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Abstract

Transformer architecture has shown great potential for many visual tasks, including
point cloud registration. As an order-aware module, position encoding plays an
important role in Transformer architecture applied to point cloud registration task.
In this paper, we propose OIF-PCR, a one-inlier based position encoding method
for point cloud registration network. Specifically, we first find one correspondence
by a differentiable optimal transport layer, and use it to normalize each point for
position encoding. It can eliminate the challenges brought by the different reference
frames of two point clouds, and mitigate the feature ambiguity by learning the
spatial consistency. Then, we propose a joint approach for establishing correspon-
dence and position encoding, presenting an iterative optimization process. Finally,
we design a progressive way for point cloud alignment and feature learning to
gradually optimize the rigid transformation. The proposed position encoding is
very efficient, requiring only a small addition of memory and computing overhead.
Extensive experiments demonstrate the proposed method can achieve competitive
performance with the state-of-the-art methods in both indoor and outdoor scenes.

1 Introduction

Point cloud registration is a fundamental research topic in many applications including scene recon-
struction, autonomous driving, robotics, etc. The goal of it is to align two partially overlapped point
clouds by estimating a rigid transformation between them. The commonly used feature-based point
cloud registration involves two aspects: establishing point correspondences and estimating the rigid
transformation. Although it has been widely studied in past decades, it is still challenging due to the
difficulties such as low-overlap, repetitive patterns.

In recent years, learning-based works [28, 44, 50, 8] have made great advances in 3D representation.
In addition to utilizing deep neural networks to learn better local feature descriptions [1, 9, 11], recent
methods [18, 48, 29, 47] try to introduce Transformer [41] architecture to establish correspondences.
One of the most important strategies of Transformer is position encoding, which has been proven
crucial when applying Transformer to many computer vision tasks [22, 34, 35]. However, how to
adopt the position encoding to the domain of 3D point cloud registration is still challenging. Different
from other one-instance tasks (e.g., classification, segmentation and detection), which handle one
image or point cloud in an inference, point cloud registration is a two-instance task. It needs to learn
features of two point clouds simultaneously and match them. Since the two point clouds are under
uncorrelated reference frames, the straightforward position encoding is not a good idea [24].

Recently, some methods attempt to design specific position encoding techniques [26, 24, 29] for
point cloud registration. Geotransformer [29] calculates the relative positions between all points, then
combines the position encoding with self-attention. This approach is equivalent to treating all points
as reference points. It works well, but adds a lot of computational overhead due to the additional

*Corresponding author.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).



calculations about the distance and the angle similarity between
points. DoPE [26] presents an efficient manner to learn a joint-
origin as the reference point for position encoding. However, it
depends on the centroid of point cloud to initialize the joint-origin,
which is susceptible to noise in the low-overlapping scenes.

In this paper, we propose an efficient one-inlier based position
encoding method for point cloud registration. We utilize a rig-
orously defined property of rigid transformation, i.e., it does not
change the length of a vector (isometric isomorphism). As illus-
trated in Fig. 1, (21, y1) and (O, O,) are two correct correspondences, and the lengths of vector 2}
(1 = Oz) and yi (y1 — O,) are equal. Suppose O, and O, are selected as the reference points
respectively, then we can find that (x4, y1) is more likely to be a correct correspondence than (x2, y1)
only by position information without local feature, because the length of 7 is more close than x5 to
that of y7. In this way, position information can benefit the establishing of correspondences when
the local feature is ambiguous. This shows that only one inlier is enough to preserve the spatial
consistency [2, 7] of correct correspondences and ensure the distinctiveness of point-wise features.
Based on this observation, we only expect to find one inlier for position encoding. Specifically, we
adopt the two points of this inlier to normalize each point cloud respectively, then use the normalized
points for position encoding to enhance the feature of each point. The selected inlier plays two roles
in the position encoding: 1) The two points in the inlier see the same spot of the same scenario, so
positional differences caused by reference frames can be compensated based on their normalization.
2) It is feasible to do so to ensure spatial consistency, i.e., the relative spatial correlation between
arbitrary point and the reference point is maintained across the two point clouds.

Figure 1: One-inlier based posi-
tion learning illustration.

