,t, α

e,k
m,t; ze,km,t))

∥∥∥∥∥∥
2

≤ η̃2K2G2,

E∥αe+1,0 − αe,0∥2 ≤ η̃2K2G2,

E∥ve,km,t − ve,0∥2 ≤ η̃2K2G2,

E∥αe,km,t − αe,0∥2 ≤ η̃2K2G2.

(38)

Plugging Lemma 4.3 and Lemma B.4 into Lemma B.3, and taking expectation, we get

E[fs(v̄, α) − fs(v, ᾱ)]

≤ 1
E

E∑
e=1

E

[(
3ℓ+ 3ℓ2/µ2

2 − 1
2ηKI

)
∥ve,0 − ve+1,0∥2 +

(
2ℓ− 1

2ηKI

)
∥αe+1,0 − αe,0∥2︸ ︷︷ ︸

C1

+
(

1
2ηKI − µ2

3

)
∥αe,0 − α∥2 −

(
1

2ηKI − µ2

3

)
(αe+1,0 − α)2︸ ︷︷ ︸

C2

+
(

1
2ηKI − ℓ

3

)
∥ve,0 − v∥2 −

(
1

2ηKI − ℓ

3

)
∥ve+1,0 − v∥2︸ ︷︷ ︸

C3

+ 1
2ηKI ((α− α̃e,0)2 − (α− α̃e+1,0)2)︸ ︷︷ ︸

C4

+ 1
2ηKI (∥v − ṽe,0∥2 − ∥v − ṽe+1,0∥2)︸ ︷︷ ︸

C5

+
(

3ℓ2

2µ2
+ 3ℓ

2

)
1
K

K∑
k=1

1
M

∑
m∈Ge,k

1
I

I∑
t=1

∥ve,0 − ve,k
m,t∥

2 +
(

3ℓ
2 + 3ℓ2

2µ2

)
1
K

K∑
k=1

1
M

∑
m∈Ge,k

1
I

I∑
t=1

(αe,0 − αe,k
m,t)

2

︸ ︷︷ ︸
C6

+ 3η̃Kσ2

MKI
(39)

Since η ≤ min( 1
3ℓ+3ℓ2/µ2

, 1
4ℓ ), thus in the RHS of (39), C1 can be canceled. C2, C3, C4 and C5 will be handled

by telescoping sum. C6 can be bounded by (38).

Taking telescoping sum, it yields

E[fs(v̄, α)− fs(v, ᾱ)

≤ 1
4ηEKI ∥v0 − v∥2 + 1

4ηEKI ∥α0 − α∥2 +
(

3ℓ2

2µ2
+ 3ℓ

2

)
36η2I2K2G2 + 3ησ2

M
.
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B.4 Main Proof of Theorem 4.5

Proof. Since f(v, α) is ℓ-smooth (thus ℓ-weakly convex) in v for any α, ϕ(v) = max
α′

f(v, α′) is also ℓ-weakly
convex. Taking γ = 2ℓ, we have

ϕ(vs−1) ≥ ϕ(vs) + ⟨∂ϕ(vs),vs−1 − vs⟩ −
ℓ

2∥vs−1 − vs∥2

= ϕ(vs) + ⟨∂ϕ(vs) + 2ℓ(vs − vs−1),vs−1 − vs⟩+ 3ℓ
2 ∥vs−1 − vs∥2

(a)= ϕ(vs) + ⟨∂ϕs(vs),vs−1 − vs⟩+ 3ℓ
2 ∥vs−1 − vs∥2

(b)= ϕ(vs)−
1
2ℓ ⟨∂ϕs(vs), ∂ϕs(vs)− ∂ϕ(vs)⟩+ 3

8ℓ∥∂ϕs(vs)− ∂ϕ(vs)∥2

= ϕ(vs)−
1
8ℓ∥∂ϕs(vs)∥

2 − 1
4ℓ ⟨∂ϕs(vs), ∂ϕ(vs)⟩+ 3

8ℓ∥∂ϕ(vs)∥2,

(40)

where (a) and (b) hold by the definition of ϕs(v).

