
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

CHORDAL GRAPH SAMPLING-BASED MINI-BATCH
TRAINING ALGORITHM FOR LARGE GRAPHS

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph Neural Networks (GNNs) are powerful models for learning representations
of attributed graphs. To scale GNNs to large graphs, many methods use various
techniques, such as sampling and decoupling, to alleviate the “neighbor explo-
sion” problem during mini-batch training. However, these sampling-based mini-
batch training methods often suffer from greater information loss than decoupling-
based methods or full-batch GNNs. Besides, most original segmentation methods
for large graphs usually lose a large number of edges, resulting in suboptimal per-
formance when performing mini-batch training. Therefore, we propose a Chordal
Graph Sampling-based mini-batch Training algorithm for GNNs on large scale
graph datasets, called CGST. CGST includes a balanced chordal graph parti-
tion module and a batch random aggregation module to improve performance on
node classification tasks while maintaining main information of the original graph
structure. Experiments on three large-scale graph datasets prove the effectiveness
of CGST.

1 INTRODUCTION

The Graph Neural Network(GNN) has garnered significant attention in the realm of graph-based ap-
plications, encompassing tasks such as semi-supervised node classification (Kipf & Welling, 2017),
link prediction (Zhang & Chen, 2018), and recommender systems (Ying et al., 2018a). Within
the framework of a given graph, GNN employs graph convolutional operations to compute node
embeddings across multiple layers iteratively. At each layer, a node’s embedding is derived by ag-
gregating information from its neighboring nodes, subsequently undergoing one or more layers of
linear transformations and nonlinear activations. The resultant embedding at the final layer is then
utilized for various downstream tasks. For instance, in scenarios involving node classification, the
final layer embedding is fed into a classifier to infer node labels, facilitating end-to-end training of
GNN parameters.

Despite the notable achievements of GNNs in numerous graph-related applications, the training of
GNNs for extensive graphs poses a significant challenge. Unlike text or images with usually con-
strained lengths or sizes, practical graph data can frequently present itself in immensely expansive
scales or dimensions, reflecting the complexity and magnitude inherent in real-world graph struc-
tures. For instance, the 2019 Facebook social network comprises 2.7 billion users (Leskovec &
Mcauley, 2012), exemplifying the immense scale of real-world graphs. Managing such large-scale
graphs through full-batch GNN training, where all nodes are processed together to update parame-
ters, is infeasible. Nevertheless, previous mini-batch GNN training methods often suffer from huge
information loss, since the connections and cross-community nodes are removed when partition-
ing the large-scale graphs into subgraphs. Consequently, the training of deep and expansive GNNs
remains a formidable task, impeding their deployment in various large-scale graph applications,
including social networks, recommender systems, and knowledge graphs.

To solve the issues, researchers have proposed sampling-based methods to train GNNs based on
mini-batch of nodes, which only aggregate the embeddings of a sampled subset of neighbors of
each node in the mini-batch. Among them, one direction is to use a node-wise neighbor-sampling
method. For example, GraphSAGE (Hamilton et al., 2017) calculates each node embedding by
leveraging only a fixed number of uniformly sampled neighbors. Although this kind of approach
reduces the computation cost in each aggregation operation, the total cost can still be large. As

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

pointed out in (Hardt et al., 2016), the recursive nature of node-wise sampling brings in redundancy
for calculating embeddings. Even if two nodes share the same sampled neighbor, the embedding of
this neighbor has to be calculated twice.

Original Graph Component #1 Component #2 Removed
Nodes and

Edges

information loss!

Figure 1: The diagram of former subgraph-
sampling based methods. Previous mini-batch
training methods often suffer from information
loss due to the removed nodes and edges.

Such redundant calculation will be exagger-
ated exponentially when the number of layers
increases. Following this line of research as
well as reducing the computation redundancy,
a series of work was proposed to reduce the
size of sampled neighbors. VR-GNN (Chen
et al., 2017) proposes to leverage variance re-
duction techniques to improve the sample com-
plexity. Cluster-GCN (Chiang et al., 2019) con-
siders restricting the sampled neighbors within
some dense subgraphs, which are identified by
a graph clustering algorithm before the training
of GNN. However, these methods still cannot
well address the issue of information loss when simplifying training procedures or model architec-
tures, which may become worse when training very deep and large GNNs.

In this paper, we propose a novel subgraph-sampling based mini-batch training method called CGST
to efficiently train GNNs without losing too much information. Rather than building a GNN on
the full training graph and then sampling across the layers, we first sample the training graph and
partition it into several chordal subgraphs with balanced size. By doing so, CGST can signifi-
cantly reduce the CPU memory required for GNN training, making it more scalable to larger graph
datasets. Besides, CGST also applies random aggregation technique among subgraphs to alleviate
the the influence of partitioning the whole graph. By building a complete GNN model on the sub-
graphs, CGST aims to maintain the performance characteristics of the full-batch training, avoiding
the accuracy degradation seen in some prior sampling-based approaches. This allows us to capture
the inherent node dependencies within the sampled subgraphs while avoiding the need to store the
entire computation graph in GPU memory during back-propagation.