However, it is not easy to find an accurate inlier in advance as the reference point, which is a
chicken-and-egg problem because determining the reference point depends on discriminative point-
wise features. Thus, we propose a joint learning approach to optimize both position encoding and
correspondences. It performs an iterative optimization process for finding good correspondences
and position encoding. Specifically, we select multi-inliers by performing a differentiable optimal
transport layer to produce a virtual correspondence instead of directly finding one correspondence,
avoiding the unstable caused by the arbitrary selection. Then the two points corresponding to the
correspondence are considered as the reference points. Next, the reference points are utilized to
further encode point-wise geometric position features, and generate more discriminative features for
point cloud. The updated point cloud features are further used for finding one virtual correspondence
and performing position encoding again. Such circular optimization leads to more explicit position
encoding. Furthermore, we use a progressive approach to gradually align the two point clouds
(reference points), which reduces dependency on initial settings. During each step of the above
optimization process, an estimated transformation is recovered from some correspondences to align
the two point clouds. The position gap between reference points is narrowed in the process of
alignment. We repeat the above step several times, which presents a progressive optimization process.
Fig. 2 shows the overview of the proposed method.

Compared to the previous works on the position encoding for point cloud registration [26, 24, 29],
this kind of strategy mainly has three advantages: 1) It is more reasonable for finding a correct
correspondence than centroid estimation for position encoding, especially in the low-overlapping
scenarios. 2) It is succinct and efficient, and competitive in terms of GPU memory usage and speed,
which has been verified in the subsequent experiments. We only need to find an inlier to efficiently
enhance the distinctiveness of features. 3) It is robust, which reduces the impact of outlier through
constructing a virtual correspondence and avoids the dependency on the initialization through joint
optimization.

In summary, our main contributions are as follows:

* An efficient position encoding with few correspondences for point cloud registration, which
is light-weight and only relies on a few points for accurate position encoding.

* A joint optimization strategy that, optimizes the correspondence establishment and position
encoding with point-wise feature encoding as the agent. By the way, the point cloud features
are also continuously optimized.

* A progressive point cloud alignment approach, which progressively updates the point cloud
positions so as to reduce dependency on initialization.
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Figure 2: Overview of the proposed method. (: Feature reconstruction; &: Point cloud normaliza-
tion; {C}: Matched correspondences). The whole network is designed in a coarse-to-fine architecture
for establishing correspondences by the proposed one-inlier based position encoding. The proposed
position encoding mainly contains the following parts: 1. An inlier learning approach is proposed
to establish correspondences and output two reference points 0x and oy (Sec. 3.3). 2. We utilize
the predicted reference points 0x and 0y to normalize the two point clouds for position embedding
(Sec. 3.3). 3. We leverage the established correspondences to iteratively align point clouds (reference
points 0x and 0y) (Sec. 3.4). Finally, we repeat the above operations L times through continual
feature reconstruction, which presents a progressive joint optimization process (Sec. 3.5).

2 Related Work

Local 3D feature descriptors. Early traditional handcrafted descriptors widely summarize the local
geometry in the form of histogram. Histograms usually contain statistical information such as the
spatial distribution and geometric properties of points [16]. The descriptors represented with the
3D spatial distribution include Spin Image [19], 3D Shape Context [13], etc. Another category of
descriptors includes Fast Point Feature Histograms (FPFHs) [30], SHOT [39], etc. Recent works
attempt to encode 3D local descriptors in a data-driven way. Zeng et al. propose the pioneering work
3DMatch [49], which utilizes 3D Convolutional Neural Networks to encode local descriptors from
local volumetric patches. PPFNet [11] introduces the rotation-invariant Point-Pair Features (PPF)
[12] to encode local descriptors. Follow-up work PPE-FoldNet [10] incorporates FoldingNet [45] as
backbone for unsupervised descriptor learning. 3DSN [15] leverages the voxelized Smoothed Density
Value (SDV) to learn rotation-invariant local descriptors. FCGF [9] first utilizes the sparse 3D fully
convolutional network to extract dense feature descriptors. SpinNet [1] proposes a 3D cylindrical
convolution layer for learning rotation-invariant features.

Learning-based point cloud registration. Deep Closest Point [43] utilizes a graph neural network
to extract point cloud features and a pointer network to predict correspondences. IDAM [23]
proposes an iterative distance-aware similarity matrix convolution module to integrate the feature
and Euclidean space into the point matching. Predator [18] leverages the attention mechanism to
detect the overlapping region for sampling salient feature points. CoFiNet [48] utilizes a coarse-
to-fine strategy for correspondence finding. Lepard [24] utilizes the Rotary positional encoding
[34] to encode 3D positional information for feature learning. NgeNet [51] introduces a multi-scale
architecture to extract features with multiple neighborhood sizes for adaptive selection of feature
scale. REGTR [47] uses transformer to directly predict a set of point correspondences and estimates
the rigid transformation using a variant of the Kabsch-Umeyama [20, 40] algorithm.

