Neurocomputing 275 (2018) 2374-2383

journal homepage: www.elsevier.com/locate/neucom

Contents lists available at ScienceDirect

Neurocomputing

A two-stage ensemble method for the detection of class-label noise

@ CrossMark

Maryam Sabzevari*, Gonzalo Martinez-Mufioz, Alberto Suarez

Computer Science Department, Escuela Politécnica Superior, Universidad Auténoma de Madrid, C/ Francisco Tomds y Valiente, 11, Madrid 28049, Spain

ARTICLE INFO

Article history:

Received 3 August 2017

Revised 3 November 2017
Accepted 5 November 2017
Available online 10 November 2017

Communicated by Prof. Dianhui Wang

Keywords:

Noise detection
Ensemble learning
Subsampling
Robust classification

ABSTRACT

The properties of bootstrap ensembles, such as bagging or random forest, are utilized to detect and han-
dle label noise in classification problems. The first observation is that subsampling is a regularization
mechanism that can be used to render bootstrap ensembles more robust to this type of noise. Further-
more, appropriate values of the sampling rate can be estimated using out-of-bag data. A second obser-
vation is that the ensemble classifiers tend to make more errors in incorrectly labeled instances. Thus,
instances for which a sufficiently large fraction of ensemble predictors err are marked as noisy. Suit-
able values of this threshold, which are problem dependent, are determined by cross-validation using a
wrapper method. Instances identified as noisy can then be either filtered (i.e. discarded for training), or
cleaned by correcting their class labels. Finally, an ensemble is built afresh on these cleansed training
data. Extensive experiments in classification problems from different areas of application show that this
procedure is effective to build accurate ensembles, even in the presence of high levels of class-label noise.

Random forest

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The presence of noise, which is often unavoidable in real-world
settings, is an important nuisance factor that needs to be taken
into account in the design of learning algorithms [5,20]. Two types
of noise can be found in the data used for automatic induction:
class-label and feature noise [20]. Except when the latter is very
strong, the presence of erroneous class labels is generally more
harmful for learning and generalization [20]. According to its sta-
tistical properties label noise falls into three categories [5]. In the
Noisy Completely at Random (NCAR) model the probability of a mis-
labeled instance is uniform in feature and class spaces. In the Noisy
at Random (NAR) model, the probability of mislabeled instances is
independent of the feature values, but depends on the class. Fi-
nally, in the Noisy Not at Random (NNAR) models there are depen-
dencies between the class-label noise, and both feature and class
values. In this work, we assume that the noise is completely at ran-
dom. Nevertheless, the method proposed can be readily adapted to
take into account other types of class-label noise.

One way of alleviating the effects of noisy data is to incorpo-
rate some regularization mechanism into the design of the learning
algorithm [2,6,18]. Another approach is to carry out a preprocess-
ing step in which noisy instances are identified. These instances
are then either discarded (filtering), or their class label corrected
(cleaning) so that they do not interfere in the learning process [5].

* Corresponding author.
E-mail address: maryam.sabzevari@uam.es (M. Sabzevari).

https://doi.org/10.1016/j.neucom.2017.11.012
0925-2312/© 2017 Elsevier B.V. All rights reserved.

In this work, we combine both strategies using randomized ensem-
bles. Our goal is to take advantage of the robustness of bootstrap
ensembles, such as bagging and random forest, to handle noise.
Specifically, we will use subsampling as a regularization mech-
anism, which allows one to build ensembles that are robust to
class-label noise [13,14]. Another observation is that the individual
classifiers in the ensemble tend to make more prediction errors
on incorrectly labeled instances. Therefore, the fraction of incor-
rect ensemble predictions can be used as an indicator to detect
noisy instances. Standard ensemble-based approaches to this prob-
lem remove instances for which more than half of the votes are
incorrect (majority filtering) or where all votes are incorrect (con-
sensus filtering). However, these choices need not be optimal. In
this work, we propose to use a wrapper method to determine a
near-optimal value for the percentage of incorrect votes necessary
to identify a noisy instance.

