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Abstract

Conditional sampling is a fundamental task in Bayesian statistics and genera-
tive modeling. Consider the problem of sampling from the posterior distribution
Px|y—y~ for some observation y*, where the likelihood Py|x is known, and we
are given n i.i.d. samples D = { X} ; drawn from an unknown prior distribution
7wx. Suppose that f(7x~) is the distribution of a posterior sample generated by
an algorithm (e.g. a conditional generative model or the Bayes rule) when 7 xn
is the empirical distribution of the training data. Although averaging over the
randomness of the training data D, we have Ep (7x») = mx, we do not have
Ep{f(7xn»)} = f(nx) due to the nonlinearity of f, leading to a bias. In this
paper we propose a black-box debiasing scheme that improves the accuracy of
such a naive plug-in approach. For any integer k£ and under boundedness of the
likelihood and smoothness of f, we generate samples XW . X® and weights
w1, . .., Wy such that Zle w; P ;) is a k-th order approximation of f (7 ), where
the generation process treats f as a black-box. Our generation process achieves
higher accuracy when averaged over the randomness of the training data, with-
out degrading the variance, which can be interpreted as improving memorization
without compromising generalization in generative models.

1 Introduction

Conditional sampling is a major task in Bayesian statistics and generative modeling. Given an
observation y*, the objective is to draw samples from the posterior distribution Py/y—,«, where the
likelihood Py-|x is known but the prior distribution 7x is unknown. Instead, we are provided with a
dataset D = {X;}"_; consisting of n i.i.d. samples drawn from 7x.

The setting is common in a wide range of applications, including inpainting and image deblurring
[9,5] (where X is an image and Y| X is a noisy linear transform), text-conditioned image generation
[7,[13](where X is an image and Y is a natural language prompt), simulating biomedical structures
with desired properties, and trajectory simulations for self-driving cars. Moreover, conditional
sampling is equally vital in high-impact machine learning and Bayesian statistical methods, partic-
ularly under distribution shift, such as in transfer learning. For instance, conditional sampling has
enabled diffusion models to generate trajectories under updated policies, achieving state-of-the-art
performance in offline reinforcement learning [8| [1, 26]]. Pseudo-labeling, a key technique for un-
supervised pretraining [[10]] and transfer learning calibration [20], relies on generating conditional
labels. Additionally, conditional diffusion models seamlessly integrate with likelihood-free inference
[6 18, [27]]. Existing approaches often use generative models such as VAEs or Diffusion models to
generate samples by learning Py |y —,~ implicitly from the data.
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Our work focuses on approximating the true posterior Px|y—,~ using the observed samples D =
X" = (Xy,...,X,) and the new observation y*, but without the knowledge of the prior. Denote by
PX|Y= v*.D the approximating distribution. We can distinguish two kinds of approximations: First,
PX|Y=y*, p /= Px|y—, with high probability over D, which captures the generalization ability
since the model must learn the distribution from the training samples. This criterion is commonly
adopted in estimation theory and has also been examined in the convergence analysis of generative
models [16, 28} 26| 22]]. Second, ED(PX\Y:y*,D) ~ Px‘yzy* is a weaker condition since it only
requires approximation when averaged over the randomness of the training data, but is still useful
in some sampling and generative tasks, e.g. generating samples for bootstrapping or Monte Carlo
estimates of function expectations. The second condition captures the ability to memorize or imitate
training sample distribution. It is interesting to note that in the unconditional setting (i.e., without
distribution shift), a permutation sampler can perfectly imitate the unknown training data distribution,
even if n = 1, so the problem is trivial from the sample complexity perspective. However, in the
conditional setting, it is impossible to get such a perfect imitation with finite training data, as a simple
binary distribution example in Section [3.2]illustrates. It naturally leads to the following question:

How fast can the posterior approximation converge to the true posterior as n — 0o, and is there a
sampling scheme achieving this convergence rate?

Contribution. We address the question above by proposing a novel debiasing framework for posterior
approximation. Our main contributions can be summarized as follows:

* Debiasing framework for posterior approximation. We introduce a novel debiasing
framework for posterior approximation with an unknown prior. Our method leverages
the known likelihood Py x and the observed data to construct an improved approximate

posterior Pxn (x|y*) with provably reduced bias. In particular, let f(7xn) represent the
distribution of a posterior sample generated by an algorithm f when 7 x~ is the empirical
distribution of the training data. Then for any integer &, assuming that the likelihood function
Py |x is bounded and f is sufficiently smooth, we generate samples X @, ... ,X (%) from f
based on multiple resampled empirical distributions. These are then combined with designed
(possibility negative) weights wq, . . ., wy, to construct an approximate posterior:

PX” ‘y sz X

which is a k-th order approximation of f (7 X), treatlng the generation process f as a black-
box. Our generation process achieves higher accuracy when averaged over the randomness
of the training data, but not conditionally on the training data, which highlights the trade-off
between memorization and generalization in generative models. Specifically, we do not
assume any parametric form for the prior and our method can achieve a bias rate of O(n~")
for any prescribed integer k and a variance rate of O(n~1).

Theoretical bias and variance guarantees. We establish theoretical guarantees on both
bias and variance for the Bayes-optimal sampler under continuous prior setting and for a
broad class of samplers f with a continuous 2k-th derivative, as specified in Assumption
[2] under the discrete prior setting. The proposed debiasing framework can also be applied
in a black-box manner (see Remark [2] for the intuition), making it applicable to a broad
class of state-of-the-art conditional samplers, such as diffusion models and conditional VAE.
Based on this perspective, we treat the generative model f as a black box that can output
posterior samples given resampled empirical distributions. Applying f to multiple recursive
resampled versions of the training data and combining the outputs with polynomial weights,
we obtain a bias-corrected approximation of the posterior. The procedure is described in
Algorithm T

Our approach is also related to importance sampling. Since the true posterior Px |y is intractable

to compute, we can use expectations under the debiased posterior Py (x|y*) to approximate the
expectations under the true posterior Px|y—,-. For a test function h, we estimate Ep, . _ . {h(X)}
by
N ~ .
Pxn(

1 ~ (X |y*
Pxn(:r\ll {h( )}~ NZh(XJ);(NJEJ)7 (D



Algorithm 1 Posterior Approximation via Debiasing Framework

Input: Observation y*, likelihood Py |x, data X™ = (X1,...,X,), number of steps k, a black-box
conditional sampler f (i.e., a map from a prior distribution to a posterior distribution)

Output: XU j =1,... k such that Z?;S (jil) (=1)? Pg (41, is a high-order approximation of
the posterior Px |y —-

1: Initialize p(V) := 7xn

2: for { =2tok do

3:  Generate n i.i.d. samples from p(¢—1)

4:  Let p¥) be the empirical distribution of the sampled data

5: end for

6. for j = 1to k do

7:  Generate samples X () ~ f(p(1)

8: end for _

9: Return XU j =1,... k

where X ; ~ q(z]y*) for a chosen proposal distribution ¢. This resembles our method, in which
we approximate the true posterior by a weighted combination Zle w;iPg ;). And in (I)), the term

Pxn (X ily*)/a(X;]y*) can be interpreted as a weight assigned to each sample, analogous to the
weights w; in our framework. Therefore, we expect that Algorithm ] can be broadly applied to Monte
Carlo estimates of function expectations, similar to the standard importance sampling technique.