Position embedding. The idea of relative positional encodings first appeared in machine translation
[32] and music generation [17]. They produce learned positional embeddings in the self-attention.
DETR [6] applies fixed positional encodings [27, 4] to the input of the transformer architecture
for object detection. Swin Transformer [25] adds relative position biases in similarity computation



of self-attention, improving performance over models without these biases. LoFTR [35] uses the
2D extension of the position encoding to produce position-dependent features for image matching.
DoPE [26] proposes to calculate a joint-origin of all points for point cloud position encoding.
Geotransformer [29] treats all points as reference points to calculate the relative positions between
point pairs and combines them with self-attention to embed positional information into the features.

3 Approach
3.1 Problem Statement

Suppose there are two point clouds: source point cloud X = {x; € R3,i = 1, ..., M } and target point
cloudY = {y; € R3,j=1,..., N}, where M and N are the point numbers of X and Y, respectively.
Our goal is to recover the rigid transformation T = {R, t} that best aligns the two point clouds, where
R € SO(3) represents the rotation component and t € R represents the translation component, as
follows:

argmln Z Hyj (R-x; +t) H27 (1)
(i,5)€C
where C is a set of predicted correspondences between the source and target point clouds.

3.2 Pipeline

Fig. 2 illustrates our overview framework. Following [35, 48, 36], our method employs a coarse-to-
fine manner to find correspondences. In the coarse stage, we first use the KPConv [38] to down-sample

raw input points to uniformly distributed nodes X € RM>3 and Y € RV>*3, and learn the associated

features F ¢ € RMxD apd Fy € RN*D Then coarse correspondences are generated by matching
the nodes. After obtaining the coarse correspondences from the previous stage, we refine them in fine
level. Specifically, we assign each point in the fine level to its nearest nodes in geometry space. Each
node will be expanded into a local patch by the point-to-node grouping strategy [21, 48], and the
patch correspondences can be established by the matching of nodes. For each patch correspondence,
we utilize an optimal transport layer [31] to calculate a soft assignment matrix between the fine-level
points within this patch correspondence, then obtain the fine point correspondences by the mutual
top-k selection. The final point correspondences are collected from all coarse correspondences.

Since the results of fine correspondences mainly depend on the coarse results, our method focuses on
boosting the accuracy of the coarse results. Specifically, an inlier-based position learning approach is
proposed to find an inlier and normalize the point clouds for position embedding (Sec. 3.3). Next, we
leverage the matched correspondences (the byproduct of the "one-inlier" establishing) to progressively
align point clouds (Sec. 3.4). After that, we propose to jointly optimize correspondence establishment
and position embedding bridged by feature reconstruction (Sec. 3.5). Finally, we introduce the loss
function for training the network (Sec. 3.6).

3.3 Inlier-based Position Learning

Inlier learning. As mentioned before, once a correspondence is an inlier, its corresponding points in
the two point clouds can be considered as the reference points respectively. Since the two reference
points are mapped from the same 3D point in different views, the matching points satisfied the
ground-truth rigid transformation can preserve the spatial consistency (e.g., the spatial distance and
orientation) relative to the respective reference points across the two point clouds. Thus, only one
inlier is desired to compensate for the difference in 3D spatial position because the two point clouds
in different reference systems can be normalized by the two points of the inlier. Given that the inlier
is preemptively agnostic, our approach is mainly devoted to the mining of one correct correspondence.
The cross-attention [41, 31] can encode the geometric consistency across the two point clouds by
integrating the features of the other point cloud. We use it to enhance the distinctiveness of features.
Formally, given the coarse features F ¢ and Fy-, we use learnable matrices W, to project the F ; to
query q, and use (W, W,,) to project Fy- to key and value (k, v) as follows:

4 = Fg,Wo ky =Fy Wi, v; = Fy, Wo, @

where Wq,Wk,W € RP*D.  The coarse feature F)? is updated by F/~ = Fg +

MLP(Z _1Q;;V;), where a;; = softmax(qzij /V/ D) is the feature similarity score between



Fy and Fy . MLP(-) denotes a fully connected network. The cross-attention features for Fy are
computed and denoted in a similar way. Following the cross-attention we use a self—attentlon to
aggregate the global context, which updates features in a similar way like cross-attention, but is
performed inside the source and target point cloud independently.