The structure of the work is as follows: In Section 2, we present
a review of previous work on learning from incorrectly labeled
data. Particular emphasis is given to the use of subsampling to im-
prove the robustness to class-label noise of bootstrap ensembles.
The conclusions of this analysis are applied in Section 3 to the de-
sign of a method for noise detection. In Section 4, we present the
results of an empirical evaluation of the proposed procedure and
a comparison with other state-of-the-art noise detection methods.
Finally, the conclusions of this work are summarized in Section 5.

https://doi.org/10.1016/j.neucom.2017.11.012
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2017.11.012&domain=pdf
mailto:maryam.sabzevari@uam.es
https://doi.org/10.1016/j.neucom.2017.11.012

M. Sabzevari et al./Neurocomputing 275 (2018) 2374-2383 2375

2. Previous work

The problem of induction from noisy data has been extensively
addressed in the area of ensemble learning [2,5,6,13,14,18]. Further-
more, as illustrated by recent implementations [8], these methods
can be scaled to deal with class-label noise in large problems. Early
on in the literature on ensembles, it was noted that the accuracy
improvements of an ensemble with respect to a single learner are
generally smaller when the training data are contaminated with
class-label noise [1]. However, ensembles are generally more ro-
bust to this type of noise than single learners. In [3], an ensemble
of three classifiers (a univariate decision tree, a k-nearest neigh-
bor and a linear machine) is used to identify noisy instances. The
noise detection protocol in this method is as follows: The training
set is partitioned into 4-folds. Then, an ensemble is trained using
three of these folds. The ensemble is then used to identify noisy
instances in the fold not used for training. In this study, two filter-
ing strategies are considered: majority filtering and consensus fil-
tering. In majority filtering, a particular instance of the left-out fold
is identified as noisy when the predictions of more than half of the
learners are erroneous. The consensus filtering rule is more con-
servative. An instance is categorized as noisy when all the mem-
bers of ensemble misclassify it. This process is repeated for each
fold to identify noisy instances in all 4 folds. In this study, ma-
jority filtering exhibits better overall performance than consensus
filtering. In [9] a similar approach is used, albeit with an ensemble
of 25 classifiers of different types. The increased diversity of this
heterogeneous ensemble reduces the risk of false positives in the
noise detection process. In addition, different intermediate strate-
gies between majority and consensus filtering are explored. In the
problems investigated, the optimal threshold of erroneous ensem-
ble predictions used to identify an instance as noisy was close to
consensus filtering.

In [17], an ensemble of Top-down Induction of Logical Decision
Trees (Tilde) is used to filter the training data. In this study ei-
ther cross-validation or bootstrap sampling are used to generate
the training sets on which the base learners are built. Majority and
consensus filtering are then applied to identify noisy instances. The
best results are obtained with majority filtering. In addition, the
use of boosting in noise detection problems is explored. The idea
is to filter out instances whose weights are above a threshold after
a predefined number of iterations of the boosting algorithm. In the
problems investigated, this strategy does not perform well.

In [21], a distributed method for large datasets is presented. In
this method, the original training set is partitioned into small sub-
sets. A classifier is induced from each of the these subsets. These
classifiers are then used to classify the instances in the complete
training set. The local error of an instance is defined as the frac-
tion of classifiers whose training data included that particular in-
stance and misclassified it. The global error for an instance is com-
puted using the classifiers that did not include that instance in
their training sets. Majority and consensus filtering are used to
identify noisy instances. A necessary condition for an instance to
be identified as noisy is that it be misclassified by the base learn-
ers whose training sets induced it. The justification is that a classi-
fier has usually higher accuracy on instances that are in its training
set. In this work, majority filtering is found to yield better results
than consensus filtering.

In [19], a noise detection strategy that combines ideas from
bagging and boosting is investigated. In this method, all train-
ing instances are initially assigned equal weights. Then, bootstrap
samples from the original training data are used to build differ-
ent classifiers. For each instance a noise count is computed as the
number of base learners that have misclassified the instance. The
noise count is used in a boosting-like iterative process in which
the weight of the instances with higher noise counts is decreased.

This process is iterated for a predefined number of rounds. Finally,
instances whose noise count values are higher than a threshold are
labelled as noisy. Ensemble methods based on ranking have been
explored in [15]. In this work, instances are ranked according to
the number of base learners that make incorrect predictions. In
the medical dataset analyzed, a domain expert singles out the in-
stances with highest ranks for further analysis. Expert knowledge
is then used to determine the type of anomaly of the instances
with the highest ranks (labeling error, outlier, complex medical
case, etc.).