2 Related work

Jackknife Technique. Our work is related to the jackknife technique [17]], a classical method for bias
reduction in statistical estimation that linearly combines estimators computed on subsampled datasets.
Specifically, the jackknife technique generates leave-one-out (or more generally, leave-s-out where
s > 1) versions of an estimator, and then forms a weighted combination to cancel lower-order bias
terms. Recently, Nowozin [[14] applied the jackknife to the importance-weighted autoencoder (IWAE)
bound L,,, which estimates the marginal likelihood log 7r(x) using n samples. While L,, is proven to
be an estimator with bias of order O(n 1), the jackknife correction produces a new estimator with
reduced bias of order O(n~™). Our paper introduces a debiaisng framework based on the similar
idea that using a linear combination of multiple approximations to approximate the posterior.

Conditional Generative Models. Conditional generative models have become influential and have
been extensively studied for their ability to generate samples from the conditional data distribution
P(-|y) where y is the conditional information. This framework is widely applied in vision generation
tasks such as text-to-image synthesis [13} 24} 2] where y is an input text prompt, and image inpainting
[11} 21] where y corresponds to the known part of an image. We expect that our proposed debiasing
framework could work for a broad class of conditional generative models to construct a high order
approximation of the posterior P(-|y).

Memorization in Generative Models. The trade-off between memorization and generalization has
been a focus of research in recent years. In problems where generating new structures or preserving
privacy of training data is of high priority, generalization is preferred over memorization. For example,
a study by Carlini et al. [4] demonstrates that diffusion models can unintentionally memorize specific
images from their training data and reproduce them when generating new samples. To reduce the
memorization of the training data, Somepalli et al. [19] applies randomization and augmentation
techniques to the training image captions. Additionally, Yoon et al. [25] investigates the connection
between generalization and memorization, proposing that these two aspects are mutually exclusive.
Their experiments suggest that diffusion models are more likely to generalize when they fail to
memorize the training data. On the other hand, memorizing and imitating the training data may
be intentionally exploited, if the goal is Monte Carlo sampling for evaluations of expected values,
or if the task does not involve privacy issues, e.g. image inpainting and reconstruction. In these
applications, the ability to imitate or memorize the empirical distribution of the training data becomes
essential, especially when generalization is unattainable due to the insufficient data. Our work focuses



on memorization phase and shows that it is possible to construct posterior approximations with
provably reduced bias by exploiting the empirical distribution.

Mixture-Based Approximation of Target Distributions. Sampling from a mixture of distributions
a1Px, + a2 Px, +- - -+ai Px, to approximate a target distribution P* is commonly used in Bayesian
statistics, machine learning, and statistical physics, especially when individual samples or proposals
are poor approximations, but their ensemble is accurate. Traditional importance sampling methods
often rely on positive weights, but recent work has expanded the landscape to include more flexible
and powerful strategies, including the use of signed weights and gradient information. For example,
Oates et al. [[15] uses importance sampling and control functional estimators to construct a linear
combination of estimators with weights a;, to form a variance-reduced estimator for an expectation
under a target distribution P*. Liu and Lee [12] select the weights a; by minimizing the empirical
version of the kernelized Stein discrepancy (KSD), which often results in negative weights.

3 Problem setup and notation

Consider a dataset {X;}!"_; consisting of n independent and identically distributed (i.i.d.) samples,
where X; € X is drawn from an unknown prior distribution 7x and the conditional distribution
Py x is assumed to be known. In the Bayesian framework, the posterior distribution of X given Y is
given by

Pyl (dz)
/ Py x (y]z)mx (da)

Pxy (dzly) =

Given the observed data X" = (X1, --- , X,,) and the new observation y*, our goal is to approximate
the true posterior Px |y —«.

3.1 Naive plug-in approximation

A natural approach is to replace the unknown prior 7x with its empirical counterpart

n
ﬁ'Xﬂ = ’fl_l Z 5X1~
i=1
in the Bayes’ rule to compute an approximate posterior which yields the plug-in posterior
5 . Pyix (y*|z) 7 xn (dx)
Py (daly”) = = : @)
[ Prix( i) do)

Note that even though Ep (7 xn) = mx, the nonlinearity of Bayes’ rule makes the resulting posterior
(@) still biased, that is, E {ﬁX,y(-|y*)} £ Pyjy(-|y*). If the denominator in (@) were replaced
with [ Py x (y*|2)mx (dz), then averaging the R.H.S. of (2)) over the randomness in X™ would yield
the true posterior Px |y (dz|y*) = Py x (y*|x)mx (dx)/ [ Py x (y*|)mx (dx) exactly.

For typical choices of Py |x which have nice conditional density (e.g., the additive Gaussian noise
channel), [ Py|x (y*|z)#xn (dz) converges at the rate of n~1/2, by the central limit theorem. Con-

sequently, Ep(Px|y—,~) converges to the true posterior at the rate O(n~'/?) in the co-Renyi
divergence metric regardless of the smoothness of mx. Under appropriate regularity conditions, we

can in fact show that Ep (13X|y:y*) converges at the rate of O(n "), which comes from the variance
term in the Taylor expansion. Naturally, we come to an essential question: can we eliminate the bias

entirely? That is, is it possible that Ep{ Pxy (-ly*)} = Pxy (|y*)?

3.2 Impossibility of exact unbiasedness

Exact unbiasedness is, in general, unattainable. Consider the simple case where X is binary, that is,
X ~ Bern(q) for some unknown parameter ¢ € (0, 1). Define the likelihood ratio o« = a(y*) :=



Py x(y*11)/ Py x (y*|0). Then the true posterior is

* aq
XY =y"~Bern | ——— | .
Y=y (aq +1- q>
On the other hand, if we approximate the posterior distribution as ]ADX‘Y(1|y = y*) = Bern(p(k))
upon seeing k outcomes equal to 1, then

IE{]3 1*}: k(”)’w n—k_ 3
p 3 Px)y (1ly*) ];pUkQ( q) 3
which is a polynomial function of ¢, and hence cannot equal the rational function aq/ (g + 1 — q) for
all ¢. This implies that an exact imitation, in the sense that ED{ﬁX|y('|y*)} = Pxy (-ly*), Vrx, is
impossible. However, since a rational function can be approximated arbitrarily well by polynomials,
this does not rule out the possibility that a better sampler achieving convergence faster than, say, the
@(nil/ 2) rate of the naive plug-in method. Indeed, in this paper we propose a black-box method
that can achieve convergence rates as fast as O(n %) for any fixed k& > 0.