Our main contributions can be summarized as below:

• Balanced Chordal Subgraph Partition Module. To solve the first challenge that previous graph
partition methods are difficult to form tight clusters, we build a graph partition module to split
the original graph into subgraphs with balanced size. In this module, we extract appropriately
connected subgraphs so that little information is lost when propagating within the subgraphs. A
graph partition method is applied to generate several well-partitioned chordal subgraphs, which
means chordal graphs with balanced sizes.

• Random Aggregation Module. To solve the second challenge that graph clustering algorithms
tend to remove edges and cross-community nodes from the original datasets, we propose a random
aggregation clustering approach to incorporate between-cluster links and reduce variance across
batches.

• Evaluation on three large-scale datasets. Under extensive experiments on four real-world
datasets, we show that CGST provides consistent boosts in the performance of node classifica-
tion tasks over large-scale graph datasets.

2 RELATED WORKS

2.1 LAYER SAMPLING

A neural network model that extends convolution operation to the graph domain is first proposed
by Bruna et al. (2013). Further, Kipf & Welling (2016); Defferrard et al. (2016) speed up graph
convolution computation with localized filters based on Chebyshev expansion. They target relatively
small datasets and thus the training proceeds in full batch. In order to scale GCNs to large graphs,
layer sampling techniques (Hamilton et al., 2017; Chen et al., 2018b; Ying et al., 2018b; Chen et al.,
2018a; Gao et al., 2018; Huang et al., 2018) have been proposed for efficient minibatch training. The
layer sampling algorithm of GraphSAGE (Hamilton et al., 2017) performs uniform node sampling

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

on the previous layer neighbors. It enforces a pre-defined budget on the sample size, so as to bound
the minibatch computation complexity.

S-GCN (Chen et al., 2018a) further restricts neighborhood size by requiring only two support nodes
in the previous layer. The idea is to use the historical activations in the previous layer to avoid
redundant re-evaluation. FastGCN (Chen et al., 2018b) performs sampling from another perspective.
Instead of tracking down the inter-layer connections, node sampling is performed independently for
each layer. It applies importance sampling to reduce variance, and results in constant sample size in
all layers. However, the minibatches potentially become too sparse to achieve high accuracy. Huang
et al. (2018) improves FastGCN by an additional sampling neural network. It ensures high accuracy,
since sampling is conditioned on the selected nodes in the next layer. Significant overhead may be
incurred due to the expensive sampling algorithm and the extra sampler parameters to be learned.
In addition, the work in Zeng et al. (2018a) proposes a subgraph based training algorithm that is
scalable with respect to GCN depth, and also highly parallelizable on multi-core machines.

2.2 SUBGRAPH SAMPLING

Instead of sampling layers, the works of Zeng et al. (2018b) and Chiang et al. (2019) build mini-
batches from subgraphs. Zeng et al. (2018b) proposes a specific graph sampling algorithm to ensure
connectivity among minibatch nodes. They further present techniques to scale such training on
shared-memory multi-core platforms. More recently, ClusterGCN (Chiang et al., 2019) proposes
graph clustering based minibatch training. During pre-processing, the training graph is partitioned
into densely connected clusters. During training, clusters are randomly selected to form minibatches,
and intra-cluster edge connections remain unchanged.

2.3 GNN DECOUPLING

Another line of research focuses on improving model capacity. Applying attention on graphs, the
architectures of Zeng et al. (2019) better capture neighbor features by dynamically adjusting edge
weights.Klicpera et al. (2018) combines PageRank with GCNs to enable efficient information prop-
agation from many hops away. To develop deeper models, “skip-connection” is borrowed from
CNNs (He et al., 2015; Huang et al., 2017) into the GCN context. In particular, JK-net Xu et al.
(2018) demonstrates significant accuracy improvement on GCNs with more than two layers. Note,
however, that JK-net (Xu et al., 2018) follows the same sampling strategy as GraphSAGE (Hamilton
et al., 2017). Thus, its training cost is high due to neighbor explosion. In addition, high order graph
convolutional layers (Zhou, 2017; Lee et al., 2018; Abu-El-Haija et al., 2019) also help propagate
long-distance features. With the numerous architectural variants developed, the question of how to
train them efficiently via minibatches still remains to be answered.

3 PREMILINARY

3.1 PROBLEM DEFINITION

Problem Definition 1 Node Classification.

Given a graph G(V,E,W) with a subset of nodes Vl ⊂ V labeled, where V is the set of n nodes in
the graph (possibly augmented with other features), and Vu = V \Vl is the set of unlabeled nodes.
Here W is the weight matrix, and E is the set of edges. Let Y be the set of m possible labels, and
Yl = {y1, y2, . . . , yl} be the initial labels on nodes in the set Vl. The task is to infer labels Ỹ on all
nodes V of the graph.

Let Vl be the set of l initially labeled nodes and Vu be the set of n − l unlabeled nodes such that
V = Vl ∪ Vu. We assume the nodes are ordered such that the first l nodes are initially labeled
and the remaining nodes are unlabeled so that V = {v1, . . . , vl, vl+1, . . . , vn}. An edge (i, j) ∈ E
between nodes vi and vj has weight wij .

