

# 000 001 002 003 004 005 THE LIE OF THE AVERAGE: HOW CLASS INCREMENTAL 006 LEARNING EVALUATION DECEIVES YOU? 007 008 009

010 **Anonymous authors**  
011 Paper under double-blind review  
012  
013  
014  
015  
016  
017  
018  
019  
020  
021  
022  
023  
024  
025  
026  
027  
028  
029  
030

## ABSTRACT

031 Class Incremental Learning (CIL) requires models to continuously learn new  
032 classes without forgetting previously learned ones, while maintaining stable per-  
033 formance across all possible class sequences. In real-world settings, the order  
034 in which classes arrive is diverse and unpredictable, and model performance can  
035 vary substantially across different sequences. Yet mainstream evaluation protocols  
036 calculate mean and variance from only a small set of randomly sampled sequences.  
037 Our theoretical analysis and empirical results demonstrate that this sampling strat-  
038 egy fails to capture the full performance range, resulting in biased mean estimates  
039 and a severe underestimation of the true variance in the performance distribution.  
040 We therefore contend that a robust CIL evaluation protocol should accurately char-  
041 acterize and estimate the entire performance distribution. To this end, we introduce  
042 the concept of extreme sequences and provide theoretical justification for their  
043 crucial role in the reliable evaluation of CIL. Moreover, we observe a consistent  
044 positive correlation between inter-task similarity and model performance, a relation  
045 that can be leveraged to guide the search for extreme sequences. Building on  
046 these insights, we propose **EDGE** (Extreme case-based Distribution & General-  
047 ization Evaluation), an evaluation protocol that adaptively identifies and samples  
048 extreme class sequences using inter-task similarity, offering a closer approximation  
049 of the ground-truth performance distribution. Extensive experiments demonstrate  
050 that EDGE effectively captures performance extremes and yields more accurate  
051 estimates of distributional boundaries, providing actionable insights for model  
052 selection and robustness checking.  
053

## 1 INTRODUCTION

034 Class Incremental Learning (CIL) seeks to equip a model with the ability to incorporate new class  
035 knowledge over time while preserving accurate recall of previously learned classes (Zhou et al.,  
036 2024a,b). While much of the literature has centered on advancing architectures and algorithms, the  
037 equally crucial question of **how we evaluate CIL** has received far less attention. Recent studies  
038 reveal that final performance in CIL is highly sensitive to the sequence in which new classes arrive  
039 (Bell & Lawrence, 2022; Lin et al., 2023; Shan et al., 2024; Wu et al., 2021). Such sensitivity to class  
040 order is particularly problematic in realistic settings (e.g., autonomous driving), where the order of  
041 class emergence is inherently uncontrollable. Compounding this challenge, the number of possible  
042 sequences grows factorially with the number of classes ( $O(N!)$ ), rendering exhaustive evaluation  
043 impractical. Consequently, CIL evaluation must rely on sampling only a subset of class sequences to  
044 assess and compare model performance.  
045

046 Existing CIL evaluation protocols (Wang et al., 2024b; Zhou et al., 2024b) typically compute model  
047 capability by sampling only 3-5 random class sequences and reporting the sample mean and standard  
048 deviation — an approach we call the **Random Sampling (RS) protocol**. Because RS relies on only  
049 a handful of sequences, it yields only point estimates and provides no characterization of the full  
050 performance distribution. To examine whether RS can reliably approximate the true performance  
051 distribution, we conduct a controlled study with **6** classes organized into **3** sequential tasks, resulting  
052 in **90** possible class-arrival orders. We exhaustively evaluate each sequence to obtain the ground-truth  
053 distribution of test accuracies. Figure 1 illustrates this experimental setting. Consider a realistic  
incremental-training scenario, such as an autonomous driving system, where numerous intrinsically  
different class-arrival sequences may occur in practice. Evaluating all sequences in our controlled

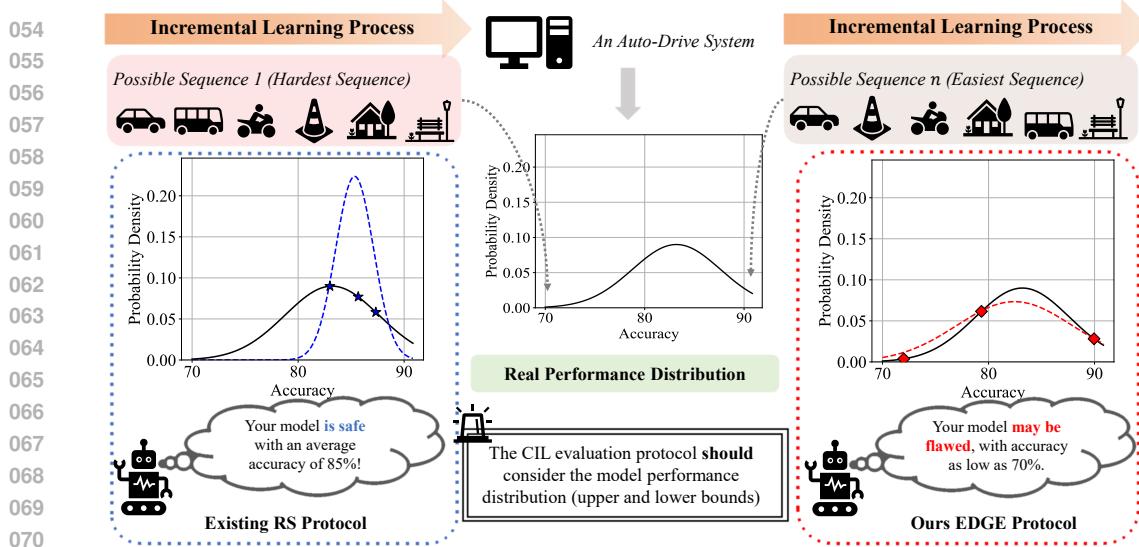


Figure 1: Existing CIL evaluations may be misleading! They merely compute the average accuracy without perceiving the performance distribution, failing to anticipate the impact of potential extreme sequences on the model.

study produces the ground-truth performance distribution. Analysis of this distribution reveals two key observations: first, the model performance approximately follows a Gaussian shape; second, there is substantial variation in extreme cases, with the gap between the easiest and hardest sequences reaching up to **20%** in our example (Hide-Prompt (Wang et al., 2023b) on CIFAR-100 (Krizhevsky, 2009)).

Following the RS protocol, we emulate typical practice by randomly sampling three sequences and fitting a Gaussian  $\mathcal{N}(\mu, \sigma^2)$  using their sample mean and variance. As highlighted in the blue box of Figure 1, comparing this RS-estimated Gaussian against the ground-truth distribution reveals systematic bias: RS tends to *overestimate the mean, dramatically underestimate the variance*, and fails to capture the true upper and lower performance bounds. Consequently, selecting models based solely on the reported average is risky — a model with an inflated mean but a poor lower bound may cause severe failures in real-world deployment. These observations demonstrate that RS is inadequate for faithfully capturing CIL performance; a reliable evaluation protocol must either characterize distributional extremes or otherwise provide a substantially better approximation of the full performance distribution.

Motivated by the RS protocol’s neglect of extreme sequences and supported by our theoretical analysis of these cases, we adopt extreme case sampling to more comprehensively characterize model capability and achieve more accurate performance estimates. Through both theoretical and empirical analysis of inter-task similarity and model performance, we identify inter-task similarity as a key factor influencing CIL performance. Building on this insight, we propose **EDGE** (*Extreme case-based Distribution & Generalization Evaluation*), a novel evaluation framework for CIL. EDGE encodes class-level textual descriptions using a pre-trained CLIP model to construct a class similarity matrix. It then generates three representative class sequences: one that maximizes inter-task similarity to simulate an *easy* scenario, one that minimizes it to represent a *difficult* scenario, and one randomly sampled to serve as a *medium* case. Model performance is evaluated on these three sequences, and their results are aggregated by computing the mean and standard deviation, providing a more comprehensive approximation of the model’s performance distribution. As highlighted in the red box of Figure 1, EDGE produces a substantially closer approximation to the ground-truth distribution than the RS protocol, capturing both the central tendency and the distributional extremes.

The main contributions of this work are summarized as follows:

- We conduct a systematic study of evaluation protocols in CIL, emphasizing that evaluation should aim to capture the full performance distribution of a model. Through both theoretical analysis and empirical investigation, we show that the widely adopted RS protocol produces biased estimates and fails to reflect the realistic behavior of CIL models.

- We propose **EDGE** (*Extreme case-based Distribution & Generalization Evaluation*), a novel evaluation framework that adaptively identifies and samples both easy and challenging class sequences based on inter-task similarity, thereby providing a more faithful approximation of the ground-truth performance distribution.
- Extensive experiments validate the effectiveness of EDGE in sampling extreme sequences and estimating model performance accurately. Our analysis also uncovers notable phenomena, such as different methods exhibiting comparable lower-bound performance in specific scenarios, offering critical insights for the design of future CIL models.

## 2 RELATED WORK

**Class Incremental Learning (CIL):** Existing CIL approaches can be broadly categorized into non-pre-trained and pre-trained based methods (Cao et al., 2023; Dohare et al., 2024). Non-pre-trained methods typically fall into three categories: (1) Regularization-based methods, which introduce explicit regularization terms into the loss function to balance the learning dynamics between old and new tasks (Aljundi et al., 2018; Kirkpatrick et al., 2017; Li & Hoiem, 2017; Wang et al., 2022c); (2) Replay-based methods, which alleviate catastrophic forgetting by replaying data from past tasks, either through stored exemplars (Cha et al., 2021; Lopez-Paz & Ranzato, 2017; Riemer et al., 2018; Wang et al., 2022a) or via generative samples synthesized by GANs (Cong et al., 2020; Liu et al., 2020; Shin et al., 2017; Zhu et al., 2022); and (3) Dynamic network methods, which modify the network architecture—such as by expanding layers or neurons—to accommodate new knowledge while preserving prior information (Aljundi et al., 2017; Cao et al., 2025; Ostapenko et al., 2021; Wang et al., 2023c, 2022b). In contrast, PTM-based methods leverage the representational power of pre-trained backbones and mitigate forgetting through three main strategies: (1) Prompt-based methods, which apply lightweight updates via prompt tuning while freezing the backbone to maintain generalization (Jia et al., 2022; Li et al., 2024; Smith et al., 2023; Wang et al., 2023a, 2022d,e); (2) Model mixture-based methods, which store intermediate checkpoints and integrate them using ensemble or model-merging techniques (Gao et al., 2023; Wang et al., 2024a, 2023d; Zheng et al., 2023; Zhou et al., 2024c, 2025); and (3) Prototype-based methods, which classify examples using nearest-class-mean strategies grounded in PTM-derived embeddings (Lai et al., 2025; McDonnell et al., 2024; Panos et al., 2023; Zhou et al., 2024a).

**Evaluation Protocols of CIL:** Evaluation protocols in CIL have received comparatively limited attention. Prior studies such as Farquhar & Gal (2018); Hsu et al. (2018); Mundt et al. (2021) propose multi-dimensional assessment criteria and benchmarks, while Chen et al. (2025) investigates dynamic task allocation to probe lower-bound performance. In contrast, our work adopts a distribution-oriented perspective: rather than relying on a few random trials, we aim to estimate the underlying performance distribution via a small set of informative, extreme-aware samples. This approach enables more reliable assessment under atypical or adversarial class sequences and delivers more actionable guidance for model selection and design.

## 3 PRELIMINARIES

### 3.1 PROBLEM DEFINITION

**Class Incremental Learning (CIL).** Given an ordered sequence of tasks  $\{1, \dots, t, \dots\}$ , each task  $i$  is associated with a training set  $\mathcal{D}^i = \{X^i, Y^i\}$ , where  $X^i$  denotes the input samples and  $Y^i$  the corresponding labels. Let  $CLS^i$  denote the class set for task  $i$ , with cardinality  $|CLS^i|$ . A crucial constraint enforces strict separation between tasks:  $\forall i \neq j \in \{1, \dots, n\}$ ,  $CLS^i \cap CLS^j = \emptyset$ , and no inter-task data accessibility is allowed during training. The goal of CIL is to learn a unified embedding function  $\Psi : \mathcal{D}^i \rightarrow \mathbb{R}^d$  that maps inputs to a shared embedding space, along with a classifier  $f(\cdot)$  capable of maintaining discriminative performance across all encountered tasks.

In the CIL scenario, given a sequence of learning classes  $\mathcal{O}$  comprising  $T$  tasks, we define  $A_{t,t'}$  as the classification accuracy of the model on the test set of the  $t'$ -th task after training on the first  $t$  tasks. Based on this, the overall evaluation metric for sequence  $\mathcal{O}$  can be formally defined as:

$$\mathcal{A}(\mathcal{O}) = \frac{1}{T} \sum_{t=1}^T A_{t,t}. \quad (1)$$

162 **Objective of CIL Evaluation Protocol Design.** Let  $\Omega$  denote the space of all possible class sequences  
 163 under a given CIL setting. By sampling  $L$  sequences  $\{\mathcal{O}_1, \dots, \mathcal{O}_L\} \subset \Omega$  and computing their final  
 164 accuracies  $\mathcal{A}(\mathcal{O}_l)$  using Equation (1), we construct an empirical performance distribution  $\mathcal{P}_{\text{emp}}$  with  
 165 mean  $\mu_{\mathcal{A}}$  and standard deviation  $\sigma_{\mathcal{A}}$ .

166 As shown in Figure 1 and the *appendix*, the realistic distribution  $\mathcal{P}_{\text{true}}$  is approximately Gaussian. We  
 167 therefore use  $\mathcal{N}(\mu_{\mathcal{A}}, \sigma_{\mathcal{A}}^2)$  to approximate it, and define the goal of protocol design as minimizing the  
 168 distributional distance between  $\mathcal{P}_{\text{true}}$  and its estimate, measured by metrics such as Jensen-Shannon  
 169 divergence (Lamberti et al., 2007) or Wasserstein distance (Villani, 2009).

170 **Random Sampling (RS) Evaluation Protocol.** For a given CIL model  $\mathcal{M}$ , the conventional  
 171 evaluation protocol uses three fixed random seeds (Lai et al., 2025; Li & Zhou, 2025; McDonnell  
 172 et al., 2024; Wang et al., 2022e) to generate class sequences  $\{RS_l\}_{l=1}^3$ . The performance of the  
 173 model is then estimated by computing the mean and standard deviation of final accuracies:  $\mu_{\mathcal{A}} = \frac{1}{3} \sum_{l=1}^3 \mathcal{A}(RS_l)$ ,  $\sigma_{\mathcal{A}}^2 = \frac{1}{3} \sum_{l=1}^3 (\mathcal{A}(RS_l) - \mu_{\mathcal{A}})^2$ . However, prior work only uses these statistics to  
 174 summarize performance, without evaluating how well the estimated distribution matches the true one.  
 175 This leads to overconfidence in the evaluation results and may result in misleading conclusions.

### 178 3.2 LIMITATIONS OF RS EVALUATION PROTOCOL

180 Despite the substantial advances in CIL, to our knowledge, no prior work has critically examined the  
 181 validity of prevailing evaluation protocols. In this section, we undertake theoretical investigations to  
 182 address this oversight. *All theoretical results and proofs in this section are provided in the Appendix.*

183 First, we demonstrate through Lemma 1 that CIL evaluation cannot be reliably accomplished using  
 184 existing RS protocols, due to the combinatorial explosion in the number of possible class sequences.

185 **Lemma 1.** *Let  $N$  be the total number of classes, partitioned into  $K$  tasks of equal size  $M = N/K$ .  
 186 Then the number of distinct class sequences is  $|\Omega| = \frac{N!}{(M!)^K}$ . Moreover, under linear scaling  
 187  $K = \Theta(N)$ , the quantity  $|\Omega|$  grows factorially, satisfying  $|\Omega| = \Omega((N/e)^N)$ , which asymptotically  
 188 dwarfs any polynomial-scale sampling capacity as  $N \rightarrow \infty$ .*

189 For  $N = 100$  classes divided into  $K = 10$  tasks, the number of possible sequences is approximately  
 190  $10^{92}$ , vastly exceeding practical enumeration. The RS protocols typically sample only 3 class  
 191 sequences, covering less than  $10^{-90}\%$  of the space and thus suffering from severe under-sampling  
 192 bias. Building on Lemma 1, we now ask: **How Many** random sequence samples are required to  
 193 approximate the true accuracy distribution over the full sequence space within a given tolerance?

194 **Theorem 1.** *Let  $\Omega$  be the set of all possible class sequences with  $|\Omega|$  elements, and fix tolerance  $\varepsilon > 0$   
 195 and failure probability  $\delta \in (0, 1)$ . Suppose we draw  $L$  sequences  $\{RS_l\}_{l=1}^L$  without replacement  
 196 uniformly from  $\Omega$ , and let  $\widehat{\mathcal{A}}_L = \frac{1}{L} \sum_{l=1}^L \mathcal{A}(RS_l)$  be the empirical mean, respectively. Then for  
 197 any  $\varepsilon > 0$ , if*

$$198 L \frac{|\Omega| - L}{|\Omega| - 1} \geq \frac{\ln(2|\Omega|/\delta)}{2\varepsilon^2}, \quad (2)$$

199 then with probability at least  $1 - \delta$ ,  $|\widehat{\mathcal{A}}_L - \mathbb{E}_{\omega}[\mathcal{A}(\omega)]| \leq \varepsilon$ .

200 **Remark 1.** Substituting  $|\Omega| = N!/(M!)^K \approx (N/e)^N$  from Lemma 1, the condition equation 2  
 201 becomes

$$202 L \frac{\frac{N!}{(M!)^K} - L}{\frac{N!}{(M!)^K} - 1} \geq \frac{\ln(2/\delta) + \ln(N!/(M!)^K)}{2\varepsilon^2} \approx \frac{1}{2\varepsilon^2} \left[ N \ln(N/e) + \ln \frac{2}{\delta} \right]. \quad (3)$$

203 For large  $|\Omega|$  and  $L \ll |\Omega|$ , the finite-population correction  $\frac{|\Omega| - L}{|\Omega| - 1} \approx 1$ , so one recovers the same  
 204 sample complexity scale  $\Omega(\frac{N \ln N}{\varepsilon^2})$  as in the with-replacement case. Even for moderate  $N$  (e.g.  
 205  $N = 100$ ) and a coarse  $\varepsilon = 0.1$ , achieving high confidence (say  $\delta = 0.05$ ) still requires on the order  
 206 of  $L \gtrsim 2 \times 10^4$  samples, so purely random sampling remains fundamentally impractical.

207 Noting that in Equation (3) we have  $L \ll |\Omega|$ , let  $E_t = \{\omega \in \Omega : |\mathcal{A}(\omega) - \mathbb{E}_{\omega}[\mathcal{A}(\omega)]| > t \sqrt{\text{Var}_{\omega}[\mathcal{A}(\omega)]}\}$ . The probability that none of the  $L$  sampled sequences falls into  $E_t$  is approximately  $\exp(-(|E_t|/|\Omega|)L)$ . Hence, uniform random sampling almost surely fails to capture model

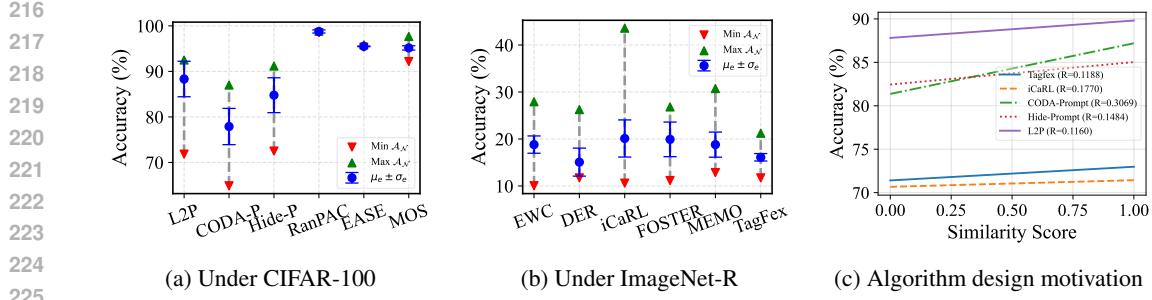


Figure 2: Figures 2a and 2b show model performance under fully enumerable scenarios (green: maximum, red: minimum), along with estimates from the random sampling (RS) protocol (blue error bars). Figure 2c illustrates the correlation between inter-task similarity scores and model performance, where  $R$  denotes the Pearson correlation coefficient.

performance in the most extreme cases. This observation motivates the idea of deliberately constructing such **extreme class sequences** to directly evaluate easy and hard case performance; Theorem 2 provides an initial theoretical analysis of this approach:

**Theorem 2.** *Let  $\Omega$  be the set of all class sequences, and define  $\mu = \mathbb{E}_{\omega \sim \Omega}[\mathcal{A}(\omega)]$ ,  $\sigma = \sqrt{\text{Var}_{\omega \sim \Omega}[\mathcal{A}(\omega)]}$  as the realistic mean and standard deviation of the accuracy function  $\mathcal{A}$ . Suppose we know two extreme sequences  $\omega_+$ ,  $\omega_-$  satisfying  $\mathcal{A}(\omega_+) - \mu \geq \sigma$  and  $\mu - \mathcal{A}(\omega_-) \geq \sigma$ . Draw  $L$  sequences  $\{RS_l\}_{l=1}^L$  without replacement uniformly from  $\Omega \setminus \{\omega_+, \omega_-\}$ , and define  $\tilde{\mathcal{A}}_{L+2} = \frac{1}{L+2} \left[ \mathcal{A}(\omega_-) + \mathcal{A}(\omega_+) + \sum_{l=1}^L \mathcal{A}(RS_l) \right]$ . Then for any  $\varepsilon > 0$  and  $\delta \in (0, 1)$ , if*

$$L \frac{|\Omega| - 2 - L}{|\Omega| - 3} \geq \frac{\ln(2(|\Omega| - 2)/\delta) (R^{(\sigma)})^2}{2\varepsilon^2}, \quad (4)$$

where  $R^{(\sigma)} = \mathcal{A}(\omega_+) - \mathcal{A}(\omega_-)$ , then with probability at least  $1 - \delta$ ,  $|\tilde{\mathcal{A}}_{L+2} - \mathbb{E}_{\omega \sim \Omega}[\mathcal{A}(\omega)]| \leq \varepsilon$ .