3.3 Objective and notation

Since the bias in the plug-in approximation arises from the nonlinearity of Bayes’ rule, we aim
to investigate whether a faster convergence rate can be achieved. Our objective is to construct

an approximation Py (z|y = y*) that improves the plug-in approximation by reducing the bias.
Specifically, the debiased approximation satisfies the following condition:

‘]Exn {ﬁxn (xy = y*)} - Px‘y($|y*)‘ < ‘]Exn {ISX|Y($|Q*)} — Pxy (zy")]

More generally, we can replace the Bayes rule by an arbitrary map f from a prior to a posterior
distribution (e.g. by a generative model), and the goal is a construct a debiased map f such that
Exo f(fon) = £ < [Bxn fFxn) = £
B fn) = £ @) < [ExefGx) = £
Notation. Let §,. denote the Dirac measure, || - || v denote the total variation norm. For any positive
integer m, denote [m] = {1,...,m} as the set of all positive integers smaller than all equal to m.
Write b, = O(ay,) if by, /a,, is bounded as n — oco. Write b, = Os(ay,) if b, /ay, is bounded by C(s)
as n — oo for some constant C'(s) that depends only on s. We use the notation a < b to indicate that
there exists a constant C' > 0 such that a < Cb. Similarly, a <; b means that there exists a constant

C(k) > 0 that depends only on k such that a < C(k)b. Furthermore, for notational simplicity, we
will use 7 to denote the true prior mx and 7 to denote the empirical prior 7 x~ in the rest of the paper.

4 Main result

4.1 Debiased posterior approximation under continuous prior

Let Ay denote the space of probability measures on X. Define the likelihood function ¢(z) :=
Py x (y*|z), which represents the probability of observing the data y* given z. Let f : Ay — Ax
be a map from the prior measure to the posterior measure, conditioned on the observed data y*. Let
B,, be the operator such that for any function f : Ay — Ay,

Bnf(p) =E{f(D)}, O]
where p denotes the empirical measure of n i.i.d. samples from measure p.

We consider the case that f represents a mapping corresponding to the Bayes posterior distribution.
Using Bayes’ theorem, for any measure m € Ay and any measurable set A C X, the posterior

measure f(7) is expressed as
/ l(x)m(dx)
A

f(m)(A) = :
/X () (dx)



As discussed in Section 3] the equality B,, f () = f(m) is not possible due to the nonlinearity of f.
However, we can achieve substantial improvements over the plug-in method by using polynomial
approximation techniques analogous to those from prior statistical work by Cai and Low [3] and
Wu and Yang [23]]. For £ > 1, we define the operator D,, ;. as a linear combination of the iterated
operators BJ for j =0,...,k — 1:

k—1

Dni=) (j f 1) (—1)'Bi.

j=0
Assumption 1. The likelihood function { is bounded, i.e., there exists 0 < L1 < Lo such that
Ly </{(x) < Lo.
The following theorem provides a systematic method for constructing an approximation of f(7) with
an approximation error of order O(n~*) for any desired integer k.

Theorem 1. Under Assumption|l| for any measurable set A C X and any k € NT, we have

|Exn {Dn e f(7)} = f(m)llpy = Oy Lase(n™), ©)
Varxn {Dn’kf(ﬁ)(A)} = OLl,LQ,k(n_1)~ (6)
Remark 1. D,, ;. f(7) = Zf;é (jfl)( 1) BJ f(7) in @) can be interpreted as a weighted average

of the distribution of some samples. Specifically, if we treat the coefficient (j )( 1)7 as the weight
w; and Bi. f (#) as the distribution of some sample X9, then D, 1, f (7) = Zk L w, Py )

Remark 2. Recall the binary case discussed in Section B} @) illustrates that we cannot get
an exact approximation for the true posterior. But from (), we demonstrate that even if
IExn {Dnxf(7)} — f(7)|lpy = 0 is impossible, it can be arbitrarily small. Although the the-
oretical guarantees are derived for the Bayes-optimal sampler, [(3) is expected to hold for general
sampler f such as diffusion models. Here we give the intuition for this conjecture. We view the
operator B, f(7) := E{f(%)} as a good approximation of f(r), i.e., B, = I, where I is the
identity operator. This implies that the error operator E := I — By, is a “small"” operator. Under
this heuristic, if Ef(r) = O(n™%), intuitively we have E*f(r) = O(n~*). Using the bino-
mial expansion of E¥ = (I — B,,)*, we have E* f(1) = f(x) — Z?Zl (l;.)(—l)j_lB%f(w) =
flm) = E{Z?Zl (’;) (=197 1Bi=1f(7)} = f(7) — E{D, . f(7)}. This representation motivates
the specific form of D, y.

Remark 3. In general, the curse of dimensionality may arise and depends on the specific distri-
bution of X and the likelihood function £. There is no universal relationship between n and the
dimension d. However, to build intuition, we give an example that illustrates how n and d may relate.
Suppose that Y = (Y (1),...,Y(d)) and X = (X(1),...,X(d)) have i.i.d. components, and
Ly < P(Y(i)|X(i)) < Lo for 1 < i < d. Then we have ((X) := P(Y|X) € [L{, L§]. Note that
Or,.1,.x(n™F) in @) can be bounded by C(k)(L3/L$)**n=* for some constant C (k) depending
only on k. To ensure that our debiasing method improves over the baseline method without debiasing
in the case of growing dimensions, it suffices to let n and d satisfy that (L3 /L$)**n=% < n=! when
k > 2, which is equivalent to kd < log(n).

Sketch proof for Theorem[l| Firstlet p = [, {(x)w(dx) and pug = [, £(x)7(dx) and introduce a
new operator

-

then we have B, D,, ,, = C,, j. By the definition of B, it suffices to show that
Corf(m)(A) = f(m)(A) = Or, 1, k(n7").

The first step is to express B} f(m) with the recursive resampled versions of the training data.
Specifically, let 7(%) = 7, #() = # and set (X{O)7 . ,Xy(LO)) = (Xy,...,X,). Forj =1,...,k,



we define #) as the empirical measure of 7 i.i.d. samples (Xl(jfl), .. ,X,gjfl)) drawn from the
measure 70U~ 1) Additionally, let

e =n > {ux?) —py and ) =07t Y " UX )0 (A),

i=1

Then we have
1 u -1g MSX Y
Coef (m Z() DB f Z() G, @
j=1 j=1 en Tt p
(i-1) (j—1)

The second step is to rewrite (7)) with Taylor expansion of u(j 2 /(ex, "’ + u) with respect to ey;
up to order 2k — 1. Ly < (X (- 1)) < Ly and Hoeffding’s inequality implies that the expectation

of the residual term E{(e{{ ™" )Qk/£2k+1} for some & between e ) + pand pis Op, 1, x(n~").
Now we instead to show that

k

k 4 . ,

Brri=) (j) ()T E{ VY ) = Oryran(n ™),
j=1

since (7) is equal to 14/ + sz Y1) " By + Ory 1,k (n7F).