Problem Definition 2 Multi-class Classification. For multi-class classification, yi denotes a prob-
ability distribution over Y , where Y is the set of possible labels. For any label c ∈ Y , yi[c] is the

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

probability of labeling node vi with label c. Here, Yl is a matrix of size l × m. The output of the
node classification problem is labels Ỹ on all nodes in V .

3.2 BACKGROUND

Graph Neural Networks. In this part, we introduce background on sampling-based training for
GNNs to facilitate further discussion. A GNN learns a representation of an un-directed, attributed
graph G = (V, E , A), where each node v ∈ V has a length-f attribute xv . Suppose A is the
adjacency matrix and Ã is the normalized one (i.e., Ã = D−1A, and D is the diagonal degree
matrix), we have:

Ã = A+ I, D̃ii =
∑
j

Ãij (1)

Suppose a L-layer GNN consists of L graph convolution layers and each of them constructs em-
beddings for each node by mixing the embeddings of the node’s neighbors in the graph from the
previous layer:

Z(l+1) = A′X(l)W (l) (2)
X(l+1) = σ(Z(l+1)) (3)

where X(l) ∈ RN×Fl is the embedding at the l-th layer for all the N nodes and X(0) = X .
X l+1 is the embedding for l + 1-layer. A′ is the normalized and regularized adjacency matrix and
W (l) ∈ RFl×Fl+1 is the feature transformation matrix that will be learned for the downstream tasks.

GNNs can be applied under inductive and transductive settings. In this paper, we focus only on
inductive learning. It has been shown that inductive learning is especially challenging (Hamilton
et al., 2017) — during training, neither attributes nor connections of the test nodes are present.
Thus, an inductive model has to generalize to completely unseen graphs.

Graph Notations. In this part, we introduce some notations for further discussion. For a graph G,
the vertex set is denoted by V(G) and the edge set is denoted by E(G). For an edge uv ∈ E(G), we
call u and v its endpoints. We say that G is isomorphic to G if there is a bijection ϕ : V(G) −→
V(G) such that for all u, v ∈ V(G), uv ∈ V(G) if and only if ϕ(u)ϕ(v) ∈ E(G). We say that G is a
subgraph of H , denoted by G ⊆ H , if V(G) ⊆ V(H) and E(G) ⊆ E(H).

For graphs G and H , let G∪H be the graph with vertex set V (G)∪V (H) and edge set E(G)∪E(H).
For a vertex v of a graph G, NG(v) := {w ∈ V(G)|vw ∈ E(G)} is the set of neighbors of v in G.
The degree of v is degG(v) := |NG(v)|. Given a set X ⊆ V (G), we define:

NG(X) =
⋃
v∈X

NG(v)\X (4)

NG[X] = NG(X) ∪X (5)

4 METHODOLOGY

4.1 OVERVIEW

Overall Architecture. In order to maintain prior information of the original graph structure while
processing mini-batch training, we propose a Chordal Graph Sampling-based mini-batch Training
algorithm for GNNs on large scale graph datasets, called CGST. CGST includes two modules: a
balanced chordal graph partition module and a batch random aggregation module. The first module
extracts appropriately connected subgraphs so that little information is lost when propagating within
the subgraphs. A graph partition method is applied to generate several well-partitioned chordal sub-
graphs, which means chordal graphs with balanced sizes. The second module solves the challenge
that graph clustering algorithms tend to remove edges and cross-community nodes from the origi-
nal datasets. By incorporating these two modules, CGST can achieve better performance without
increasing excessive training time and training costs. The overview of CGST is shown in Figure 2.

Graph Partitioning. For a given graph G, we partition its nodes into c groups: V = [V1, · · · Vc]
where Vt consists of the nodes in the t-th partition. Thus we have c subgraphs as

Ḡ = [G1, · · · , Gc] = [{V1, E1}, · · · , {Vc, Ec}] (6)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Input: Original Large-scale Graph G Balanced Chordal Subgraph Partition Module

Subgraph #1 Subgraph #2

Subgraph #3 Subgraph #4

partitioning sampling

Different Class Nodes Different Cluster Nodes Removed Edges Recovered Edges

Batch #1

Batch #2

...

Batch Random Aggregation Module

GNN

Mini-batch
Training

Test Input: Unseen Graph G’

Output: Node Classification Label Y’

: Partitioned subgraphs from G

: i-th row of with label yi

: t-th cluster

node
embedding

Figure 2: The overall architecture of CGST.

where each Et only consists of the links between nodes in Vt.
After reorganizing nodes, the adjacency matrix is partitioned into c2 submatrices, where each di-
agonal block Att is a |Vt| × |Vt| adjacency matrix containing the links within Gt. Ā is the adja-
cency matrix for graph Ḡ; Ast contains the links between two partitions Vs and Vt. Similarly, we
can partition the feature matrix X and training labels Y according to the partition [V1, · · · ,Vc] as
[X1, · · · , Xc] and [Y1, · · · , Yc] where Xt and Yt consist of the features and labels for the nodes in
Vt respectively.

