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ABSTRACT

There has been increasing interest in building deep hierarchy-aware classifiers that
aim to quantify and reduce the severity of mistakes, and not just reduce the number
of errors. The idea is to exploit the label hierarchy (e.g., the WordNet ontology)
and consider graph distances as a proxy for mistake severity. Surprisingly, on
examining mistake-severity distributions of the top-1 prediction, we find that cur-
rent state-of-the-art hierarchy-aware deep classifiers do not always show practical
improvement over the standard cross-entropy baseline in making better mistakes.
The reason for the reduction in average mistake-severity can be attributed to the
increase in low-severity mistakes, which may also explain the noticeable drop in
their accuracy. To this end, we use the classical Conditional Risk Minimization
(CRM) framework for hierarchy aware classification. Given a cost matrix and a
reliable estimate of likelihoods (obtained from a trained network), CRM simply
amends mistakes at inference time; it needs no extra hyperparameters, and re-
quires adding just a few lines of code to the standard cross-entropy baseline. It
significantly outperforms the state-of-the-art and consistently obtains large reduc-
tions in the average hierarchical distance of top-k predictions across datasets, with
very little loss in accuracy. CRM, because of its simplicity, can be used with any
off-the-shelf trained model that provides reliable likelihood estimates.

1 INTRODUCTION

The conventional performance measure of accuracy for image classification treats all classes other
than ground truth as equally wrong. However, some mistakes may have a much higher impact than
others in real-world applications. An intuitive example being an autonomous vehicle mistaking a
car for a bus is a better mistake than mistaking a car for a lamppost. Consequently, it is essential to
integrate the notion of mistake severity into classifiers and one convenient way to do so is to use a
taxonomic hierarchy tree of class labels, where severity is defined by a distance on the graph (e.g.,
height of the Lowest Common Ancestor) between the ground truth and the predicted label (

, ). This is similar to the problem of providing a good ranking of classes
ina retrleval setting. Consider the case of an autonomous vehicle ranking classes for a thin, white,
narrow band (a pole, in reality). A top-3 prediction of {pole, lamppost, tree} would be a better
prediction than {pole, person, building}. Notice that the top-k class predictions would have at least
k — 1 incorrect predictions here, and the aim is to reduce the severity of these mistakes, measured
by the average hierarchical distance of each of the top k predictions from the ground truth.

( ) survey classical methods leveraging class hierarchy when designing classifiers across
various application domains and illustrate clear advantages over the flat hierarchy classification,
especially when the labels have a well-defined hierarchy.

There has been growing interest in the problem of deep hierarchy-aware image classification (
). These approaches seek to leverage the class hierarchy
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inherent in the large scale datasets (e.g., the ImageNet dataset is derived from the WordNet seman-
tic ontology). Hierarchy is incorporated using either label embedding methods, hierarchical loss
functions, or hierarchical architectures. We empirically found that these models indeed improve the
ranking of the top-k predicted classes — ensuring that the top alternative classes are closer in the
class hierarchy. However, this improvement is observed only for & > 1.

While inspecting closely the top-1 predictions of these models, we observe that instead of improving
the mistake severity, they simply introduce additional low-severity mistakes which in turn favours
the mistake-severity metric proposed in ( , ). This metric involves division by the
number of misclassified samples, therefore, in many situations (discussed in the paper), it can prefer
a model making additional low-severity mistakes over the one that does not make such mistakes.
This is at odds with the intuitive notion of making better mistakes. These additional low-severity
mistakes can also explain the significant drop in their top-1 accuracy compared to the vanilla cross-
entropy model. We also find these models to be highly miscalibrated which further limits their
practical usability.

In this work we explore a different direction for hierarchy-aware classification where we amend
mistake severity at fest time by making post-hoc corrections over the class likelihoods (e.g., softmax
in the case of deep neural networks). Given a label hierarchy, we perform such amendments to the
likelihood by applying the very well-known and classical approach called Conditional Risk Mini-
mization (CRM). We found that CRM outperforms state-of-the-art deep hierarchy-aware classifiers
by large margins at ranking classes with little loss in the classification accuracy. As opposed to other
recent approaches, CRM does not hurt the calibration of a model as the cross-entropy likelihoods
can still be used for the same. CRM is simple, requires addition of just a few lines of code to the
standard cross-entropy model, does not require retraining of a network, and contains no hyperpa-
rameters whatsoever.