Deﬁne a new operator B : h — E[h(7)] for any h : Ay — R and let hy(r) =
{J 4 t(x)m(dx)}{ [ £(x)m(dx)}*. Then

s (B (e nen

s=0 =
The last step is to prove

(I = B)*hy(m) = OLy,1,,s(n7"), ®)

since (B)) is equivalent to Z?Zl (’;) (=1)771BIhs(m) = hs(m)+OL, L,.s(n~*) . Finally (§) follows
from the fact that (I — B)*h,(7) can be expressed as a finite sum of the terms which have the

following form:
tns{ [ @m0 I [ e 0rmtan}

K2

where |a s.»| < Ck(s)n~* for some constnat C(s) (see our Lemma.

4.2 Debiased posterior approximation under discrete prior

In this section, we consider the case where X follows a discrete distribution. As mentioned in
Remark [2] the result in Theorem [I] is expected to hold in a broader class of samplers f under
smoothness, extending beyond just the Bayes-optimal sampler f. The assumption of finite A" in this
section allows us to simplify some technical aspects in the proof.

Let the support of X be denoted as X = {uy, ua,. .., Uy, }. Assume that |X'| = m is finite, and X is
distributed according to an unknown prior distribution 7 () such that the probability of X taking the
value u; is given by m(X = w;) = ¢; fori = 1,2, ..., m. Here, the probabilities ¢; are unknown and
satisfy the usual constraints that ¢; > 0 for all ¢ and Z:Zl q; = 1.

Letq = (qi, -+ ,qm) ' represent the true prior probability vector associated with the probability
distribution 7(z). Let g be a map from a prior probability vector to a posterior probability vector.
Then g(q) = (g1(q), - ,gm(q)) " is the probability vector associated with the posterior. Let
T = (T, - ,Tn)" where T; = 3" | 1x,—, for j =1,---,m. In such setting, by the definition
@) of operator B,,, we can rewrite the operator B,, as

Bugn(@) = E (o T/} = 3 0.1 a,

veA,,



where A, = {v e N™: 37" | v; = n} and

n — n' v _ Vm
=— oA =at g
v Vil Uyt

Additionally, let A, = {q € R™ : ¢; > 0,377, ¢; = 1} and let || - [|c(a,,) denote the Ck(A)-
norm which is defined as || fllcx(a,,) = 22 o, <k 0% fllo forany f € Ck( m)-

Assumption 2. |X'| = m is finite, and maxse(m) ||9sl| 2+ (a,,) < G for some constant G.

The following theorem provides a systematic method for constructing an approximation of gs(q)
with an error of order O(n~*) for any desired integer k.

Theorem 2. If |X| = m, let q = (q1,--- ,qn) " be the true prior probability vector associated
with a discrete probability distribution and T = (T, ,Ty,) " where T; = Y1, Ix,—u, for
j=1,--- ,m. Under Assumption the following holds for any s € {1,--- ,m} and any k € N*:
Extn {Dnk(95)(T/n)} = g5(a) = Opm,c(n"),
Varxn {Dnk(9s)(T/n)} = Opm,c(n™1).

Theorem 2] follows directly from the following lemma, which provides the key approximation result.
Lemma 1. For any integers k,m € N* and any function f € C*(A,,), we have

1, rrs21(F) = fllos = (B = D2V ()loo Sk [1fll o (a,yn ™.

Note that Theorem [2] holds for all mappings g that satisfy Assumption 2] When g represents a
mapping corresponding to the Bayes posterior distribution, we know the exact form of g(q). Hence,
we can explore sampling schemes for Bayes-optimal mapping g.

We claim that Bayes-optimal mapping g satisfies Assumption In fact, let £, = l(us) =
Py x (y*|us). Using Bayes’ theorem, the posterior probability of X' = u, given y* is given by

Csqs
Py (usly”) = < —-
> e 43
In this case, gs(q) := ngs/Z;n:l Ligj for s = 1,--- ,m. Since |X| = m is finite, we know that

there exists a constant ¢, ca > 0 such that ¢; < [; < ¢ forall 1 < j < m, which implies that
max,e(m [|9sllc2x(a,,) < G for some constant G based on k.

Moreover, estimating gs(q) based on the observations of X™ = (X3, -+ , ) and y* is sufficient
to generate samples from the posterlor distribution PX‘y(us|y ) for s = 1 -, m. Since the exact
form of g, is known, if we let Pxn(z = usly = y*) = nk(gs)(T/n) where T /n denotes the

empirical of the training set, we obtain the following theorem
Theorem 3. Under Assumption 2} for any k € NT, if |X| = m is finite, then there exists an
approximate posterior Px« (x|y = y*) satisfies that for any s € {1,--- ,m},

Exn {IgX"(x = usly = ?/*)} — Pxjy (usy”) = Opmg ("),

Varxn {ngn (x =usly = y*)} = Ok,myg(n_l).

The proposed sampling scheme in Algorithm|[T|generates k samples and a linear combination of whose
distributions approximates the posterior. In applications where it is desired to still generate one sample
(rather than using a linear combination), we may consider a rejection sampling algorithm based on

Theoremto sample from Psxn (zly =y*). Let T = (T1,--- ,Tp,) " where T; = >, 1x,=y, for
j=1,--- ,m.Then (g(T/n),- - ,gm(T/n))T is the posterior probability vector associated with
the plug-in posterior Px« (z|y = y*) and (D x(g1)(T/n), - -- ,Dn)k(gm)(T/n))T is the posterior

probability vector associated with the debiased posterior Pyn (x]y = y*). The rejection sampling is
described in Algorithm 2]



Algorithm 2 Rejection Sampling for Debiased Posterior Pxn (z | y = y*)

Input: Plug-in posterior Px»(z | y = y*), debiased posterior Px«(z | y = y*), large enough
constant M > 0 _
Output: Sample from the debiased posterior Px= (z | y = y*)
1: repeat
2: Sample 2’ ~ Px» (z|y=
3:  Sample u ~ Uniform(0, M
!/
4: until u < ]an@: Ly =
Pxn(a’ |y =
5: return z’

In Algorithm 2}

M — max XM@Yy =y") max{w(%)w}
w€X Pxn(aly=y*) 7 9;(T/n)
is the upper bound of the ratio of the debiased posterior to the plug-in posterior.

S Experiments

In this section, we provide numerical experiments to illustrate the debiasing framework for posterior
approximation under the binary prior case and the Gaussian mixture prior case.

Binary prior case. Suppose that X = {0, 1} and X ~ Bern(q) for some unknown prior ¢ € (0, 1).
Leta = a(y*) := Py|x (y*[1)/Py|x (y*|0) be the likelihood ratio. Then the posterior distribution
is give by X|Y ~ Bern(ag/(ag + 1 — g)). We estimate g(q) := ag/(ag + 1 — ¢) based on the
observations of X" and y*.