Rearranging the terms in (40) yields

ϕ(vs)− ϕ(vs−1) ≤ 1
8ℓ∥∂ϕs(vs)∥

2 + 1
4ℓ ⟨∂ϕs(vs), ∂ϕ(vs)⟩ −

3
8ℓ∥∂ϕ(vs)∥2

(a)
≤ 1

8ℓ∥∂ϕs(vs)∥
2 + 1

8ℓ (∥∂ϕs(vs)∥2 + ∥∂ϕ(vs)∥2)− 3
8ℓ∥ϕ(vs)∥2

= 1
4ℓ∥∂ϕs(vs)∥

2 − 1
4ℓ∥∂ϕ(vs)∥2

(b)
≤ 1

4ℓ∥∂ϕs(vs)∥
2 − µ

2ℓ (ϕ(vs)− ϕ(v∗))

(41)

where (a) holds by using ⟨a,b⟩ ≤ 1
2 (∥a∥2 + ∥b∥2), and (b) holds by the µ-PL property of ϕ(v).

Thus, we have

(4ℓ+ 2µ) (ϕ(vs)− ϕ(v∗))− 4ℓ(ϕ(vs−1)− ϕ(v∗)) ≤ ∥∂ϕs(vs)∥2. (42)

Since γ = 2ℓ, fs(v, α) is ℓ-strongly convex in v and µ2 = 2p(1− p) strong concave in α. Apply Lemma B.1
to fs, we know that

ℓ

4∥v̂s(αs)− vs0∥2 + µ2

4 ∥α̂s(vs)− α
s
0∥2 ≤ Gaps(vs0, αs0) + Gaps(vs, αs). (43)

By the setting of ηs = η0 exp
(
−(s− 1) 2µ

c+2µ

)
, and Ts = EsKIs = 212

η0 min{ℓ,µ2} exp
(

(s− 1) 2µ
c+2µ

)
, we note

that 1
ηsTs

≤ min{ℓ,µ2}
212 . Set Is such that

(
3ℓ2

2µ2
+ 3ℓ

2

)
36η2

sI
2
sK

2G2 ≤ ηsσ
2

M , where the specific choice of Is will
be made later. Applying Lemma B.5 with v̂s(αs) = arg min

v′
fs(v′, αs) and α̂s(vs) = arg max

α′
fs(vs, α′), we

have

E[Gaps(vs, αs)] ≤
4ηsσ2

M
+ 1

53E
[
ℓ

4∥v̂s(αs)− vs0∥2 + µ2

4 ∥α̂s(vs)− α
s
0∥2
]

≤ 4ηsσ2

M
+ 1

53E [Gaps(vs0, αs0) + Gaps(vs, αs)] .
(44)
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Since ϕ(v) is L-smooth and γ = 2ℓ, then ϕs(v) is L̂ = (L + 2ℓ)-smooth. According to Theorem 2.1.5 of
(Nesterov, 2004), we have

E[∥∂ϕs(vs)∥2] ≤ 2L̂E(ϕs(vs)− min
x∈Rd

ϕs(v)) ≤ 2L̂E[Gaps(vs, αs)]

= 2L̂E[4Gaps(vs, αs)− 3Gaps(vs, αs)]

≤ 2L̂E
[
4
(

4ηsσ2

M
+ 1

53 (Gaps(vs0, αs0) + Gaps(vs, αs))
)
− 3Gaps(vs, αs)

]
= 2L̂E

[
16ηsσ2

M
+ 4

53Gaps(vs0, αs0)− 155
53 Gaps(vs, αs)

]
.

(45)

Applying Lemma B.2 to (45), we have

E[∥∂ϕs(vs)∥2] ≤ 2L̂E
[

16ηsσ2

M
+ 4

53Gaps(vs0, αs0)

− 155
53

(
3
50Gaps+1(vs+1

0 , αs+1
0 ) + 4

5(ϕ(vs+1
0 )− ϕ(vs0))

)]
= 2L̂E

[
16ηsσ2

M
+ 4

53Gaps(vs0, αs0)− 93
530Gaps+1(vs+1

0 , αs+1
0 )− 124

53 (ϕ(vs+1
0 )− ϕ(vs0))

]
.

(46)

Combining this with (42), rearranging the terms, and defining a constant c = 4ℓ+ 248
53 L̂ ∈ O(L+ ℓ), we get

(c+ 2µ)E[ϕ(vs+1
0 )− ϕ(v∗)] + 93

265 L̂E[Gaps+1(vs+1
0 , αs+1

0 )]

≤
(

4ℓ+ 248
53 L̂

)
E[ϕ(vs0)− ϕ(v∗)] + 8L̂

53 E[Gaps(vs0, αs0)] + 32ηsL̂σ2

M

≤ cE

[
ϕ(vs0)− ϕ(v∗) + 8L̂

53cGaps(vs0, αs0)
]

+ 32ηsL̂σ2

M
.