**Remark 2.** *Theorem 2 demonstrates that, under the conditions outlined in Remark 1, incorporating extreme class sequences reduces the required sample size to a value proportional to  $(R^{(\sigma)})^2$ . For instance, when  $R^{(\sigma)} \approx 0.1$  (which is common in practical scenarios), the lower bound on the sample size  $L$  drops to around 50. This represents a significant reduction compared to uniform random sampling, underscoring the practical benefit of extreme-sequence-assisted evaluation in CIL.*

## 4 EDGE: EXTREME CASE-BASED DISTRIBUTION & GENERALIZATION EVALUATION

### 4.1 MOTIVATION

Building on the theoretical analyses in Section 3.2, we conduct an exhaustive evaluation under a 6-class, 3-task setting. As illustrated in Figures 2a and 2b, the RS protocol often fails to accurately estimate the true performance distribution, frequently leading to either underestimation or overestimation of certain models, which compromises fairness in comparison. Meanwhile, the findings from Theorem 2, together with the **near-Gaussian** nature of the true distribution, highlight the importance of incorporating extreme class sequences to improve evaluation quality. Nevertheless, a key challenge remains in how to effectively leverage dataset-specific structures and characteristics to generate extreme sequences that are both robust and generalizable, thereby enabling more reliable and informative evaluation protocols.

In the CIL setting, it is intuitively understood that when adjacent tasks exhibit low similarity, model parameters undergo significant changes during task transitions, which increases the risk of forgetting. To investigate this phenomenon further, we examine the relationship between inter-task similarity and model generalization error.

**Theorem 3.** *Consider a CIL system consisting of  $K$  tasks, where each task  $T_k$  is associated with a data distribution  $\mathcal{D}_k$  and a class set  $\mathcal{C}_k$ . The generalization error is defined as  $\epsilon_g = \frac{1}{K} \sum_{k=1}^K \mathbb{E}_{(x,y) \sim \mathcal{D}_k} [L(h(x), y)]$ , where  $L(h(x), y)$  denotes the loss between the model prediction*

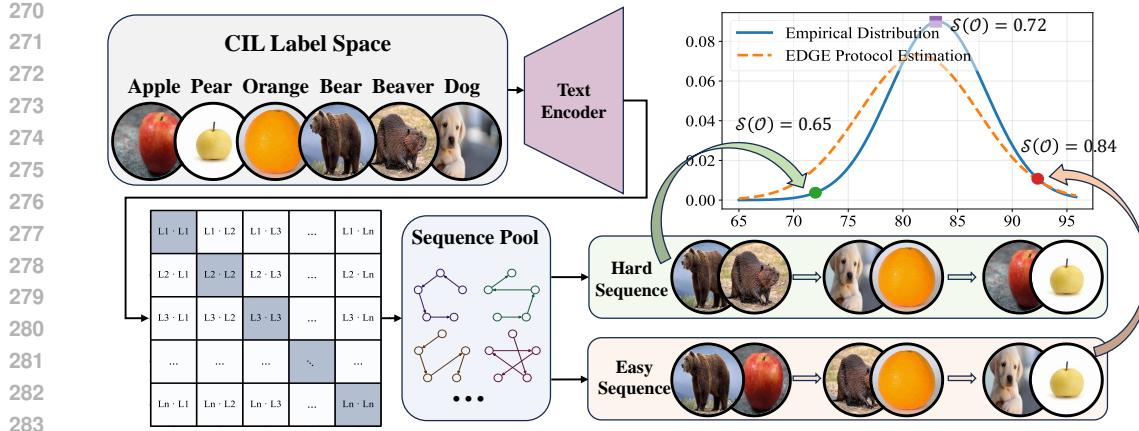


Figure 3: Illustration of the EDGE evaluation protocol. The sequence with a green background represents a hard case, where similar classes (e.g., apples and pears) appear within the same task, resulting in low inter-task similarity, while the sequence with an orange background represents an easy case, where similar classes are distributed across different tasks, leading to high inter-task similarity.

$h(x)$  and the true label  $y$ . Given a task order  $\mathcal{O} = \{T_1, T_2, \dots, T_K\}$ , the similarity score  $S(\mathcal{O})$  is defined as:

$$S(\mathcal{O}) = \frac{K}{(K-1)N} \sum_{1 \leq i \leq K-1} \sum_{c \in \mathcal{C}_i} \sum_{c' \in \mathcal{C}_{i+1}} \text{Sim}(c, c'), \quad (5)$$

where  $\text{Sim}(c, c')$  denotes the semantic similarity in the representation space between classes  $c$  and  $c'$ , belonging to tasks  $T_i$  and  $T_j$ , respectively. Let  $\mathcal{O}_h$  and  $\mathcal{O}_e$  denote the sequences with the minimum and maximum similarity scores  $S(\mathcal{O})$ , respectively, and let  $\mathcal{O}_r$  represent a randomly generated sequence. Then, the following conditions hold:

- The similarity score satisfies  $S(\mathcal{O}_h) \leq S(\mathcal{O}_r) \leq S(\mathcal{O}_e)$ ,
- The generalization error satisfy  $\epsilon_g(\mathcal{O}_h) \geq \epsilon_g(\mathcal{O}_r) \geq \epsilon_g(\mathcal{O}_e)$ .

Theorem 3 theoretically demonstrates that as task similarity decreases, the upper bound of the generalization error increases significantly. Figure 2c illustrates the trend between inter-task similarity scores and corresponding model performance for all possible class sequences. The majority of methods show a positive correlation, empirically supporting this result by showing a consistent decline in model accuracy as task similarity decreases. Motivated by these observations, we take advantage of inter-task similarity to construct extreme class sequences, which facilitates a more thorough and representative evaluation of CIL.

## 4.2 EXTREME SEQUENCE GENERATION ALGORITHM AND PROPOSED PROTOCOL

Figure 3 illustrates the proposed EDGE evaluation protocol. Given a dataset, since direct access to image instances is unavailable, we leverage the text encoder from a pre-trained CLIP model to embed class labels. Specifically, each class label is encoded into a  $d$ -dimensional semantic feature vector via the CLIP text encoder  $\Phi$ , forming a label feature set  $\mathcal{L} = \{\mathbf{L}_1, \dots, \mathbf{L}_N\}$ , where  $\mathbf{L}_i = \Phi(y_i) \in \mathbb{R}^d$ . By computing cosine similarities between these label features, we construct a symmetric similarity matrix  $\mathbf{D} \in \mathbb{R}^{N \times N}$ , where each entry  $d_{ij} = \frac{\mathbf{L}_i \cdot \mathbf{L}_j}{\|\mathbf{L}_i\| \|\mathbf{L}_j\|}$  quantifies the semantic similarity between classes  $i$  and  $j$ . Based on the similarity matrix  $\mathbf{D}$ , we generate candidate class sequences by hierarchically clustering (Nielsen, 2016) semantically similar classes and strategically selecting subsequent tasks to minimize or maximize inter-task similarity. Two optimal permutations are identified using Equation (5):  $\mathcal{O}_h = \arg \min_{o \in \Omega} S(o)$  for the hardest sequence and  $\mathcal{O}_e = \arg \max_{o \in \Omega} S(o)$  for the easiest sequence. To ensure the total number of sampled sequences remains unchanged, we randomly select one sequence as the *Median Sequence*, which is theoretically guaranteed to lie near the center of the distribution Theorem 1. By evaluating models on this triplet of task sequences, we approximate the true performance distribution and enable a more comprehensive assessment of model capability.

324  
325  
326  
327  
328  
329  
330  
331  
332  
333  
334  
335  
336  
337  
338  
339  
340  
341  
342  
343  
344  
345  
346  
347  
348  
349  
350  
351  
352  
353  
354  
355  
356  
357  
358  
359  
360  
361  
362  
363  
364  
365  
366  
367  
368  
369  
370  
371  
372  
373  
374  
375  
376  
377  
Table 1: Experimental results of pre-trained-based methods on two datasets. The gray region indicates the ground-truth values, and the best results are highlighted in bold black.

| Metric                             | CIFAR-100    |              |              |              |              |              | ImageNet-R   |              |              |              |              |              |
|------------------------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
|                                    | L2P          | CODA-Prompt  | Hide-Prompt  | EASE         | MOS          | RanPAC       | L2P          | CODA-Prompt  | Hide-Prompt  | EASE         | MOS          | RanPAC       |
| $\min_{\mathcal{A}_{\mathcal{N}}}$ | 71.83        | 64.67        | 72.50        | 95.33        | 92.17        | 98.50        | 57.75        | 18.72        | 65.90        | 88.24        | 85.56        | 90.91        |
| RS                                 | 83.83        | 76.83        | 79.67        | 95.50        | 95.33        | <b>98.67</b> | 68.98        | 39.04        | 78.34        | 88.77        | 87.17        | <b>93.05</b> |
| EDGE                               | <b>72.83</b> | <b>73.00</b> | <b>73.00</b> | <b>95.33</b> | <b>93.83</b> | <b>98.67</b> | <b>66.31</b> | <b>21.93</b> | <b>71.89</b> | <b>88.24</b> | <b>86.10</b> | <b>93.05</b> |
| $\max_{\mathcal{A}_{\mathcal{N}}}$ | 92.50        | 87.00        | 91.17        | 95.83        | 97.67        | 98.83        | 83.42        | 57.75        | 82.95        | 88.77        | 91.98        | 96.26        |
| RS                                 | 87.33        | 81.83        | 90.67        | 95.50        | 95.83        | <b>98.83</b> | 75.40        | 43.85        | <b>78.34</b> | <b>88.77</b> | 87.70        | <b>95.19</b> |
| EDGE                               | <b>92.00</b> | <b>84.17</b> | <b>90.75</b> | <b>95.67</b> | <b>96.67</b> | <b>98.83</b> | <b>77.54</b> | <b>45.45</b> | 76.04        | <b>88.77</b> | <b>91.44</b> | <b>95.19</b> |
| $JSD_{RS}$                         | 0.44         | 0.38         | 0.34         | <b>0.00</b>  | <b>0.15</b>  | <b>0.00</b>  | 0.23         | 0.65         | 0.41         | <b>0.00</b>  | 0.37         | 0.57         |
| $JSD_{EDGE}$                       | <b>0.30</b>  | <b>0.28</b>  | <b>0.22</b>  | <b>0.00</b>  | <b>0.15</b>  | <b>0.00</b>  | <b>0.21</b>  | <b>0.20</b>  | <b>0.18</b>  | <b>0.00</b>  | <b>0.17</b>  | <b>0.36</b>  |
| $W_{RS}$                           | 2.81         | 2.92         | 3.89         | <b>0.00</b>  | 0.48         | <b>0.00</b>  | 1.59         | 9.85         | 2.44         | <b>0.00</b>  | 1.18         | 2.25         |
| $W_{EDGE}$                         | <b>2.00</b>  | <b>2.03</b>  | <b>1.42</b>  | <b>0.00</b>  | <b>0.22</b>  | <b>0.00</b>  | <b>1.74</b>  | <b>2.37</b>  | <b>1.11</b>  | <b>0.00</b>  | <b>0.77</b>  | <b>1.07</b>  |

To generate hard sequences, we first cluster classes based on semantic similarity using hierarchical clustering (Nielsen, 2016). To encourage semantically similar classes to be grouped into the same task, we preserve large clusters intact and selectively split smaller ones as needed, ensuring all classes are assigned to  $K$  tasks while minimizing global inter-task similarity.

After constructing task partitions, we compute the inter-task similarity matrix  $\mathbf{ITS} \in \mathbb{R}^{K \times K}$  and initialize the sequence with the task exhibiting the lowest global similarity. Subsequent tasks are iteratively selected based on minimal similarity to the current task, forming candidate sequences.

By varying the clustering granularity, we generate multiple candidates and select the one with the lowest overall similarity score  $\mathcal{S}(o)$ . The easy sequence is constructed analogously, except that similar classes are intentionally assigned to different tasks, and each next task is selected based on maximal similarity to the previous one. *Pseudo-code and analysis are provided in the Appendix.*

## 5 EXPERIMENT

Due to the exponential growth in the number of possible class sequences in CIL scenarios (as shown in Lemma 1), obtaining the true performance distribution under standard experimental settings is infeasible. We therefore divide our experimental evaluation into two parts. First, we conduct **fully enumerable** experiments on subsets of standard datasets, enabling quantitative analysis to validate the effectiveness of the proposed EDGE protocol. Second, we perform analytical experiments under standard benchmark settings, visually demonstrating EDGE’s strong capability in capturing extreme performance cases.

### 5.1 ENUMERABLE EXPERIMENTS

#### 5.1.1 EXPERIMENTAL SETUP

**Dataset and Metrics.** We conduct experiments on the CIFAR-100 and ImageNet-R (Krizhevsky, 2009) datasets. For each dataset, we select the first six classes and partition them into three tasks, generating 90 possible task permutations, which we consider the true distribution ( $\mathcal{D}_{true}$ ). Next, we apply the RS evaluation protocol (using random seeds 0, 42, and 1993 (Lai et al., 2025; Li & Zhou, 2025; McDonnell et al., 2024; Wang et al., 2022e)) to generate class sequences for evaluation, obtaining the estimated distribution  $\mathcal{D}_{RS}$ . Simultaneously, we employ the EDGE protocol to perform the evaluation, yielding the estimated distribution  $\mathcal{D}_{EDGE}$ . To quantitatively assess the effectiveness of different evaluation strategies, we use the JSD divergence and Wasserstein distance ( $JSD_d$  (Lamberti et al., 2007) and  $W_d$  (Villani, 2009)) to measure the differences between the estimated and true distributions.

**Baseline.** To ensure a fair comparison, we benchmark our method under both non-pre-trained and pre-trained settings against classic and state-of-the-art approaches: in the non-pre-trained setting, we compare with EWC (Kirkpatrick et al., 2017), DER (Yan et al., 2021), iCaRL (Rebuffi et al., 2017), FOSTER (Wang et al., 2022a), MEMO (Zhou et al., 2023), and TagFex (Zheng et al., 2025); in the pre-trained setting, following Sun et al. (Sun et al., 2025a), we evaluate against L2P (Wang et al.,

378  
379  
380  
381 Table 2: Experimental results of non-pre-trained-based methods on two datasets. Details are consistent  
382 with those in Table 1.  
383  
384  
385

| Metric                             | CIFAR-100    |              |              |              |              | ImageNet-R   |              |              |              |              |              |
|------------------------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
|                                    | EWC          | DER          | iCaRL        | FOSTER       | MEMO         | EWC          | DER          | iCaRL        | FOSTER       | MEMO         | TagFex       |
| $\min_{\mathcal{A}_{\mathcal{N}}}$ | 12.50        | 16.83        | 36.33        | 16.00        | 21.83        | 10.06        | 11.73        | 10.61        | 11.17        | 12.85        | 11.73        |
| RS                                 | 26.17        | <b>24.17</b> | 43.00        | 20.67        | 36.50        | 16.76        | <b>11.73</b> | <b>14.53</b> | 15.08        | <b>15.05</b> | 18.99        |
| EDGE                               | <b>12.50</b> | 26.35        | <b>38.50</b> | <b>16.67</b> | <b>35.67</b> | <b>10.61</b> | 11.97        | <b>14.53</b> | <b>11.73</b> | 15.44        | <b>14.53</b> |
| $\max_{\mathcal{A}_{\mathcal{N}}}$ | 39.00        | 45.50        | 53.33        | 38.33        | 56.67        | 27.93        | 26.26        | 43.58        | 26.82        | 30.73        | 21.23        |
| RS                                 | 27.50        | 34.17        | 43.00        | 23.50        | 51.17        | 21.23        | 18.99        | 22.91        | <b>24.02</b> | 21.23        | 20.11        |
| EDGE                               | <b>28.17</b> | <b>41.33</b> | <b>43.33</b> | <b>30.17</b> | <b>56.67</b> | <b>24.58</b> | <b>21.23</b> | <b>26.82</b> | 23.95        | <b>28.49</b> | <b>20.67</b> |
| $JSD_{RS}$                         | 0.51         | <b>0.29</b>  | 0.36         | 0.58         | 0.29         | 0.36         | 0.32         | 0.30         | 0.22         | 0.38         | 0.44         |
| $JSD_{EDGE}$                       | <b>0.29</b>  | 0.31         | <b>0.32</b>  | <b>0.40</b>  | <b>0.23</b>  | <b>0.26</b>  | <b>0.20</b>  | <b>0.21</b>  | <b>0.20</b>  | <b>0.16</b>  | <b>0.15</b>  |
| $W_{RS}$                           | 4.74         | 4.62         | 2.37         | 6.25         | 2.00         | 2.40         | 2.14         | 3.14         | 2.11         | 2.99         | 3.14         |
| $W_{EDGE}$                         | <b>3.44</b>  | <b>3.22</b>  | <b>2.03</b>  | <b>3.91</b>  | <b>1.82</b>  | <b>2.03</b>  | <b>1.07</b>  | <b>2.71</b>  | <b>1.03</b>  | <b>1.66</b>  | <b>0.88</b>  |