We would like to emphasize that we do not claim any algorithmic novelty as CRM has been well
explored in the literature ( s , Ch. 2). Almost a decade ago, ( )
had proposed a very similar solution using Support Vector Machine (SVM) classifier applied on
handcrafted features. However, this did not result in practically useful performance because of
the lack of modern machine learning tools at that time. We intend to bring this old, simple, and
extremely effective approach back into the attention before we delve deeper into the sophisticated
ones requiring expensive retraining of large neural networks and designing complex loss functions.
Overall, our investigation into the hierarchy-aware classification makes the following contributions:

e We highlight a shortcoming in one of the metrics proposed to evaluate hierarchy-aware
classification and show that it can easily be fooled and give the wrong impression of making
better mistakes.

e We revisit an old post-hoc correction technique (CRM) which significantly outperforms
prior art when the ranking of the predictions made by the model are considered.

e We also investigate the reliability of prior art in terms of calibration and show that these
methods are severely miscalibrated, limiting their practical usefulness.

2 RELATED WORKS

2.1 COST-SENSITIVE CLASSIFICATION

Cost-sensitive classification assigns varying costs to different types of misclassification errors. The
work by ( ) groups cost-sensitive classifiers into three main categories. The first cat-
egory specifically extends one particular classification model to be cost-sensitive, such as support
vector machines ( s ) or decision trees ( s ). The second category
makes the training procedure cost-sensitive, which is typically achieved by assigning the training
examples of different classes with different weights (rescaling) ( , ) or by chang-
ing the proportions of each class while training using sampling (rebalancmg) ( , ). The
third category makes the prediction procedure cost-sensitive ( ,

). Such direct cost-sensitive decision-making is the most generic: it con51ders the underlylng
classifier as a black box and extends to any number of classes and arbitrary cost matrices. Our work
comes under the third category of post-hoc amendment. We study cost-sensitive classification in
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a large scale setting (e.g., ImageNet) and explore the use of a taxonomic hierarchy to obtain the
misclassification costs.

2.2 HIERARCHY AWARE CLASSIFICATION

There is a rich literature around exploiting hierarchies to improve the task of image classification.
Embedding-based methods define each class as a soft embedding vector, instead of the typical one-
hot. DeViSE ( , ) learn a transformation over image features to maximize the cosine
similarity with their respective word2vec label embeddings. The transformation is learned using
ranking loss and places the image embeddings in a semantically meaningful space.
( ); ( ) explore variations of text embeddings, and ranking loss frameworks.

( ) project classes on a hypersphere, such that the correlation of class embeddings
equals the semantic similarity of the classes. The semantic similarity is derived from the height of
the lowest common ancestor (LCA) in a given hierarchy tree.

Another line of work directly alters the loss functions or the algorithms/architectures.
( ) propose a weighted (hierarchy-aware) multi-class logistic regression formulation.

( ) optimize a context-sensitive loss to learn a separate distance metric for each node in the
class taxonomy tree. ( ) combine losses at different hierarchies of the tree by learning
separate, fully connected layers for each level post a shared feature space. ( ) add
branches at different depths of AlexNet architecture to fuse losses at different levels of the hierarchy.

( ) use conditional probability chains to derive a novel label encoding and a
corresponding loss function.

Most deep learning-based methods overlook the severity of mistakes, and the evaluation revolves
around counting the top-k errors. ( ) has revived the interest in this direction by
jointly analyzing the top-k accuracies with the severity of errors. They propose two modifications
to cross-entropy to better capture the hierarchy: one based on label embeddings (Soft-labels) and
the other, which factors the cross-entropy loss into the individual terms for each of the edges in the
hierarchy tree and assigns different weights to them (Hierarchical cross-entropy or HXE).

Our method uses models trained with vanilla cross-entropy loss and alters the decision rule to pick
the class that minimizes the conditional risk where the condition is being imposed using the known
class-hierarchy. On similar lines, ( ) study the effect of minimizing conditional
risk on the mean hierarchical cost. They leverage the ImageNet hierarchy for cost and compute
posteriors by fitting a sigmoid function to the SVM’s output or taking the percent of neighbours
from a class for Nearest Neighbour classification. Our work investigates the relevance of CRM in
the deep learning era and highlights the importance of looking beyond mean hierarchical costs and
jointly analyzing the role of accuracy and calibration.

