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Abstract: Recent years have witnessed impressive robotic manipulation sys-
tems driven by advances in imitation learning and generative modeling, such
as diffusion- and flow-based approaches. However, these systems can still fail
due to suboptimality, inconsistency of stochastic actions, or unfavorable out-of-
distribution operating conditions. To ensure dependable operation of such systems
before deployment in safety-critical situations, such as in human environments, we
need to reliably detect their failures in real-time during inference. In this paper, we
propose a modular two-stage approach for failure detection in imitation learning-
based robotic manipulation tasks. Our method combines extracting scalar signals
that correlate with policy failures and conformal prediction to accurately identify
failures while providing statistical guarantees. We investigate both learned and
posthoc scalar signal candidates, finding learned signals to be most performant
for failure detection. We show the effectiveness of our approach through extensive
experiments on diverse robotic manipulation tasks, showcasing its ability to detect
failures accurately and quickly. Our results highlight the potential of our method
to enhance the safety and reliability of imitation learning-based robotic systems
as they continue to improve and become ready for real-world deployment.
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1 Introduction

Robotic manipulation plays a crucial role in many applications, such as manufacturing, logistics, and
healthcare [1]. Recently, imitation learning algorithms have shown tremendous success in learning
complex manipulation skills from demonstrations using stochastic generative modeling, such as
diffusion- [2, 3] and flow-based methods [4]. However, despite their outstanding results, policy
networks can fail due to poor stochastic sampling from the action distribution. Additionally, the
models may encounter out-of-distribution (OOD) conditions where the input observations deviate
significantly from the training data distribution. In such cases, the generated actions may be unre-
liable or even dangerous. Therefore, it is imperative to detect these failures as quickly as possible
once they occur to ensure the safety and reliability of the robotic system.

Detecting failures in robotic manipulation tasks poses several challenges. First, the input data for
failure detection, such as environment observations, are often high-dimensional and have compli-
cated distributions. This makes it difficult to identify discriminative features that distinguish between
successful and failed executions, especially in the imitation learning setting where a reward function
is not defined. Second, there are countless opportunities for failure due to the complex nature of ma-
nipulation tasks and the wide range of possible environmental conditions (see Fig. 2). Consequently,
failure detectors need to be general and robust to handle diverse failure scenarios.

In prior work, failure detection is often achieved through binary classification of in-distribution (ID)
and OOD conditions [5, 6]. Training data for imitation learning naturally consists of successful
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trajectories only, making any failure OOD. We follow this )
general strategy in this work. However, prior methods of- EZJ!ZJ;E) "
ten require OOD data for training, which poses a signif- Detection
icant challenge as collecting and annotating a diverse set ———
of failure examples can be time-consuming, expensive, Success
and even infeasible in many real-world scenarios. More- trajectory
over, the classifiers trained on a specific set of OOD data

may not generalize well to unseen failure modes. Hence,
there is a need for failure detection approaches that oper-
ate without relying on explicit OOD data during training.

To address these challenges, we propose a two-stage
approach (Fig. 1) for failure detection in generative
imitation-learning policies for manipulation. In the first
stage, we extract scalar signals from input data during
inference that are discriminative between successes and
failures. These signals compress high-dimensional, com- ‘
plex input data into a scalar form that captures the es- to
sential characteristics of successful rollouts. We investi-
gate both learned and posthoc signal candidates, finding Figure 1: Proposed failure detection frame-
learned signals to be most accurate for failure detection. work. (Top - Hlustration) Failure detection
. - . scores are computed for each rolled out tra-
A key novelty of our method is the ability to learn fail- jectory, and a detection threshold is deter-
ure detection signals without access to failure data. Our mined using a conformal prediction band.
learned detection score candidates are output by mod- Failure at time ¢ causes the score to spike
els that are trained offline, resulting in faster inference above the threshold, triggering failure detec-
than batch sampling of robot action predictions as in prior tion. (Bottom) The robot behaves normally
. while attempting to place square on the peg
work [7]. In the second stage, we use conformal predic- until a failure oceurs at £, as shown in the
tion (CP) to build time-varying thresholds to sequentially  top right image, where the square slips out
determine whether a signal indicates a failure. CP pro- of the gripper. This failure is captured by
vides statistical guarantees on model predictions [8]. By the spike in the failure score in the plot.
incorporating CP into our pipeline, we obtain reliable and adaptive thresholds that adjust to the
changing dynamics of the manipulation task. Unlike prior work [7], we adopt functional CP [9] that
yields a time-varying prediction band that is more suitable for dynamic time-series data.
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Our contributions are as follows. We propose a modular two-stage framework for failure detection
in generative imitation learning-based robotic manipulation. We propose a means to learn scalar
signals from successful ID policy rollouts that during inference distinguish between successes and
failures. We combine this scalar score with temporally-adaptive thresholds from functional CP that
trigger failure detection with statistical guarantees. Our framework is flexible to incorporate new
signal and threshold designs. We show that our approach detects failures accurately and quickly on
diverse robotic manipulation tasks, both in simulation and in real-world settings.