392  
393  
394  
2022e), CODA-Prompt (Smith et al., 2023), HidePrompt (Wang et al., 2023b), EASE (Zhou et al.,  
395  
396  
397  
398  
399  
400  
401  
402  
403  
404  
405  
406  
407  
408  
409  
410  
411  
412  
413  
414  
415  
416  
417  
418  
419  
420  
421  
422  
423  
424  
425  
426  
427  
428  
429  
430  
431  
432  
433  
434  
435  
436  
437  
438  
439  
440  
441  
442  
443  
444  
445  
446  
447  
448  
449  
450  
451  
452  
453  
454  
455  
456  
457  
458  
459  
460  
461  
462  
463  
464  
465  
466  
467  
468  
469  
470  
471  
472  
473  
474  
475  
476  
477  
478  
479  
480  
481  
482  
483  
484  
485  
486  
487  
488  
489  
490  
491  
492  
493  
494  
495  
496  
497  
498  
499  
500  
501  
502  
503  
504  
505  
506  
507  
508  
509  
510  
511  
512  
513  
514  
515  
516  
517  
518  
519  
520  
521  
522  
523  
524  
525  
526  
527  
528  
529  
530  
531  
532  
533  
534  
535  
536  
537  
538  
539  
540  
541  
542  
543  
544  
545  
546  
547  
548  
549  
550  
551  
552  
553  
554  
555  
556  
557  
558  
559  
560  
561  
562  
563  
564  
565  
566  
567  
568  
569  
570  
571  
572  
573  
574  
575  
576  
577  
578  
579  
580  
581  
582  
583  
584  
585  
586  
587  
588  
589  
590  
591  
592  
593  
594  
595  
596  
597  
598  
599  
600  
601  
602  
603  
604  
605  
606  
607  
608  
609  
610  
611  
612  
613  
614  
615  
616  
617  
618  
619  
620  
621  
622  
623  
624  
625  
626  
627  
628  
629  
630  
631  
632  
633  
634  
635  
636  
637  
638  
639  
640  
641  
642  
643  
644  
645  
646  
647  
648  
649  
650  
651  
652  
653  
654  
655  
656  
657  
658  
659  
660  
661  
662  
663  
664  
665  
666  
667  
668  
669  
670  
671  
672  
673  
674  
675  
676  
677  
678  
679  
680  
681  
682  
683  
684  
685  
686  
687  
688  
689  
690  
691  
692  
693  
694  
695  
696  
697  
698  
699  
700  
701  
702  
703  
704  
705  
706  
707  
708  
709  
710  
711  
712  
713  
714  
715  
716  
717  
718  
719  
720  
721  
722  
723  
724  
725  
726  
727  
728  
729  
730  
731  
732  
733  
734  
735  
736  
737  
738  
739  
740  
741  
742  
743  
744  
745  
746  
747  
748  
749  
750  
751  
752  
753  
754  
755  
756  
757  
758  
759  
750  
751  
752  
753  
754  
755  
756  
757  
758  
759  
760  
761  
762  
763  
764  
765  
766  
767  
768  
769  
770  
771  
772  
773  
774  
775  
776  
777  
778  
779  
770  
771  
772  
773  
774  
775  
776  
777  
778  
779  
780  
781  
782  
783  
784  
785  
786  
787  
788  
789  
780  
781  
782  
783  
784  
785  
786  
787  
788  
789  
790  
791  
792  
793  
794  
795  
796  
797  
798  
799  
790  
791  
792  
793  
794  
795  
796  
797  
798  
799  
800  
801  
802  
803  
804  
805  
806  
807  
808  
809  
800  
801  
802  
803  
804  
805  
806  
807  
808  
809  
810  
811  
812  
813  
814  
815  
816  
817  
818  
819  
810  
811  
812  
813  
814  
815  
816  
817  
818  
819  
820  
821  
822  
823  
824  
825  
826  
827  
828  
829  
820  
821  
822  
823  
824  
825  
826  
827  
828  
829  
830  
831  
832  
833  
834  
835  
836  
837  
838  
839  
830  
831  
832  
833  
834  
835  
836  
837  
838  
839  
840  
841  
842  
843  
844  
845  
846  
847  
848  
849  
840  
841  
842  
843  
844  
845  
846  
847  
848  
849  
850  
851  
852  
853  
854  
855  
856  
857  
858  
859  
850  
851  
852  
853  
854  
855  
856  
857  
858  
859  
860  
861  
862  
863  
864  
865  
866  
867  
868  
869  
860  
861  
862  
863  
864  
865  
866  
867  
868  
869  
870  
871  
872  
873  
874  
875  
876  
877  
878  
879  
870  
871  
872  
873  
874  
875  
876  
877  
878  
879  
880  
881  
882  
883  
884  
885  
886  
887  
888  
889  
880  
881  
882  
883  
884  
885  
886  
887  
888  
889  
890  
891  
892  
893  
894  
895  
896  
897  
898  
899  
890  
891  
892  
893  
894  
895  
896  
897  
898  
899  
900  
901  
902  
903  
904  
905  
906  
907  
908  
909  
900  
901  
902  
903  
904  
905  
906  
907  
908  
909  
910  
911  
912  
913  
914  
915  
916  
917  
918  
919  
910  
911  
912  
913  
914  
915  
916  
917  
918  
919  
920  
921  
922  
923  
924  
925  
926  
927  
928  
929  
920  
921  
922  
923  
924  
925  
926  
927  
928  
929  
930  
931  
932  
933  
934  
935  
936  
937  
938  
939  
930  
931  
932  
933  
934  
935  
936  
937  
938  
939  
940  
941  
942  
943  
944  
945  
946  
947  
948  
949  
940  
941  
942  
943  
944  
945  
946  
947  
948  
949  
950  
951  
952  
953  
954  
955  
956  
957  
958  
959  
950  
951  
952  
953  
954  
955  
956  
957  
958  
959  
960  
961  
962  
963  
964  
965  
966  
967  
968  
969  
960  
961  
962  
963  
964  
965  
966  
967  
968  
969  
970  
971  
972  
973  
974  
975  
976  
977  
978  
979  
970  
971  
972  
973  
974  
975  
976  
977  
978  
979  
980  
981  
982  
983  
984  
985  
986  
987  
988  
989  
980  
981  
982  
983  
984  
985  
986  
987  
988  
989  
990  
991  
992  
993  
994  
995  
996  
997  
998  
999  
990  
991  
992  
993  
994  
995  
996  
997  
998  
999  
1000  
1001  
1002  
1003  
1004  
1005  
1006  
1007  
1008  
1009  
1000  
1001  
1002  
1003  
1004  
1005  
1006  
1007  
1008  
1009  
1010  
1011  
1012  
1013  
1014  
1015  
1016  
1017  
1018  
1019  
1010  
1011  
1012  
1013  
1014  
1015  
1016  
1017  
1018  
1019  
1020  
1021  
1022  
1023  
1024  
1025  
1026  
1027  
1028  
1029  
1020  
1021  
1022  
1023  
1024  
1025  
1026  
1027  
1028  
1029  
1030  
1031  
1032  
1033  
1034  
1035  
1036  
1037  
1038  
1039  
1030  
1031  
1032  
1033  
1034  
1035  
1036  
1037  
1038  
1039  
1040  
1041  
1042  
1043  
1044  
1045  
1046  
1047  
1048  
1049  
1040  
1041  
1042  
1043  
1044  
1045  
1046  
1047  
1048  
1049  
1050  
1051  
1052  
1053  
1054  
1055  
1056  
1057  
1058  
1059  
1050  
1051  
1052  
1053  
1054  
1055  
1056  
1057  
1058  
1059  
1060  
1061  
1062  
1063  
1064  
1065  
1066  
1067  
1068  
1069  
1060  
1061  
1062  
1063  
1064  
1065  
1066  
1067  
1068  
1069  
1070  
1071  
1072  
1073  
1074  
1075  
1076  
1077  
1078  
1079  
1070  
1071  
1072  
1073  
1074  
1075  
1076  
1077  
1078  
1079  
1080  
1081  
1082  
1083  
1084  
1085  
1086  
1087  
1088  
1089  
1080  
1081  
1082  
1083  
1084  
1085  
1086  
1087  
1088  
1089  
1090  
1091  
1092  
1093  
1094  
1095  
1096  
1097  
1098  
1099  
1090  
1091  
1092  
1093  
1094  
1095  
1096  
1097  
1098  
1099  
1100  
1101  
1102  
1103  
1104  
1105  
1106  
1107  
1108  
1109  
1100  
1101  
1102  
1103  
1104  
1105  
1106  
1107  
1108  
1109  
1110  
1111  
1112  
1113  
1114  
1115  
1116  
1117  
1118  
1119  
1110  
1111  
1112  
1113  
1114  
1115  
1116  
1117  
1118  
1119  
1120  
1121  
1122  
1123  
1124  
1125  
1126  
1127  
1128  
1129  
1120  
1121  
1122  
1123  
1124  
1125  
1126  
1127  
1128  
1129  
1130  
1131  
1132  
1133  
1134  
1135  
1136  
1137  
1138  
1139  
1130  
1131  
1132  
1133  
1134  
1135  
1136  
1137  
1138  
1139  
1140  
1141  
1142  
1143  
1144  
1145  
1146  
1147  
1148  
1149  
1140  
1141  
1142  
1143  
1144  
1145  
1146  
1147  
1148  
1149  
1150  
1151  
1152  
1153  
1154  
1155  
1156  
1157  
1158  
1159  
1150  
1151  
1152  
1153  
1154  
1155  
1156  
1157  
1158  
1159  
1160  
1161  
1162  
1163  
1164  
1165  
1166  
1167  
1168  
1169  
1160  
1161  
1162  
1163  
1164  
1165  
1166  
1167  
1168  
1169  
1170  
1171  
1172  
1173  
1174  
1175  
1176  
1177  
1178  
1179  
1170  
1171  
1172  
1173  
1174  
1175  
1176  
1177  
1178  
1179  
1180  
1181  
1182  
1183  
1184  
1185  
1186  
1187  
1188  
1189  
1180  
1181  
1182  
1183  
1184  
1185  
1186  
1187  
1188  
1189  
1190  
1191  
1192  
1193  
1194  
1195  
1196  
1197  
1198  
1199  
1190  
1191  
1192  
1193  
1194  
1195  
1196  
1197  
1198  
1199  
1200  
1201  
1202  
1203  
1204  
1205  
1206  
1207  
1208  
1209  
1200  
1201  
1202  
1203  
1204  
1205  
1206  
1207  
1208  
1209  
1210  
1211  
1212  
1213  
1214  
1215  
1216  
1217  
1218  
1219  
1210  
1211  
1212  
1213  
1214  
1215  
1216  
1217  
1218  
1219  
1220  
1221  
1222  
1223  
1224  
1225  
1226  
1227  
1228  
1229  
1220  
1221  
1222  
1223  
1224  
1225  
1226  
1227  
1228  
1229  
1230  
1231  
1232  
1233  
1234  
1235  
1236  
1237  
1238  
1239  
1230  
1231  
1232  
1233  
1234  
1235  
1236  
1237  
1238  
1239  
1240  
1241  
1242  
1243  
1244  
1245  
1246  
1247  
1248  
1249  
1240  
1241  
1242  
1243  
1244  
1245  
1246  
1247  
1248  
1249  
1250  
1251  
1252  
1253  
1254  
1255  
1256  
1257  
1258  
1259  
1250  
1251  
1252  
1253  
1254  
1255  
1256  
1257  
1258  
1259  
1260  
1261  
1262  
1263  
1264  
1265  
1266  
1267  
1268  
1269  
1260  
1261  
1262  
1263  
1264  
1265  
1266  
1267  
1268  
1269  
1270  
1271  
1272  
1273  
1274  
1275  
1276  
1277  
1278  
1279  
1270  
1271  
1272  
1273  
1274  
1275  
1276  
1277  
1278  
1279  
1280  
1281  
1282  
1283  
1284  
1285  
1286  
1287  
1288  
1289  
1280  
1281  
1282  
1283  
1284  
1285  
1286  
1287  
1288  
1289  
1290  
1291  
1292  
1293  
1294  
1295  
1296  
1297  
1298  
1299  
1290  
1291  
1292  
1293  
1294  
1295  
1296  
1297  
1298  
1299  
1300  
1301  
1302  
1303  
1304  
1305  
1306  
1307  
1308  
1309  
1300  
1301  
1302  
1303  
1304  
1305  
1306  
1307  
1308  
1309  
1310  
1311  
1312  
1313  
1314  
1315  
1316  
1317  
1318  
1319  
1310  
1311  
1312  
1313  
1314  
1315  
1316  
1317  
1318  
1319  
1320  
1321  
1322  
1323  
1324  
1325  
1326  
1327  
1328  
1329  
1320  
1321  
1322  
1323  
1324  
1325  
1326  
1327  
1328  
1329  
1330  
1331  
1332  
1333  
1334  
1335  
1336  
1337  
1338  
1339  
1330  
1331  
1332  
1333  
1334  
1335  
1336  
1337  
1338  
1339  
1340  
1341  
1342  
1343  
1344  
1345  
1346  
1347  
1348  
1349  
1340  
1341  
1342  
1343  
1344  
1345  
1346  
1347  
1348  
1349  
1350  
1351  
1352  
1353  
1354  
1355  
1356  
1357  
1358  
1359  
1350  
1351  
1352  
1353  
1354  
1355  
1356  
1357  
1358  
1359  
1360  
1361  
1362  
1363  
1364  
1365  
1366  
1367  
1368  
1369  
1360  
1361  
1362  
1363  
1364  
1365  
1366  
1367  
1368  
1369  
1370  
1371  
1372  
1373  
1374  
1375  
1376  
1377  
1378  
1379  
1370  
1371  
1372  
1373  
1374  
1375  
1376  
1377  
1378  
1379  
1380  
1381  
1382  
1383  
1384  
1385  
1386  
1387  
1388  
1389  
1380  
1381  
1382  
1383  
1384  
1385  
1386  
1387  
1388  
1389  
1390  
1391  
1392  
1393  
1394  
1395  
1396  
1397  
1398  
1399  
1390  
1391  
1392  
1393  
1394  
1395  
1396  
1397  
1398  
1399  
1400  
1401  
1402  
1403  
1404  
1405  
1406  
1407  
1408  
1409  
1400  
1401  
1402  
1403  
1404  
1405  
1406  
1407  
1408  
1409  
1410  
1411  
1412  
1413  
1414  
1415  
1416  
1417  
1418

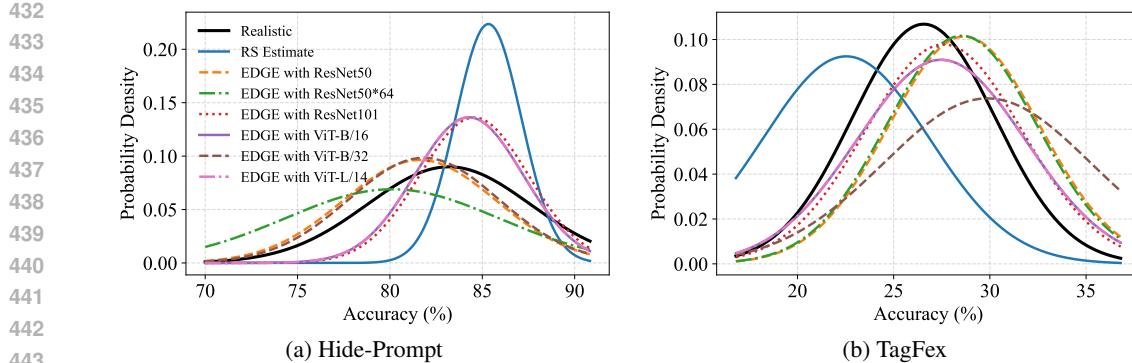


Figure 4: Effect of task sequences generated with CLIP text encoders of varying scales on the estimation of performance distributions under the EDGE protocol. The black curve denotes the ground-truth distribution, and the blue curve indicates the estimation obtained via the RS protocol.

(e.g., ResNet vs. ViT) and different sizes of the CLIP text encoder. In all cases, EDGE consistently outperforms the RS protocol by providing estimates that more closely align with the ground-truth performance distribution. This highlights the reliability and generalizability of EDGE across diverse model architectures and embedding capacities. *Additional results and detailed analyses for other experimental settings are provided in the appendix.*

## 5.2 EXPERIMENTS ON CLASSIC CIL SETTINGS

Following the classic CIL setup, we conduct experiments using three datasets: CIFAR-100 (Krizhevsky, 2009), CUB-200 (Wah et al., 2011), ImageNet-R (Krizhevsky, 2009). Each dataset is partitioned into multiple tasks of equal size. Figure 5 visualizes the maximum and minimum accuracy values ( $\max_{\mathcal{A}}$  and  $\min_{\mathcal{A}}$ ) of the sampled sequences under each protocol, highlighting their ability to capture the extremes of the performance distribution. The results demonstrate that EDGE consistently achieves both a lower estimated lower bound and a higher upper bound across nearly all scenarios, including highly stable methods such as EASE (Zhou et al., 2024c) and RanPAC (McDonnell et al., 2024). This allows it to identify rare but critical performance extremes, providing a more reliable and practical assessment of performance for real-world deployments. *For more detailed analysis, please refer to the Appendix.*

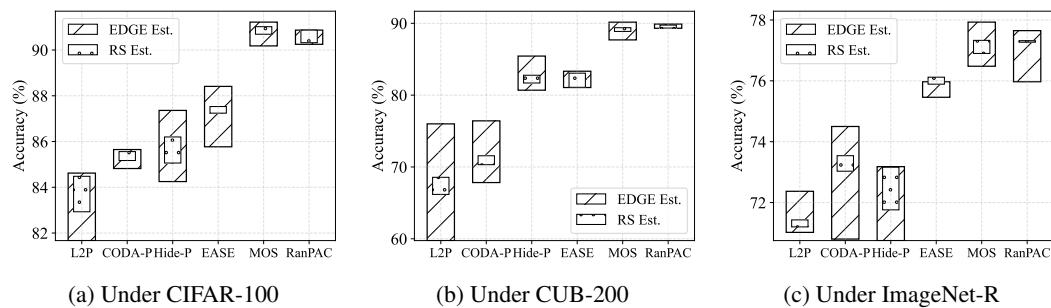


Figure 5: Visualization of the estimated lower and upper performance bounds across three datasets under the classic CIL setting: (a) CIFAR-100, (b) CUB-200, and (c) ImageNet-R. The slashed bars (/) denote the proposed **EDGE**, while the dotted bars (.) correspond to the existing **RS** protocol.

## 6 CONCLUSIONS

This paper introduces a new perspective on evaluating CIL, highlighting the theoretical and empirical limitations of conventional RS protocols. We propose EDGE, an evaluation protocol that adaptively constructs task sequences with varying difficulty levels based on inter-task similarity, enabling a more accurate and comprehensive assessment of model performance.

486 ETHICS STATEMENT  
487488 This work does not involve human subjects, personally identifiable information, or sensitive data. All  
489 experiments were conducted on publicly available benchmark datasets under their respective licenses,  
490 and no private or restricted data were used. The proposed evaluation protocol, EDGE, is designed  
491 to provide more reliable assessments of continual learning models and does not directly introduce  
492 risks of harm. The authors affirm that this research complies with the ICLR Code of Ethics and with  
493 standard practices of research integrity and transparency.  
494495 REPRODUCIBILITY STATEMENT  
496497 We are committed to ensuring the reproducibility of our work. To this end, we provide the following:  
498 (1) **Code availability:** The complete source code and detailed instructions for reproducing our  
499 experiments are included in the supplementary material, which can be accessed and downloaded by  
500 reviewers and readers. (2) **Theoretical results:** All assumptions are clearly stated, and complete  
501 proofs of our main theorems are presented in Appendices C and D.1. (3) **Experimental details and**  
502 **additional results:** Further dataset descriptions, additional experiments, and analyses are provided in  
503 Appendices C.2 and E.1.2.  
504505 REFERENCES  
506507 Rahaf Aljundi, Punarjay Chakravarty, and Tinne Tuytelaars. Expert gate: Lifelong learning with a  
508 network of experts. In *CVPR*, 2017.  
509 Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny, Marcus Rohrbach, and Tinne Tuytelaars.  
510 Memory aware synapses: Learning what (not) to forget. In *ECCV*, 2018.  
511  
512 Samuel J Bell and Neil D Lawrence. The effect of task ordering in continual learning. *arXiv preprint*  
513 *arXiv:2205.13323*, 2022.  
514  
515 Boxi Cao, Qiaoyu Tang, Hongyu Lin, Xianpei Han, Jiawei Chen, Tianshu Wang, and Le Sun.  
516 Retentive or forgetful? diving into the knowledge memorizing mechanism of language models.  
517 *arXiv preprint arXiv:2305.09144*, 2023.  
518 Xuemei Cao, Hanlin Gu, Xin Yang, Bingjun Wei, Haoyang Liang, Xiangkun Wang, and Tianrui Li.  
519 Erroreraser: Unlearning data bias for improved continual learning. In *SIGKDD*, 2025.  
520  
521 Hyuntak Cha, Jaeho Lee, and Jinwoo Shin. Co2l: Contrastive continual learning. In *CVPR*, 2021.  
522  
523 Shengzhuang Chen, Yikai Liao, Xiaoxiao Sun, Kede Ma, and Ying Wei. Cldyb: Towards dynamic  
524 benchmarking for continual learning with pre-trained models. *ICLR*, 2025.  
525  
526 Yulai Cong, Miaoyun Zhao, Jianqiao Li, Sijia Wang, and Lawrence Carin. Gan memory with no  
527 forgetting. *NeurIPS*, 2020.  
528  
529 Shibhansh Dohare, J Fernando Hernandez-Garcia, Qingfeng Lan, Parash Rahman, A Rupam Mah-  
530 mood, and Richard S Sutton. Loss of plasticity in deep continual learning. *Nature*, 2024.  
531  
532 Sebastian Farquhar and Yarin Gal. Towards robust evaluations of continual learning. *arXiv preprint*  
533 *arXiv:1805.09733*, 2018.  
534  
535 Qiankun Gao, Chen Zhao, Yifan Sun, Teng Xi, Gang Zhang, Bernard Ghanem, and Jian Zhang. A  
536 unified continual learning framework with general parameter-efficient tuning. In *ICCV*, 2023.  
537  
538 Yen-Chang Hsu, Yen-Cheng Liu, Anita Ramasamy, and Zsolt Kira. Re-evaluating continual learning  
539 scenarios: A categorization and case for strong baselines. *arXiv preprint arXiv:1810.12488*, 2018.  
540  
541 Menglin Jia, Luming Tang, Bor-Chun Chen, Claire Cardie, Serge Belongie, Bharath Hariharan, and  
542 Ser-Nam Lim. Visual prompt tuning. In *ECCV*, 2022.

540 James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A  
 541 Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcoming  
 542 catastrophic forgetting in neural networks. *National Academy of Sciences*, 2017.

543

544 A Krizhevsky. Learning multiple layers of features from tiny images. *Master's thesis, University of*  
 545 *Tront*, 2009.

546

547 Guannan Lai, Yujie Li, Xiangkun Wang, Junbo Zhang, Tianrui Li, and Xin Yang. Order-robust class  
 548 incremental learning: Graph-driven dynamic similarity grouping. In *CVPR*, 2025.

549

550 Pedro W Lambert, Ana P Majtey, Marcos Madrid, and María E Pereyra. Jensen-shannon divergence:  
 551 A multipurpose distance for statistical and quantum mechanics. In *AIP Conference Proceedings*,  
 552 2007.

553

554 Qiwei Li and Jiahuan Zhou. Caprompt: Cyclic prompt aggregation for pre-trained model based class  
 555 incremental learning. In *AAAI*, 2025.

556

557 Yujie Li, Xin Yang, Hao Wang, Xiangkun Wang, and Tianrui Li. Learning to prompt knowledge  
 558 transfer for open-world continual learning. In *AAAI*, 2024.

559

560 Zhizhong Li and Derek Hoiem. Learning without forgetting. *TPAMI*, 2017.

561

562 Sen Lin, Peizhong Ju, Yingbin Liang, and Ness Shroff. Theory on forgetting and generalization of  
 563 continual learning. In *ICML*, 2023.

564

565 Xialei Liu, Chenshen Wu, Mikel Menta, Luis Herranz, Bogdan Raducanu, Andrew D Bagdanov,  
 566 Shangling Jui, and Joost van de Weijer. Generative feature replay for class-incremental learning.  
 567 In *CVPR Workshops*, 2020.

568

569 David Lopez-Paz and Marc'Aurelio Ranzato. Gradient episodic memory for continual learning.  
 570 *NeurIPS*, 2017.

571

572 Mark D McDonnell, Dong Gong, Amin Parvaneh, Ehsan Abbasnejad, and Anton van den Hengel.  
 573 Ranpac: Random projections and pre-trained models for continual learning. *NeurIPS*, 2024.

574

575 Martin Mundt, Steven Lang, Quentin Delfosse, and Kristian Kersting. Cleva-compass: A continual  
 576 learning evaluation assessment compass to promote research transparency and comparability. *arXiv*  
 577 *preprint arXiv:2110.03331*, 2021.

578

579 Frank Nielsen. Hierarchical clustering. *Introduction to HPC with MPI for Data Science*, 2016.

580

581 Oleksiy Ostapenko, Pau Rodriguez, Massimo Caccia, and Laurent Charlin. Continual learning via  
 582 local module composition. *NeurIPS*, 2021.

583

584 Aristeidis Panos, Yuriko Kobe, Daniel Olmeda Reino, Rahaf Aljundi, and Richard E Turner. First  
 585 session adaptation: A strong replay-free baseline for class-incremental learning. In *ICCV*, 2023.