Loss Function. The benefit of this block-diagonal approximation Ḡ is that the objective function
of GNN becomes decomposable into different batches (clusters). Let Ā′ denotes the normalized
version of Ā, the final embedding matrix becomes

Z(L) = Ā′σ(Ā′σ(· · ·σ(Ā′XW (0))W (1)) · · ·)W (L−1) (7)

due to the block-diagonal form of Ā (note that Ā′
tt is the corresponding diagonal block of Ā′). The

loss function can also be decomposed into

LĀ′ =
∑
t

|Vt|
N

LĀ′
tt

and LĀ′
tt
=

1

|Vt|
∑
i∈Vt

loss(yi, z
(L)
i). (8)

Training Algorithm of CGST. The training procedure of CGST follows the common rules of mini-
batch training. At each step, we sample a cluster Vt and conduct SGD to update based on the
gradient of LĀ′

tt
, and this only requires the sub-graph Att, the Xt, Yt on the current batch and

the models {W (l)}Ll=1. The implementation only requires forward and backward propagation of
matrix products, which is much easier to implement than the neighborhood search procedure used
in previous SGD-based training methods.

4.2 BALANCED CHORDAL GRAPH PARTITION

In this module, our goal is to extract appropriately connected subgraphs so that little information
is lost when propagating within the subgraphs. We propose a graph partition method to generate
several well-partitioned chordal subgraphs, which means chordal graphs with balanced sizes.

A chordal graph is one in which all cycles of four or more vertices have a chord, which is an edge
that is not part of the cycle but connects two vertices of the cycle. Equivalently, every induced
cycle in the graph should have exactly three vertices. The chordal graphs may also be characterized
as graphs that have perfect elimination orderings, as graphs in which each minimal separator is a
clique, and as the intersection graphs of subtrees of a tree. In mathematical, a chordal graph can be
formally defined as below:

Definition 1 Chordal graph. A graph is chordal if every cycle of length at least 4 has a chord. A
vertex v of G is called simplicial in G if N(v) is a clique in G. The ordering {v1, . . . , vn} of the
vertices of G is a perfect elimination order of G if for all i, vi is simplicial in G[v1, . . . , vi]. Also, a
graph is chordal if it has a perfect elimination order.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 1: Find well-partitioned chordal subgraphs Gc given the whole graph G and a clique
tree TKc of it.
Input: A clique tree TKc of a large graph G.
Output: Balanced partitions of G.

1: Function FindBalancedPartition(TKc)
2: if |V (TKc)| ≤ 1 then
3: return ∅
4: end if
5: Select an arbitrary edge e to cut TKc into two components TKc

1
and TKc

2

6: L =
⋃

K∈V (TKc
1
) K \ e

7: R =
⋃

K∈V (TKc
2
) K \ e

8: return {{L,R}} ∪ FindBalancedPartition(TKc
1
) ∪ FindBalancedPartition(TKc

2
)

9: End function

Similarly, according to Ahn et al. (2022), the well-partitioned chordal graph can be formally defined
as below:

Definition 2 Well-partitioned chordal graph. A graph is a well-partitioned chordal graph if and
only if it has no induced subgraph isomorphic to a graph in O. Furthermore, there is a polynomial-
time algorithm that given a graph G, outputs either an induced subgraph of G isomorphic to a graph
in O, or a partition tree of each connected component which confirms that G is a well-partitioned
chordal graph.

As is proved in Ahn et al. (2022), a graph can be divided into several well-partitioned chordal
subgraphs in polynomial time. It is easy to see that every well-partitioned chordal graph G is a
chordal graph because every leaf of the partition tree of a component of G contains a simplicial
vertex of G, and after removing this vertex, the remaining graph is still a well-partitioned chordal
graph. Thus, we could construct a perfect elimination ordering to generate well-partitioned chordal
subgraphs. In Summary, the algorithm of finding balanced chordal graph partitions is presented in
Algorithm 1.

4.3 RANDOM AGGREGATION

In this module, in order to fetch each node i’s neighbor nodes’ embeddings, we need to further
aggregate each neighbor node’s neighbor nodes’ embeddings as well. Although vanilla subgraph-
sampling based method achieves good computational and memory complexity, there are still two
potential issues:

• After the graph is partitioned, some links are removed. Thus the performance could be affected.
• Graph clustering algorithms tend to bring similar nodes together. Hence the distribution of a

cluster could be different from the original data set, leading to a biased estimation of the full
gradient while performing SGD updates.

In order to tackle the aforementioned challenges, we introduce a batch random aggregation mecha-
nism designed to integrate inter-cluster connections and reduce variability across batches. Initially,
we segment the graph into clusters denoted as k clusters C1, · · · , Ck with a relatively large value
of k. When forming a batch B for a Stochastic Gradient Descent (SGD) update, instead of select-
ing a single cluster, we randomly pick n clusters, denoted as c1, . . . , cn and include their nodes
Vc1 ∪ · · · ∪ Vcn into the batch. Moreover, the connections between the chosen clusters,

{Aij | i, j ∈ c1, . . . , cn}
are reintroduced. This method ensures the reintegration of inter-cluster links and reduces batch-to-
batch variance through diverse cluster combinations. The training procedure of the Cluster Graph
Spatial Transformer (CGST) is outlined in Algorithm 2. In each epoch, varied subgraph combi-
nations are selected as batches. An experiment is performed on three extensive graph datasets to
showcase the efficacy of the proposed approach. The results in Table 2 demonstrate that utilizing
multiple clusters within a batch can enhance performance.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Algorithm 2: Training Algorithm of CGST
Input: Graph G, feature X , label Y
Output: Predicted node label Ỹ