2.3 CALIBRATION OF DEEP NEURAL NETWORKS

Networks are said to be well-calibrated if their predicted probability estimates are representative
of the true correctness likelihood. Calibrated confidence estimates are important for model inter-

pretability and its use in downstream applications. Platt scaling ( , ), Histogram
binning ( s ) and Isotonic regression ( s ) are three
common calibration methods. Although originally proposed for the SVM classifier, their variations
are used in improving the calibration of neural networks ( , ). Calibrated probabil-

ity estimates are particularly important when cost-sensitive decisions are to be made (
s ) and are often measured using Expected Calibration Error (ECE) and Maximum Cali-
bration Error (MCE) ( , ; , ; ) ).

We desire models with high accuracy that have low calibration error and make less severe mistakes.
However, there is often a compromise. Studies in cost-sensitive classification ( s ) reveal
a trade-off between costs and error rates. Reliability literature aims to obtain better calibrated deep
networks while retaining top-%k accuracy ( , ). We further observe that methods like
Soft-labels or Hierarchical cross-entropy successfully minimize the average top-k hierarchical cost,
but result in poorly calibrated networks. In contrast, the proposed framework retains top-k accuracy
and good calibration, while significantly reducing the hierarchical cost.
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Figure 1: (a) Consider a four class hierarchy tree and corresponding leaf predictions obtained using
a cross-entropy baseline. The risk computation is shown beside the tree. argmax p(y|x) predicts
the class “rose”, while the argmin R(y = k|x) predicts the class “bus”. (b) Two nodes ¢ and j and
the subtree (shaded gray) originating at their lowest common ancestor LC'A(i, j).

3 APPROACH

The K-class classification problem comes with a training set S = {(x;,y;)} Y ,, where label y; €
Y =1{1,2,..., K}. The classifier is a deep neural network fy : X — p())) parametrized by 6 which
maps the input samples to a probability distribution over the label space ). The p(y|x) is typically
derived using a softmax function on the logits obtained for an input x. Given p(y|x), the network
minimizes cross-entropy with the ground truth class over samples from the training set, and uses
SGD to optimize 8, forming the standard hierarchy-agnostic cross-entropy baseline. The decision
rule is naturally given by argmax p(y = k|x).
k

The classical CRM framework ( , ) can be adapted to image classification by taking
the trained model with a given 6 and incorporating the hierarchy information at deployment time. A
symmetric class-relationship matrix C is created using the given hierarchy tree (which can either be
drawn from the WordNet ontology or an application specific taxonomy), where C; ; is the height of
the lowest common ancestor LC'A(y;,y;) between classes ¢ and j. The height of a node is defined
as the number of edges between the given node and the furthest leaf. C; ; is zero when i = j and is
bounded by the maximum height of the hierarchy tree.

Given an input x, the likelihood p(y|x) is obtained by passing the sample through the network
fo(x). The only modification we make is in the decision rule, which now selects the class that
minimizes the conditional risk R(y = k|x), given by:

K

arg}inin R(y = k|x) = arg;ninz Ci;-ply = jlx) (1)
j=1

For the ease of the reader, we illustrate a four-class example in Figure la, comparing predictions
obtained using the standard cross-entropy baseline (leaf nodes), and the prediction using CRM (Eq.
(1)) for a given class-relationship matrix. Given the probability of each class p(y|x), argmin R(y|x)
is the Bayes optimal prediction. It is guaranteed to achieve the lowest possible overall cost, i.e.
lowest expected cost over all possible examples weighted by their probabilities ( , ,
Ch. 2).

Depending on the cost-matrix and p(y|x), the top-1 prediction of the CRM applied on cross-entropy
might differ from the top-1 prediction of the cross-entropy baseline. However, because of the over-
confident nature of recent deep neural networks, we observe that the top-1 probability of p(y|x)
is greater than 0.5 for significant number of test samples. Below we prove that in such situations
where max p(y|x) is higher than the sum of other probabilities, the post-hoc correction (CRM) does
not change the top-1 prediction irrespective of the structure of the tree. Since the second highest
probability is guaranteed to be less than 0.5 by definition, our correction can effectively re-rank the
classes. Experimentally we find it to significantly reduce the hierarchical distance @k.