In most of the noise detection methods based on ensembles,
majority or consensus filtering are used. Majority filtering was
found to be better than consensus filtering in most studies in
which homogeneous ensembles were used [3,16,17,21]. By contrast,
in small heterogeneous ensembles, agreement rates close to con-
sensus filtering seem to be more effective [9,16]. A qualitative ex-
planation of this observation can be given: In homogeneous en-
sembles the base learners are of the same type. Diversity is com-
monly obtained using randomization strategies, such as bootstrap
sampling (e.g. in bagging and random forest). Thus, the decision
boundaries of the individual classifiers are similar to each other.
In fact, the decision boundary is a refinement of the decision bor-
der of the individual base learners [12]. Therefore, noisy examples
close to this decision boundary can be detected only if majority
voting is used. By contrast, in heterogeneous ensembles, the de-
cision borders are more varied because the individual classifiers
are of different types. For this reason the dispersion of class labels
assignments may simply reflect this variability. In consequence,
higher agreement rates should be used to mark an instance as
noise. In summary, the optimal agreement rates for noise detection
depends on the classification problem and type of ensemble. How-
ever, as far as we are aware, the influence of the agreement rate
on the effectiveness of the noise detection method has not been
systematically evaluated hitherto.

3. A wrapper method for class-label noise detection

In this work, ensembles are used to detect and handle noise
in the class labels of the training instances. We focus on ran-
domized ensembles, such as bagging and random forest, in which
the individual classifiers are trained on bootstrap samples of the
original data. The design of the algorithm leverages two observa-
tions: The first one is that reducing the sampling rate in the boot-
strapping step can make the ensemble more robust to class-label
noise [13,14]. A second observation is that the fraction of erro-
neous predictions by the ensemble classifiers necessary to detect
noisy instances depends on the classification task at hand. There-
fore, the value of the threshold 6 used to mark an instance as noisy
should be estimated for each problem during the training phase.
The method proposed proceeds in two stages: First, the optimal
sampling rate for the bootstrapping step in the construction of the
ensemble is determined using out-of-bag data. Then, the optimal
threshold for disagreement between the ensemble predictions and
the actual class of the instance is determined by means of a wrap-
per method. Finally, instances labeled as noise are either removed
(filtering) or relabeled (cleaning) and an ensemble is built afresh
from the cleansed training data.

The pseudocode of the method is detailed in Algorithm 1. In
the first stage of the algorithm (steps 1-8 in Algorithm 1), ensem-
bles are built using different values of the sampling rate: 0.1, 0.2,
04, 0.6, 0.8, 1.0, and 1.2. From these, H;, the ensemble that is ex-
pected to generalize best is selected and kept for the next phase.
In our implementation, out-of-bag instances are used to estimate
the generalization error and carry out this selection. In this way,
an unbiased selection is achieved, independently of the amount
of noise present in the dataset. According to empirical evidence

2376 M. Sabzevari et al./Neurocomputing 275 (2018) 2374-2383

Algorithm 1: Noise detection using bootstrap ensembles.

Input: D;4in = { (X, yn)};\l‘:’?l"“ % Training set
bootstrap_ensemble % Bootstrap ensemble method
T % Ensemble size
wrapper_learner % Wrapper learner method
cleanse_type % either filtering or cleaning
Output: D jeansed % Cleansed set

min_error < oo % determine optimal sampling rate
foreach sampling rate in [0.1,0.2,0.4,0.6,0.8,1.0,1.2] do
Hy < bootstrap_ensemble(Dyyqin, Sampling_rate, T)
error < estimate_error (Hy, Dyrqin)
if error < min_error then

min_error < error

sampling_rate* < sampling rate

H—T— <« HT

0 N U R W N =

9 min_error < oo % determine optimal disagreement rate
10 foreach 6 in [0.5,0.6,0.7,0.8,0.9,1.0] do

n Deleansed < cleanse_with_oob(Dyqin, cleanse_type, Hy, 0)
12 error < cv_error(wrapper_learner, Dyeansed, K = 3)
13 if error < min_error then

14 LQ*(—@

15 Dejeansed < Cleanse_with_oob(Dyqin, Cleanse_type, H:, 6*)

[13,14], the higher the level of class-label noise, the lower the value
of the subsampling rate that is selected. Although the possibility
that the presence of noisy instances lead to an incorrect selection
of the best ensemble cannot be ruled out, we have not observed
this effect in the experiments carried out. This is probably due to
the fact that random forests are fairly robust to class-label noise,
even without cleansing.