(47)

Using the fact that L̂ ≥ µ,

(c+ 2µ) 8L̂
53c =

(
4ℓ+ 248

53 L̂+ 2µ
)

8L̂
53(4ℓ+ 248

53 L̂)
≤ 8L̂

53 + 16µL̂
248L̂

≤ 93
265 L̂. (48)

Then, we have

(c+ 2µ)E
[
ϕ(vs+1

0 )− ϕ(v∗) + 8L̂
53cGaps+1(vs+1

0 , αs+1
0 )

]

≤ cE

[
ϕ(vs0)− ϕ(v∗) + 8L̂

53cGaps(vs0, αs0)
]

+ 32ηsL̂σ2

M
.

(49)

Defining ∆s = ϕ(vs0)− ϕ(v∗) + 8L̂
53cGaps(vs0, αs0), then

E[∆s+1] ≤ c

c+ 2µE[∆s] + 32ηsL̂σ2

(c+ 2µ)M
(50)

Using this inequality recursively, it yields

E[∆S+1] ≤
(

c

c+ 2µ

)S
E[∆1] + 32L̂σ2

(c+ 2µ)M

S∑
s=1

(
ηs

(
c

c+ 2µ

)S−s
)
. (51)

28



Published in Transactions on Machine Learning Research (01/2026)

By definition,

∆1 = ϕ(v1
0)− ϕ(v∗) + 8L̂

53cĜap1(v1
0, α

1
0)

= ϕ(v0)− ϕ(v∗) + 8L̂
53c

(
f(v0, α̂1(v0)) + γ

2 ∥v0 − v0∥2 − f(v̂1(α0), α0)− γ

2 ∥v̂1(α0)− v0∥2
)

≤ ϵ0 + 8L̂
53c (f(v0, α̂1(v0))− f(v̂(α0), α0)) ≤ 2ϵ0.

(52)

Using inequality 1− x ≤ exp(−x), we have

E[∆S+1] ≤ exp
(
−2µS
c+ 2µ

)
E[∆1] + 32η0L̂σ

2

(c+ 2µ)M

S∑
s=1

exp
(
− 2µS
c+ 2µ

)

≤ 2ϵ0 exp
(
−2µS
c+ 2µ

)
+ 32η0L̂σ

2

(c+ 2µ)MS exp
(
− 2µS

(c+ 2µ)

)
.

To make this less than ϵ, it suffices to make

2ϵ0 exp
(
−2µS
c+ 2µ

)
≤ ϵ

2 ,

32η0L̂σ
2

(c+ 2µ)MS exp
(
− 2µS
c+ 2µ

)
≤ ϵ

2 .
(53)

Let S be the smallest value such that exp
(

−2µS
c+2µ

)
≤ min{ ϵ

4ϵ0
, (c+2µ)Mϵ

64η0L̂Sσ2 }. We can set S =

max
{
c+2µ

2µ log 4ϵ0
ϵ ,

c+2µ
2µ log 64η0L̂Sσ

2

(c+2µ)Mϵ

}
.

Then, the total iteration complexity is

S∑
s=1

Ts ≤ O

(
424

η0 min{ℓ, µ2}

S∑
s=1

exp
(

(s− 1) 2µ
c+ 2µ

))

≤ O
(

1
η0 min{ℓ, µ2}

exp(S 2µ
c+2µ )− 1

exp( 2µ
c+2µ )− 1

)
(a)
≤ Õ

(
c

η0µmin{ℓ, µ2}
max

{
ϵ0
ϵ
,

η0L̂Sσ
2

(c+ 2µ)Mϵ

})

≤ Õ
(

max
{

(L+ ℓ)ϵ0
η0µmin{ℓ, µ2}ϵ

,
(L+ ℓ)2σ2

µ2 min{ℓ, µ2}Mϵ

})
≤ Õ

(
max

{
1

µ1µ2
2ϵ
,

1
µ2

1µ
3
2Mϵ

})
,

(54)

where (a) uses the setting of S and exp(x)− 1 ≥ x, and Õ suppresses logarithmic factors.

ηs = η0 exp(−(s− 1) 2µ
c+2µ ), Ts = 212

η0µ2
exp

(
(s− 1) 2µ

c+2µ

)
.

Next, we will analyze the communication cost.