After obtaining the strengthened features F/)”( and F'{, we leverage a differentiable optimal transport

to find good correspondences. We compute the similarity matrix S € RMXN petween F’X and F’f,
& T
Sij =F Fy 3)

then we append a new row and a new column as in [31], filled with a learnable dustbin parameter
a. The Sinkhorn algorithm [33] is adopted on S for searching the best solution of the optimal
transportation problem. Finally, we obtain the soft matching scores S € RMXN petween the X and
Y by dropping the last row and the last column of S. Intuitively, the higher the matching score, the
higher the probability that the associated correspondence is an inlier. But it is not always true due to
the widely existing repetitive structures, textureless structures, etc. In order to enhance the robustness
of the proposed algorithm and reduce the bias caused by the above issues, we propose to pick multiple
reliable correspondences Ci,p; With higher matching scores via top-k selection strategy. We use the
selected correspondences to produce a virtual correspondence by an averaging operation of the point
coordinates. The corresponding points of the virtual correspondence are regarded as the reference
points 0 = {ox, 0y }, where the 0x, oy denote the reference point in source and target point cloud,
respectively.

Position embedding. After obtaining the reference points o, they are utilized to normalize the two
point clouds respectively. Specifically, we use them to calculate point-wise position vector relative to
the respective reference point for each node in the two point clouds:

V(ii) = X; — Ox, V(i’j) = yj — Oy. €]

Once the reference points and (X;, 57]-) are inliers, i.e., they both meet the ground-truth rigid transfor-
mation between the point clouds, then the two vector V(X;), V(y;) satisfy the isometric isomorphism
property. It means that the isomorphism of X; or y; maintaining constant distance with respect to the
respective reference point in different reference frames. Based on this property, the point-wise vectors
normalized by the reference points are fed into position embedding layer for feature reconstruction.
Specifically, we use an MLP with 4 hidden layers of feature size being 256 on each individual
vector, and output an embedded geometric position feature. Formally, for vector V(X;) and V(yj) the
corresponding feature is denoted as P(V(x;)) and P(V(y;)), separately. Then we use the embedded
geometric position features to enhance the distinctiveness of the node features. In a simple and
effective manner, we strengthen the node features by directly adding the geometric position features
to the primal features, i.e., Hg, = F/)”( +P(V(x)), Hy = F/Yj +P(V(y;))-

3.4 Progressive Point Cloud Alignment

As mentioned before, the main challenge of position encoding is that the two point clouds are
generally under irrelevant reference frames. We further solve this challenge by progressively aligning
the point clouds in coordinate space. We expect to recover a rigid transformation with reliable
correspondences Cq,,, to make the position encoding easier.

Position update. After obtaining the coarse correspondences Cy,px, With relatively higher matching
scores, we use them to estimate the current optimal transformation T;. Specifically, given the coarse
correspondences Ctopk and corresponding matching scores, we use weighted SVD [5] to estimate the
current optimal transformation T;. Then we use the estimated T; = {Ry, t;} to update the relative
position between two point clouds:

xi, =Ry x; +t),x, €eX,i=1,..., M. (5)

Naturally, the reference points, i.e., the centroids 0 of the selected patches in the two point clouds
have also been updated: ~ ~

ox, = (Rt -ox + tt), (6)
where 0x, represents the transformed reference point of the source point cloud. As the two point
clouds are roughly aligned by the estimated transformation, the position vectors of the two points in



each correct correspondence tend to be consistent. Thus, the encoded position feature can provide a
more positive effect for establishing correspondences.

Progressive alignment. We repeat the above operation leveraging the enhanced features during
the joint optimization (see Sec. 3.5) to progressively update the relative positions between the
two point clouds. Specifically, every time before the position encoding operation, we perform an
alignment between the two point clouds. We utilize the enhanced features to rebuild some reliable
correspondences Ctopk and re-estimate the current optimal transformation T, for the alignment.
Intuitively, the enhanced features are more distinctive than original features, so the latter estimated
transformation is more accurate than that in previous stage. Thus, multiple transformations enable the
two point clouds to be progressively aligned in coordinate space. In this way, the position encoding
can also be optimized in the progressive alignment process.