586

587 Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. icarl:  
 588 Incremental classifier and representation learning. In *CVPR*, 2017.

589

590 Matthew Riemer, Ignacio Cases, Robert Ajemian, Miao Liu, Irina Rish, Yuhai Tu, and Gerald Tesauro.  
 591 Learning to learn without forgetting by maximizing transfer and minimizing interference. *arXiv*  
 592 *preprint arXiv:1810.11910*, 2018.

593

594 Haozhe Shan, Qianyi Li, and Haim Sompolinsky. Order parameters and phase transitions of continual  
 595 learning in deep neural networks. *arXiv preprint arXiv:2407.10315*, 2024.

596

597 Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim. Continual learning with deep generative  
 598 replay. *NeurIPS*, 2017.

599

600 James Seale Smith, Leonid Karlinsky, Vyshnavi Gutta, Paola Cascante-Bonilla, Donghyun Kim, Assaf  
 601 Arbelle, Rameswar Panda, Rogerio Feris, and Zsolt Kira. Coda-prompt: Continual decomposed  
 602 attention-based prompting for rehearsal-free continual learning. In *CVPR*, 2023.

594 Hai-Long Sun, Da-Wei Zhou, De-Chuan Zhan, and Han-Jia Ye. Pilot: A pre-trained model-based  
 595 continual learning toolbox, 2025a.

596

597 Hai-Long Sun, Da-Wei Zhou, Hanbin Zhao, Le Gan, De-Chuan Zhan, and Han-Jia Ye. Mos: Model  
 598 surgery for pre-trained model-based class-incremental learning. In *AAAI*, 2025b.

599 Cédric Villani. The wasserstein distances. *Optimal transport: old and new*, 2009.

600

601 C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie. The Caltech-UCSD Birds-200-2011  
 602 Dataset. Technical Report CNS-TR-2011-001, California Institute of Technology, 2011.

603

604 Fu-Yun Wang, Da-Wei Zhou, Han-Jia Ye, and De-Chuan Zhan. Foster: Feature boosting and  
 605 compression for class-incremental learning. In *ECCV*, 2022a.

606 Liyuan Wang, Xingxing Zhang, Qian Li, Jun Zhu, and Yi Zhong. Coscl: Cooperation of small  
 607 continual learners is stronger than a big one. In *ECCV*, 2022b.

608

609 Liyuan Wang, Jingyi Xie, Xingxing Zhang, Mingyi Huang, Hang Su, and Jun Zhu. Hierarchical  
 610 decomposition of prompt-based continual learning: Rethinking obscured sub-optimality. In  
 611 *NeurIPS*, 2023a.

612 Liyuan Wang, Jingyi Xie, Xingxing Zhang, Mingyi Huang, Hang Su, and Jun Zhu. Hierarchical  
 613 decomposition of prompt-based continual learning: Rethinking obscured sub-optimality. *NeurIPS*,  
 614 2023b.

615

616 Liyuan Wang, Xingxing Zhang, Qian Li, Mingtian Zhang, Hang Su, Jun Zhu, and Yi Zhong.  
 617 Incorporating neuro-inspired adaptability for continual learning in artificial intelligence. *Nature  
 618 Machine Intelligence*, 2023c.

619 Liyuan Wang, Jingyi Xie, Xingxing Zhang, Mingyi Huang, Hang Su, and Jun Zhu. Hierarchical  
 620 decomposition of prompt-based continual learning: Rethinking obscured sub-optimality. *NeurIPS*,  
 621 2024a.

622

623 Liyuan Wang, Xingxing Zhang, Hang Su, and Jun Zhu. A comprehensive survey of continual learning:  
 624 Theory, method and application. *TPAMI*, 2024b.

625 Yabin Wang, Zhiheng Ma, Zhiwu Huang, Yaowei Wang, Zhou Su, and Xiaopeng Hong. Isolation and  
 626 impartial aggregation: A paradigm of incremental learning without interference. In *AAAI*, 2023d.

627

628 Zhen Wang, Liu Liu, Yiqun Duan, and Dacheng Tao. Continual learning through retrieval and  
 629 imagination. In *AAAI*, 2022c.

630

631 Zifeng Wang, Zizhao Zhang, Sayna Ebrahimi, Ruoxi Sun, Han Zhang, Chen-Yu Lee, Xiaoqi Ren,  
 632 Guolong Su, Vincent Perot, Jennifer Dy, et al. Dualprompt: Complementary prompting for  
 633 rehearsals-free continual learning. In *ECCV*, 2022d.

634

635 Zifeng Wang, Zizhao Zhang, Chen-Yu Lee, Han Zhang, Ruoxi Sun, Xiaoqi Ren, Guolong Su, Vincent  
 636 Perot, Jennifer Dy, and Tomas Pfister. Learning to prompt for continual learning. In *CVPR*, 2022e.

637

638 Tongtong Wu, Xuekai Li, Yuan-Fang Li, Gholamreza Haffari, Guilin Qi, Yujin Zhu, and Guoqiang  
 639 Xu. Curriculum-meta learning for order-robust continual relation extraction. In *AAAI*, 2021.

640

641 Shipeng Yan, Jiangwei Xie, and Xuming He. Der: Dynamically expandable representation for class  
 642 incremental learning. In *CVPR*, 2021.

643

644 Bowen Zheng, Da-Wei Zhou, Han-Jia Ye, and De-Chuan Zhan. Task-agnostic guided feature  
 645 expansion for class-incremental learning. *CVPR*, 2025.

646

647 Zangwei Zheng, Mingyuan Ma, Kai Wang, Ziheng Qin, Xiangyu Yue, and Yang You. Preventing  
 648 zero-shot transfer degradation in continual learning of vision-language models. In *ICCV*, 2023.

649

650 Da-Wei Zhou, Qi-Wei Wang, Han-Jia Ye, and De-Chuan Zhan. A model or 603 exemplars: Towards  
 651 memory-efficient class-incremental learning. In *ICLR*, 2023.

648 Da-Wei Zhou, Zi-Wen Cai, Han-Jia Ye, De-Chuan Zhan, and Ziwei Liu. Revisiting class-incremental  
649 learning with pre-trained models: Generalizability and adaptivity are all you need. *IJCV*, 2024a.  
650

651 Da-Wei Zhou, Hai-Long Sun, Jingyi Ning, Han-Jia Ye, and De-Chuan Zhan. Continual learning with  
652 pre-trained models: a survey. In *IJCAI*, 2024b.

653 Da-Wei Zhou, Hai-Long Sun, Han-Jia Ye, and De-Chuan Zhan. Expandable subspace ensemble for  
654 pre-trained model-based class-incremental learning. In *CVPR*, 2024c.

655 Da-Wei Zhou, Yuanhan Zhang, Yan Wang, Jingyi Ning, Han-Jia Ye, De-Chuan Zhan, and Ziwei Liu.  
656 Learning without forgetting for vision-language models. *TPAMI*, 2025.

657 Kai Zhu, Wei Zhai, Yang Cao, Jiebo Luo, and Zheng-Jun Zha. Self-sustaining representation  
658 expansion for non-exemplar class-incremental learning. In *CVPR*, 2022.

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

## APPENDIX

The appendix is organized as follows:

- Appendix B introduces the notations and mathematical symbols used throughout the paper, providing a clear reference for theoretical and algorithmic components.
- Appendix C presents a detailed analysis of the existing RS (Random Sampling) protocol, including formal proofs of its limitations and additional empirical results that support our claims.
- Appendix D provides a comprehensive discussion of the proposed EDGE protocol. This includes pseudo-code, step-by-step explanations of the sequence generation algorithm, and theoretical justification for its effectiveness.
- Appendix E reports extended experimental results and offers in-depth analysis of the observed patterns. These findings provide new insights into the design and selection of CIL algorithms under varying sequence difficulties.
- Appendix F outlines promising directions for future research.

## A THE USE OF LARGE LANGUAGE MODELS

Large language models were used solely to assist in polishing the writing of this manuscript. They played no role in the conceptualization, research, or analysis of this work. The authors take full responsibility for the content and originality of the work.

## B NOTATION

Table A1: Notations and their explanations used throughout this paper.

| Notation                     | Explanation                                                              |
|------------------------------|--------------------------------------------------------------------------|
| $N$                          | Total number of classes.                                                 |
| $\mathcal{N}(\mu, \sigma^2)$ | Gaussian (normal) distribution with mean $\mu$ and variance $\sigma^2$ . |
| $\mathcal{D}^i$              | Training dataset for task $i$ , consisting of $n_i$ input–label pairs.   |
| $CLS^i$                      | Set of classes associated with task $i$ .                                |
| $\Omega$                     | Sample space of all possible class sequences.                            |
| $\mathcal{O} \in \Omega$     | A specific ordered class sequence of length $K$ .                        |
| $\mathcal{P}_{\text{true}}$  | True (but unknown) distribution of the model’s performance.              |
| $\mathcal{A}(\mathcal{O})$   | Final accuracy achieved by the model on sequence $\mathcal{O}$ .         |
| $K$                          | Total number of tasks (i.e., the length of each sequence).               |
| $L$                          | Number of sampled sequences used for estimation.                         |
| $\delta$                     | Allowed failure probability (so confidence is $1 - \delta$ ).            |
| $\epsilon$                   | Tolerance for estimation error.                                          |
| $\mathcal{S}(\mathcal{O})$   | Inter-task similarity score for sequence $\mathcal{O}$ .                 |
| $\epsilon_g$                 | Theoretical upper bound on the generalization error.                     |
| $\Phi$                       | CLIP text encoder mapping text tokens to $d$ -dimensional embeddings.    |
| $\mathbf{L}$                 | Matrix of text embeddings for the $C$ class labels.                      |
| $\mathbf{D}$                 | Similarity matrix between label embeddings (e.g. cosine similarity).     |
| $\mathbf{ITS}$               | Inter-task similarity matrix aggregated from $\mathbf{D}$ .              |

Table A1 provides a detailed description of the notations used throughout the paper, facilitating a clearer understanding of the mathematical formulations and algorithmic procedures.

756 C DETAILED ANALYSIS OF RS PROTOCOL  
757758 C.1 THEORETICAL ANALYSIS AND PROOF  
759760 **Lemma 1.** *Let  $N$  be the total number of classes, partitioned into  $K$  tasks of equal size  $M = N/K$ .  
761 Then the number of distinct class sequences is  $|\Omega| = \frac{N!}{(M!)^K}$ . Moreover, under linear scaling  
762  $K = \Theta(N)$ , the quantity  $|\Omega|$  grows factorially, satisfying  $|\Omega| = \Omega((N/e)^N)$ , which asymptotically  
763 dwarfs any polynomial-scale sampling capacity as  $N \rightarrow \infty$ .*  
764765 *Proof.* We begin by noting that the total number of distinct permutations of  $N$  classes is  $N!$ . When  
766 partitioning these classes into  $K$  tasks of equal size  $M = N/K$ , each individual task contains  
767  $M$  unordered classes. Since the order of classes within a task is irrelevant but the order of tasks  
768 themselves is preserved, we must quotient out the intra-task permutations.  
769770 For each task, there are  $M!$  ways to permute its classes internally. Since there are  $K$  such tasks, the  
771 total number of intra-task permutations is  $(M!)^K$ . Consequently, the total number of distinct class  
772 sequences that respect this task-based structure is given by  $|\Omega| = \frac{N!}{(M!)^K}$ . To analyze the growth rate  
773 of  $|\Omega|$ , assume a linear scaling regime where  $K = \Theta(N)$ . Then  $M = N/K = \Theta(1)$ , implying that  
774  $M!$  is constant with respect to  $N$ . Therefore,  $(M!)^K = \Theta(c^N)$  for some constant  $c > 0$ .  
775776 By Stirling's approximation, we have:  
777

778 
$$N! \sim \sqrt{2\pi N} \left( \frac{N}{e} \right)^N. \quad (6)$$

779 Thus,

780 
$$|\Omega| = \frac{N!}{(M!)^K} = \Omega \left( \frac{(N/e)^N}{c^N} \right) = \Omega \left( \left( \frac{N}{ec} \right)^N \right), \quad (7)$$

781 which shows that  $|\Omega|$  grows at least as fast as  $(N/e')^N$  for some constant  $e' > e$ , i.e.,  $|\Omega| = \Omega((N/e)^N)$ .  
782783 Finally, note that any polynomial function in  $N$  is dominated by  $(N/e)^N$  as  $N \rightarrow \infty$ . Hence,  
784 the number of possible class sequences  $|\Omega|$  asymptotically exceeds any polynomial-scale sampling  
785 budget, concluding the proof.  $\square$   
786787 **Theorem 1.** *Let  $\Omega$  be the set of all possible class sequences with  $|\Omega|$  elements, and fix tolerance  $\varepsilon > 0$   
788 and failure probability  $\delta \in (0, 1)$ . Suppose we draw  $L$  sequences  $\{RS_l\}_{l=1}^L$  without replacement  
789 uniformly from  $\Omega$ , and let  $\widehat{\mathcal{A}}_L = \frac{1}{L} \sum_{l=1}^L \mathcal{A}(RS_l)$  be the empirical mean, respectively. Then for  
790 any  $\varepsilon > 0$ , if*

791 
$$L \frac{|\Omega| - L}{|\Omega| - 1} \geq \frac{\ln(2|\Omega|/\delta)}{2\varepsilon^2}, \quad (8)$$

792 then with probability at least  $1 - \delta$ ,  $|\widehat{\mathcal{A}}_L - \mathbb{E}_\omega[\mathcal{A}(\omega)]| \leq \varepsilon$ .  
793794 *Proof.* Let  $\Omega = \{\omega_1, \omega_2, \dots, \omega_{|\Omega|}\}$  denote the finite set of all possible class sequences. Define the  
795 true mean accuracy as

796 
$$\mu = \mathbb{E}_{\omega \sim \Omega}[\mathcal{A}(\omega)] = \frac{1}{|\Omega|} \sum_{i=1}^{|\Omega|} \mathcal{A}(\omega_i). \quad (9)$$

797 Let  $\{RS_1, RS_2, \dots, RS_L\}$  be a sample of size  $L$  drawn uniformly at random *without replacement*  
798 from  $\Omega$ , and define the empirical mean  
799

800 
$$\widehat{\mathcal{A}}_L = \frac{1}{L} \sum_{i=1}^L \mathcal{A}(RS_i). \quad (10)$$

801 Our goal is to bound the deviation probability  $\mathbb{P}(|\widehat{\mathcal{A}}_L - \mu| \geq \varepsilon)$ , under the assumption that  $\mathcal{A}(\cdot) \in$   
802  $[0, 1]$  for all  $\omega \in \Omega$ . Let us define the Doob martingale sequence  
803

804 
$$Z_0 = \mathbb{E}[\widehat{\mathcal{A}}_L], \quad Z_i = \mathbb{E}[\widehat{\mathcal{A}}_L | RS_1, \dots, RS_i], \quad i = 1, \dots, L. \quad (11)$$

810 Then  $\{Z_i\}_{i=0}^L$  forms a martingale with respect to the filtration  $\mathcal{F}_i = \sigma(RS_1, \dots, RS_i)$ , and we have:  
 811

$$812 \quad Z_0 = \mu, \quad Z_L = \widehat{\mathcal{A}}_L, \quad \text{and} \quad \widehat{\mathcal{A}}_L - \mu = Z_L - Z_0 = \sum_{i=1}^L (Z_i - Z_{i-1}). \quad (12)$$

813  
814

815 Since the sampling is without replacement from a bounded set  $\mathcal{A}(\omega) \in [0, 1]$ , we can bound each  
 816 martingale difference:  
 817

$$818 \quad |Z_i - Z_{i-1}| \leq \frac{1}{L} \cdot \sqrt{\frac{|\Omega| - L}{|\Omega| - 1}}, \quad \text{for all } i = 1, \dots, L. \quad (13)$$

819  
820

821 This bound can be obtained via an extension of McDiarmid's inequality for sampling without  
 822 replacement, or directly computed via sensitivity analysis of the sample mean with respect to one  
 823 replacement in the sequence. Thus, the variance proxy is bounded as:  
 824

$$825 \quad \sum_{i=1}^L (Z_i - Z_{i-1})^2 \leq L \cdot \left( \frac{1}{L^2} \cdot \frac{|\Omega| - L}{|\Omega| - 1} \right) = \frac{1}{L} \cdot \frac{|\Omega| - L}{|\Omega| - 1}. \quad (14)$$

826

827 Using the standard Azuma–Hoeffding inequality for martingales with bounded increments, we obtain:  
 828

$$829 \quad \mathbb{P} \left( |\widehat{\mathcal{A}}_L - \mu| \geq \varepsilon \right) \leq 2 \exp \left( - \frac{\varepsilon^2}{2 \sum_{i=1}^L (Z_i - Z_{i-1})^2} \right) \leq 2 \exp \left( - 2\varepsilon^2 L \cdot \frac{|\Omega| - L}{|\Omega| - 1} \right). \quad (15)$$

830  
831

832 To ensure that the deviation probability is at most  $\delta/|\Omega|$  for each of the  $|\Omega|$  possible values (for use in  
 833 a union bound), it suffices that:  
 834

$$835 \quad 2 \exp \left( - 2\varepsilon^2 L \cdot \frac{|\Omega| - L}{|\Omega| - 1} \right) \leq \frac{\delta}{|\Omega|}. \quad (16)$$

836

837 Solving this inequality, we take logarithms on both sides:  
 838

$$839 \quad - 2\varepsilon^2 L \cdot \frac{|\Omega| - L}{|\Omega| - 1} \leq \ln(\delta/2S), \quad (17)$$

840

841 which is equivalent to:  
 842

$$843 \quad L \cdot \frac{|\Omega| - L}{|\Omega| - 1} \geq \frac{\ln(2|\Omega|/\delta)}{2\varepsilon^2}. \quad (18)$$

844

845  $\square$

846 **Theorem 2.** Let  $\Omega$  be the set of all class sequences, and define  $\mu = \mathbb{E}_{\omega \sim \Omega}[\mathcal{A}(\omega)]$ ,  $\sigma = \sqrt{\text{Var}_{\omega \sim \Omega}[\mathcal{A}(\omega)]}$  as the realistic mean and standard deviation of the accuracy function  $\mathcal{A}$ . Suppose  
 847 we know two extreme sequences  $\omega_+$ ,  $\omega_-$  satisfying  $\mathcal{A}(\omega_+) - \mu \geq \sigma$  and  $\mu - \mathcal{A}(\omega_-) \geq \sigma$ . Draw  
 848  $L$  sequences  $\{RS_l\}_{l=1}^L$  without replacement uniformly from  $\Omega \setminus \{\omega_+, \omega_-\}$ , and define  $\widetilde{\mathcal{A}}_{L+2} =$   
 849  $\frac{1}{L+2} [\mathcal{A}(\omega_-) + \mathcal{A}(\omega_+) + \sum_{l=1}^L \mathcal{A}(RS_l)]$ . Then for any  $\varepsilon > 0$  and  $\delta \in (0, 1)$ , if  
 850  
 851

$$852 \quad L \frac{|\Omega| - 2 - L}{|\Omega| - 3} \geq \frac{\ln(2(|\Omega| - 2)/\delta) (R^{(\sigma)})^2}{2\varepsilon^2}, \quad (19)$$

853  
854

855 where  $R^{(\sigma)} = \mathcal{A}(\omega_+) - \mathcal{A}(\omega_-)$ , then with probability at least  $1 - \delta$ ,  $|\widetilde{\mathcal{A}}_{L+2} - \mathbb{E}_{\omega \sim \Omega}[\mathcal{A}(\omega)]| \leq \varepsilon$ .  
 856

857 *Proof.* Let  $\Omega = \{\omega_1, \dots, \omega_{|\Omega|}\}$  and write  
 858

$$859 \quad \mu = \frac{1}{|\Omega|} \sum_{i=1}^{|\Omega|} \mathcal{A}(\omega_i), \quad \sigma^2 = \text{Var}_{\omega \sim \Omega}[\mathcal{A}(\omega)] \quad (20)$$

860  
861

862 By assumption there exist sequences  $\omega_+, \omega_-$  satisfying  
 863

$$864 \quad \mathcal{A}(\omega_+) - \mu \geq \sigma, \quad \mu - \mathcal{A}(\omega_-) \geq \sigma. \quad (21)$$

864 Define the total range  
 865  
 866

$$R^{(\sigma)} = \mathcal{A}(\omega_+) - \mathcal{A}(\omega_-) \geq 2\sigma. \quad (22)$$

867 Draw  $L$  samples  $\{RS_i\}_{i=1}^L$  without replacement from  $\Omega' = \Omega \setminus \{\omega_+, \omega_-\}$ , and set  
 868

$$\tilde{\mathcal{A}}_{L+2} = \frac{1}{L+2} \left[ \mathcal{A}(\omega_-) + \mathcal{A}(\omega_+) + \sum_{i=1}^L \mathcal{A}(RS_i) \right]. \quad (23)$$

872 Consider the Doob martingale  
 873

$$Z_0 = \mathbb{E}[\tilde{\mathcal{A}}_{L+2}], \quad Z_i = \mathbb{E}[\tilde{\mathcal{A}}_{L+2} \mid RS_1, \dots, RS_i], \quad i = 1, \dots, L. \quad (24)$$

875 Then  
 876

$$Z_0 = \mu, \quad Z_L = \tilde{\mathcal{A}}_{L+2}, \quad \tilde{\mathcal{A}}_{L+2} - \mu = \sum_{i=1}^L (Z_i - Z_{i-1}). \quad (25)$$

879 Since each  $\mathcal{A}(RS_i)$  lies between the two extremes, replacing one sample can change the sum by at  
 880 most  $R^{(\sigma)}$ . Moreover, because we sample without replacement from a set of size  $|\Omega| - 2$ , the sensi-  
 881 tivity of the average  $\tilde{\mathcal{A}}_{L+2}$  to a single replacement is further scaled by  $\sqrt{(|\Omega| - 2 - L)/(|\Omega| - 3)}$ .  
 882 Altogether one obtains  
 883

$$|Z_i - Z_{i-1}| \leq \frac{1}{L+2} R^{(\sigma)} \sqrt{\frac{|\Omega| - 2 - L}{|\Omega| - 3}}, \quad i = 1, \dots, L. \quad (26)$$

887 Hence, the sum of squared increments is bounded by  
 888

$$\sum_{i=1}^L (Z_i - Z_{i-1})^2 \leq L \left( \frac{R^{(\sigma)}}{L+2} \right)^2 \frac{|\Omega| - 2 - L}{|\Omega| - 3}. \quad (27)$$

892 By Azuma–Hoeffding,  
 893

$$\Pr(|\tilde{\mathcal{A}}_{L+2} - \mu| \geq \varepsilon) \leq 2 \exp \left( -\frac{\varepsilon^2}{2 \sum_{i=1}^L (Z_i - Z_{i-1})^2} \right) \leq 2 \exp \left( -2\varepsilon^2 L \frac{|\Omega| - 2 - L}{|\Omega| - 3} (R^{(\sigma)})^{-2} \right). \quad (28)$$

897 Requiring this probability to be at most  $\delta/(|\Omega| - 2)$  and solving for  $L$  gives  
 898

$$L \frac{|\Omega| - 2 - L}{|\Omega| - 3} \geq \frac{\ln(2(|\Omega| - 2)/\delta) (R^{(\sigma)})^2}{2\varepsilon^2}. \quad (29)$$

901  $\square$   
 902

## 903 C.2 EMPIRICAL ANALYSIS

905 To empirically validate the distributional characteristics of performance metrics across different  
 906 continual learning methods, we conducted experiments on CIFAR-100 and ImageNet-R. As shown in  
 907 Table A2, the number of possible class sequences grows rapidly even with a small number of classes.  
 908 To balance feasibility and distributional richness, we chose a configuration with 6 classes divided  
 909 into 3 tasks of 2 classes each, yielding 90 possible class sequences. This setting is large enough to  
 910 exhibit meaningful variation in performance, yet still allows complete enumeration of the sequence  
 911 space. For each dataset, we randomly selected 6 classes and partitioned them accordingly. We then  
 912 evaluated two groups of methods:  
 913

- 914 • **Non-pretrained CIL methods:** EWC Kirkpatrick et al. (2017), DER Yan et al. (2021), iCaRL  
 915 Rebuffi et al. (2017), FOSTER Wang et al. (2022a), MEMO Zhou et al. (2023), and TagFex Zheng  
 916 et al. (2025).
- 917 • **Pre-trained CIL methods :** L2P Wang et al. (2022e), CODA-Prompt Smith et al. (2023), Hide-  
 918 Prompt Wang et al. (2023b), EASE Zhou et al. (2024c), and MOS Sun et al. (2025b).