2 Related Work

Imitation Learning for Robotic Manipulation. Imitation learning has emerged as a powerful
paradigm for teaching robots complex skills by learning from expert demonstrations. Diffusion
models [10] have shown promise for imitation learning in robotics. These models learn to de-
noise trajectories sampled from a Gaussian distribution, effectively capturing the multi-modal ac-
tion distributions often present in demonstrations [11, 2]. Diffusion models have been used to learn
observation-conditioned policies [2, 12], integrate semantic information via language conditioning
[11, 13, 14], and improve robustness and generalization [15, 16, 17]. More recently, flow-based gen-
erative models have been proposed as an alternative to diffusion in imitation learning, demonstrating
faster inference [18] and flexibility beyond Gaussian priors [4].

Out-of-Distribution (OOD) Detection. The task of detecting robotic failures can be generally
viewed as anomaly detection, which falls under the broader framework of OOD detection [19]. One
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Figure 2: Diverse failure types observed for a single trained policy g on a simple pick-and-place task (put
square on peg). These failures occurred at different times across multiple rollouts and include the square
slipping out of the gripper or being misplaced (e.g., with tilted position) on the peg.

approach is to frame OOD detection as a binary classification problem, where the OOD class is
assigned a label of one. This formulation learns the decision boundary between ID and OOD data
by training a binary classifier [5, 6], but requires OOD data during training. Meanwhile, density-
based approaches attempt to model the distribution of ID data [20, 21], alleviating the need for OOD
data during training. However, these methods can be more computationally expensive and harder
to optimize compared to classification-based approaches. Similarly, control-theoretic approaches
like [22] learn contrastive energy-based models to detect OOD states from ID data only, but they
often require a representation of the dynamics model. Evidential deep learning methods [23, 24,
25] learn parameters for second-order distributions (e.g., Dirichlet) to approximate and decouple
epistemic uncertainty from aleatoric uncertainty. Lastly, distance-based approaches [26, 27, 28]
directly identify OOD samples by computing their distance to ID ones, where they avoid the need
for training but tend to have limited performance compared to other approaches.

Failure Detection in Robotics. Detecting failures in robotic systems is important for ensuring
safety and reliability, as failures can lead to undesired behaviors in human environments [29, 30].
Various approaches have been proposed, such as building fast anomaly classifiers based on LLM
embeddings [31], constructing failure classifiers using BC-RNN policy backbones [32], and using
the reconstruction error from variational autoencoders to detect anomalies in mobile manipulation
[33]. In addition, Ren et al. [34] provide uncertainty sets for actions generated by LLM-based
planners, prompting human intervention when the set is ambiguous. However, these works do not
focus on generative imitation learning policies, which are our primary interest. For diffusion-based
policies, [35] uses CP to provide a set in the trajectory space that is guaranteed to contain diffu-
sion model outputs with a user-defined probability. [36] proposes using random network distillation
(RND) to detect OOD trajectories and select reliable ones. Neither work directly considers within-
rollout failure detection, and our two-stage framework combines the advantages of both approaches.
Recently, Agia et al. [7] use a statistical temporal action consistency (STAC) measure in conjunc-
tion with vision-language models (VLMs) to detect failures within rollouts. STAC is the closest
SOTA method for our setting, and we demonstrate improved empirical performance against it as we
combine learned scores with a time-varying CP band.