3.5 Jointly Optimizing Position Encoding and Correspondences

Inlier learning and position encoding of the point clouds is a chicken-and-egg problem: the proposed
position encoding for learning distinctive node features would require the knowledge about at least
one correct correspondence; but meantime, establishing one accurate correspondence also relies
on the correct position encoding of the point clouds for feature reconstruction. Either of them
is hard to be solved in advance. In order to tackle this circular problem, we propose to jointly
optimize the correspondences and position encoding by multiple feature rebuilding. As shown in
Fig. 2, we incorporate the position encoding into the process of the node feature learning. We
construct it together with inlier learning as a joint optimization task, with a view to improving
the accuracy of coarse correspondences by enhancing the discrimination of position encoding.
Specifically, the joint optimization is performed by enhancing the features of point clouds with 3D
positional information. The updated more accurate vectors V(X;), V(y,) with respect to the selected
reference points facilitate better node feature encoding, which contributes to finding one more accurate
correspondence. Meanwhile, the more accurate correspondence means better reference points 0,
which enables that the updated vectors V(X;), V(y,) gradually satisfy the isometric isomorphism
property. It will result in more discriminative node-wise features. During the above process, the
features of the point clouds are continuously optimized.

3.6 Loss Functions

The training loss function £ = L. + L is composed of the coarse correspondence loss £, and fine
correspondence loss L.

Coarse correspondence loss. To supervise the patch-wise feature descriptors for coarse correspon-
dences, we follow [18, 29] and use a variant of the circle loss [37]. Considering again an point cloud
pair X and Y, we first pick the patch Pz( (denotes the patch corresponding to the node x; € X) that
has at least one positive patch in Y to form a collection of patches P. For each patch P? € P, the
set of its positive (share at least 10% overlap) and negative (do not share overlap) patches in Y are

denoted as ¢, and &;,, respectively. The loss of coarse correspondence on X is then calculated as:

|P|
X By (d] =Ap) Bt (BAn—dy)
= gy el 4 30 A 5 e "
PYee], P} eel,
where dg = HH %, — Hy, H represents the distance in feature space, and /\z = (03 )2, and o{ denotes
: 2

the overlap ratio between Pf and P}. A, A, are positive and negative margins, respectively. The
weights for each positive and negative sample are calculated individually: ﬁ;,’j = 'y(d{ — Ap) and
Bik = ~(A,, — d¥), with the empirical margins A, = 0.1, A,, = 1.4. 7 is a hyper-parameter. The
loss £Y on Y is computed in the same way. The total loss is £. = (LX + L£Y)/2.

Fine correspondence loss. For fine correspondence, we first determine the ground-truth coarse
correspondences using the ground-truth relative transformations. Then we extract a set of ground-
truth fine correspondences M; in each correspondence patches. We label the unmatched points in

this two patches as Z; and .7;. The fine correspondence loss is computed as:

1 C

L= e ( Z loglf’;_’y + Z logf’;ynﬁl + Z logf’;l+17y), (8)

=1 (z,y)eM; z€Z; yeT;



where C' is the number of the patch pairs. P € R(mi+1)x(ni+1) ig the soft assignment matrix of the
i-th patch correspondence. m; and n; represent the number of the fine level points in this patch pair.

Table 1: Evaluation results on 3DMatch and 3DLoMatch datasets.

3DMatch

RR (%) 1 FMR (%) 1 IR (%) 1
# Samples  |5000 2500 1000 500 250 |5000 2500 1000 500 250 [5000 2500 1000 500 250

3DSN [15] |784 762 714 67.6 50.8/95.0 943 929 90.1 82.9|36.0 325 264 215 164
FCGF [9] |85.1 84.7 83.3 81.6 71.4/97.4 973 97.0 96.7 96.6|56.8 54.1 48.7 42.5 34.1
D3Feat [3] |81.6 84.5 834 82.4 77.9/95.6 954 945 94.1 93.1139.0 38.8 404 415 41.8
SpinNet [1] | 88.6 86.6 85.5 83.5 70.2197.6 97.2 96.8 95.5 94.3|47.5 447 39.4 339 27.6
YOHO [42] |90.8 90.3 89.1 88.6 84.5/98.2 97.6 97.5 97.7 96.0| 64.4 60.7 55.7 46.4 41.2

REGTR [47] 92.0

descriptor

% Predator [18] | 89.0 89.9 90.6 88.5 86.6|96.6 96.6 96.5 96.3 96.5|58.0 58.4 57.1 54.1 49.3
& CoFiNet [48] | 89.3 88.9 88.4 87.4 87.0/98.1 98.3 98.1 98.2 98.3|49.8 51.2 519 522 522
.g GeoTrans [29]]92.0 91.8 91.8 91.4 91.2/197.9 979 979 979 97.6|71.9 75.2 76.0 82.2 85.1
5 Ours 924 919 91.8 92.1 91.2|98.1 98.1 97.9 984 98.4|62.3 652 66.8 67.1 67.5
3DLoMatch
RR (%) FMR (%) 1 IR (%) T