Table A2: Number of possible class sequences  $|\Omega|$  under different partitions

|     | $N$      | $K$      | $M = N/K$ | Formula              | $ \Omega  = \frac{N!}{(M!)^K}$ |
|-----|----------|----------|-----------|----------------------|--------------------------------|
| 918 | 4        | 2        | 2         | $\frac{4!}{(2!)^2}$  | 6                              |
| 919 | 6        | 2        | 3         | $\frac{6!}{(3!)^2}$  | 20                             |
| 920 | 8        | 2        | 4         | $\frac{8!}{(4!)^2}$  | 70                             |
| 921 | 10       | 2        | 5         | $\frac{10!}{(5!)^2}$ | 252                            |
| 922 | <b>6</b> | <b>3</b> | <b>2</b>  | $\frac{6!}{(2!)^3}$  | <b>90</b>                      |
| 923 | 9        | 3        | 3         | $\frac{9!}{(3!)^3}$  | 1680                           |
| 924 | 8        | 4        | 2         | $\frac{8!}{(2!)^4}$  | 2520                           |
| 925 |          |          |           |                      |                                |
| 926 |          |          |           |                      |                                |
| 927 |          |          |           |                      |                                |
| 928 |          |          |           |                      |                                |
| 929 |          |          |           |                      |                                |

Table A3: Normality test results, **demonstrating that the model capacity distribution approximates a Gaussian**

|     | Method      | Dataset    | $\lambda$ | Shapiro–Wilk $p$ | D’Agostino’s $p$ | KS $p$ |
|-----|-------------|------------|-----------|------------------|------------------|--------|
| 934 | CODA-Prompt | CIFAR-100  | 4.5971    | 0.4753           | 0.4357           | 0.8365 |
| 935 | CODA-Prompt | ImageNet-R | 2.3957    | 0.9321           | 0.7483           | 0.8811 |
| 936 | DER         | CIFAR-100  | 2.2577    | 0.3582           | 0.3030           | 0.3824 |
| 937 | DER         | ImageNet-R | 0.0321    | 0.2755           | 0.5488           | 0.6937 |
| 938 | EWC         | CIFAR-100  | 1.5076    | 0.1926           | 0.1913           | 0.4064 |
| 939 | EWC         | ImageNet-R | 0.7893    | 0.2854           | 0.5735           | 0.3519 |
| 940 | FOSTER      | CIFAR-100  | 2.8988    | 0.2215           | 0.9340           | 0.4010 |
| 941 | FOSTER      | ImageNet-R | 0.1042    | 0.2216           | 0.1903           | 0.2880 |
| 942 | Hide-Prompt | CIFAR-100  | 4.1164    | 0.5802           | 0.4904           | 0.4783 |
| 943 | Hide-Prompt | ImageNet-R | 1.7462    | 0.3538           | 0.8186           | 0.6373 |
| 944 | iCaRL       | CIFAR-100  | 7.2381    | 0.1369           | 0.0326           | 0.4413 |
| 945 | iCaRL       | ImageNet-R | 1.1917    | 0.9577           | 0.9403           | 0.9870 |
| 946 | L2P         | CIFAR-100  | 11.8644   | 0.0554           | 0.3215           | 0.2628 |
| 947 | L2P         | ImageNet-R | 4.4415    | 0.1850           | 0.1541           | 0.6715 |
| 948 | MEMO        | CIFAR-100  | 0.7041    | 0.1720           | 0.0524           | 0.7084 |
| 949 | MEMO        | ImageNet-R | 0.6267    | 0.8781           | 0.8697           | 0.7357 |
| 950 | MOS         | CIFAR-100  | -12.9763  | 0.4968           | 0.7681           | 0.5230 |
| 951 | MOS         | ImageNet-R | 3.0909    | 0.1546           | 0.7973           | 0.2497 |

**Observation 1: The capacity distribution of the model is near-Gaussian**

For each method–dataset pair, we collected the final task accuracies over the 90 sequences and applied a Box–Cox power transformation. The optimal parameter  $\lambda$  was chosen by maximizing the log-likelihood under the normality assumption. We then performed three normality tests on the transformed accuracies: the Shapiro–Wilk test, D’Agostino’s  $K^2$  test, and the one-sample Kolmogorov–Smirnov (KS) test. Each yields a  $p$ -value indicating the probability of observing the data under a Gaussian null hypothesis.

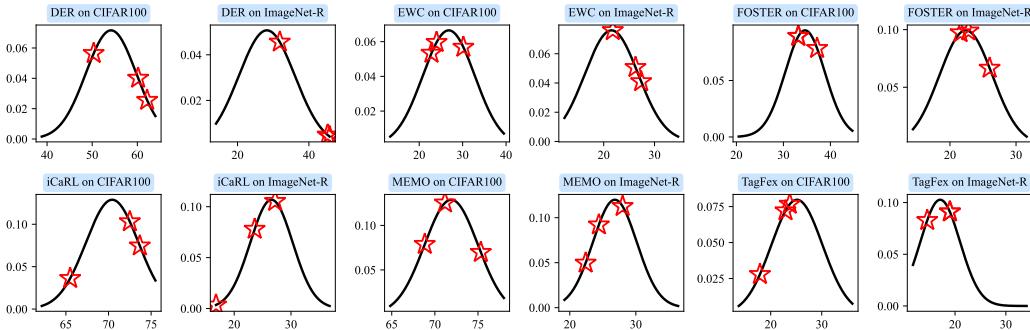
The results in Table A3 indicate that, after Box–Cox transformation, most method–dataset combinations exhibit  $p$ -values above the conventional 0.05 threshold in at least two of the three tests, suggesting an adequate approximation to normality.

In addition, methods not listed in Table A3, such as RanPAC and EASE, produce a limited number of possible task sequences due to their architectural design, resulting in insufficient sample sizes for reliable normality testing; hence, their results are reported as *n/a*.

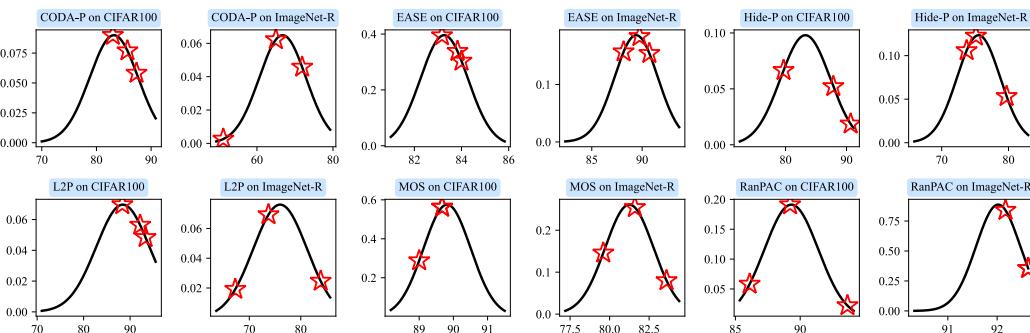
**Observation 2: The sampling of RS protocol cannot reflect the realistic ability of the model well**

Figure A1 and Figure A2 illustrate the true performance distribution and the sampling locations obtained using the RS protocol (random seeds 0, 42, and 1993). Random sampling often fails to capture the true characteristics of the distribution. First, most sampled points cluster around the center of the distribution, making them ineffective in reflecting the model’s behavior under extreme conditions. Second, the randomness of the sampling process introduces significant uncertainty across different data types and datasets, as the sampling locations vary considerably. This variability leads to unstable evaluations, where some methods are overestimated while others are underestimated. Third,

972 two major issues arise when using these randomly selected points to estimate the true distribution:  
 973 the mean is inaccurately estimated, and the variance is severely underestimated. These problems  
 974 together compromise the reliability of model evaluation under the RS protocol.  
 975



988 Figure A1: True performance distribution (black) and sampling positions under the RS protocol  
 989 for non-pretrained CIL methods. The figure illustrates that RS fails to adequately capture the  
 990 true distribution, leading to biased estimation.



1004 Figure A2: True data distribution and the sampling positions under the RS protocol (pre-trained CIL  
 1005 methods).

### 1007 **Observation 3: The performance of the model is positively correlated with inter-task similarity**

1009 Building upon the prior theoretical analysis and the first two observations, we recognize the necessity  
 1010 of incorporating extreme sequences for auxiliary evaluation. However, a key challenge lies in  
 1011 adaptively identifying such extreme sequences and determining a principled basis for algorithmic  
 1012 design. In the CIL setting, it is intuitively understood that when adjacent tasks exhibit low similarity,  
 1013 the model parameters undergo substantial changes during task transitions, increasing the risk of  
 1014 forgetting. Motivated by this intuition, we investigate the relationship between inter-task similarity  
 1015 and model performance. As shown in Figure 2c, a strong positive correlation is observed across most  
 1016 methods. This insight suggests that inter-task similarity can be a foundation for designing strategies  
 1017 to sample challenging sequences and evaluate model robustness.

## 1018 **D DETAILED ANALYSIS OF EDGE**

### 1021 **D.1 THEORETICAL ANALYSIS AND PROOF**

1023 **Theorem 3.** Consider a CIL system consisting of  $K$  tasks, where each task  $T_k$  is associated  
 1024 with a data distribution  $\mathcal{D}_k$  and a class set  $\mathcal{C}_k$ . The generalization error is defined as  $\epsilon_g =$   
 1025  $\frac{1}{K} \sum_{k=1}^K \mathbb{E}_{(x,y) \sim \mathcal{D}_k} [L(h(x), y)]$ , where  $L(h(x), y)$  denotes the loss between the model prediction  
 $h(x)$  and the true label  $y$ . Given a task order  $\mathcal{O} = \{T_1, T_2, \dots, T_K\}$ , the similarity score  $\mathcal{S}(\mathcal{O})$  is

1026 defined as:

1027

$$1028 \quad \mathcal{S}(\mathcal{O}) = \frac{K}{(K-1)N} \sum_{1 \leq i \leq K-1} \sum_{c \in \mathcal{C}_i} \sum_{c' \in \mathcal{C}_{i+1}} \text{Sim}(c, c'), \quad (30)$$

1029

1030 where  $\text{Sim}(c, c')$  denotes the semantic similarity in the representation space between classes  $c$  and  
 1031  $c'$ , belonging to tasks  $T_i$  and  $T_j$ , respectively. Let  $\mathcal{O}_h$  and  $\mathcal{O}_e$  denote the sequences with the minimum  
 1032 and maximum similarity scores  $\mathcal{S}(\mathcal{O})$ , respectively, and let  $\mathcal{O}_r$  represent a randomly generated  
 1033 sequence. Then, the following conditions hold:

1034 • The similarity score satisfies  $\mathcal{S}(\mathcal{O}_h) \leq \mathcal{S}(\mathcal{O}_r) \leq \mathcal{S}(\mathcal{O}_e)$ ,  
 1035 • The generalization error satisfy  $\epsilon_g(\mathcal{O}_h) \geq \epsilon_g(\mathcal{O}_r) \geq \epsilon_g(\mathcal{O}_e)$ .

1037 **Lemma 2.** Lin et al. (2023) When  $p \geq n + 2$ , we must have:

1038

$$1039 \quad \mathbb{E}[\epsilon_g] = \frac{r^T}{T} \sum_{i=1}^{T-1} \|w_i^*\|^2 + \frac{1-r}{T} \sum_{i=1}^T r^{T-i} \sum_{k=1}^T \|w_k^* - w_i^*\|^2 \\ 1040 \\ 1041 \quad + \frac{p\sigma^2}{p-n-1} (1-r^T). \quad (31)$$

1042

1043 where the overparameterization ratio  $r = 1 - \frac{n}{p}$  in this context quantifies the degree of overpa-  
 1044 rameterization in a model, where  $n$  represents the sample size, and  $p$  denotes the number of model  
 1045 parameters. The coefficients  $c_{i,j} = (1-r)(r^{T-i} - r^{j-i} + r^{T-j})$ , with  $1 \leq i < j \leq T$ , correspond  
 1046 to the indices of tasks, and  $\sigma$  denotes a coefficient representing the model's noise level.

1047

1048 *Proof.* First, consider the total cross-task similarity:

1049

$$1050 \quad \sum_{1 \leq i \leq K} \sum_{1 \leq j \leq K} \sum_{c \in \mathcal{C}_i} \sum_{c' \in \mathcal{C}_j} \text{Sim}(c, c'), \quad (32)$$

1051

1052 and the intra-task similarity:

1053

$$1054 \quad \sum_{1 \leq i \leq K} \sum_{c, c' \in \mathcal{C}_i} \text{Sim}(c, c'). \quad (33)$$

1055

1056 These satisfy the conservation relationship:

1057

$$1058 \quad \sum_{1 \leq i \leq K} \sum_{1 \leq j \leq K} \sum_{c \in \mathcal{C}_i} \sum_{c' \in \mathcal{C}_j} \text{Sim}(c, c') + \sum_{1 \leq i \leq K} \sum_{c, c' \in \mathcal{C}_i} \text{Sim}(c, c') = C_1. \quad (34)$$

1059

1060 For optimal parameters between tasks  $i$  and  $j$ , we have:

1061

$$1062 \quad \|w_i^* - w_j^*\|^2 \propto \left\| \sum_{m \in \mathcal{C}_i} v_m^* - \sum_{n \in \mathcal{C}_j} v_n^* \right\|^2 \\ 1063 \\ 1064 \quad = \sum_{m \in \mathcal{C}_i} \sum_{n \in \mathcal{C}_i} \langle v_m, v_n \rangle + \sum_{m \in \mathcal{C}_j} \sum_{n \in \mathcal{C}_j} \langle v_m, v_n \rangle - 2 \sum_{m \in \mathcal{C}_i} \sum_{n \in \mathcal{C}_j} \langle v_m, v_n \rangle \\ 1065 \\ 1066 \quad = \alpha \left( \sum_{c, c' \in \mathcal{C}_i} \text{Sim}(c, c') + \sum_{c, c' \in \mathcal{C}_j} \text{Sim}(c, c') \right) - \alpha \sum_{c \in \mathcal{C}_i} \sum_{c' \in \mathcal{C}_j} \text{Sim}(c, c'), \quad (35)$$

1067

1068 where  $\alpha$  is a proportionality constant.

1069 Substituting into the key term from Lemma 2:

1070

$$1071 \quad \frac{1-r}{K} \sum_{i=1}^K r^{K-i} \sum_{k=1}^K \|w_k^* - w_i^*\|^2 \\ 1072 \\ 1073 \quad = \frac{1-r}{K} \sum_{i=1}^K r^{K-i} \sum_{k=1}^K \alpha \left( \sum_{c, c' \in \mathcal{C}_i} \text{Sim}(c, c') + \sum_{c, c' \in \mathcal{C}_j} \text{Sim}(c, c') - \sum_{c \in \mathcal{C}_i} \sum_{c' \in \mathcal{C}_j} \text{Sim}(c, c') \right)$$

1074

$$\begin{aligned}
&= \frac{1-r}{K} \sum_{i=1}^K r^{K-i} \alpha \left( (K-1) \sum_{c, c' \in \mathcal{C}_i} \text{Sim}(c, c') - \sum_{k=1}^K \sum_{c \in \mathcal{C}_i} \sum_{c' \in \mathcal{C}_k} \text{Sim}(c, c') \right) \\
&= \frac{1-r^K}{K} \alpha (K-1) \left( C_1 - \sum_{i=1}^K \sum_{j=1, j \neq i}^K \sum_{c \in \mathcal{C}_i} \sum_{c' \in \mathcal{C}_j} \text{Sim}(c, c') \right) \\
&\quad - \frac{1-r}{K} \sum_{i=1}^K r^{K-i} \alpha \sum_{k=1}^K \sum_{c \in \mathcal{C}_i} \sum_{c' \in \mathcal{C}_k} \text{Sim}(c, c') \\
&= (1-r^K) \alpha C_1 - \frac{1-r}{K} \alpha \sum_{i=1}^K \sum_{k=1, k \neq i}^K r^{k-i} \sum_{c \in \mathcal{C}_i} \sum_{c' \in \mathcal{C}_k} \text{Sim}(c, c') \\
&= C_2 - 2 \frac{r-r^2}{K} \alpha \sum_{1 \leq i \leq K-1} \sum_{c \in \mathcal{C}_i} \sum_{c' \in \mathcal{C}_{i+1}} \text{Sim}(c, c'), \tag{36}
\end{aligned}$$

where  $C_2$  contains terms independent of the task ordering.

