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Abstract. Deep learning models often fail under adversarial perturbations that are imperceptible to humans [1]. This
vulnerability highlights a gap between machine vision and human perception. We propose a neuroscience-inspired
method that leverages a computational model of the Lateral Geniculate Nucleus (LGN) to guide neural networks
toward perceptually aligned gradient maps. Our approach, called LGN-Aware Regularisation (LGN-AR), integrates
two key components: (i) an LGN-based gradient regularizer that emphasises structurally relevant image features, and
(ii) a noise stability term that encourages robustness to natural variations.

We evaluate LGN-AR on CIFAR-10, CIFAR-100, and MNIST under adversarial settings, including FGSM, PGD
[2], and AutoAttack (AA). On CIFAR-10 with a ResNet-18 backbone, the model achieves 79% accuracy under
FGSM (ϵ = 1/255) and 35% under PGD-10 (ϵ = 8/255). On CIFAR-100, it sustains 49% under FGSM and 17%
under PGD. On MNIST, the model maintains over 97% accuracy against PGD perturbations. Under AutoAttack on
CIFAR-10, LGN-AR achieves 57% accuracy for ℓ2-bounded perturbations (ϵ = 0.5) and 23% under ℓ∞-bounded
perturbations (ϵ = 8/255). These results confirm that LGN-AR improves robustness across datasets and attack types
while remaining computationally efficient. Gradient analyses further show improved perceptual alignment, with lower
LPIPS [3] and better NIQE scores compared to standard models.

To assess generalisation, we conducted preliminary evaluations on ImageNet using both ResNet-18 and ViT
architectures. With LGN-AR, ResNet-18 sustained 48% top-1 accuracy under ℓ∞ PGD-10 (ϵ = 4/255), compared to
43% for the baseline. On the ViT model, LGN-AR improved robustness under AutoAttack by 2–3% across both ℓ2
and ℓ∞ settings. These early results suggest that LGN-AR extends effectively beyond small-scale datasets, offering
consistent robustness improvements across architectures.

Our findings highlight that perceptual priors from human vision [4] can act as effective regularizers for robustness.
LGN-AR offers a lightweight alternative to adversarial training, scales across datasets and architectures, and can be
combined with existing defences for further gains. Future work will explore integrating LGN-AR with adversarial
training to further enhance robustness on large-scale benchmarks.
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Figure 1: Overview of the LGN-AR framework combining cross-entropy loss, LGN-aligned gradient regularizer, and a noise
stability term.
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