# Samples  [5000 2500 1000 500 250 [5000 2500 1000 500 250 |5000 2500 1000 500 250
.. 3DSN[15] |33.0 29.0 233 17.0 11.0|/63.6 61.7 53.6 452 342|114 10.1 80 64 48
% FCGEF [9] 40.1 41.7 38.2 354 26.8|76.6 754 742 71.7 67.3|21.4 200 17.2 14.8 11.6
‘5 D3Feat[3] |37.2 427 46.9 438 39.1/67.3 66.7 67.0 66.7 66.5|13.2 13.1 14.0 14.6 15.0
é SpinNet [1] |59.8 54.9 483 39.8 26.8|753 749 72.5 70.0 63.6/20.5 19.0 163 13.8 11.1

YOHO [42] |65.2 65.5 63.2 56.5 48.0|79.4 78.1 763 73.8 69.1|25.9 233 22.6 18.2 15.0

REGTR [47] 64.8 - -
% Predator [18] | 59.8 61.2 62.4 60.8 58.1|78.6 77.4 76.3 75.7 75.3|26.7 28.1 28.3 27.5 25.8
& CoFiNet [48] | 67.5 66.2 64.2 63.1 61.0|83.1 83.5 83.3 83.1 82.6|24.4 259 26.7 26.8 26.9
5

& GeoTrans [29]] 75.0 74.8 74.2 74.1 73.5|88.3 88.6 88.8 88.6 88.3|43.5 45.3 46.2 52.9 57.7
Ours 76.1 754 75.1 74.4 73.6|84.6 85.2 855 86.6 87.0|27.5 30.0 31.2 32.6 33.1

4 Experiments

We evaluate our approach on indoor 3DMatch [49] and 3DLoMatch [18] benchmarks (Sec. 4.1),
and outdoor KITTI odometry [14] benchmark (Sec. 4.2). The point cloud pairs in 3DMatch have >
30% overlap, while those in 3DLoMatch have low overlap of 10% ~ 30%. KITTI odometry is an
outdoor driving scenario sparse point cloud dataset acquired by LiDAR. Details about the datasets
and implementation are provided in the supplementary material.

4.1 3DMatch and 3DLoMatch

Metrics. Our main metric, related to the practical purpose of point cloud registration, is Registration
Recall (RR), i.e., the percentage of point cloud pairs whose transformation error (RMSE) is below
0.2 m. It is the most important metric in point cloud registration task [18, 48], because it directly
measures the final registration performance. Following [3, 18], we also report Feature Matching
Recall (FMR), i.e., the fraction of point cloud pairs whose Inlier Ratio is larger than 5%, and Inlier
Ratio (IR), defined as the fraction of correct correspondences (residuals are less than 0.1 m under the
ground truth transformation) among the putative matches.

Comparisons to the state-of-the-art approaches. We compare the registration results of our
method with recent state-of-the-art approaches including: 3DSN [15], FCGF [9], D3Feat [3], SpinNet
[1], YOHO [42], Predator [18]%, CoFiNet [48], REGTR [47] and GeoTransformer (GeoTrans in the
table) [29] in Tab. 1. We report the results under different numbers of sampled correspondences. Since
REGTR [47] needs to take all the final downsampled points for transformation estimation instead
of sampling, we only provide the results in the original paper. Following [3, 18], we run RANSAC-
50k to estimate the rigid transformation. When compared with local 3D descriptors, our method
outperforms all the approaches on both datasets. For end-to-end methods, the proposed method and

2The Predator had a bug in its initial version, we provides the updated results in its corrected version.



GeoTransformer [29] outperform other methods by a large margin on all the metrics, especially in the
low-overlap scenarios (3DLoMatch). This is because our method and GeoTransformer both consider
the position information in the network, which demonstrates the importance of position encoding for
point cloud registration.