3 Problem setup

Our focus in this work is to detect when a generative imitation learning policy fails to complete its
task during execution. We define the following notation. Let g(A; | O;) denote the generator, where
O represents the observation of the environment (e.g., image features and robot states) at time ¢, and
g is a stochastic predictor of a sequence of actions Ay = (A, Ay1jt, .- -, Ay —1)¢) for the next H
time steps. The first H' < H actions A1 g ¢ are extracted and executed, after which the robot re-
plans by generating a new sequence of H actions at time ¢t + H'. Recent works have trained effective
generators ¢ via diffusion [2] and flow matching (FM) [4]. Given a new initial condition Oy, the
generator g outputs a trajectory 7y = (O, Ao, Ogr, Ay ..., Oy, Ay) after t = kH' time steps of
execution for k > 1. Failure detection can thus be framed as designing a score D(7;60) — {0,1}
with parameters 6, which takes in the current trajectory and makes a decision. If D(7;;6) = 1, the
rollout is flagged as a failure at time step ¢. For instance, in a pick-and-place task, a failure may be
detected after the robot fails to pick up the object or misses the target position.
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4 Failure Detection Framework
Given action-observation data (A, O;), we propose a two-stage framework:

1. Train a scalar score Dy (A, O;0) — R (3 for “method” for the score) on action and/or
observation pairs from successful trajectories only.

2. Calibrate time-varying thresholds 7; based on a CP band.

The final score D(7%;0) = 1(Dpr(A¢, O;60) > my) raises a failure flag if the scalar score Dy
exceeds the threshold 7, at time step ¢. This two-stage framework allows for flexibility to incorporate
new scores in stage 1 or new thresholds in stage 2. See Fig. 1 for an overview of the framework.

4.1 Design of Scalar Scores

When designing a scalar score that is indicative of policy failure, we consider the following desider-
ata: (1) One-class: The method should not require failure data during training as it may be too
diverse to enumerate (see Fig. 2). (2) Light-weight: The method should allow for fast inference
to enable real-time robot control. (3) Discriminative: The method should yield gaps in scores for
successful and failed rollouts. To avoid overfitting on historical data and enable efficient real-time
detection [7], the score Dy, also only takes the current pair (A;, O;) € 7; as inputs rather than the
growing trajectory history. We leave exploration of historical time series data for failure detection
to future work. To meet our desiderata, we select and build on the following approach categories.

(a) Learned data density: we fit a density estimator to the observations. The intuition is that ob-
servations far away from the support of the success distribution may be indicative of failure. The
approach we term logpQ [37] fits a continuous normalizing flow (CNF) to the set of observations
{O:}1>0. A low log p(Oy ) indicates an unlikely observation, indicating possible failure.

(b) Second-order: these methods learn parameters for second-order distributions that can separate
aleatoric and epistemic uncertainty [38]. NatPN [23] imposes a Dirichlet prior on class probabilities
and optimizes model parameters by minimizing a Bayesian loss. We apply NatPN to the observations
O¢. We also consider multivariate deep evidential regression DER [24] applied to the predicted
actions. DER assumes A; | O; follows a multivariate Gaussian distribution with Wishart prior.

(c) One-class discriminator: we consider methods that provide a learned continuous metric
from successful observations. The one-class discriminator RND [36] initializes a random tar-
get network fr(-) and a predictor network f(-;6). The predictor is trained to minimize
E(A,,00)~ID wajectory [P a1 (Ae, O3 0)] for Dag(Ay, Oy 0) = || fr(As, Or) — f(Ar, O 0)|]3 on suc-
cessful demonstration data. Intuitively, RND learns a mapping from the available data (A, O;) to a
preset random function. If the learned mapping starts to deviate from the expected random output,
the input data is likely OOD. In this category, we also consider consistency flow matching (CFM) [39],
which measures trajectory curvature with empirical variance of the observation-to-noise forward
flow. The intuition is that on ID data, the forward flow is trained to be straight and consistent. Thus,
high trajectory curvature indicates the input observations are OOD.

(d) Posthoc metrics: we investigate methods that compute a scalar score analytically without learn-
ing. We use SPARC [40] to measure the smoothness of predicted actions. We expect SPARC to be
useful for robot jitter failures, which are empirically frequent in OOD scenarios. The recent SOTA
in success-based failure detection, STAC [7], falls in the posthoc method category. However, since it
comes with its own statistical evaluation procedure, we describe it as our main baseline in Section 5.