To establish the probabilistic bound for random sequences, let  $\Omega$  denote the set of all possible task permutations and  $\mathcal{O}_r \sim \text{Unif}(\Omega)$ . Define the random variable  $X_{i,j} = \sum_{c \in \mathcal{C}_i} \sum_{c' \in \mathcal{C}_j} \text{Sim}(c, c')$ . The similarity score can be rewritten as:

$$\mathcal{S}(\mathcal{O}) = \frac{K}{(K-1)N} \sum_{t=1}^{K-1} X_{\pi(t), \pi(t+1)}, \tag{37}$$

where  $\pi$  is the permutation function. By symmetry, the probability that any two distinct tasks  $T_i$  and  $T_j$  are adjacent in a random permutation is  $\frac{2}{K(K-1)}$ . Thus, the expected similarity score is:

$$\begin{aligned}
\mathbb{E}[\mathcal{S}(\mathcal{O}_r)] &= \frac{K}{(K-1)N} \cdot \frac{2}{K(K-1)} \sum_{1 \leq i < j \leq K} X_{i,j} \\
&= \frac{2}{(K-1)^2 N} \sum_{i \neq j} X_{i,j}. \tag{38}
\end{aligned}$$

Applying McDiarmid's inequality to the function  $f(\pi) = \mathcal{S}(\mathcal{O})$ , observe that swapping two tasks in  $\pi$  changes  $f(\pi)$  by at most  $\frac{4U}{N}$ , where  $U$  is the upper bound of  $\text{Sim}(c, c')$ . This yields:

$$\mathbb{P}(|f(\pi) - \mathbb{E}[f]| \geq \delta) \leq 2 \exp\left(-\frac{2\delta^2 N^2}{K(4U)^2}\right). \tag{39}$$

Letting  $\delta = \min(\mathbb{E}[f] - \mathcal{S}(\mathcal{O}_h), \mathcal{S}(\mathcal{O}_e) - \mathbb{E}[f])$ , we obtain the concentration bound:

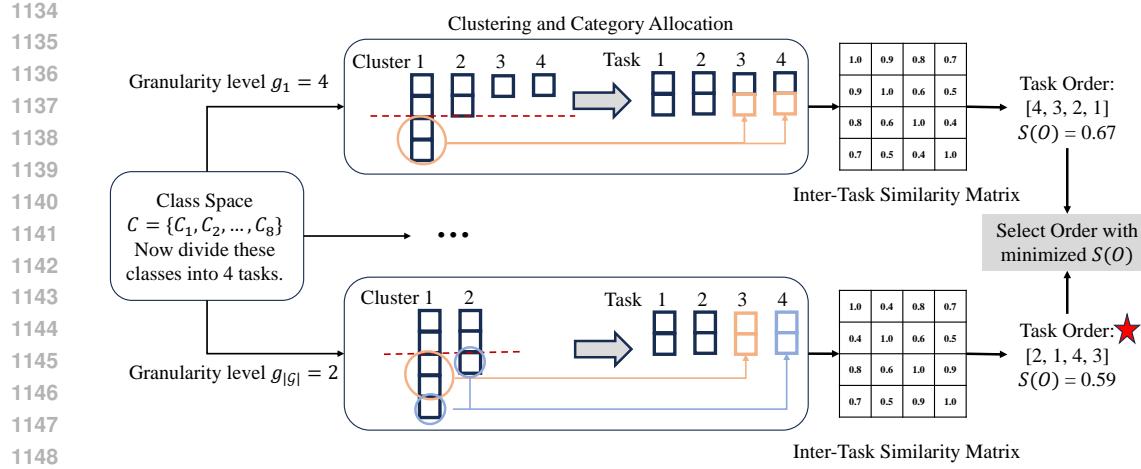
$$\mathbb{P}(\mathcal{S}(\mathcal{O}_h) \leq \mathcal{S}(\mathcal{O}_r) \leq \mathcal{S}(\mathcal{O}_e)) \geq 1 - 2 \exp\left(-\frac{K\delta^2}{8U^2}\right). \tag{40}$$

This reveals an inverse relationship between the similarity score  $\mathcal{S}(\mathcal{O})$  and the generalization error  $\epsilon_g$ : the coefficient before the similarity summation term is negative, meaning higher similarity scores correspond to lower generalization error. Therefore, the ordering with maximum similarity  $\mathcal{O}_e$  minimizes  $\epsilon_g$ , while the minimum similarity ordering  $\mathcal{O}_h$  maximizes  $\epsilon_g$ , with random ordering  $\mathcal{O}_r$  falling between them.  $\square$

## D.2 PSEUDO CODE AND ANALYSIS

**Algorithm Analysis.** The proposed algorithm generates hard task sequences by systematically minimizing inter-task similarities, which aligns with Theorem 1's conclusion that lower similarity scores correspond to higher generalization error. Key design rationales are analyzed as follows:

- **Step 2-3 (Dissimilarity Computation):** First, we convert the class similarity matrix  $\mathbf{G} \in \mathbb{R}^{N \times N}$  into a dissimilarity matrix by computing  $\mathbf{D} = \mathbf{1} - \mathbf{G}$  and setting the diagonal to zero. This



- **Step 6-9 (Inter-Task Similarity Matrix):** The normalized average similarity  $\text{ITS}_{ij}$  accurately reflects task relationships as defined in Equation (30). This ensures algorithmic objectives align with theoretical similarity metrics.
- **Step 10-16 (Greedy Sequence Construction):** The initialization strategy selects the most isolated task as the starting point, preventing early error propagation. The iterative selection of least similar subsequent tasks implements a locally optimal strategy that approximates global minimization of  $\mathcal{S}(\mathcal{O})$ .
- **Step 17 (Multi-Granularity Optimization):** Evaluating multiple granularities leverages Equation (30), where better local minima are more likely to be found through diversified grouping strategies.

Figure A3 provides an illustrative example of the proposed procedure. Suppose we are given 8 classes to be partitioned into 4 tasks. Under a finer clustering granularity, the classes are grouped into 4 clusters, where the first cluster contains 4 classes, the second contains 3, and the remaining two contain 1 class each. To maintain high intra-task similarity, the two extra classes in the first cluster are redistributed to clusters 3 and 4, resulting in a balanced 4-task partition.

Under a coarser granularity, the same 8 classes might be clustered into only 2 groups: the first cluster with 5 classes and the second with 3. In this case, two of the most semantically similar classes from the larger cluster are assigned to form a new task, while the remaining two form another task, resulting in 4 tasks overall.

After generating task partitions, we compute the Inter-Task Similarity (ITS) matrix and select an initial task with the lowest global similarity. We then construct candidate sequences by greedily adding tasks with the smallest pairwise similarity to the most recently added task. For example, from this procedure, we may derive two sequences:  $4 \rightarrow 3 \rightarrow 2 \rightarrow 1$  and  $2 \rightarrow 1 \rightarrow 4 \rightarrow 3$ , with corresponding similarity scores of 0.67 and 0.59, respectively. This process is repeated across clustering granularities, and the sequence with the lowest overall similarity score  $\mathcal{S}(\mathcal{O})$  is ultimately selected as the hard sequence.

**Theorem 4** (Greedy Strategy Optimality Bound). *Let  $\mathcal{O}_r$  be a uniformly random permutation of  $K$  tasks and define the average inter-task similarity*

$$\bar{S} = \frac{1}{\binom{K}{2}} \sum_{1 \leq i < j \leq K} \frac{1}{|\mathcal{C}_i| |\mathcal{C}_j|} \sum_{c \in \mathcal{C}_i} \sum_{c' \in \mathcal{C}_j} \text{Sim}(c, c'), \quad (41)$$

and assume  $0 \leq \text{Sim}(c, c') \leq U$ . Let  $\mathcal{O}_g$  be the sequence produced by the greedy Algorithm 1. Then with probability at least  $1 - e^{-K/2}$ ,

$$\mathcal{S}(\mathcal{O}_g) \leq \mathbb{E}[\mathcal{S}(\mathcal{O}_r)] - \Delta, \quad (42)$$

where

$$\mathbb{E}[\mathcal{S}(\mathcal{O}_r)] = \frac{N^2(K-1)}{2K^2} \bar{S}, \quad \Delta = \frac{N^2(K-1)}{2K^2} \bar{S} - \frac{2N(\ln K + 1)}{K-1} U. \quad (43)$$

In particular, if  $\bar{S} \geq \frac{4K^2(\ln K + 1)}{N(K-1)^2} U$ , then  $\Delta > 0$  and hence  $\mathcal{S}(\mathcal{O}_g) < \mathbb{E}[\mathcal{S}(\mathcal{O}_r)]$ .

*Proof.* Define, for  $i < j$ ,

$$X_{i,j} = \sum_{c \in \mathcal{C}_i} \sum_{c' \in \mathcal{C}_j} \text{Sim}(c, c'). \quad (44)$$

Since each pair  $(i, j)$  appears adjacent with probability  $\frac{2}{K(K-1)}$ ,

$$\mathbb{E}[\mathcal{S}(\mathcal{O}_r)] = \sum_{i < j} \frac{2}{K(K-1)} X_{i,j} = \frac{2}{K(K-1)} \sum_{i < j} X_{i,j}. \quad (45)$$

Noting  $|\mathcal{C}_i| = N/K$ , one finds

$$\sum_{i < j} X_{i,j} = \binom{K}{2} \frac{N^2}{K^2} \bar{S} \implies \mathbb{E}[\mathcal{S}(\mathcal{O}_r)] = \frac{N^2(K-1)}{2K^2} \bar{S}. \quad (46)$$

At step  $t$  of Algorithm 1, there are  $t(K - t)$  candidate edges, each bounded by  $N^2U$ . By standard order-statistic arguments,

$$\mathbb{E}[\Delta_t] \leq \frac{N^2U}{t(K - t) + 1}, \quad (47)$$

and a union bound shows that with probability  $\geq 1 - e^{-K/2}$  each  $\Delta_t$  is at most twice its mean. Summing over  $t = 1, \dots, K - 1$  gives

$$\mathbb{E}[\mathcal{S}(\mathcal{O}_g)] \leq \frac{K}{(K - 1)N} \sum_{t=1}^{K-1} \frac{N^2U}{t(K - t) + 1} \leq \frac{2N(\ln K + 1)}{K - 1} U. \quad (48)$$

With probability at least  $1 - e^{-K/2}$ ,

$$\mathcal{S}(\mathcal{O}_g) \leq 2\mathbb{E}[\mathcal{S}(\mathcal{O}_g)] \leq \frac{4N(\ln K + 1)}{K - 1} U. \quad (49)$$

Therefore

$$\mathbb{E}[\mathcal{S}(\mathcal{O}_r)] - \mathcal{S}(\mathcal{O}_g) \geq \frac{N^2(K - 1)}{2K^2} \bar{S} - \frac{4N(\ln K + 1)}{K - 1} U = \Delta, \quad (50)$$

Completing the proof.  $\square$

Theorem 4 tells us that the greedy strategy of always choosing the most similar remaining pair of tasks takes advantage of strong inter-task affinities to produce an ordering whose total similarity remains tightly controlled and, when the average similarity is high enough, is lower than that of a random arrangement. The theorem shows that optimal local choices based only on current similarity scores accumulate into a reliable global solution even in noise.

**Complexity Analysis.** With a time complexity of  $O(|\mathcal{G}|(N^3 + K^3))$ , the algorithm remains tractable for practical CIL scenarios where  $K \ll N$ . The cubic terms stem primarily from hierarchical clustering (Step 4) and inter-task similarity computations (Step 6–9). In practice, these steps can be further accelerated using approximate nearest neighbor techniques. For instance, when partitioning 100 classes into 10 tasks, the algorithm completes in approximately **0.5 seconds**; for 200 classes into 10 tasks, it takes around **0.9 seconds** on a standard CPU, demonstrating its efficiency for common CIL settings.

Similarly, Algorithm 2 presents the pseudocode for constructing a simple task sequence by iteratively selecting and appending each task according to the prescribed rule.

## E DETAILED ANALYSIS OF EXPERIMENT

### E.1 ENUMERABLE EXPERIMENTS

#### E.1.1 EXPERIMENTAL SETUP

**Dataset and Metrics.** We conduct experiments on two standard benchmarks: CIFAR-100 Krizhevsky (2009) and ImageNet-R Krizhevsky (2009). For each, we select the first six semantic classes and group them into three sequential learning tasks of two classes each, yielding a total of  $3! = 6$  possible task orders per dataset; by considering all class-to-task assignments, we obtain 90 distinct sequences, which we treat as the ground-truth distribution  $\mathcal{D}_{\text{true}}$ . To estimate this distribution in practice, we use:

- **Random Seed (RS) protocol:** draw task sequences by shuffling class-labels under random seeds  $\{0, 42, 1993\}$  Lai et al. (2025); Li & Zhou (2025); McDonnell et al. (2024); Wang et al. (2022e), forming the empirical distribution  $\mathcal{D}_{\text{RS}}$ .
- **EDGE protocol:** apply our edge-selection strategy on the same seeds to produce  $\mathcal{D}_{\text{EDGE}}$ .

We compare each estimated distribution to  $\mathcal{D}_{\text{true}}$  using two complementary divergence metrics:

- **Jensen–Shannon divergence  $JSD_d$ :** Given two discrete distributions  $P$  and  $Q$  over the same support, the Jensen–Shannon divergence is defined as

$$JSD(P \parallel Q) = \frac{1}{2} D_{\text{KL}}(P \parallel M) + \frac{1}{2} D_{\text{KL}}(Q \parallel M), \quad M = \frac{1}{2}(P + Q),$$

---

1296 **Algorithm 2** Easy Task Sequence Generation Algorithm

---

1297 **Require:** Similarity matrix  $\mathbf{D}$ , classes number  $N$ , tasks number  $K$ , candidate granularities set  $\mathcal{G}$

1298 **Ensure:** Task sequence  $\mathcal{O}$

1299 1: Initialize similarity graph  $G \leftarrow I - \mathbf{D}$ ; set  $G_{ii} \leftarrow 0$  for all  $i$

1300 2: Compute dissimilarity matrix  $M \leftarrow \mathbf{I} - G$

1301 3: **for** Granularity level  $g \in \mathcal{G}$  **do**

1302 4:     Perform hierarchical clustering on  $M$  into  $g$  clusters

1303 5:     Merge clusters into  $K$  tasks  $\{\mathcal{C}_1, \dots, \mathcal{C}_K\}$ , minimizing cross-cluster task assignment

1304 6:     Initialize inter-task similarity matrix  $\mathbf{ITS} \in \mathbb{R}^{K \times K}$

1305 7:     **for**  $i, j \in [K], i \neq j$  **do**

1306 8:          $\mathbf{ITS}_{ij} \leftarrow \frac{1}{|\mathcal{C}_i||\mathcal{C}_j|} \sum_{c_1 \in \mathcal{C}_i} \sum_{c_2 \in \mathcal{C}_j} G_{c_1 c_2}$

1307 9:     **end for**

1308 10:    Select the first task:  $\mathcal{O}_g \leftarrow [\arg \max_{k \in [K]} \sum_{j \in [K], j \neq k} \mathbf{ITS}_{kj}]$

1309 11:    Initialize remaining task set:  $\mathcal{R} \leftarrow [K] \setminus \mathcal{O}_g$

1310 12:    **while**  $\mathcal{R} \neq \emptyset$  **do**

1311 13:         Select the next task:  $k^* \leftarrow \arg \max_{k \in \mathcal{R}} \sum_{t \in \mathcal{O}_g} \mathbf{ITS}_{tk}$

1312 14:         Append  $k^*$  to the task sequence:  $\mathcal{O}_g \leftarrow \mathcal{O}_g \circ k^*$

1313 15:         Update remaining task set:  $\mathcal{R} \leftarrow \mathcal{R} \setminus \{k^*\}$

1314 16:     **end while**

1315 17:     Compute sequence score  $\mathcal{S}(\mathcal{O}_g)$  according to Equation (30)

1316 18: **end for**

1317 19: Select the sequence:  $\mathcal{O} \leftarrow \arg \max_{\mathcal{O}_g} \mathcal{S}(\mathcal{O}_g)$

1318 20: **return**  $\mathcal{O}$

---

1319

1320 where  $D_{KL}$  is the Kullback–Leibler divergence. Unlike  $D_{KL}$ , the  $JSD$  is symmetric and bounded in  $[0, \ln 2]$ , which makes it well suited for measuring similarity between empirical distributions with potentially non-overlapping support Lamberti et al. (2007).

1321 • **Wasserstein distance  $W_d$ :** Also known as the Earth Mover’s Distance, the first-order Wasserstein

1322 distance between  $P$  and  $Q$  on a metric space  $(\mathcal{X}, d)$  is

1323

$$W_1(P, Q) = \inf_{\gamma \in \Gamma(P, Q)} \mathbb{E}_{(x, y) \sim \gamma} [d(x, y)],$$

1324

1325 where  $\Gamma(P, Q)$  denotes the set of all joint distributions with marginals  $P$  and  $Q$ . In the discrete

1326 case, this reduces to the minimum cost of transporting “mass” from  $P$  to  $Q$ , providing a meaningful

1327 measure of distributional distance that accounts for the geometry of the task-permutation space

1328 Villani (2009).

1329 **Implementation Details.** All methods are implemented in PyTorch with the following shared

1330 hyperparameters:

1331

- 1332 • **Memory:** total size 2000, up to 20 samples per class, non-fixed allocation.
- 1333 • **Backbone:** ResNet-18, trained from scratch in the non-pre-trained setting and with ImageNet
- 1334 pre-training otherwise.
- 1335 • **Optimizer & Scheduler:** SGD with step-LR; initial learning rate 0.1, weight decay  $5 \times 10^{-4}$ , LR
- 1336 decay factor 0.1 at epochs  $\{60, 120, 170\}$  (non-pre-trained) or  $\{80, 120, 150\}$  (pre-trained).
- 1337 • **Training:** 170 epochs, batch size 128.

1338

### E.1.2 ADDITIONAL EXPERIMENT RESULTS

1339 Table A4 summarizes the fitting performance of the EDGE method on the CIFAR-100 dataset under

1340 the HidePrompt setting, using various backbone architectures. The performance is evaluated in

1341 terms of Jensen-Shannon Divergence ( $JSD_d$ ) and the 2-Wasserstein distance ( $W_d$ ). Among all

1342 configurations, EDGE with ViT-L/14 best fits the reference distribution, yielding the lowest  $JSD_d$

1343 (0.0846 bits) and the smallest  $W_d$  distance (1.0642).

1344 Figure A4 and Figure A5 visualize the ground-truth performance distributions (black), along with

1345 the estimates produced by the RS protocol (blue) and our proposed EDGE protocol (red), for non-

1346 pre-trained and pre-trained CIL methods, respectively. These results demonstrate EDGE’s superior

1350 Table A4: Fitting performance of EDGE on CIFAR-100 using HidePrompt with various backbones.  
 1351 **EDGE consistently outperforms RS across nearly all backbones, demonstrating its effectiveness**  
 1352 **and robustness to different model architectures.**

| Model                          | $JSD_d$       | $W_d$         |
|--------------------------------|---------------|---------------|
| RS Estimate                    | 0.2694        | 2.8688        |
| EDGE with ResNet50             | 0.0863        | 1.5677        |
| EDGE with ResNet50 $\times$ 64 | 0.1986        | 3.2553        |
| EDGE with ResNet101            | 0.1386        | 1.7020        |
| EDGE with ViT-B/16             | 0.1236        | 1.5196        |
| EDGE with ViT-B/32             | 0.1237        | 2.3599        |
| EDGE with ViT-L/14             | <b>0.0846</b> | <b>1.0642</b> |

1363 ability to approximate the true distribution, capturing both the central tendency and the spread more  
 1364 accurately than the conventional RS protocol.

### 1365 E.1.3 DISCUSSION ON EDGE FOR MODEL SELECTION

1366 In addition to providing a more reliable evaluation, EDGE offers new insights for model selection.  
 1367 To demonstrate this, we compare continual learning method rankings under EDGE and RS across  
 1368 three dimensions: performance upper bound, performance lower bound, and stability, and quantify  
 1369 the consistency between the two evaluation protocols using ranking distance.

1370 Table A5 presents the rankings under the fixed-class setting described in Section 5.1. We observe  
 1371 that EDGE rankings are overall closer to the reference ordering across all three dimensions, while  
 1372 RS exhibits larger deviations, resulting in higher total ranking errors. Specifically, on CIFAR-100,  
 1373 EDGE’s ranking error is 6 compared to 12 for RS, and on ImageNet-R, 2 versus 10.

1374 Table A5: Model rankings derived from Table 1. The reference (true) ranking is highlighted in gray.

| Method      | Rank | CIFAR-100   |      |    |             |      |    |           |      |    |             |      |    | ImageNet-R  |      |    |           |      |    |             |      |    |             |      |    |           |      |    |
|-------------|------|-------------|------|----|-------------|------|----|-----------|------|----|-------------|------|----|-------------|------|----|-----------|------|----|-------------|------|----|-------------|------|----|-----------|------|----|
|             |      | Lower Bound |      |    | Upper Bound |      |    | Stability |      |    | Lower Bound |      |    | Upper Bound |      |    | Stability |      |    | Lower Bound |      |    | Upper Bound |      |    | Stability |      |    |
|             |      | Real        | EDGE | RS | Real        | EDGE | RS | Real      | EDGE | RS | Real        | EDGE | RS | Real        | EDGE | RS | Real      | EDGE | RS | Real        | EDGE | RS | Real        | EDGE | RS | Real      | EDGE | RS |
| L2P         | 5    | 6           | 4    | 4  | 4           | 5    | 5  | 5         | 4    | 4  | 5           | 5    | 5  | 4           | 4    | 4  | 5         | 4    | 5  | 5           | 5    | 6  | 6           | 6    | 6  | 6         | 6    |    |
| CODA-Prompt | 6    | 5           | 6    | 6  | 6           | 6    | 6  | 6         | 5    | 6  | 6           | 6    | 6  | 6           | 6    | 6  | 6         | 6    | 6  | 6           | 6    | 6  | 6           | 6    | 6  | 6         | 5    |    |
| Hide-Prompt | 4    | 4           | 5    | 5  | 5           | 4    | 4  | 3         | 6    | 5  | 4           | 4    | 4  | 4           | 4    | 4  | 5         | 4    | 4  | 4           | 4    | 4  | 4           | 3    | 1  | 2         |      |    |
| EASE        | 2    | 2           | 2    | 3  | 3           | 3    | 2  | 1         | 1    | 1  | 2           | 2    | 2  | 2           | 2    | 3  | 3         | 2    | 1  | 1           | 1    | 1  | 1           | 1    | 2  | 1         |      |    |
| MOS         | 3    | 3           | 3    | 2  | 2           | 2    | 3  | 4         | 3    | 3  | 3           | 3    | 3  | 2           | 2    | 3  | 3         | 2    | 3  | 3           | 3    | 4  | 3           | 3    | 4  | 3         |      |    |
| RanPAC      | 1    | 1           | 1    | 1  | 1           | 1    | 1  | 2         | 2    | 1  | 1           | 1    | 1  | 1           | 1    | 1  | 1         | 1    | 1  | 1           | 1    | 2  | 2           | 2    | 4  |           |      |    |

1385 To further test the robustness of these findings, we repeated the experiment using a randomly sampled  
 1386 set of six classes (seed 42), as reported in Table A6. EDGE again outperforms RS: on CIFAR-100,  
 1387 EDGE achieves a ranking error of 0 versus 12 for RS; on ImageNet-R, 2 versus 12. These results  
 1388 confirm that EDGE consistently produces rankings that are closer to the reference ordering, providing  
 1389 a more reliable basis for model selection.