It is worth noting that our method performs worse than GeoTransformer [29] on Inlier Ratio (IR).
However, when referring to the most important metric Registration Recall (RR) which better reflects
the final performance on point cloud registration, the proposed method achieves the state-of-the-art
performance. It can be explained by the fact that the inlier rate is not total positively-correlated with
the registration recall. As pointed out in [18, 48, 29], besides the inlier rate, the other important issue
for registration is the sparsity of the correspondences. Aggregated inliers may improve the inlier
rate, but are not necessarily beneficial for the registration. Since our position encoding can introduce
spatial consistency, it is possible to find matching pairs that cannot be found by local features alone.
Thus, although the inlier rate of our method is not the highest, our method still achieves the best
performance in terms of Registration Recall.

3DMatch 3DLoMatch
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Figure 3: The scene distribution in different inlier ratios of Ctopk on 3DMatch and 3DLoMatch.

Initialization and optimization. Our method performs an iterative optimization for finding refer-
ence points and reconstructing features. In order to clearly show the effectiveness of the optimization
process, we count the scene frequency of different inlier ratios in the initial and optimized Cy,pi
(described in Sec. 3.3) and provide the histograms of scene distributions in Fig. 3. Specifically, we
compute the inlier ratio of the initial and optimized C;.,y, respectively for each scene on 3DMatch
and 3DLoMatch datasets. Then we count the number of scenes with different inlier ratios of Cyopi
on both datasets and present them in percentage form. In the initial stage, we only use the features
learned by the backbone to find Cy,,r. On 3DMatch dataset, the inlier ratio is between 0.7 and 1.0 in
most scenarios, and that of 3DLoMatch dataset is about O to 0.8. This shows that the initial backbone
features in most scenes are enough to provide acceptable initial reference points. After the joint
optimization, the node-wise features are reconstructed with the normalized 3D positional information.
The inlier ratio is increased to 0.9 ~ 1.0 on the 3DMatch dataset, and the inlier ratio in most scenes
of 3DLoMatch is raised to 0.6 ~ 1.0. It demonstrates that the proposed optimization method can
significantly improve the matching accuracy of the reference points. Furthermore, we visualize the
iterative alignment of the reference points (red and green patches) in Fig. 4. This indicates that the
alignment error between two reference points gradually decreases during the optimization process.

Computing overhead and runtime. We Table 2: Evaluation of parameters [M], GPU memory
evaluate the parameters, GPU memory us- [GB] and runtime [s] on 3DMatch and 3DLoMatch.

age and runtime of our method. Tab. 2 Methods

. . Params Mem. Time
shows the comparison results with other Model Pose Total
mthods. Cons?dering the practical appli- D3Feat 3] 573 726 0.0449 1832 1877
cation, we provide the peck of GPU mem- 2y, 0 ¢, 743 778 0.0468 2.666 2713
ory usage. On parameters, GeoTransformer CoFiNet [48] 548 372 0218 0.705 0.923
[29]is 27% more than ours, but our method e ransformer [20]| 9.83 12.73 0.247 1.743 1.99
still achieves a competitive registration ac- Ours 775 485 0.141 0414 0.555

curacy compared to it and significantly out-
performs other methods. On GPU memory usage, our method ranks 2nd only behind CoFiNet [48],
and is only about 40% of GeoTransformer’s [29]. With such low memory usage, our method still
achieves the state-of-the-art registration performance. On runtime, our method achieves the fastest
registration speed. This demonstrates the superiority of our method in both accuracy and speed.
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Initial | 1st iteration | 2nd iteration | Ground truth

Figure 4: Qualitative process of the iterative alignment.

4.2 KITTI

Metrics. Following [18], we evaluate our

method with three metrics: 1) Relative Rotation Table 3: Evaluation results on KITTI odometry.

Error (RRE), the geodesic distance between esti- Methods |RTE(cm) | RRE (°) | RR(%) 1
mated and ground-truth rotation matricgs, 2) R.el- 3DFeat-Net [46] 259 0.25 96.0
ative Translation Error (RTE), the Euclidean dis- FCGF [9] 95 0.30 96.6
tance between estimated and ground-truth trans- D3Feat [3] 72 0.30 99.8
lation vectors, and 3) Registration Recall (RR), SpinNet [1] 9.9 0.47 99.1
which has mentioned before, the thresholds are Predator [18] 6.8 0.27 99.8
set as RRE < 5° and RTE < 2m. CoFiNet [48] 8.5 0.41 99.8
Registration results. In Tab. 3, we compare CeoTransformer [29]) 6.8 0.24 99.8
our method with state-of-the-art approaches, in- Ours 6.5 0.23 9.8

cluding: 3DFeat-Net [46], FCGF [9], D3Feat [3], SpinNet [1], Predator [18], CoFiNet [48] and
GeoTransformer [29]. Our method performs the best for all metrics, which proves that our method is
scene-agnostic and maintains good registration accuracy in strongly differing scenarios.