1: Partition graph into c clusters V1,V2, · · · ,Vc with Chordal Subgraph Partition Module
2: while iter < max iter do
3: Randomly choose n clusters, c1, · · · , cn
4: Form the batch B̄ with nodes [N(Vt1), N(Vc1 , · · · , N(Vcn)] and links E
5: Compute g ← ∇LAV̄,V̄ (loss is introduced in Equation 8)
6: Conduct Mini-batch SGD using gradient estimator g
7: end while
8: return {Wl}Ll=1

5 EXPERIMENTS

5.1 EXPERIMENT SETUP

5.1.1 DATASETS

We evaluate our model on three large-scale graph datasets through the node classification task. Some
basic information of these three datasets is demonstrated as below:

• Twibot-22 (Feng et al., 2022). Twibot-22 is a comprehensive graph-based Twitter bot detection
benchmark that presents the largest dataset to date, provides diversified entities and relations on
the Twitter network, and has considerably better annotation quality than existing datasets.

• Hyperlink Graph (Lehmberg et al., 2014). Hyperlink graphs have been extracted from the 2012
and 2014 versions of the Common Crawl web corpera. We use the 2014 graph, which covers 1.7
billion web pages connected by 64 billion hyperlinks.

• MalNet (Freitas et al., 2020). MalNet is a large public graph database, representing a large-scale
ontology of software function call graphs. MalNet contains over 1.2 million graphs, averaging
over 17k nodes and 39k edges per graph, across a hierarchy of 47 types and 696 families.

5.1.2 BASELINE METHODS

We compare our model with several baseline methods for large-scale graph datasets, including
sampling-based and decoupling-based methods. We select six baselines to evaluate the performance
of our model on the node classification task. The basic information of these baseline methods is
demonstrated below:

• ClusterGCN (Chiang et al., 2019). ClusterGCN first partitions the entire graph into clusters
based on some graph partition algorithms, e.g. METIS (Karypis & Kumar, 1998), and then selects
several clusters to form a batch.

• GraphSAINT (Zeng et al., 2019). GraphSAINT samples a subset of nodes based on a sampling
strategy and then induces the corresponding subgraph as a batch. The commonly-used sampling
strategies include: a node sampler: (P(u) = ||Ã:,u||2), an edge sampler: (P(u, v) = 1

deg(u) +
1

deg(v)), and a random walk sampler.

• GnnAutoScale (Fey et al., 2021). GAS incorporates historical embeddings to provably maintain
the expressive power of full-batch GNN. It provides approximation error bounds of historical
embeddings and show how to tighten them in practice.

• SIGN (Frasca et al., 2020). SIGN concatenates features from different hops and then fuse them
as the final node representation via a linear layer.

• SAGN. SAGN adopts attention mechanism to combine feature representations from K hops: X̄ =∑K
l=1 T

lX l, where T l is a diagonal matrix whose diagonal corresponds to the attention weight
for each node of k-hop information.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

5.1.3 EXPERIMENT SETTINGS

We implement our proposed method CGST in PyTorch. For the other methods, we use all the
original papers’ code from their Github pages. Since some baseline methods has difficulty scaling
to large graphs, we do not compare with it here. For all the methods, we use the Adam optimizer with
a learning rate as 0.01, a dropout rate as 20%, weight decay as zero. In each experiment, we consider
the same GCN architecture for all methods. For SIGN and SAGN, we follow the settings provided
by the original papers and set the batch sizes as 512. For our model, the clustering is seen as a
preprocessing step and its running time is not taken into account in training time. All the experiments
are conducted on four machines with two NVIDIA 3090 GPUs and 128 GB memory on Ubuntu
20.04. Codes are available at https://anonymous.4open.science/r/CGST-6225/

5.2 EXPERIMENT RESULTS

Table 1: Performance and efficiency comparison between CGST and other baseline methods on three
large-scale graph datasets. Four metrics in terms of F1 score(%), accuracy(%), memory usage(MB)
and training time are evaluated. All experiments are repeated three times. For F1 score and accuracy,
the mean and standard deviation (±) are reported. For memory usage and training time, the average
scores are reported. The best results are in bold and the second best results are underlined.

Method
Twibot Hyperlink Graph MalNet

F1
Acc

Mem Training F1
Acc

Mem Training F1
Acc

Mem Training
Score Usage Time Score Usage Time Score Usage Time

ClusterGCN
58.62 90.30

2462 2.13h
35.27 49.19

6591 3.7h
41.45 45.28

6815 23.1h
±1.25 ±0.89 ±0.49 ±0.32 ±2.60 ±1.87

GraphSAINT
66.76 93.05

2026 2.6h
37.46 56.64

4605 2.1h
50.47 53.00

8562 18.5h
±1.46 ±0.93 ±0.14 ±0.10 ±0.60 ±0.87

GAS
53.76 87.51

1010 3.5h OOM OOM OOM OOM
20.90 26.79

4406 15.4h
±0.57 ±0.41 ±0.36 ±0.32

SIGN
53.07 83.62

4463 0.5h OOM OOM OOM OOM
34.13 37.76

10979 10.4h
±1.03 ±0.82 ±0.40 ±0.28

SAGN
52.58 84.46

4719 0.3h OOM OOM OOM OOM OOM OOM OOM OOM
±0.85 ±0.74

CGST
66.91 93.47

1804 2.5h
45.31 57.18

10499 3.3h
53.20 54.29

10370 26.3h
±1.18 ±0.77 ±0.35 ±0.39 ±0.12 ±0.07

A comparison between our methods and other baseline methods on three large-scale graph datasets
is shown in Table 1. We use four metrics evaluate the models from the perspective of performance
and efficiency:

• F1 score: The macro F1-score of model evaluation on test data.