In the second stage (steps 9-14 in Algorithm 1), the predictions
of the base classifiers of the selected ensemble, Hy, are used to
identify noisy instances. Different values of the threshold 6 for the
disagreement rate are considered; namely, 0.5, 0.6, 0.7, 0.8, 0.9, and
1.0. For a given value of 0, instances for which the fraction of in-
correct predictions given by the classifiers in the selected ensem-
ble is above this threshold are marked as noise (step 11). Since the
data being cleaned and the data used to train H} are the same,
only the predictions of base classifiers in H} whose training set
does not include that particular instance are used (i.e. out-of-bag
instances). Cleansing consists in either correcting the label of noisy
instances (cleaning), or eliminating them (filtering). Then, we use a
wrapper method and compute estimates of the generalization er-
ror of a learner built on the cleansed training data. In our imple-
mentation, this error is estimated using K-fold cross-validation. The
optimal value of the disagreement threshold, 6*, is the one that
minimizes this estimate of the generalization error. The details of
this selection are as follows: In each of the K iterations of the cross
validation procedure, one of the K folds is set apart for validation.
Then, a classifier is trained on remaining K — 1 folds cleansed us-
ing the corresponding value of 8. The classifier is then evaluated
on the left-out fold, which is not cleansed. Finally, the cross val-
idation error is calculated by averaging the errors of the valida-
tion folds in each of the K iterations. The value selected, 6*, is the
threshold that minimizes this cross-validation estimate of the gen-
eralization error. This optimal threshold value, 6*, and the ensem-
ble H; are then used to clean or filter the training data. Note that
the type of classifier used in the wrapper step is a parameter of
the algorithm. In general, we think it is preferable to use the same
classifier as the one that is eventually trained with the cleansed
data. In the following section we carry out an extensive empirical

Table 1
Characteristics of the classification problems used in the empirical evaluation.

Dataset Training Test Attrib.
Australian 460 230 14
Blood transfusion 499 499 5
Boston 337 169 14
Breast 466 233 9
Chess 2130 1065 37
Crx 460 230 15
Diabetes 512 256 8
German 667 333 20
Heart 178 92 13
Horse-colic 246 122 21
Ionosphere 234 117 34
Liver 230 115 6
Parkinsons 130 65 22
Ringnorm 300 2000 20
Sonar 491 208 60
Spambase 3067 1534 58
Threenorm 300 2000 20
Tic-Tac-Toe 639 319 9
Twonorm 300 2000 20

analysis of the accuracy and resilience to noise of ensembles built
in this manner.

4. Empirical evaluation

To assess the effectiveness of the proposed noise detection pro-
cedure extensive experiments have been carried out in 19 binary
classification problems from the UCI repository [11]. The charac-
teristics of the datasets are summarized in Table 1. The imple-
mentation makes use of the R randomForest package [10] and the
R adabag package for AdaBoost [7]. In both packages the default
settings are used. Specifically, for random forests, the number of
variables considered for splitting at the inner nodes of the random
trees is the square root of the total number of attributes in the
problem. The minimum size of a terminal node is set to 1. Trees
in the forest are grown to their maximum possible size. For Ad-
aBoost, weighted resampling is used. The coefficient that controls
the weight update is o = 1/2In((1 — err)/err).

In all the classification tasks, with the exception of Ringnorm,
Threenorm and Twonorm, which are synthetic problems, the labeled
instances are randomly assigned to the training and test sets. The
sizes of these sets are 2/3 and 1/3 of the original set, respectively.
For synthetic problems, 300 examples are used for training and
2000 for testing. In all cases, stratified sampling is used. The re-
sults reported are averages over 50 executions. In these executions,
different random partitions of the data into training and test sets,
or, in synthetic problems, independent realizations of the data are
used. The following protocol is followed for each classification task
and execution:

1. First, noise is injected in the data by randomly switching the
class label of a random subset of the training instances. Differ-
ent noise rates are considered: 0 (no noise is injected), 10, 20,
30 and 40%. This type of class-label noise is known as com-
pletely at random noise (NCAR) [5].