Theorem 1. Ifmax(p(y|x)) > 0.5, then argmin; Eszl C,,; - p(y = j|x) and argmax p(y|x) are
identical irrespective of the tree structure and both lead to the same top-1 prediction.
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Proof. Consider the tree illustrated in Figure 1b; two leaf nodes (class labels) ¢,j and the subtree
(T;;) rooted at their Lowest Common Ancestor. Assuming the height of the LC'A(7, j) = h and
argmax p(y|x) = 4, the risk R(y = j|x) = R(j) is given as:

R(G)=h-pi))+ > Ciu-pk)+ D> Cjx-plk)

k‘GTij\{i} VkQTij

Ignoring the cost of other nodes inside T;;, we get R(j) > h-p(i) + ZngTiJ C; k- p(k). Similarly,
for the risk of class 4:

R(i) <h-(1—p@)+ Y Cix-p(k)
VkgT;

Outside the subtree rooted at T; ; , C; , = C; ;Vk and therefore without loss of generality we can
say that R(7) < R(j), if p(¢) > 0.5. O

4 EXPERIMENTS

We evaluate our method on two large-scale hierarchy-aware benchmarks: (i) tieredImageNet-H for
a broad range of classes and (ii) iNaturalist-H for fine-grained classification, both of which are
complex enough to cover a large number of visual concepts. We closely follow the experimental
pipeline from ( ) including the train/validation/test splits, hyperparameters for
training models, and evaluation metrics.

Experimental Details: All models are trained using a ResNet-18 architecture (pre-trained on Im-
ageNet) using an Adam optimizer for 200K updates using a mini-batch of 256 samples, a learning
rate of 107°, and standard data augmentation of flips and randomly resized crops. We train all the

hierarchy-aware models — Hierarchical cross-entropy (HXE) ( s ), Soft-labels
( , ), YOLO-v2 ( , ), DeViSE ( , ), and
( ) — along with a cross-entropy baseline. We pick the epoch corresponding to

the lowest loss on the validation set along with two epochs preceding and succeeding it and report
the average of the results obtained from these five checkpoints on the test set. Unlike

( ) we do not preprocess the dataset to downsample the images to 224 x224 as it notice-
ably reduces the accuracy. Instead, we use the RandomResizedCrop () augmentation to crop
the images to a 224 x224 resolution. This accounts for a small, but significant improvement in
performance across models, thus leading to stronger baselines.

Metrics: We primarily focus on two major metrics: (i) top-1 error, and (ii) average hierarchical
distance @k, which is the mean LCA height between the ground truth and each of the & most likely
classes. These metrics capture different views of the problem: top-1 error treats all classifier mis-
takes the same, whereas average hierarchical distance@1 captures a notion of mistake severity, i.e.,
better or worse mistakes. Average hierarchical distance @k captures the notion of ranking/ordering
the predicted classes closer to the ground truth class. This metric, also used in

( ), is a natural extension of the hierarchical distance@1 proposed by ( )
in the original ImageNet evaluation. We also investigate the average mistake-severity metric sug-
gested in ( ) which computes the hierarchical distance between the top-1 predic-
tion and the ground truth for all the misclassified samples. Note that LCA is a log-scaled distance:
an increment of 1.0 signifies an error of an entire level of the tree. In the simple case of a full binary
tree, an increase by one level implies that the number of possible leaf nodes doubles.

4.1 HIERARCHICAL DISTANCE OF TOP-1 PREDICTIONS

Hierarchy-aware classification methods typically seek to make better mistakes (less costly in terms
of hierarchical distance). It is essential that the evaluation metric correctly measures this goal, i.e.
a higher value of the evaluation metric should reflect that the model indeed makes better mistakes.
Below we discuss a shortcoming of the average mistake-severity metric proposed in

( ) which considers the mistake severity averaged only over the incorrectly classified samples,
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Figure 2: (a) Trade-off between hierarchical distance@1 and the top-1 error. The mean here is taken
only over the misclassified samples. (b) Histogram of the severity of top-1 mistakes (height of the
LCA). The number in the bracket is the mean mistake severity. (c) Trade-off between hierarchi-
cal distance@1 and the top-1 error. The mean is taken over all the test samples (the hierarchical
distance @1 is zero for correctly classified samples). The top and bottom row correspond to tiered-
ImageNet and iNaturalist19 datasets respectively.

and show that it can be misleading in the sense that a model can show improved performance over
this metric, while just making additional low-severity mistakes.