• Accuracy: The accuracy of model evaluation on test data.

• Memory Usage: Total memory costs of model parameters and all hidden representations
when training a batch.

• Training Time: The total training time (exclude validation) before convergence point.

Performance. First we compare CGST with other methods in terms of F1 score and accuracy. As is
shown in Table 1, our proposed CGST can achieve the highest F1 score and accuracy score among
all the methods, without increasing excessive memory usage and training time. One surprising thing
is that the subgraph sampling-based methods such as ClusterGCN and GraphSAINT can achieve
higher accuracy than the decoupling-based methods. This is probably because the graph data is in-
complete and noisy, and the stochastic nature of the sampling method can bring in regularization for
training a more robust graph neural network with better generalization accuracy. Another observa-
tion is that no matter the size of the graph, CGST can still converge well, while some decoupling-
based methods cannot scale to billions of nodes. This indicates that CGST is scalable to training
very large GNN while maintaining high accuracy.

Efficiency. For training large-scale GNNs, besides performance, memory usage needed for training
and training time are important and will directly restrict the scalability. The memory usage includes

8

https://anonymous.4open.science/r/CGST-6225/

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

the memory needed for training the GCN for many epochs. As discussed in Section 2, to speed up
training, SIGN needs to save historical embeddings during training, so it needs much more memory
for training than sampling-based methods. In Table 1, we can see that when maintaining more in-
formation to boost performance, CGST’s memory usage and training time do not increase a lot. The
reason is that the CGST The essence of preserving information is to retain the structural information
of the original graph when generating a batch, which will not bring too much memory cost. Also, the
more reasonable batch division proposed in Section 4.2 can also save CGST from excessive training
time.

5.3 ABLATION STUDY

Table 2: Performance comparison between CGST and its two variants. Four metrics including F1
score, accuracy, memory usage, and training time are reported. All experiments are repeated three
times. For F1 score and accuracy, the mean and standard deviation (±) are reported. For memory
usage and training time, the average scores are reported.

Method

Twibot Hyperlink Graph MalNet

F1
Acc

Mem Training F1
Acc

Mem Training F1
Acc

Mem Training

Score Usage Time Score Usage Time Score Usage Time

CGST 68.04 93.89
2306 3.7h OOM OOM OOM OOM OOM OOM OOM OOM

w/o CGPM ±0.61 ±0.64

CGST 62.92 87.34
1633 4.8h

34.00 51.08
7551 5.3h

51.46 47.30
8608 30.1h

w/o BRAM ±3.53 ±4.88 ±0.73 ±0.62 ±0.21 ±0.10

CGST
66.91 93.47

1804 2.5h
45.31 57.18

10499 3.3h
53.20 54.29

10370 26.3h
±1.18 ±0.77 ±0.35 ±0.39 ±0.12 ±0.07

As discussed in Section 4, CGST includes two novel modules: a balanced chordal graph partition
module (denoted as CGPM) and a batch random aggregation module (denoted as BRAM). We per-
form an ablation study to examine the effect of these two modules. To evaluate, we consider two
variants of CGST:

1. CGST without chordal graph partition module (abbreviated as CGST w/o CGPM).
2. CGST without batch random aggregation module (abbreviated as w/o BRAM).

Ablation study results on three large-scale datasets are shown in Table 2, from which we could
observe that these two modules improve CGST from two different perspectives. Table 2 reveals
insights into the individual contributions of the CGPM and BRAM modules. The absence of the
CGPM module leads to a noticeable decline in performance metrics, particularly in scenarios where
graph structure is pivotal for model efficacy. Although the performance CGST w/o CGPM on a
median scale dataset (e.g., Twibot) is slightly better than that of CGST due to the removal of the
constraint on subgraph size, the unbalanced number of subgraphs greatly limits its scalability, mak-
ing it unable to support node classification tasks on larger datasets like Hyperlink Graph and MalNet.

Conversely, omitting the BRAM module results in a distinct degradation in the model’s ability to
effectively aggregate information across batches, highlighting the module’s role in enhancing infor-
mation flow and convergence speed during training. In addition, we notice that although the memory
usage of CGST w/o BRAM is slightly reduced compared to the CGST, its training time on all three
datasets is longer. This is because chordal graph partitioning algorithm tend to bring similar nodes
together. Hence the distribution of a cluster could be different from the original data set, leading to
a biased estimation of the full gradient while performing SGD updates. In summary, the experiment
results in Table 2 underscore the indispensable roles played by the CGPM and BRAM modules in
bolstering the overall performance and efficacy of CGST.