Proposition provides a debiased approximation as a special case of Theorem when |X| = 2.
Proposition 1. Let T =Y | X;. Fork =1,2,3,4, we have

Ex {Dnrg(T/n)} — g(g) = On"),
where D, 1, = Zf;é (j_’ﬁl) (=1)7Bj and By, (9)(x) = Y10 9(£) () a®(1—2)"~F is the Bernstein
polynomial approximation of g.
In the proof of Theorem we notice that for any k € N*, Ex» {D,, x9(T/n)} = Cy, £g(q), which
allows Proposition|l|to be verified in closed form. To validate this result numerically, we consider

two parameter settings: in the first experiment we set ¢ = 0.4, y* = 2, and Y| X ~ N (X, 1), while
in the second we set ¢ = 3/11, y* = 1, and Y| X ~ N (X, 1/4).

For both settings, we examine the convergence rate of the debiased estimators D,, ,g(T'/n) for
k =1,2,3,4. The results are shown in log-log plots in Figure[I] where the vertical axis represents the
logarithm of the absolute error and the horizontal axis represents the logarithm of the sample size n.

Reference lines with slopes corresponding to n=!,n~2,n =3, and n~* are included for comparison.

Gaussian mixture prior case. Suppose that X ~ 2A(0,1) + 2AN/(1,1) and Y = X + ¢ where
& ~ N(0,1/16). Additionally, let y* = 0.8 and A = {x : = > 0.5}. In this case, we validate the
theoretical convergence rate

[Exn {Dn i f(7)(A)} = f(m)(A)| = O(n™").

Since Exn{D,, 1 f(7)(A)} does not have a closed-form expression, we approximate it using Monte
Carlo simulation. To ensure that the Monte Carlo error is negligible compared to the bias O(n~%), we

select the number of Monte Carlo samples N such that N >> n?*~!. In practice, we run simulations
fork =1and k = 2 and set N = n? fork = 1 and N = n* for k = 2.

The results are shown in Figure[2] The figure presents log-log plots where the vertical axis represents
the logarithm of the absolute error or of the variance and the horizontal axis represents the logarithm
of the sample size n. For both k = 1 and k = 2, the observed convergence rates align closely with
the theoretical predictions.
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Figure 1: Convergence of plug-in and debiased estimators in the binary prior case. The plot compares
the approximation error of D, ,g(T/n) (k = 1,2, 3,4) against n. Reference lines with slopes

corresponding to n=*, n=2,n =3, and n~* are included to highlight the convergence rates.
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(a) Bias convergence rate (b) Variance convergence rate

Figure 2: Convergence of debiased estimators in the Gaussian mixture prior case with X ~
IN(0,1) + 3N(1,1), Y = X +& € ~ N(0,1/16), y* = 0.8, and A = {z : = > 0.5}. (a)
shows the bias decay of D,, ;. f(7)(A) for k = 1,2, with reference lines of slopes corresponding to
n~! and n~2 included for comparison. (b) shows the corresponding variance decay, alongside a
reference slope corresponding to n .

6 Conclusion

We introduced a general framework for constructing a debiased posterior approximation through
observed samples D and the known likelihood Py | x when the prior distribution is unknown. Here, a
naive strategy that directly plugs the empirical distribution into the Bayes formula or a generative
model has a bias, because the likelihood is nonconstant, inducing a distribution shift, and the map
from the prior to posterior is nonlinear. It can be shown that the plug-in approach generates X with
bias [|[Ep (Pgjy—y« p) = Px|y=y-|lTv = O(n~") and variance Varp (Pgy_,. p) = O(n~!). In
contrast, our proposed debiasing framework achieves arbitrarily high-order bias rate of O(n~*) for
any integer k, while maintaining the order of magnitude of the variance. Our framework is black-box
in the sense that we only need to resample the training data and feed it into a given black-box
conditional generative model. In particular, we provide a rigorous proof for the Bayes-optimal
sampler f under the continuous prior setting and for a broad class of samplers f with a continuous
2k-th derivative, as specified in Assumption [2] under the discrete prior setting. We expect that the
proposed debiasing framework could work for general f and will support future developments in
bias-corrected posterior estimation and conditional sampling.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The model setting and the assumptions of our claim are clearly stated in
abstract and introduction. Our main contributions are stated in introduction.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We provide a black-box debiaisng framework since we only provide the
rigorous proof for the Bayes-optimal sampler under continuous prior setting and a broad
class of samplers with a continuous 2k-th derivative under discrete prior setting. We expect
the framework could work for general samplers f.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: All assumptions are clearly stated or referenced in the statement of our
theorems and lemmas.The proofs appear in the main paper and the supplemental material.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: We describe our experiments in the Experiment Section in detail.
Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: We used the simulation data in the experiment.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We provide the setting of our simulation in the Experiment section.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:
Justification: Our experiments do not include any error bars.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

15


https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer:
Justification: Our experiment is a simple simulation for binary case.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conforms with the NeurIPS Code of
Ethics.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our main contribution is constructing a debiased approximation of the posterior
distribution which does not have immediate societal impact.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification:
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification:
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification:
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification:
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification:

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification:
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Proof of Theorem (1]

Proof of Theorem([l] We begin by introducing notations that facilitates the analysis. Define

/é w(dz), ,uA—/E

Let #© = 7, #1 = 7 and set (X, ..., X\") = (X1,..., X,)). Forj = 1, ..., k, we define #(9)
as the empirical measure of 7 i.i.d. samples (X 1(3 71), ..

Furthermore, for each j = 0, ..., k, define

(]) _ n—l Z { X(J) M} , _ n—l Zf X( X(J) )

. X’I(Ljil)) drawn from the measure #(—1).

Let

k
Z ( > 1)7-'BJ
so that it suffices to show that
Cr e f(m)(A) = f(m)(A) = Or, L 0(n™") ©
since By, Dy, ), = Chp k.
The Radon-Nikodym derivative of f () with respect to 7 is
df (m (x
)yt
/ () (dx)
X

For the empirical measure 7, the corresponding Radon-Nikodym derivative of f(7) with respect to 7
takes the form

# ) L) T {x(,....xP,
—(x) = ()7 (dx)
dﬂ' X
0, otherwise,
te) o dfze {X}°>,...,X5P>},
=\t UXGT)
0, otherwise.

Consequently,

Moreover, by the definition of B, and iterated conditioning, we have E {f(7())(A)} =
E[E{fGO)AFD)] = E{B.SGUD)A)} = - = E{BIGO)A)} =
B f(m)(A).
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By the same logic, for any j = 2, ..., k, we have

n-1 T»l_ i X-(j_l) (it
E {f(ﬁ'(j))(A)} - F anllz(n i E(X)(j)_(i(l)) )
i=1 i

(4)

Thus,
A =S (PN 1157 fir
Coi F(m)(4) 2(3)( 1 LBLf()(A)
R
 (k j—1 nilZ?:lé(Xz'(j_l))‘sfofl)(A)
_;@( R R e
~ (K i-1 pli=y
:;@(‘” E(%)
Then (9) holds if

k (G-1)
k _
2 ( ')(l)le < <f—A ) = B4 4 0L, k(7).
= N e

I

Now we show that (T0) holds. By using the Taylor expansion of 1/ (67(3 -4 1), we have

2k—1 , —
; = l + (_1) (e(j—l))r + M
T e A LR £2k+1
where ¢ lies between e -y wand g.