4.3 Ablation study

Table 4 shows the results of the ablation studies on the 3DMatch and 3DLoMatch datasets. We
remove one component at each time from the complete pipeline (Full) to measure the corresponding
contribution. Removing the progressive alignment leads to lower Registration Recall on both datasets,
which means that aligning reference points in 3D space is beneficial for more accurate positional
embedding. Without the joint optimization, the error of the estimated rigid transformation drastically
increases and the matching inlier ratio decreases significantly. The joint optimization plays an
important role in learning discriminative features. It avoids a lot of incorrect matches arising from
3D structural ambiguity. Finally, we replace the proposed one-inlier based position encoding with the
centroid based position encoding, i.e. using the centroids as reference points instead of learning an
inlier. Since the centroids do not constitute a correct correspondence for a pair of partially overlapping
point clouds, this alternative results in worse performance.
Table 4: Ablation study for each component, tested with # Samples = 5000.

| 3DMatch | 3DLoMatch
Methods |RR(%) 1T FMR(%) 1+ IR(%) T |RR(%) T FMR(%) 1 IR(%) T
Full 92.4 98.1 62.3 76.1 84.6 27.5
w/o progressive alignment 91.4 98.2 61.8 74.2 84.1 27.1
w/o joint optimization 91.1 97.5 58.9 72.6 83.6 25.7
w/o associated reference points | 89.8 97.2 57.1 69.8 82.7 24.2

4.4 Relationship between the registration and correspondences

In order to analyze the relationship between the registration results and the established correspon-
dences, we count the scene frequency of different inlier ratios for Geotransformer and our method,
and present the curve charts of scene distributions in Fig. 5. Specifically, we count the number
of scenes with different inlier ratios on 3DMatch and 3DLoMatch datasets, and present them in
frequency form. Besides, we also calculate the scene registration recall of different inlier ratios and
provide the curve charts in Fig. 6. On 3DMatch dataset, the inlier ratio of our method is between 0.2
and 0.9 in most scenarios, while the inlier ratio of Geotransformer is about 0.5 to 1.0. On 3DLoMatch,
the inlier ratio of most scenarios for our method is between 0.05 and 0.6. For Geotransformer, it has
more scenarios where the inlier ratio is 0.5 ~ 0.9. In fact, the inlier ratio is counted by averaging all
the point cloud pairs. Geotransformer [29] has higher inlier ratio in some scenarios, which causes the
mean inlier ratio to be higher than ours. However, higher inlier ratio is not a necessary condition for
high registration recall. As show in the Fig. 6, we can observe that our method can achieve better



registration recall than Geotransformer with the same inlier ratio (especially the interval [0.15, 0.5]
on 3DLoMatch dataset), which shows that the inliers of our method may be better distributed for
model estimation.
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Figure 5: The scene distribution of different inlier ratios on 3DMatch and 3DLoMatch datasets.
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Figure 6: The scene registration recall of different inlier ratios on 3DMatch and 3DLoMatch datasets.

5 Conclusion

In this paper, we have introduced a simple but efficient position encoding for point cloud registration.
In contrast to previous methods that rely on a lot of computing resources or need to meet stringent
conditions, our method is light-weight and easy to implement. Our method only relies on a few
correspondences: we show that one inlier is enough to realize accurate position encoding for
learning distinguishable features. We utilize a differentiable optimal transport layer to find a good
correspondence, which normalizes each point for position encoding. It builds a reliable bridge
between point clouds in different reference frames, and preserves spatial consistency to reduce
feature ambiguity. Besides, we propose a joint optimization between correspondence establishment
and position encoding, and along with that, the point cloud features are also iteratively optimized.
Furthermore, a progressive alignment approach is proposed to update point cloud positions and
features alternately. The proposed method achieves a competitive registration performance with more
complex state-of-the-art pipelines on indoor and outdoor datasets.

Limitations. Our method adopts a coarse-to-fine manner to find correspondences. However, the final
point correspondences are largely subject to the coarse correspondences. Once a patch correspondence
is incorrect, it would result in incorrect point correspondences. These incorrect point correspondences
would have a potential negative impact on the final registration accuracy. Besides, our method would
fail in the case of the overlapping region between two point clouds is too small or the overlapping

region is ambiguous structure. A possible solution is to expand the overlapping region via point cloud
completion.
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