5.4 PARAMETER SENSITIVITY ANALYSIS

There is one important hyper-parameters that should be conducted, which is the ratio of maximum
number of nodes in a subgraph to the whole graph (denoted as α). We test the sensitivity of α
using the regular experiment setting on Twibot and Hyperlink Graph dataset. We vary the α from

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 3: Clustering performance comparison between chordal graph partition method and two other
partition methods. Two metrics including NMI and the percentage of removed edges are reported.

Method
Twibot Hyperlink Graph MalNet

NMI Removed Edges NMI Removed Edges NMI Removed Edges
Random Partition 0.31 21.46% 0.18 13.52% 0.20 20.08%

METIS 0.53 9.21% 0.41 5.80% 0.36 8.54%
Balanced Chordal Graph Partition 0.72 5.53% 0.44 5.03% 0.28 11.07%

{0.01, 0.02, 0.05}, {1e−5, 2e−5, 5e−5} on the Twibot dataset and Hyperlink graph dataset respec-
tively. The corresponding F1 score and training timer are respectively shown in Figure 3 with blue
lines. The blue shaded area in each line chart indicates the error range of the corresponding stan-
dard deviation. From the line chart in Figure 3, without affecting the scalability of CGST, α is not
sensitive over these two datasets. In summary, the selection of α is a trade-off between performance
and efficiency. A larger α allows CGST to retain more original graph structure information during
mini-batch training and then boost performance, but it will also increase training time due to batch
imbalance.

1 2 5
(e 2)

61.600

64.700

67.800

F1
 S

co
re

Twibot

1 2 5
(e 5)

43.650

44.600

45.550

F1
 S

co
re

Hyperlink graph

1 2 5
(e 2)

2.500

2.600

2.700

2.800
Tr

ai
ni

ng
 ti

m
e(

h)
Twibot

1 2 5
(e 5)

3.400

3.600

3.800

Tr
ai

ni
ng

 ti
m

e(
h)

Hyperlink graph

Figure 3: Parameter Sensitivity analysis of α over Twibot dataset and Hyperlink graph dataset. The
corresponding F1 scores and training time are respectively shown using line charts. The blue shaded
area in each line chart indicates the error range of the corresponding standard deviation.

5.5 CASE STUDY

To further substantiate the effectiveness of the chordal graph partitioning algorithm introduced in
Section 4, a comprehensive evaluation was conducted across three distinct datasets. The efficacy of
our method was rigorously scrutinized through a comparative analysis against established techniques
such as METIS and random partitioning. By employing key evaluation metrics including NMI
(Normalized Mutual Information) and the quantification of removed edges, a thorough assessment
of the clustering quality was achieved. The experiment results from Table 3 affirm the superiority of
our proposed approach, underscoring its capability to consistently generate higher-quality clusters
in diverse graph partitioning scenarios.

6 CONCLUSION

We propose a new algorithm namely CGST for scaling GNNs to large-scale graph datasets. CGST
includes two modules: a balanced chordal graph partition module and a batch random aggrega-
tion module. The first module extracts appropriately connected subgraphs so that little information
is lost when propagating within the subgraphs. A graph partition method is applied to generate
several well-partitioned chordal subgraphs, which means chordal graphs with balanced sizes. The
second module solves the challenge that graph clustering algorithms tend to remove edges and cross-
community nodes from the original datasets. Finally, under extensive experiments on four real-world
datasets, we show that CGST provides consistent boosts in the performance of node classification
tasks over large-scale graph datasets.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Hrayr Harutyunyan, Nazanin Alipourfard,
Kristina Lerman, Greg Ver Steeg, and Aram Galstyan. Mixhop: Higher-order graph convolu-
tion architectures via sparsified neighborhood mixing. arXiv preprint arXiv:1905.00067, 2019.

Jungho Ahn, Lars Jaffke, O-joung Kwon, and Paloma T Lima. Well-partitioned chordal graphs.
Discrete Mathematics, 345(10):112985, 2022.

Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks and locally
connected networks on graphs. CoRR, abs/1312.6203, 2013. URL http://arxiv.org/
abs/1312.6203.

Jianfei Chen, Jun Zhu, and Le Song. Stochastic training of graph convolutional networks with
variance reduction. arXiv preprint arXiv:1710.10568, 2017.

Jianfei Chen, Jun Zhu, and Le Song. Stochastic training of graph convolutional networks with
variance reduction. In ICML, pp. 941–949, 2018a.

Jie Chen, Tengfei Ma, and Cao Xiao. Fastgcn: Fast learning with graph convolutional networks via
importance sampling. In International Conference on Learning Representations (ICLR), 2018b.

Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh. Cluster-
gcn: An efficient algorithm for training deep and large graph convolutional networks. CoRR,
abs/1905.07953, 2019. URL http://arxiv.org/abs/1905.07953.

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks
on graphs with fast localized spectral filtering. In Advances in Neural Information Processing
Systems, pp. 3844–3852, 2016.

Shangbin Feng, Zhaoxuan Tan, Herun Wan, Ningnan Wang, Zilong Chen, Binchi Zhang, Qinghua
Zheng, Wenqian Zhang, Zhenyu Lei, Shujie Yang, Xinshun Feng, Qingyue Zhang, Hongrui
Wang, Yuhan Liu, Yuyang Bai, Heng Wang, Zijian Cai, Yanbo Wang, Lijing Zheng, Zihan Ma,
Jundong Li, and Minnan Luo. Twibot-22: Towards graph-based twitter bot detection, 2022. URL
https://arxiv.org/abs/2206.04564.