1390 Table A6: Model rankings obtained using a randomly selected set of classes (seed 42). The reference  
 1391 (true) ranking is highlighted in gray.

| Method      | Rank | CIFAR-100   |      |    |             |      |    |           |      |    |             |      |    | ImageNet-R  |      |    |           |      |    |             |      |    |             |      |    |           |      |    |
|-------------|------|-------------|------|----|-------------|------|----|-----------|------|----|-------------|------|----|-------------|------|----|-----------|------|----|-------------|------|----|-------------|------|----|-----------|------|----|
|             |      | Lower Bound |      |    | Upper Bound |      |    | Stability |      |    | Lower Bound |      |    | Upper Bound |      |    | Stability |      |    | Lower Bound |      |    | Upper Bound |      |    | Stability |      |    |
|             |      | Real        | EDGE | RS | Real        | EDGE | RS | Real      | EDGE | RS | Real        | EDGE | RS | Real        | EDGE | RS | Real      | EDGE | RS | Real        | EDGE | RS | Real        | EDGE | RS | Real      | EDGE | RS |
| L2P         | 5    | 5           | 3    | 1  | 1           | 1    | 6  | 6         | 5    | 5  | 5           | 5    | 5  | 3           | 3    | 3  | 5         | 5    | 5  | 5           | 5    | 5  | 5           | 5    | 5  | 5         | 4    |    |
| CODA-Prompt | 6    | 6           | 5    | 5  | 5           | 5    | 4  | 4         | 4    | 4  | 6           | 6    | 6  | 6           | 6    | 6  | 6         | 6    | 6  | 6           | 6    | 6  | 6           | 6    | 6  | 6         |      |    |
| Hide-Prompt | 4    | 4           | 6    | 4  | 4           | 4    | 5  | 5         | 5    | 6  | 4           | 4    | 4  | 5           | 5    | 5  | 4         | 4    | 4  | 4           | 4    | 4  | 4           | 4    | 2  |           |      |    |
| EASE        | 3    | 3           | 4    | 6  | 6           | 6    | 3  | 3         | 1    | 2  | 2           | 2    | 2  | 1           | 2    | 2  | 2         | 1    | 2  | 2           | 2    | 2  | 2           | 2    | 1  |           |      |    |
| MOS         | 2    | 2           | 2    | 3  | 3           | 3    | 1  | 1         | 2    | 2  | 3           | 3    | 3  | 3           | 4    | 4  | 3         | 3    | 3  | 3           | 3    | 3  | 3           | 3    | 3  |           |      |    |
| RanPAC      | 1    | 1           | 1    | 2  | 2           | 2    | 2  | 2         | 2    | 3  | 1           | 1    | 1  | 1           | 2    | 1  | 1         | 1    | 1  | 1           | 1    | 1  | 1           | 1    | 5  |           |      |    |

1402 **Conclusion.** Across both fixed-class and random-class settings, EDGE demonstrates superior  
 1403 fidelity in reflecting the true performance ordering of continual learning methods. It more accurately  
 captures worst-case robustness, best-case potential, and stability—properties critical for dependable

1404  
 1405 Table A7: Performance of pre-trained model-based CIL methods under two evaluation protocols.  
 1406 **White background denotes the RS protocol, while gray background denotes the EDGE protocol.**  
 1407 Reported are the sampled minimum and maximum accuracies, along with the estimated mean and  
 1408 standard deviation of the ground truth performance distribution (unit: %).

| Method      | CIFAR100                                           |                                         |                                                    | CUB                                     |                                                    |                                         | ImageNet-R                                         |                                         |                  |
|-------------|----------------------------------------------------|-----------------------------------------|----------------------------------------------------|-----------------------------------------|----------------------------------------------------|-----------------------------------------|----------------------------------------------------|-----------------------------------------|------------------|
|             | $\min_{A_N} \max_{A_N} \mu_{A_N \pm \sigma_{A_N}}$ | $\max_{A_N} \mu_{A_N \pm \sigma_{A_N}}$ | $\min_{A_N} \max_{A_N} \mu_{A_N \pm \sigma_{A_N}}$ | $\max_{A_N} \mu_{A_N \pm \sigma_{A_N}}$ | $\min_{A_N} \max_{A_N} \mu_{A_N \pm \sigma_{A_N}}$ | $\max_{A_N} \mu_{A_N \pm \sigma_{A_N}}$ | $\min_{A_N} \max_{A_N} \mu_{A_N \pm \sigma_{A_N}}$ | $\max_{A_N} \mu_{A_N \pm \sigma_{A_N}}$ |                  |
| L2P         | 82.93                                              | 84.48                                   | 83.46 $\pm$ 0.72                                   | 66.18                                   | 68.56                                              | 67.25 $\pm$ 0.99                        | 71.10                                              | 71.43                                   | 71.29 $\pm$ 0.14 |
|             | 81.67                                              | 84.62                                   | 83.08 $\pm$ 1.21                                   | 59.75                                   | 76.00                                              | 67.31 $\pm$ 6.68                        | 71.02                                              | 72.37                                   | 71.61 $\pm$ 0.57 |
| CODA-Prompt | 85.17                                              | 85.56                                   | 85.30 $\pm$ 0.18                                   | 70.32                                   | 71.56                                              | 70.74 $\pm$ 0.59                        | 73.03                                              | 73.54                                   | 73.27 $\pm$ 0.21 |
|             | 84.82                                              | 85.65                                   | 85.22 $\pm$ 0.34                                   | 67.83                                   | 76.42                                              | 71.94 $\pm$ 3.52                        | 70.80                                              | 74.50                                   | 72.95 $\pm$ 1.57 |
| Hide-Prompt | 85.06                                              | 86.20                                   | 85.45 $\pm$ 0.53                                   | 81.69                                   | 82.77                                              | 82.06 $\pm$ 0.50                        | 71.76                                              | 73.16                                   | 72.58 $\pm$ 0.60 |
|             | 84.25                                              | 87.36                                   | 85.56 $\pm$ 1.32                                   | 80.49                                   | 85.44                                              | 82.90 $\pm$ 2.02                        | 70.75                                              | 72.83                                   | 71.79 $\pm$ 0.85 |
| RanPAC      | 90.32                                              | 90.87                                   | 90.68 $\pm$ 0.25                                   | 89.34                                   | 89.75                                              | 89.49 $\pm$ 0.19                        | 77.27                                              | 77.32                                   | 77.30 $\pm$ 0.02 |
|             | 90.25                                              | 90.87                                   | 90.65 $\pm$ 0.29                                   | 89.31                                   | 89.90                                              | 89.66 $\pm$ 0.25                        | 75.97                                              | 77.65                                   | 76.97 $\pm$ 0.72 |
| EASE        | 87.24                                              | 87.53                                   | 87.35 $\pm$ 0.13                                   | 81.09                                   | 83.06                                              | 82.21 $\pm$ 0.82                        | 75.89                                              | 76.12                                   | 76.00 $\pm$ 0.09 |
|             | 85.77                                              | 88.41                                   | 87.15 $\pm$ 1.08                                   | 81.56                                   | 83.33                                              | 82.45 $\pm$ 0.72                        | 75.46                                              | 75.97                                   | 75.79 $\pm$ 0.23 |
| MOS         | 90.69                                              | 91.22                                   | 91.03 $\pm$ 0.24                                   | 88.87                                   | 89.39                                              | 89.08 $\pm$ 0.23                        | 76.90                                              | 77.33                                   | 77.15 $\pm$ 0.18 |
|             | 90.79                                              | 91.22                                   | 91.01 $\pm$ 0.18                                   | 87.69                                   | 90.16                                              | 89.08 $\pm$ 1.03                        | 76.48                                              | 77.93                                   | 77.21 $\pm$ 0.59 |

1421 deployment in practical scenarios. Overall, these findings highlight the value of distribution-aware  
 1422 evaluation and demonstrate that EDGE provides more informative guidance for continual learning  
 1423 model selection than RS.

## 1425 E.2 ANALYSIS OF LARGE-SCALE EXPERIMENT

1427 Table A7 and Table A8 present the evaluation results of existing CIL methods under both RS and  
 1428 EDGE protocols. Notably, we observe conclusions consistent with those discussed in Section 5.1.  
 1429 From the perspective of EDGE, these results offer new insights into CIL model design and selection:

- 1431 • **The realistic performance range of CIL models can be substantially wider than what is**  
**1432 captured by RS protocols.** EDGE effectively identifies both easy and challenging class sequences  
 1433 in most cases, and demonstrates broad applicability across pre-trained and non-pre-trained models.  
 1434 For example, on the CUB dataset, the performance range of L2P expands from 2.38 to 16.25, while  
 1435 that of TagFex increases from 1.06 to 7.27, enabling a more accurate and nuanced understanding of  
 1436 model behavior. These findings highlight the importance of considering extreme task sequences  
 1437 during model design to ensure robustness under diverse deployment scenarios.
- 1438 • **Model rankings may change under extreme task sequences.** For example, on the CUB dataset,  
 1439 MOS and RanPAC exhibit comparable performance under the RS protocol, yet diverge significantly  
 1440 when evaluated with EDGE: MOS attains a higher upper bound (up to 90.16) but experiences  
 1441 a notable drop in its lower bound. This indicates that algorithm selection should be informed  
 1442 by specific deployment priorities, whether emphasizing worst-case robustness or maximizing  
 1443 best-case accuracy. EDGE offers valuable empirical evidence to support such scenario-aware  
 1444 decision-making.
- 1445 • **Some model designs exhibit inherent limitations.** For instance, on the ImageNet-R dataset, the  
 1446 lower bounds of three prompt-based methods all approach 70%, indicating that certain difficult  
 1447 sequences can drastically undermine their effectiveness. This observation suggests that analyzing  
 1448 which types of sequences consistently degrade performance can help identify structural weaknesses  
 1449 in different methods. Such insights can inform targeted improvements in model robustness, guide  
 1450 the development of sequence-aware training strategies, and support the selection of appropriate  
 1451 models for deployment in challenging real-world scenarios.

1452 We provide the extreme sequences generated for each dataset. Note that in all our experiments, each  
 1453 dataset is partitioned into **10 sequential tasks**.

1454 For CIFAR-100,

```
1455 Hard Sequence = [[2, 96, 53, 32, 63, 92, 18, 47, 24, 21], [54, 64, 20, 55, 40, 62, 1, 59, 81,  

  1456 → 76], [52, 25, 57, 72, 42, 75, 82, 41, 7, 15], [27, 66, 94, 91, 58, 61, 34, 4, 39,  

  1457 → 74], [45, 56, 5, 29, 36, 86, 88, 8, 38, 83], [89, 51, 31, 6, 84, 9, 77, 12, 23, 30],  

  1458 → [48, 26, 67, 10, 69, 87, 14, 95, 44, 28], [0, 17, 33, 13, 93, 22, 80, 19, 79, 43],  

  1459 → [37, 65, 68, 73, 71, 90, 70, 50, 11, 99], [49, 78, 60, 85, 97, 46, 3, 98, 16, 35]]
```

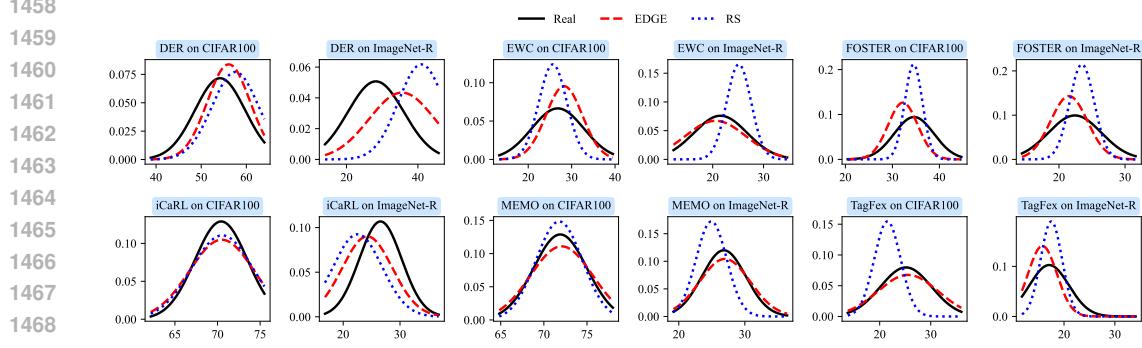


Figure A4: The ground-truth distribution (black), along with estimates from the EDGE protocol (red) and the RS protocol (blue), for non-pre-trained CIL methods. EDGE provides a more faithful approximation to the true performance distribution.

Table A8: Performance of non-pre-trained CIL methods under two evaluation protocols. Other notations follow those in Table A7.

| Method | CIFAR100                                                                                   |                                                                                            |                                                                                            | CUB                                                                                        |                                                                                            |                                                                                            | ImageNet-R                                                                                 |                                                                                            |                                                                                            |
|--------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
|        | $\min_{\mathcal{A}_N} \max_{\mathcal{A}_N} \mu_{\mathcal{A}_N} \pm \sigma_{\mathcal{A}_N}$ |
| EWC    | 13.83                                                                                      | 14.94                                                                                      | 14.34 $\pm$ 0.45                                                                           | 10.31                                                                                      | 10.90                                                                                      | 10.60 $\pm$ 0.24                                                                           | 7.38                                                                                       | 7.77                                                                                       | 7.61 $\pm$ 0.17                                                                            |
| DER    | 13.79                                                                                      | 17.22                                                                                      | 15.08 $\pm$ 1.52                                                                           | 8.18                                                                                       | 10.31                                                                                      | 9.46 $\pm$ 0.92                                                                            | 5.47                                                                                       | 7.79                                                                                       | 7.01 $\pm$ 1.09                                                                            |
| iCaRL  | 57.59                                                                                      | 59.73                                                                                      | 58.48 $\pm$ 0.91                                                                           | 46.65                                                                                      | 48.05                                                                                      | 47.50 $\pm$ 0.61                                                                           | 29.37                                                                                      | 32.92                                                                                      | 31.57 $\pm$ 1.57                                                                           |
| FOSTER | 56.42                                                                                      | 60.20                                                                                      | 58.25 $\pm$ 1.54                                                                           | 45.25                                                                                      | 49.62                                                                                      | 47.17 $\pm$ 1.82                                                                           | 29.28                                                                                      | 34.92                                                                                      | 32.37 $\pm$ 2.33                                                                           |
| MEMO   | 36.60                                                                                      | 41.54                                                                                      | 38.85 $\pm$ 2.03                                                                           | 32.10                                                                                      | 32.57                                                                                      | 32.36 $\pm$ 0.19                                                                           | 15.43                                                                                      | 16.40                                                                                      | 15.83 $\pm$ 0.41                                                                           |
| TagFex | 34.16                                                                                      | 40.56                                                                                      | 37.11 $\pm$ 2.63                                                                           | 30.40                                                                                      | 35.28                                                                                      | 32.59 $\pm$ 2.02                                                                           | 13.55                                                                                      | 16.78                                                                                      | 15.58 $\pm$ 1.44                                                                           |
| FOSTER | 48.43                                                                                      | 51.47                                                                                      | 49.87 $\pm$ 1.25                                                                           | 42.66                                                                                      | 43.75                                                                                      | 43.07 $\pm$ 0.49                                                                           | 18.70                                                                                      | 20.52                                                                                      | 19.47 $\pm$ 0.77                                                                           |
| MEMO   | 49.21                                                                                      | 51.23                                                                                      | 49.62 $\pm$ 1.17                                                                           | 38.25                                                                                      | 45.25                                                                                      | 42.42 $\pm$ 3.01                                                                           | 17.03                                                                                      | 21.52                                                                                      | 19.25 $\pm$ 1.83                                                                           |
| TagFex | 55.16                                                                                      | 58.49                                                                                      | 56.80 $\pm$ 1.36                                                                           | 39.31                                                                                      | 41.52                                                                                      | 40.23 $\pm$ 0.94                                                                           | 20.05                                                                                      | 21.70                                                                                      | 21.08 $\pm$ 0.73                                                                           |
| TagFex | 54.96                                                                                      | 58.96                                                                                      | 56.36 $\pm$ 1.84                                                                           | 39.31                                                                                      | 41.31                                                                                      | 40.19 $\pm$ 0.83                                                                           | 19.50                                                                                      | 21.70                                                                                      | 20.87 $\pm$ 0.98                                                                           |
| TagFex | 62.23                                                                                      | 62.69                                                                                      | 62.42 $\pm$ 0.19                                                                           | 46.06                                                                                      | 47.12                                                                                      | 46.47 $\pm$ 0.46                                                                           | 34.05                                                                                      | 34.27                                                                                      | 34.16 $\pm$ 0.09                                                                           |
| TagFex | 60.78                                                                                      | 68.80                                                                                      | 63.94 $\pm$ 3.48                                                                           | 42.62                                                                                      | 49.89                                                                                      | 46.25 $\pm$ 2.97                                                                           | 33.38                                                                                      | 34.72                                                                                      | 34.05 $\pm$ 0.55                                                                           |

Easy Sequence = [[35, 2, 98, 16, 46, 3, 50, 11, 85, 97], [60, 78, 99, 49, 90, 70, 73, 71,  $\leftrightarrow$  37, 43], [65, 68, 17, 33, 19, 79, 13, 93, 22, 80], [10, 69, 28, 0, 12, 9, 23, 48, 87,  $\leftrightarrow$  14], [95, 44, 26, 67, 5, 8, 61, 39, 31, 84], [30, 89, 36, 86, 77, 88, 38, 51, 29,  $\leftrightarrow$  45], [94, 7, 6, 27, 83, 4, 66, 58, 91, 41], [56, 74, 81, 15, 34, 82, 20, 76, 21, 25],  $\leftrightarrow$  [42, 40, 1, 57, 54, 72, 52, 75, 62, 59], [24, 55, 64, 63, 18, 47, 92, 53, 96, 32]]

For CUB-200,

Hard Sequence = [[38, 1, 14, 104, 3, 89, 172, 109, 56, 92, 21, 10, 83, 69, 80, 51, 199, 137,  $\leftrightarrow$  105, 15], [84, 0, 20, 40, 133, 91, 100, 88, 126, 188, 44, 11, 78, 13, 142, 75, 161,  $\leftrightarrow$  43, 31, 139], [2, 27, 97, 18, 62, 189, 196, 110, 99, 148, 7, 158, 171, 81, 48, 128,  $\leftrightarrow$  145, 153, 45, 187], [135, 197, 147, 49, 166, 93, 4, 34, 185, 146, 73, 162, 30, 136,  $\leftrightarrow$  59, 120, 12, 70, 138, 191], [175, 64, 85, 114, 144, 180, 9, 82, 71, 152, 54, 111, 98,  $\leftrightarrow$  50, 17, 176, 77, 86, 179, 60], [25, 177, 76, 103, 63, 102, 79, 55, 194, 8, 101, 32,  $\leftrightarrow$  23, 170, 108, 115, 24, 151, 41, 198], [35, 143, 95, 183, 186, 184, 140, 26, 74, 182,  $\leftrightarrow$  6, 52, 67, 39, 160, 134, 93, 94, 72, 130], [164, 61, 66, 57, 181, 19, 150, 53, 87,  $\leftrightarrow$  22, 163, 190, 124, 178, 192, 149, 33, 5, 47, 157], [36, 129, 156, 58, 159, 165, 195,  $\leftrightarrow$  122, 173, 37, 68, 168, 118, 106, 155, 119, 141, 174, 167, 96], [131, 46, 29, 169,  $\leftrightarrow$  116, 107, 132, 42, 154, 113, 16, 65, 123, 112, 90, 121, 28, 127, 117, 125]]

Easy Sequence = [[38, 36, 42, 37, 39, 154, 155, 153, 150, 156, 151, 152, 178, 167, 171, 169,  $\leftrightarrow$  165, 160, 181, 175], [174, 168, 161, 166, 176, 46, 47, 54, 53, 13, 14, 15, 139, 138,  $\leftrightarrow$  41, 16, 121, 112, 123, 125], [117, 127, 129, 118, 115, 131, 132, 113, 122, 124, 130,  $\leftrightarrow$  120, 126, 128, 119, 116, 114, 8, 28, 29], [106, 107, 65, 58, 61, 64, 59, 63, 62, 140,  $\leftrightarrow$  143, 141, 145, 146, 144, 142, 100, 99, 24, 22], [23, 52, 50, 49, 51, 88, 89, 82, 79,  $\leftrightarrow$  74, 72, 73, 102, 97, 96, 94, 95, 11, 12, 9], [10, 25, 26, 48, 133, 159, 163, 158,  $\leftrightarrow$  164, 162, 173, 177, 157, 19, 93, 189, 190, 188, 35, 87], [84, 103, 98, 182, 183, 194,  $\leftrightarrow$  198, 195, 196, 197, 193, 149, 148, 68, 67, 66, 134, 135, 136, 137], [78, 81, 80, 191,  $\leftrightarrow$  186, 187, 184, 185, 32, 30, 31, 17, 18, 77, 76, 170, 33, 34, 55, 56], [90, 111, 110,  $\leftrightarrow$  192, 27, 101, 75, 20, 147, 108, 172, 179, 199, 180, 104, 21, 91, 5, 6, 4], [7, 57,  $\leftrightarrow$  85, 45, 86, 60, 71, 70, 0, 2, 1, 43, 83, 44, 105, 3, 92, 40, 109, 69]]