To assure
(

3ℓ2

2µ2
+ 3ℓ

2

)
36η2I2

sK
2G2 ≤ ηsσ

2

M which we used in above proof, we need to take Is = O( 1
K
√
ηsM

).

If 1
K
√
η0M

≤ O(1), for s ≤ S2 := O( c+2µ
2µ log(Mη0)), we take then Is = 1 and correspondingly Es = Ts/KIs =

Ts/K. For s > S2, Is = O( exp((s−1) µ
c+2µ )

K(η0M)1/2 ), and correspondingly Es = Ts/KIs = O(KM1/2 exp((s−1) µ
c+2µ )).
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We have

S2∑
s=1

Ts =
S2∑
s=1

O

(
212
η0

exp
(

(s− 1) 2µ
c+ 2µ

))
= Õ

(
M

µ

)
. (55)

Thus, the communication complexity can be bounded by

S2∑
s=1

Ts +
S∑

s=S2+1

Ts
Is

= Õ

(
K

µ
+
√
MK exp

(
(s− 1) 2µ

c+2µ

2

))

≤ Õ(M
µ

+
√
MK

exp
(
S
2

2µ
c+2µ

)
− 1

exp µ
c+2µ − 1 ) ≤ O

(
M

µ
+ K

µ3/2ϵ1/2

)
.

(56)

C Analysis of CyCp-FedX

In this section, we show the analysis of Theorem 5.2.

Proof. We denote

G1(w, z,w′, z′) = ∇1ψ(h(w; z), h(w; z′))⊤∇h(w; z)
G2(w; z,w′; z′) = ∇2ψ(h(w; z), h(w; z′))⊤∇h(w; z′)

Ge,km,t,1 = ∇1ψ(h(we,k
m,t, z

e,k
m,t,1), h2,ξ)∇h(we,k

m,t, z
e,k
m,t,1)

Ge,km,t,2 = ∇2ψ(h1,ξ, h(we,k
m,t, z

e,k
m,t,2))∇h(we,k

m,t, z
e,k
m,t,2)

(57)

With η̃ = ηI,

F (we+1,0)− F (we,0) ≤ ∇F (we,0)⊤(we+1,0 −we,0) + L

2 ∥w
e+1,0 −we,0∥2

= −η̃∇F (we,0)⊤ 1
MI

K∑
k=1

∑
m∈Ge,k

I∑
t=1

(Ge,km,t,1 +Ge,km,t,2) + L

2 ∥w
e+1,0 −we,0∥2

= −η̃(∇F (we,0)−∇F (we−1,0) +∇F (we−1,0))⊤ 1
MI

K∑
k=1

∑
m∈Ge,k

I∑
t=1

(Ge,km,t,1 +Ge,km,t,2) + L

2 ∥w
e+1,0 −we,0∥2

≤ 1
2L∥∇F (we,0)−∇F (we−1,0)∥2 + 2η̃2L∥ 1

MI

K∑
k=1

∑
m∈Ge,k

I∑
t=1

(Ge,km,t,1 +Ge,km,t,2)∥2

− η̃∇F (we−1,0)⊤
(

1
MI

K∑
k=1

∑
m∈Ge,k

I∑
t=1

(Ge,km,t,1 +Ge,km,t,2)
)

+ L

2 ∥w
e+1,0 −we,0∥2.

(58)
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Denoting k′, k′′,m′,m′′, t′, t′′ as random variables corresponding to be the indexes that used passive parts at
k,m, t,

− E

η̃∇F (we−1,0)⊤
(

1
MI

K∑
k=1

∑
m∈Ge,k

I∑
t=1

(Ge,km,t,1 +Ge,km,t,2)
)

= −E
[
η̃∇F (we−1,0)⊤ 1

MI

K∑
k=1

∑
m∈Ge,k

I∑
t=1

(
G1(we,k

m,t, z
e,k
m,t,1,w

e−1,m′

t′ , ze−1,k′

m′,t′,2) +G2(we−1,c′′

t′′ , ze−1,k′′

m′′,t′′,1,w
e,k
m,t, z

e,k
m,t,2)

−G1(we−1,0, ze,km,t,1,we−1,0, ze−1,k′

m′,t′,2)−G2(we−1,0, ze−1,k′′

m′′,t′′,1,w
e−1,0, ze,km,t,2)