Matthias Fey, Jan E Lenssen, Frank Weichert, and Jure Leskovec. Gnnautoscale: Scalable and ex-
pressive graph neural networks via historical embeddings. In International conference on machine
learning, pp. 3294–3304. PMLR, 2021.

Fabrizio Frasca, Emanuele Rossi, Davide Eynard, Ben Chamberlain, Michael Bronstein, and Fed-
erico Monti. Sign: Scalable inception graph neural networks. 2020.

Scott Freitas, Yuxiao Dong, Joshua Neil, and Duen Horng Chau. A large-scale database for graph
representation learning. arXiv preprint arXiv:2011.07682, 2020.

Hongyang Gao, Zhengyang Wang, and Shuiwang Ji. Large-scale learnable graph convolutional
networks. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, KDD ’18, pp. 1416–1424, New York, NY, USA, 2018. ACM. ISBN
978-1-4503-5552-0.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
In Advances in Neural Information Processing Systems 30, pp. 1024–1034. 2017.

Moritz Hardt, Ben Recht, and Yoram Singer. Train faster, generalize better: Stability of stochastic
gradient descent. In International conference on machine learning, pp. 1225–1234. PMLR, 2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. CoRR, abs/1512.03385, 2015. URL http://arxiv.org/abs/1512.03385.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 4700–4708, 2017.

11

http://arxiv.org/abs/1312.6203
http://arxiv.org/abs/1312.6203
http://arxiv.org/abs/1905.07953
https://arxiv.org/abs/2206.04564
http://arxiv.org/abs/1512.03385

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Wenbing Huang, Tong Zhang, Yu Rong, and Junzhou Huang. Adaptive sampling towards fast graph
representation learning. In Advances in Neural Information Processing Systems, pp. 4558–4567,
2018.

George Karypis and Vipin Kumar. A fast and high quality multilevel scheme for partitioning irreg-
ular graphs. SIAM Journal on scientific Computing, 20(1):359–392, 1998.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. CoRR, abs/1609.02907, 2016. URL http://arxiv.org/abs/1609.02907.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. In ICLR, 2017.

Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann. Personalized embed-
ding propagation: Combining neural networks on graphs with personalized pagerank. CoRR,
abs/1810.05997, 2018. URL http://arxiv.org/abs/1810.05997.

John Boaz Lee, Ryan A. Rossi, Xiangnan Kong, Sungchul Kim, Eunyee Koh, and Anup Rao.
Higher-order graph convolutional networks. CoRR, abs/1809.07697, 2018. URL http:
//arxiv.org/abs/1809.07697.

Oliver Lehmberg, Robert Meusel, and Christian Bizer. Graph structure in the web: aggregated by
pay-level domain. In Proceedings of the 2014 ACM conference on Web science, pp. 119–128,
2014.

Jure Leskovec and Julian Mcauley. Learning to discover social circles in ego networks. Advances
in neural information processing systems, 25, 2012.

Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and Stefanie
Jegelka. Representation learning on graphs with jumping knowledge networks. arXiv preprint
arXiv:1806.03536, 2018.

Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L. Hamilton, and Jure
Leskovec. Graph convolutional neural networks for web-scale recommender systems. In KDD,
2018a.

Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L. Hamilton, and Jure
Leskovec. Graph convolutional neural networks for web-scale recommender systems. In Pro-
ceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, KDD ’18, 2018b. ISBN 978-1-4503-5552-0.

Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor K. Prasanna.
Accurate, efficient and scalable graph embedding. CoRR, abs/1810.11899, 2018a. URL http:
//arxiv.org/abs/1810.11899.

Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor K. Prasanna.
Accurate, efficient and scalable graph embedding. CoRR, abs/1810.11899, 2018b. URL http:
//arxiv.org/abs/1810.11899.

Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor Prasanna. Graph-
saint: Graph sampling based inductive learning method. arXiv preprint arXiv:1907.04931, 2019.

Muhan Zhang and Yixin Chen. Link prediction based on graph neural networks. In NIPS, 2018.

Zhenpeng Zhou. Graph convolutional networks for molecules. CoRR, abs/1706.09916, 2017. URL
http://arxiv.org/abs/1706.09916.

12

http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1810.05997
http://arxiv.org/abs/1809.07697
http://arxiv.org/abs/1809.07697
http://arxiv.org/abs/1810.11899
http://arxiv.org/abs/1810.11899
http://arxiv.org/abs/1810.11899
http://arxiv.org/abs/1810.11899
http://arxiv.org/abs/1706.09916

	Introduction
	Related Works
	Layer Sampling
	Subgraph Sampling
	GNN Decoupling

	Premilinary
	Problem Definition
	Background

	Methodology
	Overview
	Balanced Chordal Graph Partition
	Random Aggregation

	Experiments
	Experiment Setup
	Datasets
	Baseline Methods
	Experiment Settings

	Experiment Results
	Ablation Study
	Parameter Sensitivity Analysis
	Case Study

	Conclusion