In Figure 2a, we evaluate different approaches only on the set of incorrectly classified samples
(hence different test sets for different models as the mistakes will be different). It seems to indicate
that recently proposed methods are able to achieve a good trade-off between top-1 error and mistake
severity. We select models that show a marked trade-off in terms of the mistake-severity metric —
Soft-labels with § = 4 and HXE with o = 0.6 — and analyze the frequency of mistakes at different
levels of severity (illustrated in Figure 2b). Surprisingly, we observe that in these regimes, HXE and
Soft-labels largely do not make better mistakes; they mostly make additional low-severity mistakes.
This behaviour is better demonstrated in the histograms shown in Appendix A.l1 (Figure 4). For
example, in the case of Soft-labels on iNaturalist19 dataset, it is evident from Figure 4 that as
decreases, the number of less-severe mistakes increases, whereas, the high-severity mistakes remain
more or less the same. Similar observations can be made for HXE. This behaviour is not captured in
Figure 2a as the metric here involves division by the number of mistakes made by the model. More
precisely, say the high severity mistakes made by two models are exactly the same (dj, > 0) over the
same number of mistakes (1m > 0). Now, if the second model makes additional n > 0 mistakes with
overall distance severity of d; > 0, then it is straightforward to observe that % > % if % > %.
This implies that the metric would prefer a model making additional low-severity mistakes as long
as the impact of the severity due to these additional mistakes is less than the overall impact by the
high-severity ones.

We avoided this shortcoming by using the hierarchical distance@1 computed over all the samples
( , ). As shown in Figure 2c, the best-performing ones in Figure 2a now
show the highest hierarchical distance@1 as we account for the additional number of low-severity
mistakes made by them. Note, distance@1 was also used in ( ), however, they
also proposed the above mentioned mistake-severity metric and performed analyses over it, which,
as discussed and showed empirically, can easily mislead us towards choosing a classifier that just
makes additional low severity mistakes while not improving the overall mistake severity at all.

In this more reliable evaluation set-up, we observe CRM (ours) marginally reduces mistake sever-
ity compared to cross-entropy. We would like to emphasize that cross-entropy provides near best
results. Overall, our experiments suggest that existing methods reduce the average mistake-severity
metric by largely making additional low-severity mistakes. This also explains why such models
provide lower test accuracy (top-1). Resolving this issue, we see that no prior art significantly out-
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(b) Ranking performance on a randomly class-shuffled hierarchy.

Figure 3: Left: Average hierarchical distance@Fk with varying k. Middle: Average hierarchical
distance @5 vs top-1 error. Right: Average hierarchical distance @20 vs top-1 error.

performs the cross-entropy baseline either in making better mistakes (distance@1) or in the top-1
accuracy.

4.2 HIERARCHICAL DISTANCE OF TOP-K PREDICTIONS

We now compare the ordering of classes provided by each of these classifiers. Ranking predictions
give us significant insight into how reliably the predictions align with the hierarchy. We measure the
quality of ranking using the average hierarchical distance @k, for various values of k and present
them in Figure 3a (left). We find that CRM significantly outperforms all the competing methods,
giving the best hierarchically aligned models on the hierarchical distance@k. Note, for &£ > 1,
recent approaches also provide improvement in distance @k compared to the cross-entropy model.

A better ranking of classes often comes with a significant trade-off with top-1 accuracy. We plot
the hierarchical distance @k with top-1 accuracy for ¥ = 5 and £ = 20 in Figure 3a (middle and
right) to better understand this trade-off. Interestingly, we observe that CRM improves ranking with
almost no loss in top-1 performance and outperforms other methods by a substantial margin.
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tieredlmageNet-H iNaturalist-H
ECE MCE ECE MCE

Loss Function

pre T post T pre T post T pre T post T pre T post T

Soft-labels (8=15)  7.05% 479%  1855% 13.03% 34.64% 16.63% 54.86% 26.87&
Soft-labels (8=10) 29.55%  6.36%  39.95% 22.07% 29.55% 19.87% 39.95% 33.29%
Soft-labels( 8=5) 58.99% 10.92% 83.53% 26.86% 24.53% 1720 88.32% 55.68%
Soft-labels (5=4) 57.16% 11.12% 86.92% 27.44% 1929% 11.46% 19.29% 56.06%