+G1(we−1,0, ze,km,t,1,we−1,0, ze−1,k′

m′,t′,2) +G2(we−1,0, ze−1,k′′

m′′,t′′,1,w
e−1,0, ze,km,t,2)

)]
(a)
≤ 4η̃KL2 1

K

K∑
k=1

1
MI

∑
m∈Ge,k

I∑
t=1

E(2∥we,k
m,t −we−1,0∥2) + 4η̃KL2 1

K

1
MI

∑
k′

∑
m′∈Se−1,k′

∑
t′

(∥we−1,k′

m′,t′ −we−1,0∥2)

+ η̃K

4 E∥∇F (we−1,0)∥2 − E

η̃K∇F (we−1,0)⊤

 1
K

∑
k∈[K]

∇Fk(we−1,0)


≤ 16η̃KL2∥we,0 −we−1,0∥2 + 16η̃KL2 1

KMI

∑
k

∑
m∈Ge,k

∑
t

∥we,k
m,t −we,0∥2

+ 8η̃KL2 1
KMI

∑
k′

∑
m′∈Se−1,k′

∑
t

∥we−1,k′

m′,t′ −we−1,0∥2 − η̃K

2 E∥∇F (we−1,0)∥2,

(59)

where the (a) holds because

E
[
G1(we−1,0, ze,km,t,1,we−1,0, ze−1,k′

m′,t′,2) +G2(we−1,0, ze−1,k′′

m′′,t′′,1,w
e−1,0, ze,km,t,2)

)]
= ∇F (we−1,0). (60)

By the updates of w, we obtain

E∥we+1,0 −we,0∥2 = η̃2

∥∥∥∥∥∥ 1
MI

K∑
k=1

∑
m∈Ge,k

∑
t

(Ge,km,t,1 +Ge,km,t,2)

∥∥∥∥∥∥
2

= η̃2E

∥∥∥∥∥∥ 1
MI

K∑
k=1

∑
m∈Ge,k

∑
t

(G1(we,k
m,t, z

e,k
m,t,1,w

e−1,k′

m′,t′ , ze−1,k′

m′,t′,2) +G2(we−1,k′′

m′′,t′′ , ze−1,k′′

m′′,t′′,1,w
e,k
m,t, z

e,k
m,t,2))

∥∥∥∥∥∥
2

≤ 3η̃2E
∥∥∥∥ 1
MI

K∑
k=1

∑
m∈Ge,k

∑
t

(G1(we,k
m,t, z

e,k
m,t,1,w

e−1,k′

m′,t′ , ze−1,k′

m′,t′,2) +G2(we−1,k′′

m′′,t′′ , ze−1,k′′

m′′,t′′,1,w
e,k
m,t, z

e,k
m,t,2))

− 1
MI

K∑
k=1

∑
m∈Ge,k

∑
t

(G1(we−1,0, ze,km,t,1,we−1,0, ze−1,k′

m′,t′,2) +G2(we−1,0, ze−1,k′′

m′′,t′′,1,w
e−1,0, ze,km,t,2))

∥∥∥∥2

+ 3η̃2E

∥∥∥∥∥∥ 1
MI

K∑
k=1

∑
m∈Ge,k

∑
t

(G1(we−1,0, ze,km,t,1,we−1,0, ze−1,k′

t′,2 ) +G2(we−1,0, ze−1,k′′

m′′,t′′,1,w
e−1,0, ze,km,t,2))−∇F (we−1,0)

∥∥∥∥∥∥
2

+ 3η̃2K2E∥∇F (we−1,0)∥2,

(61)
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which leads to

E∥we+1,0 −we,0∥2

≤ 6η̃2K2 L̃2

KMI

K∑
k=1

∑
m∈Ge,k

∑
t

E∥we,k
m,t −we,0∥2 + 6η̃2K2 L̃2

KMI

K∑
k=1

∑
m∈Ge,k

∑
t

E∥we−1,k′

m′,t′ −we−1,0∥2

+ 6η̃2K2 L̃2

KMI

K∑
k=1

∑
m∈Ge,k

∑
t

E∥we,0 −we−1,0∥2

+ 3η̃2K2E

∥∥∥∥∥∥ 1
KMI

K∑
k=1

∑
m∈Ge,k

∑
t

(G1(we−1,0, ze,km,t,1,we−1,0, ze−1,k′

m′,t′,2) +G2(we−1,0, ze−1,k′′

m′′,t′′,1,w
e,0, ze,km,t,2))−∇Fk(we−1,0)

∥∥∥∥∥∥
2

+ 3η̃2K2E∥∇F (we−1,0)∥2.