4.2 Sequential Threshold Design with Conformal Prediction (CP)

We design time-varying thresholds 7 such that a failure is flagged when Dy (A;, Oy; 0) exceeds ;.
Functional CP [9] is a framework that wraps around a time-series of any scalar score D), (lower
indicates success) and yields a distribution-free prediction band C\, with user-specified significance
level o € (0,1). Under mild conditions [41, 42, 43], C,, contains any ID score D, (A4, O; ) with
probability of at least 1 — a. If D/ (A, O;0) ¢ C,,, we can confidently reject that (A4, O) is ID.

For sequential failure detection, we build C,, as a one-sided time-varying CP band. The band is
one-sided as we are only concerned with high values of the scalar score D), which indicate the



trajectory is OOD (i.e., a failure). Given NN success rollouts as the validation data, we obtain scalar
scores Deqy = {Dpr(AL,050) : i =1,...,Nandt = 1,H’,...,T}. The CP band is a set of
intervals C,, = {[lower;, upper,| : ¢t = 1, H',..., T}, where lower; = min(D,,;) since the band is
one-sided. To obtain the upper bound, we follow [9], computing the time-varying mean y; and band
width £, so that upper, = i + h. Further details of upper bound construction are in Appendix A.
Theoretically, for a new success rollout 7 = (Oy, Ay, . .., O, Ar), with probability at least 1 — v,
the score Dy (A, O3 0) € [lower,, upper,] for all t = 1,H’,...,T. By defining the threshold
n; = upper, and setting failures as the positive class, the decision rule 1(Dps(A¢, O 60) > ny)
controls the false positive rate (success is marked as failure) at level a.

5 Experiments

We test our two-stage failure detection framework in both simulation and on a real-world robot
platform. Our experiments span multiple environments, each presenting unique challenges in terms
of types of tasks and distribution shifts. We empirically investigate an extensive set of both learned
and posthoc scalar scores within our failure detection framework. The NatPN [23], DER [24], and
RND [44] methods we consider for the scalar score are SOTA OOD detection techniques that do not
require OOD data for training. We additionally baseline against STAC [7] as the SOTA approach in
success-based failure detection for generative imitation learning policies. We refer to Appendix B
for more details of the policy training and learned scalar scores.

Tasks. In simulation, we consider the Square and Transport tasks from the open-source
Robomimic benchmark [45]. The Square task asks the robot to pick up a square nut and place
it on a rod, which requires precision. The Transport task asks two robot arms to transfer a hammer
from a closed container on a shelf to a target bin on another shelf, involving coordination between
the robots. In the real-world experiments, we consider a RedTowelFolding task on a bimanual
Franka Emika Panda robot station (see Fig. 8). The RedTowelFolding task is the most challenging
setting. The two robot arms must fold a deformable red towel twice and push it to the table corner.
This task is long-horizon and requires both precision and coordination. We construct OOD settings
for each task. In simulation, we adjust the third-person camera 10 degrees upwards at the first time
step after ¢ = 50 to simulate a camera bump mid-rollout. For the real-world experiment (see Fig. 3),
we either interrupt after the first fold (challenging ID scenario) or create an OOD initial condition.

Baselines. We compare learned and posthoc scalar scores within our framework, as well as against
the SOTA approach STAC [7]. Specifically, STAC operates by generating batches (e.g., 256) of

(e) ID initial condition  (f) OOD initial condition (g) Success case (h) Failure case

Figure 3: Experimental settings for the RedTowelFolding task. Interruption after 1st fold (top row): In
(b), the human pulls the towel from (a) towards the bottom during a policy rollout. We note that such recovery
behavior is sometimes present in the training data, so the task may succeed as in (c). A failure case is shown
in (d). OOD initial condition (bottom row): Compared to ID (e), we start with a crumpled towel with a
blue spatula distractor to the right of the towel as in (f). Neither condition is present in the training data, thus
although the task could succeed as in (g), the success rate is low and the robot typically fails like in (h).
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Figure 4: Quantitative results in simulation (best, second, third). We group together posthoc (STAC, SPARC),
density-based (logpO), second-order (DER, NatPN), and one-class (CFM, RND) methods. The dashed lines
in the Detect Time plots represent average successful trajectory time in that setting with standard error. RND
achieves the best Accuracy on all except the Square OOD task. RND gets top-3 performance in 10/16 metric
and task combinations, while STAC achieves that in 6/16 cases, showing that RND is more robust across
settings. Overall, learned methods seem to have more capacity to detect failures than posthoc ones.