HXE (a=0.2) 1.53% 1.53% 5.84% 5.84% 4.37% 1.50% 7.73% 3.61%
HXE (a=0.4) 2.44% 2.44% 5.48% 5.48% 1.13% 1.13% 2.62% 2.62%
HXE(a=0.5) 3.95% 2.61% 7.84% 5.40% 2.46% 2.46% 6.77% 6.77%
HXE (a=0.6) 6.25% 328% 10.75%  6.58% 5.24% 524% 11.20% 11.20%
Label-Smoothing 9.61% 233% 1543%  6.13% 4.93% 1.11% 7.35% 3.35%
Cross-Entropy 1.61% 1.61% 4.27% 4.27% 4.32% 1.42% 8.18% 3.26%

Table 1: ECE and MCE for the various models on the tiered-ImageNet and iNaturalist19 datasets
before and after temperature scaling. The optimal temperature was found on the validation set and
results reported on the test set.

An interesting extension is to analyze how dependent these approaches are on a given hierarchy, and
how modifying the hierarchy might impact their behaviour. To test this, we randomly shuffle the
classes at the leaf nodes of a given tree structure and compare ranking performance in Figure 3b. We
observe that even though CRM does not explicitly use the hierarchy while training, it provides drastic
reduction in the hierarchical distance @k compared to all the previous methods. High accuracy of
CRM in this case is because of the fact that it is post-hoc and for highly confident models such
as deep networks, its top-1 accuracy remains largely unchanged (refer Theorem 1). On the other
hand, models depending on the tree-structure during training (directly or indirectly) will try to fit to
the structure, which can be harmful in situations where the tree structure is not very reliable. For
example, if the tree structure implies that ‘cat’ is closer to ‘person’ than a ‘dog’, then the models
incorporating such information while learning the feature space might not be able to learn a robust
classifier and might potentially end-up making more mistakes, as also validated in our experiments.

4.3 IMPACT OF LABEL HIERARCHY ON THE RELIABILITY

In order for models to be useful in safety-critical scenarios, they should be calibrated so that they are
not wrong with high confidence. To this end, we analyse the reliability of the output probabilities of
Softlabels, HXE, label smoothing, and CRM (which is the vanilla cross-entropy likelihood) using
widely accepted metrics such as ECE (Expected Calibration Error) and MCE (Maximum Calibra-
tion Error) in Table 1. Softlabels and HXE, for example, show clear trends of increasing degrada-
tion in calibration on better class ranking (as measured by distance @*k), i.e., the more they attempt
to adhere to the hierarchy, the less reliable their probability estimates become. We additionally
experiment with improving calibration in all the above models using temperature scaling. We ob-
serve that it reduces miscalibration as measured by the ECE and MCE scores, but most models still
remain far worse than the cross-entropy baseline. Changes in ECE/MCE were unnoticeable when
using the probability estimates corresponding to CRM predictions (taking p(y|x) corresponding to
argmin R(y|x)) instead of maximum cross-entropy prediction.

These experiments clearly suggest that while the focus should turn into developing models that
make better mistakes, we should also make sure that such models are reliable by understanding how
incorporating the label hierarchy during training might impact the likelihood estimates.

5 CONCLUSION

We proposed using Conditional Risk Minimization (CRM) as a tool to amend likelihood in a post-
hoc fashion to obtain hierarchy-aware classifiers, an approach that is different from the three domi-
nant paradigms: hierarchy-aware losses, hierarchy-aware architectures, and label embedding meth-
ods. We illustrated an issue with the mistake-severity metric that, otherwise, could give a wrong
impression of improvement while the model might just be making additional mistakes to fool the
metric.
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In terms of better ranking predictions, our proposed post-hoc correction consistently outperforms
state-of-the-art methods in deep hierarchy-aware image classification by large margins in terms of
decrease in hierarchical distance @k, with little to no loss in top-1 accuracy. We find the direction
of post-hoc corrections promising as it can simultaneously deliver calibration, accuracy, and better
class ranking efficiently with surprisingly little trade-offs in either.