(62)

Therefore,

1
E

E∑
e=1

E∥we+1,0 −we,0∥2

≤ 1
E

E∑
e=1

[
6η̃2K2 L̃2

KMI

K∑
k=1

∑
m∈Ge,k

∑
t

E∥we,k
m,t −we,0∥2 + 6η̃2K2 L̃2

KMI

K∑
k=1

∑
m∈Ge,k

∑
t

E∥we−1,k
m,t −we−1,0∥2

+ 6η̃2K2 L̃2

KMI

K∑
k=1

∑
m∈Ge,k

∑
t

E∥we−1,k′

m′,t′ −we−1,0∥2 + 6η̃2K2 σ2

KMI
+ 3η̃2K2E∥∇F (we−1,0)∥2

]
.

(63)

∥we,k
m,t −we,0∥2 = η̃2

∥∥∥∥∥1
I

k∑
τ=1

tτ∑
ν=1

(Ge,τm,ν,1 +Ge,τm,ν,2)

∥∥∥∥∥
2

= η̃2E

∥∥∥∥∥1
I

k∑
τ=1

tτ∑
ν=1

(G1(we,τ
m,t, z

e,τ
m,t,1,w

e−1,τ ′

m′,t′ , ze−1,τ ′

m′,t′,2) +G2(we−1,τ ′′

m′′,t′′ , ze−1,τ ′′

m′′,t′′,1,w
e,τ
m,t, z

e,τ
m,t,2))

∥∥∥∥∥
2

≤ 4η̃2E
∥∥∥∥1
I

k∑
τ=1

tτ∑
ν=1

(G1(we,τ
m,t, z

e,τ
m,t,1,w

e−1,τ ′

m′,t′ , ze−1,τ ′

m′,t′,2) +G2(we−1,τ ′′

m′′,t′′ , ze−1,τ ′′

m′′,t′′,1,w
e,τ
m,t, z

e,τ
m,t,2))

− 1
I

k∑
τ=1

tτ∑
ν=1

(G1(we−1,0, ze,τm,t,1,we−1,0, ze−1,τ ′

m′,t′,2) +G2(we−1,0, ze−1,τ ′′

m′′,t′′,1,w
e−1,0, ze,τm,t,2))

∥∥∥∥2

+ 4η̃2E

∥∥∥∥∥1
I

[ k∑
τ=1

tτ∑
ν=1

(G1(we−1,0, ze,τm,t,1,we−1,0, ze−1,τ ′

t′,2 ) +G2(we−1,0, ze−1,τ ′′

m′′,t′′,1,w
e−1,0, ze,τm,t,2))−∇Fτ (we−1,0)

]∥∥∥∥∥
2

+ 4η̃2E∥1
I

k∑
τ=1

tτ∑
ν=1

(∇Fτ (we−1,0)−∇F (we−1,0))∥2 + 4η̃2E∥1
I

k∑
τ=1

tτ∑
ν=1
∇F (we−1,0)∥2

≤ 8η̃2L̃2K

I

k∑
τ=1

tτ∑
ν=1
∥we,τ

m,t −we,0∥2 + 8η̃2L̃2K

I

k∑
τ=1

tτ∑
ν=1
∥we,0 −we−1,0∥2

+ 4η̃2k2 σ
2

kI
+ 4η̃2k2D2 + 4η̃2k2E∥∇F (we−1,0)∥2.

(64)
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1
EKMI

∑
e

∑
k

∑
m∈Ge,k

∑
t

∥we,k
m,t −we,0∥2

≤ 8η̃2L̃2K

I

1
EKMI

E∑
e=1

K∑
τ=1

∑
m∈Se,τ

∑
t

KI∥we,τ
m,t −we,0∥2 + 8η̃2L̃2K

I

1
EKMI

E∑
e=1

K∑
τ=1

∑
m∈Se,τ

∑
t

KI∥we,0 −we−1,0∥2

+ 4η̃2K
σ2

I
+ 4η̃2K2D2 + 4η̃2K2 1

E

E∑
e=1

E∥∇F (we−1,0)∥2.

(65)

1
EKMI

∑
e

∑
k

∑
m∈Ge,k

∑
t

∥we,k
m,t −we,0∥2

≤ 16η̃2L̃2K2 1
E

E∑
e=1
∥we,0 −we−1,0∥2 + 8η̃2K

σ2

I
+ 8η̃2K2α2 + 8η̃2K2E∥∇F (we−1,0)∥2.