predicted actions at each time step. It then computes the statistical distance (e.g., maximum mean
distance (MMD)) between temporally overlapping regions of two consecutive predictions, where
the MMD is approximated by batch elements. Intuitively, this MMD measures the “surprise” in
the predictions over the rollout and subsequently, STAC makes a detection using CP. Note that
instead of computing a CP band for a temporal sequence, STAC computes a single threshold based
on empirical quantiles of the cumulative divergence in a validation set. We reproduce the method
and adopt hyperparameters used in their push-T example, where we generate a batch of 256 action
predictions per time step. We did not employ the VLM component of the STAC failure detector to
remain real-time feasible. We also did not filter the predicted actions [7] as we are including pick-
and-place tasks. Due to the long STAC inference time (even after parallelization) and resulting high
system latency, we omit its comparison on the real-world RedTowelFolding task. Lastly, we omit
comparisons against ensembles [46], which were outperformed by RND for OOD detection [44].

Evaluation protocol: The underlying policy network g is trained with flow matching [47, 48], which
has demonstrated SOTA performance on complex imitation learning tasks [49, 4]. In particular, im-
age features are extracted using a ResNet [50] backbone trained jointly with g. The ResNet features
of camera images concatenated with robot state constitute observations O;. Note that our two-stage
approach is applicable to other policy networks (e.g., diffusion policy [2]), but we leave this explo-
ration to future work. Table 1 shows success rate across the tasks. To compute the time-varying
thresholds 7, we roll out the FM policy 1000 (resp. 50) times in ID environments for simulation
(resp. real-world), collecting only successful trajectories. 30% of successful rollouts are used for
computing p; and the remaining 70% for the CP band width. Since the RedTowelFolding task is
particularly challenging, we additionally relax the problem to use setting-dependent thresholds. We
take 30 of 50 rollouts for each setting (interruption and OOD) to compute the CP threshold. This
setup is less practical as it assumes access to rollouts in the new OOD environment.

We then test the model performance on 2000 (resp. 50) test rollouts for simulation (resp. real-
world); for RedTowelFolding with setting-dependent CP thresholds, we test on 20 test rollouts. For
ID simulation tasks, we test on 1000 test rollouts as the first 1000 are used to calibrate the CP band.
To quantify failure detection performance, we adopt the following metrics similar to [7]: (1) true
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Figure 6: Quantitative results in the real-world using two ways to compute the CP band. The figure layout
is the same as Fig. 4 (best, second, third). RND achieves the best Accuracy when using the setting-dependent
band, but mostly predicts failures (high TPR but low TNR) under the ID-success band. All methods perform
worse with the ID-success band as the successes in these difficult settings vastly differ from the ID successes.

positive rate (TPR), (2) true negative rate (TNR), (3) accuracy = (TPR + TNR) / 2, and (4) detection
time = K4, 0,)~test rollouts[Arg ming—1 g7 7 L(Ds(Ag, Oy; 0) > 1;)], which computes the average
failure detection time. Here, failure rollouts are denoted with one and success rollouts with zero.

6 Results

We present our key experimental findings, with particular focus on the differences between learned
and posthoc scalar scores, the computational efficiency of our approach as compared to the SOTA
approach, and the effect of the decision thresholds on the performance metrics.

Learned scalar scores often outperform posthoc scores. The quantitative results on simulation
tasks are in Fig. 4 and in Fig. 6 for the real-world task. In simulation, we notice that RND reaches the
highest Accuracy on all except the Square OOD task, hence achieving the best balance between TPR
and TNR. Overall, learned scalar scores (which include RND) tend to perform better than posthoc
approaches in terms of higher Accuracy, as two among the best three approaches are often learned
scores. One exception is the Square OOD task, where all methods perform poorly; STAC reaches
high Accuracy yet its Detection Time significantly exceeds the task completion time, making it
impractical. Qualitatively, Fig. 5 visualizes the detection scores. Unlike learned methods, posthoc
ones often fail to show significant score separation between successful and failed trajectories.
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Computational advantage. Compared to STAC, a posthoc approach which requires generating 256
action predictions per time step, the inference of our learned scores is significantly faster. Specifi-
cally, in simulation for a batch of 50 rollouts on one A6000 GPU, computing RND scores takes only
0.04 s (on Square) and 0.033 s (on Transport) per time step whereas STAC requires 1.45 s on both
tasks after parallelization. This amounts to 36 x to 44 x slower inference. Reducing the action batch
size from 256 could speed up STAC, yet this would reduce the statistical power of the approach.