Overall, the literature on hierarchy-aware image classification has shown the WordNet hierarchy’s
effectiveness in improving performance. However, previous works assumed that all the edges in the
tree are equally important. A future avenue for exploration would be to learn the weights of these
edges in order to compute a more effective measure of mistake severity.
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A APPENDIX

A.1 VARIATION OF MISTAKE SEVERITY WITH HIERARCHY ALIGNMENT

Distribution of mistakes made on tiered-lmageNet Distribution of mistakes made on tiered-ImageNet
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Figure 4: Mistake distribution for all values of Softlabels across 3 (left) and HXE across « (right)
as well baselines including cross-entropy and CRM for reference across tieredImagenet-H (top) and
iNaturalist-19 (bottom).

We first analyze the change of the distribution of mistakes across Softlabels (left column) and HXE
(right column) models in Figure 4 with results in tieredlmageNet-H (top row) and iNaturalist-H
(bottom row). As we try to align the model better with the hierarchy by decreasing 5 and increas-
ing o, we observe the same trends with better alignment to hierarchy — their mistakes are equally
bad compared to cross-entropy near the right end (high severity), and they increasingly make more
mistakes in the left end (lower severity), lowering the average over mistakes but not always making
better mistakes. This gives evidence that the models have the tendency to decrease their mistake
severity (shown in the legend) by largely making lots of additional mistakes and not making better
mistakes in the large 5 and small « regimes.

A.2 VARIATION OF CLASS RANKING WITH HYPERPARAMETERS

We similarly analyze the variation of ranking classes measured by average hierarchical distance@k
for Softlabels and HXE with different hyperparameters. We present our results in Figure 5, by
varying Softlabel with different 5 values on the left and HXE with different « values on the right.
We observe that the previously chosen values 8 = 4 and o = 0.6 perform the best in ranking in all
cases except § = 4 in iNaturalist where 3 = 10 performs the best, which we updated in Figure 3.
We observe there that CRM still outperforms these methods by large margins.
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(b) Ranking performance on a randomly class-shuffled hierarchy.
Figure 5: Average hierarchical distance @k with varying k across different hyperparameters of Soft-

labels (left) and HXE (right). We observe our selected hyperparameters (alpha=0.6) and (beta=4)
perform the best among others.

A.3 VARIATION OF CALIBRATION ACROSS HIERARCHY

We can additionally calculate ECE across levels in the hierarchy by sequentially shrinking leaf
nodes from the maximum depth (corresponding to flat classification). The ECE at depth ¢ (from root
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Figure 6: Calibration across various levels in the hierarchy for different models

assigned depth 0) is defined as obtaining probabilities for nodes with most depth which are at most
at level ¢. Their probabilities are obtained by summing up probabilities of their children nodes (level
> 4). We present the results in Figure 6, where we observe that overall the calibration increases
as you go up the hierarchy. The cross-entropy baseline shows a consistent decreasing trend, but the
other models have aberrations where the calibration error increases going up the hierarchy, especially
the models with high calibration errors.

A.4 INCREASING BETA FOR SOFT-LABELS ON INATURALIST19

We also experiment with increasing 3 for Soft-labels on the iNaturalist19 dataset by trying the values
of 50, 75, 100 and 200 respectively. These results are shown in Table 2. We can see that increasing
Beta does not significantly improve top-1 accuracy while worsening the hierarchical distance met-
rics. We additionally observe this in Figure 2, where as we increase ( the graph shoots up with little
leftward shift.

Model Accuracy Hier. Distance@1 Hier. Distance@5  Hier. Distance @20
Soft-labels(Beta=30)  0.58194+ 0.001  0.9764+ 0.006 1.554+0.006 2.267+0.004
Soft-labels(Beta=50)  0.5880 £+ 0.003  1.003 %+ 0.01 1.879+ 0.003 2.823+0.011
Soft-labels(Beta=75)  0.5876+0.002  0.997+£0.005 1.916+0.005 2.909+0.017
Soft-labels(Beta=100)  0.585+0.001 1.01£0.004 1.9264-0.005 2.931+0.014
Soft-labels(Beta=200)  0.5877+0.004  0.999+0.009 1.924+0.005 2.935+0.012
Cross-Entropy 0.5962+0.002  0.96+0.004 1.836+0.003 2.841+£0.01

Table 2: Increasing Beta for Soft-labels on iNaturalist19 beyond 30 does not increase accuracy while
significantly worsening the hierarchical distance metrics.
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