Since min{eg_l)

and Hoeffding’s inequality implies that
, 2t?
P(jne¥ V| >t) <2 ——
(Ine§=] > 1) < 2exp |~

for all ¢ > 0, which is equivalent to

) ont?
P(lel—D t) <2 B
(4701 > 1) < 2exp { ~ -2

Then
(g ) = [T (| s ) a
0
= /OOP (Jev] > er2*) an
O°° 2nu
§/0 Qkuklexp{w}du

& 20
= 2kn7k/ ex {—} v Tdy
o TPV T -2

= Or, L,k(n”").
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+ iy} > Ly, we have 1/€26+1 < 721 Additionally, Ly < [((XY™") < L,



Therefore, we have
(j—1) 2k—1 .
A [1A (=" G-1, G-y K
E(-4A | =FA g ~ (e ™) ¢+ 0L, Ly k(n™),
<e£f”+u> I {Z_‘; pret oA v
which implies that the L.H.S. of (I0) can be written as

KA 2kil( 1" ko lk G
ra — j—1 i=1) (G—1)\r e
a3 S S () e e O

Thus to prove the bound on the bias, it remains to show that for any given k and 1 <r <2k — 1,

k
k . - . .
B = 3 () 0B ()} = O s

=N

Define a new operator B : h — E{h(7)} forany h : Ay — R and let

o ={ [ e} { [

}, we have

Qo
" /r (—1)7178”7,782]6: k (=1)77 B hy(7).
> (. ()

Jj=1

Since B hy(m) = E {h, (7

~—

Bkr

s

|

We claim that By, . = Op,, 1, x(n~%) holds if forany 0 < s < r < 2k — 1,
(I = B)*hs(m) = Ory a5 (n™"). (1)

Indeed, (I — B)*hy(w) = Op,.1,.(n*) is equivalent to 3" (’;)(fl)jleth(w) = hy(m) +

j=1
OL, 1,,s(n™%). Therefore (TT) implies

Bk,rzzrj(r)( D)5 {hy () + Oy 1,,s(n %)}

S
s=0

= { (:) (=) pap” + OLl,Lz,s(n_k)}
s=0
= Op, L,k(n7F).

Now, to prove the bound on the bias we only need to show that (TI) holds. For any k£ € N and
s € NT, let

Js = {(a7s,v): a=(aj,a,...),s=(s1,82,...),0a;,8 € NV veNa; >ay > > 1,Zaisi+vzs}

At = tase] [ }H {[ewmn} " aned < o .

(a,s 'U)G‘J

where Cy(s), C1(s),. .. are constants from Lemma Since hs(m) € AS+1, Lemmaimplies that
(I — B)*hy(m) € A, ,. Therefore, (I — B)*hy(r) = Or, 1,,s(n~%), finishing the proof for the
bias bound.
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Finally, to prove the bound on the variance, consider the function F'(z,y) = x/y. By construction,
SED)(A) = F(ud e 4 ).
Applying the Taylor expansion of F'(z,y) yields

e 1, G- - -~ o 2
FGD)A) = F(A) + —(d ) = o) = 20 = S = el 4 2 (D)
HA G Y &

for some &, lying between 14 and u(j_l), and £, lying between y and eg_l) + p. Since L; <

MA,,ug*l),u, e 4 4 < Lo implies that [1/¢2| and [€, /&3] are bounded by some constant

depending on L and L.

Moreover, since

B )l )
< {ver (7)) v (70 )}
Var{ 126 (x9) X(j—l)(A)} 1/2 Var{ i (xU~Y }]1/2

1/2
_ ) 1 (G-1)
_{nVar{ﬁ( XU )5X§j1>(,4)}} [nVar o(xG- }
= 0L1,L2 (n_l)a

and
G-} _ 1 (-1 -1
E (V) = Var {ex )} = 0p, 1, (07,
n
Combining these bounds with the Taylor expansion, we conclude that for any j > 1,

B} f(m)(4) = E{f(GV)(A)} = f(7)(4) + Op, 1, (n 7).

By the same logic, we also have B, {f(m)(A)}> = {f(7)(4)}* + Op,.L,(n7h).
Therefore,

k—1

Dutma) =3 () 1w B

S (]—]T—l) ) {f(m)(A) + Or, 1, (n ™)}

( )( )+0L17L2J€(n71)a

wb
»—AO

and
Varxo {Do s f (#)(A)} = E [{Du i f(#)(A)] = [E{Dn, kfm)(A)}f
=B, {Dn,k (7T } - {f + OLI Lo,k ( )}
= B {F(m)(A) + Opy (0™ } ~ {FEA) + O, 1o i(n™)}

= Bu{f(M)(A)}* + Op, 1,0 (n7 1) = {f(7)(A)}?
= OLl,Lz,k<n_1>'
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Lemma 2. There exist constants Cy(s), C1(8), Ca(8), ..., such that the following holds.
Forany k € Nand s,n € Nt, let

Js = {(a7s,v): a=(aj,a,...),s=(s1,82,...),a;,8 € NV veNa >ay > > 1,Zaisi+v:s}
i

and
A=t Y cwnn] [ e@man I [ @@} anal < Gt
(a,5,0)€3 4 i
If h(m) € A%, then for any k € N, we have
(I — B)*h(m) € A*, (12)
where B is an operator defined as Bh(mw) = E{h(#)} where 7 is the empirical distribution of

ii.d.
Xl,XQ,...7Xn ~ T

Proof of Lemma[Z) We begin by proving that (I — B)h(w) € AL. Since h(rm) € AY, let

M= Y o] [ e} TT{ @ nan}

(a,5,v)€Ts

Note that |J,| does not depend on n and | s | < Co(s). It suffices to verify that each individual

term in the sum satisfies
{ [ rwman} ][ eai(x)ﬂdz)}s’] Al

?

(I -B)

Without loss of generality, let a = (a1, ...,a,) ands = (s1,...,5p), s = > +_, s;. Then we have

>?a;s; +v=sand

S

For the term [[?_, {2?21 0%(X;) } i, let m;i) denote the times X; appears with powers a;, then
<

we have 37, mg-i) =s;forl <i

I = qm= (mg‘i))je[n],ie[p]: ng’i) = s; foralli € [p]
j=1

Therefore,
n P n 5 n n
v a; v P aim<vi)
STe(X)ox, (A) p T e (xy) ¢ =D 0(X)0x,(A) 3 D7 eam [[ 1m0 (X)),
j=1 i=1 | j=1 Jj=1 meZs Jj=1
(13)
where