Environment-dependent thresholds aid performance on the real-world task. When the CP band
is computed on successful rollouts from an environment (or setting), we call it a ‘setting-dependent
band’. Meanwhile, if we only compute the CP band once on successful rollouts from the ID envi-
ronment, we call it ‘ID-success band’. In simulation (see Fig. 4), we only considered the ID-success
band as this is more practical (i.e., no collection of a hold-out set of rollouts per new environment)
and methods could reach good performance. On the real task (see Fig. 6), however, most methods
tend to drop in both Accuracy and Detection Time, resulting in as low as zero TNR in the OOD
case. This means the methods become over-conservative and predict most (if not all) rollouts as
failures. We suspect this likely happens because scores computed on successful trajectories in OOD
environments are inherently higher than those in the ID environment, making the ID-success band
too narrow. We find that real-world policies are more affected by changes to the environment. In
fact, in many instances, although the trajectory ends up completing the task, it does so poorly (slow,
jittery, etc.) and perhaps should be considered as a failure in comparison to ID successful rollouts.

RND as a learned score is physically meaningful. As seen in Fig. 7, we notice strong correlation
between the rise in scalar scores and what happens in the environment. Specifically, as captured
by the cameras, sudden jumps in the scalar score are caused by (1) Square: the square dropping as
indicated by the robot gripper being closed (2) Transport: the front robot arm (Agent 1 view) failing
to fetch the hammer and the back robot arm (Agent 2 view) failing to pick up the trash. Thus, spikes
in the failure detection scores likely indicate undesirable changes in the underlying environment.
We can retrospectively analyze the root cause of such changes.

7 Conclusion

We presented a modular two-stage failure detection approach for generative imitation learning in
manipulation tasks. Our method combines a learned scalar signal and functional conformal predic-
tion to accurately and efficiently identify failures while providing statistical guarantees. Through
extensive experiments on diverse tasks, we show that the RND score achieves the overall best per-
formance among the considered candidates. Our results highlight the potential of our method to
enhance the safety and reliability of robotic systems in real-world applications.

Our work provides the foundation for several avenues for future work. First, while our experiments
focused on flow-based policies, extending the evaluation to diffusion policies would provide a more
comprehensive understanding of the method’s robustness to different policy architectures. Second,
we find timely detection of failures based on learned scores in real-world data remains challenging.
Some promising directions to ease the problem include: considering multimodal sensory informa-
tion and expanding the scalar score input to contain temporal data. Lastly, the detected failure data
collected could be iteratively used by the policy to further improve performance and robustness.
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A CP band construction

Following [9] we split the set of calibration scores D, into two disjoint parts D.,;,, and D4, With
sizes N7 and N,. We first compute the mean successful trajectory iy = N; ! vazll Dy (AL OF; 0)
fort = 1,...,7 on Dcy,. Then, for j = 1,...,N,, we compute D; = max({p —
Dar(Al,07;6)} ), which is the max deviation over rollout length from the mean prediction to
the scalar score. Note that the max is taken because the CP band is intended to reflect the entire
trajectory. We define S = {D;,j = 1,..., N2} as the collection of such max deviations. The band
width & is finally computed as the (1 — «)-quantile of .S and the upper bound is upper, = p; + h.

B Experimental Details

Policy training with flow matching: We follow the setup in [2] and use the same hyperparameters
to train the policies. The only difference is that instead of optimizing with the diffusion loss, we
change the objective to be a flow-matching loss between A;|O; and Z, the standard Gaussian. We
adopt the CNN UNet architecture for the policy and jointly train the ResNet encoder for image
observations and the policy network. The observations O, thus include both the ResNet embedding

Table 1: Success rate of the flow policy on test data in each task-environment combination. These test data are
used to test failure detection methods as well. On the real task, we mark some cells with * when the number
of failures out of 50 rollouts is no greater than 5. In such cases, we shuffle the rollout indices and include all
the failure ones in the test set, so that the failure detection metrics have higher statistical significance. The true
success rate of flow policy on RedTowelFolding ID across the entire 50 rollouts is 0.96.