(66)

Using η̃L̃K ≤ O(1),

1
EKMI

∑
e

∑
k

∑
m∈Ge,k

∑
t

∥we,k
m,t −we,0∥2 ≤ 16η̃2K

σ2

I
+ 16η̃2K2α2 + 16η̃2K2∥∇F (we−1,0)∥2 (67)

and

1
E

E∑
e=1

E∥we+1 −we∥2 ≤ 16η̃2K
σ2

MI
+ 16η̃2K2∥∇F (we−1,0)∥2. (68)

Plugging these bounds into (58) and (59),

F (we+1,0)− F (we,0) ≤ L̃2∥we,0 −we−1,0∥2 + η̃2L2K∥we,0 −we−1,0∥2

+ 16η̃2L̃2 1
MI

∑
m∈Ge,k

∑
t

∥we,k
m,t −we,0∥2 − η̃K

2 E∥∇F (we−1,0)∥2.
(69)

1
E

E∑
e=1

E∥∇F (we−1)∥2 ≤ O
(
F (we,0)− F (w∗)

η̃KE
+ η̃2K

σ2

I
+ η̃2K2D2 + 24η̃K σ2

KMI

)
. (70)

Since η̃ = ηI. Set η = O(ϵ2M), I = O( 1
MKϵ ), E = 1

ϵ3 ), iteration complexity is EKI = O( 1
Mϵ4 ), and

communication cost is EK = O(Kϵ3 ).

D Analysis of CyCp-FedX with PL condition

Below we show the proof of Theorem 5.3.

Proof. Using the property of PL condition, we have

F (ws+1,0)− F (w∗) ≤ 1
2µ∥∇F (ws+1,0)∥2 (71)
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To ensure F (ws+1,0)−F (w∗) ≤ ϵs, ∥∇F (ws+1,0)∥2 ≤ µϵs. Let ϵ0 = max(F (w0,0)−F (w∗), ∥∇F (w0,0)∥2/µ).
We need

F (ws,0)− F (w∗)
η̃KE

≤ µϵs
3

η̃2K2α2 ≤ µϵs
3

η̃K
σ2

KMI
≤ µϵs

3 ,

(72)

where

(73)

Let ηs = O(µϵsM
σ2 ), Is = O( σ2

MK
√
µϵs

), Es = ( 1
µ3/2ϵ

1/2
s

). The number of iterations in each stage is IsEs =
σ2

MKµ2ϵs
. To ensure ϵS ≤ ϵ, total number of stage is log(µϵ). Thus, the total iteration complexity is

S∑
s=1

IsEs = O(
S∑
s=1

1
MKµ2ϵs

) = O( 1
MKµ2ϵ

). (74)

Total communication complexity is
S∑
s=1

EsK = O(
S∑
s=1

1
µ3/2ϵ

1/2
s

K) = O( K

µ3/2ϵ1/2 ). (75)

E Data Statistics

Dataset Split Positive Samples Negative Samples Positive %

CIFAR-10

Training 224 40,505 0.55%
Validation 505 4,495 10.10%

Test 1,000 9,000 10.00%

CIFAR-100

Training 227 44,546 0.51%
Validation 46 4,954 0.92%

Test 100 9,900 10.00%

ChestMNIST

Training 1,994 74,480 2.61%
Validation 625 10,594 5.57%

Test 1,133 21,300 5.05%

Insurance

Training 2,863 4,028,889 0.07%
Validation 265 1,059,078 0.03%

Test 132 1,085,053 0.01%

Table 7: Data statistics (without flipping).

F More Experimental Results

In this section, we show ablation studies to test the algorithm performance under different settings.

In Table 8, we show experiments of varying number of clients. The advantages of our methods are preserved.