Note that ¢s m does not depend on n. Now we expand R.H.S. of (T3) based on the number of distinct

variables X; appear, i.e., 2?21 ]lZle aimlD>0° which is equal to Z Zp 50" Define
p .
T = {j efn): Y ml > O},
i=1
then we have 1 < |7, | < ¢'.
Hence,
n P n s
B> 0(X)0x,(A) p [T e(x5)
Jj=1 i=1 | j=1
- al I O
=E [{ D0 (X)dx, (4) > e [[ ()
j=1 m=1 meT, j=1
L |~7m|:m
S POID R TN | EEREEES
m=1 meZ, j=1
| Tm|=m
P
== 1)+ (0= Sewme { [ C@tan) } TTE 0N
A i=1
(z)
+ES Y cem Y LU(X1)éx, (A HzE X;)
meZg tETm
‘jm|:5,
s'—1 n ®
P . z
+EQD . D cstﬁ (X0)ax, (4) [T == (x) ¢ (14)
m:1| EII j=1
where ¢ m+ = [[1_; s;!.
The three terms in (T4) are interpreted as follows: we can expand

mov(X, 5X p npe(X B as the sum of many product terms of the
t=1 t j=1 J y P

form ¢ (X,) [0, TT%, Ka ( .. ). The first term in (T4)) corresponds to the partial sum of terms
in which all of X, (X}, )i are distinct. The second term in (T4) corresponds to the partial sum
of terms in which X is identical to one of (X}, ,);; while the latter are distinct. The third term
corresponds to the partial sum of terms in which at least two of (X}, ,);; are identical. The last two
term in (T4) are at least O(n ') factor smaller than the first (due to fewer terms involved in the sum
because of the constraint of having identical terms), while the first term will cancel with I - k()
when applying I — B to h.

Let P(by,...,by,) denote the set of all distinct permutations of the vector consisting of m non-
zero elements by, ...,b, and n — m zeros. Note that even the values of b; may be the same,
we still treat the b;s are distinguishable. Then since Os are identical, we have |P(by,..., by )| =
n(n—1)---(n —m+1) = O(n™). Additionally, for any a and m, we define

p p
= (Z aimgl)7 ey Zann?) .
i=1 i=1
Now we can write (T4) as

n(n—1)-(n—s)cs.m- {/Aev(x }f[l [E{¢™ (X
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DY > Com ) [HE{MX)}] /A 4+ (a)m(de)

bk:z;z/zl br=s—v mM:¥(am)EP(b1,....b,s) it

s'—1

+ > > ComE {sz X,)ox, (A f[lz( )}

m=1 by:3 " bp=s—v m:¥(a,m)eP(by,..., bm)

=) e { [ 20 }H[E{E‘”(X)}]“
+ > O(n* )esm Y {HE{%H(X)}] /A Ot () (da)

b5, be=s—v t=1 | it
LYY owmE {i%’(xt)axt T (Xi>}.
m=1 b:3°M | b=s—v t=1 =1
Therefore,
(I - B) {/Afv(x)ﬂ(dx)} H{/ﬁ“"(m’)w(dm)}&}

_ns/+1—n(n—1)-~-(n—s') Y u a
- ns' +1 Cs,m* {~/A€ (.’E }Z_Hl E{‘g
- Yo 0 Nesmy {H E{£"(X)}

it

0O () (dae

T~

bkzzzl:l bpy=s—v t=1

- i Yo 0™ e mE {ZE” X,)dx, (A Hz (X )}

m=1 b:y " | bp=s—v

o ”(”n;jl) (n—s') { / 0 (x }f[ [E{e* (X)}]™

S SRR 5 [Hw

£t

bk:ZZl:l br=s—v -

- i > 0™ Nesm [H E{¢" (X

m=1 b:y 7" | bp=s—v t=1 |i#t

/ 0O (1) (dex)
A

s'—1

B Z Z O™ )cs m {/Aﬂv(x)w(dx)} ﬂE{gbi (X

m= 1bk2k 1bk S—v

1
e AL

The last inlcusion follows from that fact that {n>"t* —n(n —1)--- (n — §')}/n*+* = O(n~') and
the number of solutions to Y- | by, = s — v does not depend on n but depends on s.

Now we suppose (I2) holds for k. Then we can set

(I - B)*h(r) = e { [ £0) }I[{/eawxm(dx)}si,

(asv VETs
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where |a/, . ,| < Cr(s)n~F. Then for k + 1, we have

(I - B)*+ h(r) = (a’g)jess o) (I~ B) { /A Z“(m)ﬂ(dx)} H { / (9 (2) ﬂ(dx)} N

Since for all a,s, v such that (a,s,v) € Js, {[, ¢*(x)m(dz)} [T, {[ (% (z) 7(dx)}™ € A9, we
have (I — B){ [, ¢*(z)r(dz)} I, { [ ¢* (z) 7(dz)}"" € AL, namely,

(I- B) {/A E”(m)ﬁ(dm)} H {/z (@) ﬂ(dm)}Si

S ab,t,u<a,s,v>{ / e“<:c>w<dx>}H{ / eb%x)w(da:)}ti,

(b,t,u)€Js i
where |ap ¢4 (a, s, v)| < Co(s)n~!. Therefore,
(I = B)**h(m)

- Y o ¥ maao{[ t@man | TT{ [ #o )

(a,s,v)EJs (b, t,u)€Js @
e Ak+L,

B Proof of Theorem 2]

In order to prove Theorem 2] we first make some preliminary observations.

Let function f defined on the simplex A,, = {q € R™ : ¢; > O,Z’]ﬁ:l q; = 1}. Define the
generalized Bernstein basis polynomials of degree n as

bnw(q) = (Z) q”.

Lemma 3. ‘ZVEA,” (v/n— q)abn,u(q)’ < plledh/2,

Proof of Lemma[3] Tt sufficies to show that ’Eue&,” (v — nq)o‘bm,(q)‘ < nllelh/2 Since q €
Ay, we treat T, o = Zueﬁm(u — nq)®*by(q) as a function of the variables ¢1,- - , gm—1.
For any 3 € N™~! such that ||B||; = 1, we letv = v(B8) = (87,0)". Additionally, let 8 =
(0,---,0,1)T € N™. Since

P (v —nq)* = —na” (v — nq)* 7 +na’ (v — nq)*°,
and
9Pbnu(q) = (n> Wq” 7 —1Pq"?)
124
1 1
_ (1 _ Yy — 6
~bopla) { 50 -~ G- |
we have
PTha= > PW-—nqnu(@)+ > (¥—nq)*d®by.(q)
uEAm VEAm
- 0 1 1
= —no Tn,a—'y + na Tn,a—O + qi,yTn,a-i-'y - @Tn,a-l-ea
ie.,

q’y
q'YaBTn,a = _na’yq'yTn,a—ﬂ/ + naeq’yTn,a—B + Tn,a—i—’y - @Tn,a—i-&
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By summing the above equation over 3 € N ~! guch that ||3||; = 1, we have

> Q0T
1Bl =1
Yo 0 v 1-q°
=N Z a'q Tma—'y"‘na Z QT a—6 + Z Tn,a—i—’y - TTn,a—i—B
IBllL=1 1Bll.=1 IBllL=1
Y Y o ] 1- q9
=-n Z a’'q Tn,a—'y + no (1 —-q )Tn,a—e + Z Tn,cx—i—’y - TTn,a—‘,—B
— _ q
IBllL=1 IBll=1
1
=-n Z Q" Thany + 108 (1 =)o — @Tn’,ﬂ_g,
IBll1=1

where the last equality follows from the fact that ZH Bl =1 Tn.at~y + Tnate =0.