(a) Simulation tasks

Square ID Square OOD Transport ID Transport OOD
0.90 (1000 rollouts)  0.63 (2000 rollouts)  0.85 (1000 rollouts)  0.63 (2000 rollouts)

(b) Real-world task

RedTowelFolding ID  RedTowelFolding ID+Interruption ~ RedTowelFolding OOD
Setting-dependent band 0.9* (20 rollouts) 0.75* (20 rollouts) 0.60 (20 rollouts)
ID-success band 0.9* (20 rollouts) 0.90 (50 rollouts) 0.58 (50 rollouts)
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(a) Initial condition (b) After 1st fold (c) After 2nd fold (d) Final success

Figure 8: The real-world on-robot RedTowelFolding experimental setting. Starting with a flat towel, the two
arms need to first fold the towel along the short side, and then the right arm needs to perform the second fold
along the long side. Finally, the towel needs to be pushed to the bottom right corner to be considered a success.

of images from the camera and the non-visual information (e.g., gripper position and robot position).
On the simulation tasks, we train for a different number of epochs (800 epochs on Square and 300
epochs on Transport). On the real RedTowelFolding, we train the networks for 1000 epochs.

Scalar failure detection scores: After learning the policy network g with the ResNet encoder for
camera images, we first obtain {(A;, O;)} for each task using the same training demonstration
data for policy network. For the post-hoc approach SPARC, it utilizes the arc length of the Fourier
magnitude spectrum obtained from the trajectory. To learn and test the scalar scores, we adopt the
following setup:

1. CFM: We use a 4x smaller network with identical architecture as the policy network. It is
unconditional and takes in observations O; as inputs. We train for 200 epochs with a batch
size of 128, using the Adam optimizer [51] with a constant 1e-4 learning rate.

2. 1logp0: The network (taking O, as inputs) has the same architecture as the policy network
but is 4x smaller. We traiin for 500 epochs with a batch size of 128, using the Adam opti-
mizer with a constant le-4 learning rate. For a new observation Oy, its density log p(Oy)
is obtained via the instantaneous change-of-variable formula [52].

3. DER: The network to parametrize the Normal-Inverse Wishart parameters has the same
architecture as the policy network but is 4x smaller. It takes in O; as inputs. We train
for 200 epochs with a batch size of 128, using the Adam optimizer with a constant le-4
learning rate.
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Figure 9: Failure detection scores for 20 (top row with setting-dependent band) or 50 (bottom row with ID-
success band) samples from the test set on RedTowelFolding across posthoc (SPARC) and learned (logpO,
NatPN, RND) methods overlaid with the CP bands. Among all methods, only RND has tight CP bands and
high qualitative separation between failures and successes.
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4. NatPN: We first use K -means clustering to obtain class labels Y for the observations X =
O;. We then consider the case where Y follows a categorical distribution with a Dirichlet
prior on the distribution parameters. To lean the parameters, we then follow [23] to use
the tabular encoder with 16 flow layers. We set the learning rate to be le-3 and train for a
maximum of 1000 epochs.

5. RND: On simulation, we use a 4x smaller network as the policy network, which takes in both
Ay and Oy as inputs (O, as the conditioning variable). We train for 200 epochs with a batch
size of 128, using the Adam optimizer with a constant 1e-4 learning rate. On real data, we
use network with the same size as the policy network to improve performance. We train
for 2000 epochs with a batch size of 512, using the Adam optimizer with a constant le-4
learning rate. During inference, a high D/ (A;, O;; 0) indicates a large mismatch between
the predictor and target outputs, which we hypothesize results from the pair (A, O;) not

being from a successful trajectory.

C Additional Results

We include the following results:

* Fig. 8 shows a successful demonstration of the robot folding the red towel, starting with a
flat red towel in (a).

* Fig. 9 shows the failure detection scores of posthoc and learned methods, which are overlaid
with CP band.

14



	Introduction
	Related Work
	Problem setup
	Failure Detection Framework
	Design of Scalar Scores
	Sequential Threshold Design with Conformal Prediction (CP)

	Experiments
	Results
	Conclusion
	CP band construction
	Experimental Details
	Additional Results