For ImageNet-R,

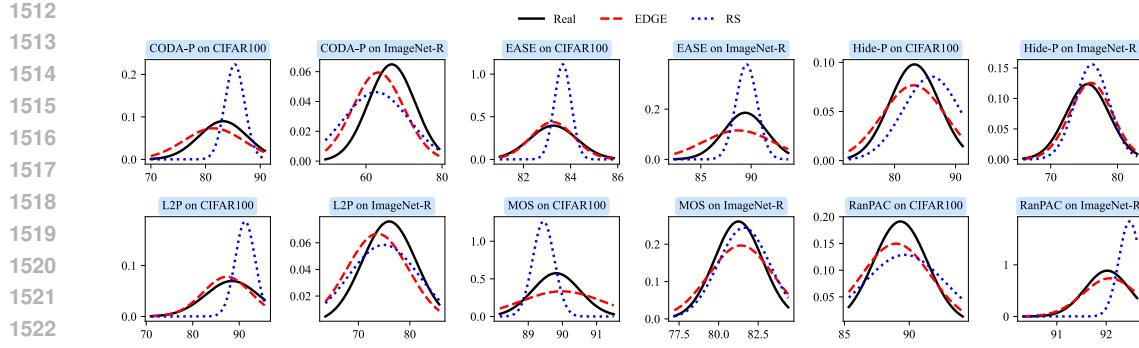


Figure A5: The ground-truth distribution (black), and the corresponding estimates from EDGE (red) and RS (blue) protocols, for pre-trained CIL methods. The results highlight the improved accuracy of EDGE in capturing both the central tendency and variance.

```

1512 Hard Sequence = [[166, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 182, 185, 187, 188,
1513   ↪ 189, 190, 193, 197, 198], [39, 54, 55, 60, 66, 44, 45, 48, 59, 47, 49, 50, 11, 40,
1514   ↪ 41, 42, 43, 53, 67, 68], [46, 4, 5, 8, 9, 13, 15, 19, 26, 27, 28, 31, 33, 38, 61, 62,
1515   ↪ 63, 64, 70, 73], [153, 167, 178, 179, 180, 181, 183, 184, 186, 191, 192, 194, 195,
1516   ↪ 196, 199, 3, 14, 21, 22, 32], [34, 106, 0, 2, 6, 20, 30, 110, 111, 1, 7, 10, 12, 16,
1517   ↪ 17, 18, 23, 24, 25, 29], [35, 36, 37, 51, 52, 56, 57, 58, 65, 69, 71, 72, 74, 75, 78,
1518   ↪ 83, 84, 86, 87, 88], [76, 77, 79, 80, 81, 82, 85, 94, 95, 96, 97, 98, 100, 101, 103,
1519   ↪ 104, 108, 109, 119, 152], [89, 90, 91, 92, 93, 99, 102, 105, 107, 112, 113, 114, 115,
1520   ↪ 116, 117, 118, 120, 121, 122, 123], [124, 125, 126, 127, 128, 129, 130, 131, 132,
1521   ↪ 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143], [144, 145, 146, 147, 148,
1522   ↪ 149, 150, 151, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165]]
1523 Easy Sequence = [[23, 24, 49, 50, 46, 27, 6, 20, 11, 41, 152, 119, 53, 40, 32, 14, 66, 44,
1524   ↪ 39, 60], [106, 3, 142, 137, 127, 124, 59, 47, 192, 21, 95, 62, 168, 112, 167, 8, 45,
1525   ↪ 48, 13, 70], [117, 148, 30, 51, 79, 73, 65, 56, 54, 55, 26, 100, 0, 110, 67, 68, 18,
1526   ↪ 99, 38, 64], [35, 36, 198, 122, 52, 57, 139, 143, 190, 10, 22, 34, 157, 163, 111, 2,
1527   ↪ 42, 43, 98, 103], [25, 187, 194, 195, 175, 166, 120, 131, 76, 77, 170, 197, 173, 138,
1528   ↪ 72, 74, 17, 89, 9, 33], [80, 178, 125, 130, 12, 92, 5, 31, 147, 118, 15, 109, 159,
1529   ↪ 172, 154, 160, 153, 28, 179, 180], [158, 116, 85, 97, 135, 113, 186, 199, 78, 164,
1530   ↪ 88, 165, 101, 108, 182, 185, 146, 149, 171, 115], [83, 86, 126, 134, 61, 63, 174,
1531   ↪ 114, 104, 196, 7, 69, 4, 19, 84, 87, 150, 129, 1, 37], [71, 90, 136, 145, 169, 121,
1532   ↪ 16, 29, 105, 107, 132, 123, 181, 183, 184, 191, 155, 161, 188, 189], [140, 141, 58,
1533   ↪ 128, 94, 96, 133, 176, 156, 162, 93, 102, 144, 151, 75, 91, 177, 193, 81, 82]]
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

```

### E.3 ANALYSIS OF CLIP ENCODING

When designing the EDGE protocol, our objective is to construct representative class sequences of varying difficulty without accessing actual image instances. To this end, we employ the CLIP text encoder, a vision-language model trained with contrastive learning that exhibits strong visual-text alignment and zero-shot generalization capabilities.

#### E.3.1 DISCUSSION ON NATURAL IMAGES.

A natural concern is whether the semantic similarity measured by CLIP text embeddings faithfully reflects the actual visual difficulty among classes. To examine this, we compare the similarity matrix obtained from the CLIP text encoder with the similarity matrix derived from real image features. We evaluate the results using two metrics:

- **Mean Absolute Error (MAE):** quantifies the average deviation between the similarity matrices computed from CLIP embeddings and image features. Lower values indicate closer alignment.
- **Consistency of Sequence Generation (CSG):** measures the proportion of classes that remain assigned to the same task after generating sequences using the two similarity matrices. Higher values indicate more stable sequence generation.

The results indicate that although a moderate deviation exists between semantic and image similarities (MAE around 0.15), CLIP embeddings capture the underlying relational structure effectively. In

1566 Table A9: Comparison between CLIP text-based similarity and image-based similarity across datasets.  
1567

| 1568 <b>Dataset</b> | 1569 <b>CIFAR100</b> | 1570 <b>CUB</b> | 1571 <b>ImageNet-R</b> |
|---------------------|----------------------|-----------------|------------------------|
| 1572      MAE (↓)   | 0.14                 | 0.08            | 0.17                   |
| 1573      CSG (↑)   | 0.79                 | 0.83            | 0.77                   |

1573 particular, CSG remains consistently above 0.75, showing that the generated extreme sequences are  
1574 robust and align well with those derived from image-based similarities. This confirms the feasibility  
1575 of using CLIP to measure similarity for generating extreme sequences within EDGE.

### 1577 E.3.2 DISCUSSION ON NON-NATURAL/PROFESSIONAL IMAGES

1579 A potential issue is whether CLIP text embeddings derived from class names faithfully capture visual  
1580 relationships in specialized, non-natural domains. This is a nontrivial problem for several reasons:

- 1581 • Many domain-specific class labels are terse, technical, or stage-based (e.g., “moderate” vs “severe”)  
1582 and therefore omit visual descriptors such as color, texture, or morphology that are essential for  
1583 visual discrimination.
- 1584 • Within-class heterogeneity and between-class subtlety are common: distinct clinical labels can  
1585 correspond to overlapping or gradual visual features (e.g., small hemorrhages vs. microaneurysms),  
1586 making semantic labels a poor proxy for perceptual distance.
- 1587 • Dataset issues such as class imbalance, labeling protocol differences and inter-observer variability  
1588 further weaken the simple mapping from a short class name to an image-space distribution.

1589 Together, these factors explain why directly using bare class names with a general-purpose text  
1590 encoder can fail to reflect true image-space similarity in professional domains.

1592 To assess this empirically, we examined two representative medical-image benchmarks. **EyePACS**  
1593 is a large-scale retinal fundus dataset for diabetic retinopathy grading, containing color fundus  
1594 photographs acquired with diverse cameras and imaging conditions. Visual cues range from micro-  
1595 aneurysms and small hemorrhages to hard exudates and neovascularization. Labels correspond to five  
1596 DR severity levels (no, mild, moderate, severe, proliferative), which encode stage progression rather  
1597 than detailed appearance descriptors. **HAM10000** is a dermatoscopic image dataset of pigmented skin  
1598 lesions collected from multiple clinical sources. Images exhibit substantial variability in morphology,  
1599 color, and acquisition artifacts, and several diagnostic categories are visually similar. The seven  
1600 classes used here are Actinic keratosis, Basal cell carcinoma, Benign keratosis, Dermatofibroma,  
1601 Melanoma, Nevi, and Vascular lesion.

1602 For each dataset we constructed (a) an inter-class similarity matrix from CLIP text embeddings of  
1603 class names and (b) an inter-class similarity matrix from image prototypes. We measured agreement  
1604 between (a) and (b) using Spearman’s rank correlation. Using class names directly yields only modest  
1605 alignment with image-derived similarities: EyePACS shows Spearman’s  $\rho = 0.588$  ( $p \approx 0.07$ ), and  
1606 HAM10000 shows  $\rho = 0.279$  ( $p \approx 0.22$ ), consistent with the intuition above that short, technical  
1607 labels do not reliably encode visual detail in these domains.

1608 To increase the visual content of the textual representations, we expanded each class name into a  
1609 concise, visually informative caption using a large language model (GPT-5 in this experiment). The  
1610 prompt we used is shown below inside a boxed, two-end-justified block:

1611      **Prompt Template**

1613      Generate one concise, visually descriptive caption (8–20  
1614      words) that highlights the typical visual appearance, color,  
1615      texture, and anatomical context of a {class\_name} lesion in  
1616      medical images.

1618 We encoded the generated captions with CLIP and recomputed the class similarity matrices. This  
1619 simple augmentation substantially increased agreement: EyePACS improved to Spearman’s  $\rho =$   
0.863 ( $p \approx 0.01$ ), and HAM10000 improved to  $\rho = 0.653$  ( $p \approx 0.02$ ). These results indicate that

1620 short, visually focused textual expansions recover much of the image-space relational structure that  
 1621 bare class names miss.  
 1622

#### 1623 E.4 DISCUSSION OF OTHER POTENTIAL BASELINES

1625 Although most CIL evaluations use the RS protocol, comparing only to RS risks underestimating  
 1626 EDGE’s ability to find challenging task sequences. We therefore include several additional,  
 1627 conceptually distinct baselines to evaluate both effectiveness and efficiency:

- 1629 • **LLM-generated sequences. LLM-1:** A single-round generation procedure in which a large  
 1630 language model directly produces a candidate sequence based on a prompt describing “easy” or  
 1631 “hard” sequences. This baseline tests whether semantic difficulty can be inferred directly from  
 1632 class names without any iterative refinement;  $\approx 130$  s per sequence. **LLM-5:** A five-round iterative  
 1633 refinement procedure. Each round, the LLM receives feedback regarding the previously generated  
 1634 sequence and attempts to correct or adjust its output in the next iteration. This baseline evaluates  
 1635 whether multi-step reasoning helps the LLM better capture difficulty;  $\approx 600$  s per sequence.
- 1636 • **Adversarial Sampling (AS).** A greedy, similarity-based adversarial strategy. At each step, AS  
 1637 selects the class that is maximally dissimilar from all currently selected classes, thereby increasing  
 1638 sequence difficulty by pushing the sequence toward the tail of the similarity distribution;  $\approx 0.9$  s  
 1639 per sequence.
- 1640 • **Max-cover Sampling (MS).** A randomized search-based approach. We first sample a pool of  
 1641 candidate sequences (we use 200), compute for each sequence a coverage or farthest-distance score  
 1642 relative to previously selected sets, and finally choose the top-ranked sequences;  $\approx 8$  s per sequence.

1643 Table A10: Comparison of EDGE against alternative baselines (Hard / Easy correspond to sequences  
 1644 intended to be difficult / easy for the evaluated methods).

| Method      | EDGE         |              | RS    |       | AS    |              | MS    |              | LLM-1 |              | LLM-5        |              |
|-------------|--------------|--------------|-------|-------|-------|--------------|-------|--------------|-------|--------------|--------------|--------------|
|             | Hard         | Easy         | Hard  | Easy  | Hard  | Easy         | Hard  | Easy         | Hard  | Easy         | Hard         | Easy         |
| L2p         | <b>58.35</b> | <b>72.13</b> | 62.58 | 66.21 | 61.75 | 69.48        | 62.60 | 63.70        | 64.97 | 66.92        | 67.01        | 67.68        |
| CODA-Prompt | <b>65.65</b> | 69.42        | 67.42 | 68.12 | 65.96 | <b>67.33</b> | 66.13 | 68.18        | 67.01 | 68.58        | 65.78        | <b>69.59</b> |
| Hide-Prompt | <b>80.52</b> | <b>83.21</b> | 81.45 | 82.35 | 81.02 | 82.39        | 80.96 | <b>82.63</b> | 82.35 | 82.36        | <b>80.89</b> | 81.45        |
| RanPAC      | <b>88.68</b> | <b>89.40</b> | 88.72 | 89.15 | 88.99 | 89.21        | 88.72 | <b>89.21</b> | 88.72 | <b>89.25</b> | 88.72        | 88.68        |
| EASE        | <b>84.29</b> | <b>85.37</b> | 84.60 | 84.96 | 84.69 | <b>85.07</b> | 84.39 | 85.33        | 84.56 | <b>85.01</b> | 84.82        | 84.78        |
| MOS         | <b>87.69</b> | <b>89.56</b> | 88.49 | 88.98 | 88.76 | <b>88.93</b> | 88.38 | 88.30        | 89.13 | 88.56        | 88.23        | 89.26        |

1653 **Key observations.** Two main conclusions follow from these comparisons:

- 1655 1. **LLM-based generation is effective but costly and unstable.** Single-shot LLM outputs (LLM-1)  
 1656 are highly variable and frequently fail to produce consistently hard sequences. Iterative prompting  
 1657 (LLM-5) significantly improves stability and often surpasses RS, but remains substantially less  
 1658 effective than EDGE in most cases. Crucially, multi-turn LLM workflows are orders of magnitude  
 1659 slower (a single interactive round typically takes 2–3 minutes in our setup; five rounds commonly  
 1660 exceed 10 minutes), making them impractical for large-scale or low-latency evaluation.
- 1661 2. **Sampling-based methods find some hard cases but lack transferability.** AS and MS are  
 1662 computationally efficient and can locate sequences that are challenging for particular algorithms.  
 1663 However, the difficult sequences they discover frequently exploit idiosyncrasies of a single target  
 1664 method and do not generalize across the range of CIL approaches we evaluate. By contrast, EDGE  
 1665 identifies extreme sequences that consistently increase difficulty across many methods, achieving  
 1666 a better balance of effectiveness and generality.

1667 Overall, these results show that while alternative strategies can occasionally produce challenging se-  
 1668 quences, EDGE provides the most reliable combination of performance, generality, and computational  
 1669 efficiency for discovering extreme task orders.

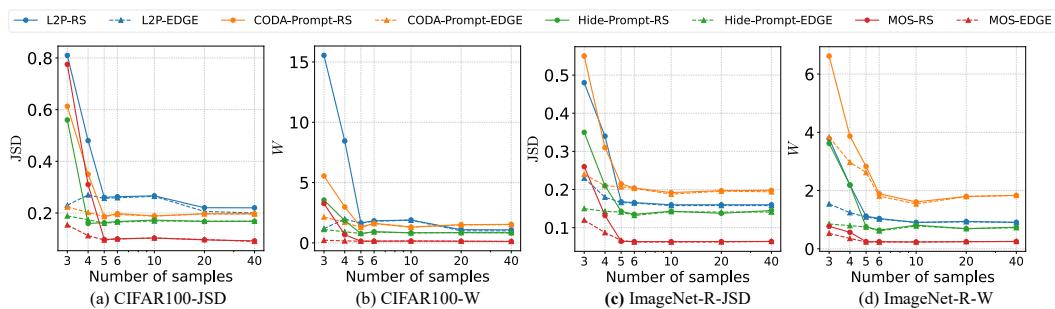
#### 1671 E.5 DISCUSSION ON THE NUMBER OF SAMPLES

1672 In previous sections we compared EDGE with the standard CIL evaluation protocol that uses RS by  
 1673 drawing three random task orders. In this subsection we simulate scenarios with an increased number

1674 of RS samples in order to investigate how RS-based evaluation behaves as the sample budget grows,  
 1675 and to further demonstrate the practical advantages of EDGE.  
 1676

1677 **Distribution estimation in the enumerable setting** The setup is described in Section 5.1. Figure  
 1678 A6 visualizes how the evaluation outcomes change for RS and EDGE as the number of sampled  
 1679 sequences increases. From these experiments we draw two main observations:  
 1680

- 1681 1. If only RS sampling is increased, RS reaches the distribution estimation quality produced by  
 1682 EDGE with three EDGE samples after roughly five to six RS samples. Note that the total  
 1683 sequence space in this experiment is only 90 sequences. In this limited space RS therefore  
 1684 requires about twice as many random sequences to match the estimation quality of EDGE.  
 1685
- 1686 2. If we increase the number of samples for both RS and EDGE, EDGE remains superior  
 1687 throughout. As the sample counts grow, the two procedures tend to converge, and this  
 1688 convergence typically occurs when the number of samples is on the order of ten to twenty  
 1689 sequences.  
 1690



1701 Figure A6: Evolution of RS and EDGE performance as the number of sampled sequences increases  
 1702 on CIFAR-100 and ImageNet-R. Circles denote RS data points and triangles denote EDGE data  
 1703 points. Different colored curves correspond to different pretrained continual learning methods.  
 1704

1705 **Extreme-sequence capture in classic CIL settings** The setup for these experiments is described in  
 1706 Section 5.2. In classic class incremental learning settings the class space is typically very large, which  
 1707 prevents us from directly estimating the full performance distribution. Accordingly, we evaluate an  
 1708 evaluation protocol by its ability to capture extreme sequences. We performed a focused empirical  
 1709 study on the CUB dataset using two representative methods: L2P, which exhibits a wide performance  
 1710 range over sequences, and EASE, which exhibits a relatively narrow performance range.  
 1711

1712 Figure A7 presents the empirical distributions obtained by repeated RS sampling together with the  
 1713 single-shot EDGE positions. The specific observations are as follows:  
 1714

- 1715 • For L2P, under our setup EDGE found a hard-case accuracy of 58.5 and an easy-case  
 1716 accuracy of 72.3. We ran 600 RS samplings. Only 6 of those RS samples produced lower  
 1717 accuracies, with the minimum RS accuracy equal to 57.55. None of the RS samples attained  
 1718 an accuracy higher than EDGE.  
 1719
- 1720 • For EASE, under our setup EDGE found a hard-case accuracy of 84.29 and an easy-case  
 1721 accuracy of 85.37. After more than 400 random evaluations, only 4 RS samples produced  
 1722 lower accuracies, with minimum RS accuracy equal to 84.09. Only one RS sample achieved  
 1723 a higher accuracy, equal to 85.41.  
 1724

1725 These results confirm the intuitive fact that increasing RS sample count improves RS. However, such  
 1726 improvement typically entails a large evaluation cost. Compared with EDGE, discovering extreme  
 1727 sequences using only RS is both time consuming and inefficient. The empirical evidence therefore  
 1728 supports the practical value of EDGE as a more sample efficient and reliable procedure for identifying  
 1729 extreme task orders.  
 1730

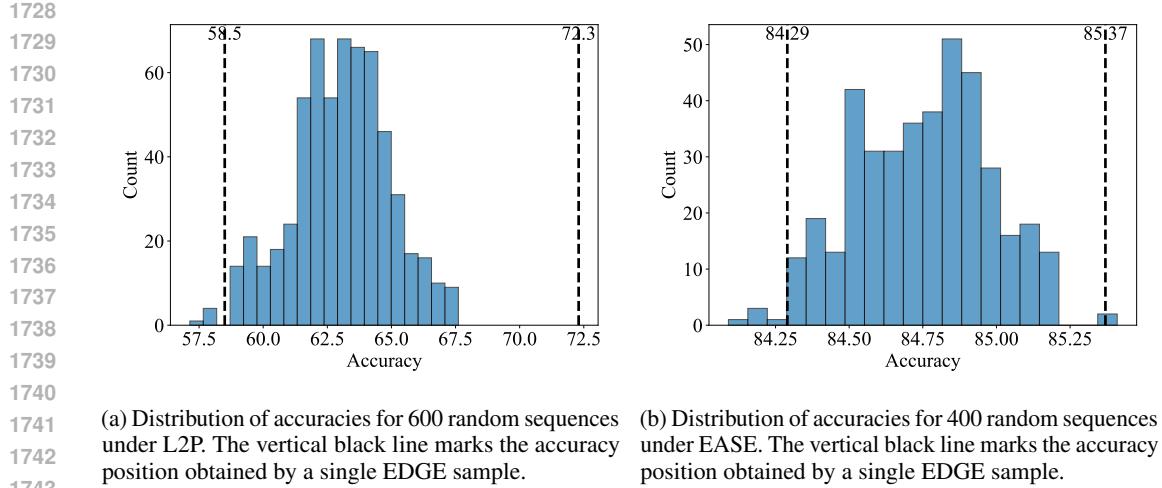


Figure A7: Random sampling distributions and EDGE single-shot positions on the CUB dataset. Left panel corresponds to L2P and right panel corresponds to EASE.

**Remarks** All experimental details and plotting scripts are provided in Appendix E.5. The plots in Figure A6 and Figure A7 support the conclusion that EDGE achieves comparable or better distribution estimation with far fewer samples than RS, which reduces evaluation cost and improves the reliability of worst-case and best-case assessments.

## F FUTURE WORK

To build upon EDGE, future research could explore extending the evaluation protocol to include multi-dimensional metrics such as inference speed, memory usage, and energy consumption, providing a more holistic assessment of CIL methods. Additionally, integrating task-specific difficulty metrics—such as forgetting rates, forward/backward transfer, and anomaly detection performance—could further refine the understanding of model behavior under extreme sequences. Another promising direction is to develop adaptive training strategies that dynamically adjust task ordering based on real-time similarity estimates during incremental learning, potentially enhancing both efficiency and robustness. Finally, applying EDGE to a broader range of domains—such as NLP, audio, or medical imaging—would help validate its generality and inspire domain-specific extensions.