Therefore, we have the following recurrence formula:

Tnato =—nq" > o"QTay+n0®(1—q®)Thao—a® > q'0°T,q, (15

8l1=1 Bll1=1
T, _ 9y +na’qT, —na?qT, +qY9°T, (16)
n,o+vy — qg n,a+0 na’'qQ'ina—y na " q'ina—6 q n,o-

Using the recurrence fomrula (T3)), (I6) and the fact that T, (1 o ... o)7 = 0,7, (2,0,...,.0)T = nq1 (1 —

q1), T ,(1,1,0,--,007 = —Nq192, Ty o has the following form by using induction:

Uedlz/2)
Tha= Z nJ(Z cimd"), (17)
Jj=1 nlo

where ¢; ,, is independent of 7. Then we can conclude that |T}, o | < nllli/2) < plledl/2,

Proof of Lemmall] We prove the theorem by induction on k.
For k = 1, by Taylor’s expansion, there exists £ € A,, such that

fE) =fa+ Y FEE -

lleell=1

Then we have

Ba(H(@ ~ f@] = | Y {fC) = (@] bus(@

IN

leran > D |G -a®

lelli=1veA,,

bnw(q)

< ||f||C1(Am) Z Z (7 - q)zabn,u(q)

le|li=1 \ veA,,

Shfllera,y >, nt/?

lefli=1

S flleranyn™2,
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where the second inequality follows from Cauchy—Schwarz inequality, and the third inequality follows
from Lemma[3]

Suppose the theorem holds up through k. Now we prove the theorem for k£ + 1. For k£ + 1, by Taylor’s
expansion, there exists & € A,, such that

=t Y TIDY gy 5o PIEE e
lleelli=1 llexlls=k+1

Then we have

Bn(f)(q) — f(a)

k - y N .
3 2 ‘i“!@(f_q)” v 2 CJ;(E)(i_q)a b (@)

— n n
vel,, |lali=1 llelli=k+1
k
o> v o
= > f,(q) > (= a)%nw(a)
llee[ =1 vEA,,
o~ v o
+ ) i!(g) > (= a)%nw(a)
|ex||1=k+1 veA,,

Therefore,

ol

: _1) 0%f(a) v
(B = DIEDR(f) (@) = Y (B, = DIFHIRITHE ——22 3™ (= — q)%byu(a)

lleli=1

1 ) 021§ v
_ DIiE+n/21-1 ) =2 JS) Z g
+ > (B.-1) 2 —a)u(a)
lex|l1=F+1 vEA,
(18)
First, we consider the first term of the right-hand side of (I8). We know that

(a!)_laaf(q) ZueAm (v/n—a)*bnu(q) € Ck+17”a”1(Am)| since f € C*F'(A,,). By the
induction hypothesis, we have

(Bn—I)[(k+17|‘a|‘l)/2] {80‘ (Q) Z (V—Q)abnyy(Q)}

a!

— n
VEA’VTL
0% f(q) v o B e
Skri-lladhm | o > (= - @)%nw(@) - (k+1-llell1)/2
vEAm cr+1=lel (A,,)
Let
9% f(a) v o
gald) = —— > (- = a)%nu(a),

For any |3| < k + 1 — ||a]|1, we have

Pl = X (D)ortrs@or S -

T 0<v<p

B - v o
S lflowan 5 (2)] 8 T & - arta)
0<y<s N ven, .
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Skr1 ||f||ck+1(Am)n_\|‘3‘\|1/27

where the last inequality follows from the fact that ||0P=Y {Zueﬁm (v/n—q)*bn(q)} Hoo S
n~ll«lli/2 which can be derived by using the form of T}, o in (7).

Therefore, we have

(B, — 1)[(w+1=llall)/2] 5"‘%!(‘1) S (2 - q)®h(a)

~ 'n
veA,, 0
Sk+1 Hf||ck+1(Am)ﬂ7(kH)/2~
Then we consider the second term of the right-hand side of (I8).
—1) 921 (§) v
Z (B, — I)[(+1)/21-1 —= Z (ﬁ — Q)% (q)
lex|li=F+1 veA,, o
— 174
Sk (B = DI i flonany D, Y. ‘(g —q)%|bnv(a)

lalli=k+1veA,,

1/2
_ v
Sk l(Bn = DIFHO2I  fllorra,) D > = a)* ()
\|a\|1:k+1 UeAﬂl
Sketmll(Bu = DI | fll g, yn~ FHD/2,
Finally, we have
k [e3
B. _ )[(+1)/2] < B. — N)[(k+1)/2]-1 9% f(q) Y _ 9@
|(Bo = D2 (@) < S0 |(Ba— 1) LS (Z - ahula)
llellr=1 " veA, -
_1 ) 0%f(8) Ve
+ Z (Bn_I)Hk—H)/?l ! al Z (E_Q) bmu(q)
HorHFkJr1 A

o0

Sk+1,m Z |(Bp — 1) Mell1/21- oo 1Fllcr1(a,)n —(k+1)/2

llexli=1

+ (B = DIV ) fllorsa(a,m
—(k+1)/2

—(k+1)/2

Skrtmlfller+ra,)n

The last inequality holds when || B,, — I || is bounded by a constant independent of n. In fact, ||(B,

Dfllee = supgea,, [(Bn — Df(@)] = supgen,, |Ypea, {Ff@/n) = f(@}tbnw(@)| < 2/f]lo
and || By, —I|oo = supreck(a,)iflw<t |Bn—1) fllooc <supsecria,yifllw<t 2 flle <20 O

Proof of Theorem[2] The first claim follows from Lemma [I] and the fact that
maXge(m] [|9sllc2e(a,,) < G and Exn{ Dy k(gs)(T/n)} = Cr x(gs)(Q)-
Additionally, we have

k

Durtaa = Y

|
—_

k

L)erEe

?g- <.
Il
»—A o

> (, 1) 0@+ Oumot™)

7=0
Js (l) +Oka( 1);
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and

Ex» [{Du(9)(T/m)¥] = 3 {Durlg:)@/m)} b (@)

veA,,

= B, [{Dni(99)}’] (@)
= {Dn,k(gs)(Q)}2 + Ok,m,G(n_l)

= {gs(q) + Ok,m,G(nil)}2 + Ok,m,G(nil)
=95(@) + O mc(n™).

Therefore,
Varxn { D (9)(T/m)} = Exxn [{Da(9)(T/m)}| = [Exo{ D9 (T/m)})*

= 2@ + Opmc(n™h) = {g5(q) + Opm(n )}
= Okym’c(nil).

C Proof of Theorem

Proof of Theorem 3] By Theorem 0l it suffices to let Pxn(z = usly = y*) = Dy, 1:(9s)(T/n).
Moreover, we have y_.* | D, ;(gs)(T/n) = 1. O
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