Table 9 reports the results over three independent rounds of random data removal and, for each round, three
runs with different random seeds. Our methods consistently outperform the baselines across all repetitions.
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Table 8: Ablation Number of Clients (dir=0.1, flip=0)

Cifar-10 Cifar-100
50 client 200 clients 50 client 200 clients

CyCp-FedAVG 0.7227 ± 0.0015 0.7846 ± 0.0011 0.8817 ± 0.0020 0.8920 ± 0.0018
A-FedAVG 0.7418 ± 0.0026 0.7923 ± 0.0016 0.8756 ± 0.0025 0.8973 ± 0.0012
A-SCAFFOLD 0.7450 ± 0.0024 0.7940 ± 0.0013 0.8866 ± 0.0017 0.9012 ± 0.0015
RS-Minimax 0.7572 ± 0.0018 0.8012 ± 0.0006 0.8994 ± 0.0013 0.9183 ± 0.0013
RS-Pairwise 0.7721 ± 0.0014 0.8225 ± 0.0010 0.9188 ± 0.0012 0.9422 ± 0.0021
CyCp-Minimax 0.8209 ± 0.0012 0.8478 ± 0.0016 0.9275 ± 0.0022 0.9365 ± 0.0016
CyCp-Pairwise 0.8367 ± 0.0013 0.8448 ± 0.0017 0.9647 ± 0.0015 0.9653 ± 0.0019

Table 9: Repeated Experiments on Randomly Removing Data. (dir=0.5 for Cifar-10/100)

Cifar-10 Cifar-100

CyCp-FedAVG 0.8083 ± 0.0175 0.8815 ± 0.0073
A-FedAVG 0.8123 ± 0.0037 0.9006 ± 0.0052
A-SCAFFOLD 0.8208 ± 0.0041 0.9016 ± 0.0039
RS-Minimax 0.8225 ± 0.0028 0.9342 ± 0.0044
RS-Pairwise 0.8303 ± 0.0019 0.9541 ± 0.0037
CyCp-Minimax 0.8460 ± 0.0060 0.9422 ± 0.0029
CyCp-Pairwise 0.8503 ± 0.0048 0.9730 ± 0.0055

In Figure 2, we divide the data into 10 client groups with 10 clients per group. By varying M , which is the
number of simultaneously participating clients, we observe that larger values of M lead to faster convergence,
confirming the expected speed-up effect.

In Figure 3, we randomly partition the clients (N = 100) into different numbers of groups. In each round, a
single client is sampled to participate. We observe that larger values of K generally lead to faster convergence,
while the case K = 1 essentially reduces to the random-sampling baseline. In real-world deployments,
naturally formed groups (e.g., by geography, device type, or availability pattern) may exhibit internally
similar data distributions. Splitting such groups into smaller ones may cause the model to overfit to a
narrow distribution before sufficiently exploring others. Therefore, the optimal choice of K depends on
the underlying real-world heterogeneity and grouping structure. A more systematic investigation of how K
interacts with real data distributions is an important direction for future work.

Figure 2: Ablation Study: Effect of the Number of Simultaneously Participating Clients M (dir = 0.5, f lip =
0)

G Applicability to a Broad Class of AUC Maximization Formulations

Table 10 lists multiple AUC-consistent losses and their compatibility with our algorithms.
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Figure 3: Ablation Study: Effect of the Number of Client Groups K (dir = 0.5, f lip = 0)

Table 10: Applicability to Different Formulations of AUC Maximization (m denotes a margin constant as a
hyper-parameter, and τ denotes a scaling hyper-parameter).

Loss Formulation Applicable?
Minimax Loss (Ying et al., 2016) (3) Yes (Algorithm 1,2)
Pairwise Square (Gao et al., 2013) (1) with ψ(a, b) = (m− (a− b))2 Yes (Algorithm 3,4)
Pairwise Squared Hinge (Zhao et al., 2011b) (1) with ψ(a, b) = (m− (a− b))2

+ Yes (Algorithm 3,4)
Pairwise Logistic (Gao & Zhou, 2015) (1) with ψ(a, b) = log(1 + exp(−s(a− b))) Yes (Algorithm 3,4)
Pairwise Sigmoid (Calders & Jaroszewicz, 2007) (1) with ψ(a, b) = (1 + exp(s(a− b)))−1 Yes (Algorithm 3,4)

Pairwise Barrier Hinge (Charoenphakdee et al., 2019b) (1) with ψ(a, b) = max(m− τ(m+ t),
max(τ(t−m), m− t)), where t = a− b

Yes/No1(Algorithm 3,4)

q-norm hinge loss (1) with ψ(a, b) = (m− (a− b))q(q > 1) Yes (Algorithm 3,4)
1 For the Pairwise Barrier Hinge loss, our algorithms remain directly applicable. However, because this surrogate does not satisfy the

smoothness assumption, it does not enjoy the linear speed-up guarantee in theory, which is a common limitation of nonsmooth FL
objectives (Yuan et al., 2021a).
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