2. For each noise level, ensembles composed of 501 trees are
trained using the following bootstrap sampling ratios: 10, 20,
40, 60, 80, 100(standard) and 120%. Then, the out-of-bag error
is computed for each ensemble. The ensemble with the best
out-of-bag accuracy (Hj) is kept for the next step. Both ran-
dom forests and bagging ensembles of unpruned CART trees
have been considered. According to the results of our exper-
iments, they are both equally effective to identify noisy in-
stances. Therefore, since random forest are generally more ac-

M. Sabzevari et al./Neurocomputing 275 (2018) 2374-2383 2377

S

Frf_——
Boosting — Cl rf .
RF _l FI_maj_rf
. I—
T T T 1
2 3 4 5
(a) Without injected noise
%C.D%
FI_ ma/’_n‘
— F
FI_rf Boosting

| [

I I I 1
2 3 4 5

(c) 20% injected noise

<>

CLf
RF _ FlLmaj.If
Fl_rf _l Boosting
| .—[
T T T 1
2 3 4 5
(b) 10% injected noise
%C.D%
Fl_maj_rf
1 _rf BF .
ClLf f oosting
T T T 1
2 3 4 5

(d) 30% injected noise

Egosting

%C-D%
FI_maj_rf
o —
] u—
|
I T T 1
1 2 3 4 5

(e) 40% injected noise

curate than bagging ensembles, only results for the former are
reported.

. For each instance in the training set, we compute a tally of
votes (class label predictions). In this tally, only the predictions
of those classifiers in Hy whose training sets do not include that
particular instance are used.

. Instances are tentatively marked as noisy if the percentage
of incorrect predictions by the individual ensemble classifiers
is above a specified threshold 6. Noisy instances are either
cleaned (i.e. their class labels are corrected by assigning the
majority label in the out-of-bag predictions) or filtered (i.e.
removed from the training set). The following values of the
threshold 6 are tested: 0.5 (majority filtering), 0.6, 0.7, 0.8,
0.9 and 1.0 (consensus filtering). As described in the previ-

Fig. 1. Comparison of the average ranks of the different types of ensembles for different levels of class-label noise: (a) without injected noise; (b) 10%; (c) 20% ; (d) 30%;
and (e) 40% noise. Horizontal lines connect methods whose average ranks are not significantly different according to a Wilcoxon signed-ranks test (p-value < .05).

ous section, the optimum value 6* is selected by K-fold cross-
validation within the training set by means of a wrapper
method. From the results of exploratory experiments with dif-
ferent values of K, reliable estimates are obtained with K = 3,
which is the value used in the experiments. Random forest
composed of 501 trees is used in this wrapper stage.

. The training instances for which the fraction of incorrect out-

of-bag predictions is above 6* are definitively marked as noise.
These noisy instances are then either corrected or removed
from the training set.

. Finally, a random forests of 501 random trees, is built on the

cleansed training set. The labels FI_rf for random forest with
filtering and CL_rf for random forest with cleaning will be used
throughout the experiments.

M. Sabzevari et al./Neurocomputing 275 (2018) 2374-2383

2378

2
o
<
]
X
o
(e}
o
2
o
(aV]
N
S
o
N
o
0
T
i
. R
= -
. ss==— v
[I I I I I 1
(aV] o [o0] (o] < [aV] o
- - =} o o [} o
alel buldwes

(a) Sampling rate

20% 0O 30% M 40%

& 10%

O 0%

1.0

0.9

0.8

0.7

0.6

05 —

2D

aig

sog

old

sny

(b) Threshold for cleansing

Fig. 2. Optimal hyperparameters for random forest with filtering (FlL_rf).

M. Sabzevari et al./Neurocomputing 275 (2018) 2374-2383 2379

Table 2
Test errors of the different methods for different noise levels (I).

Noise

Dataset (in %) Fl_rf Clrf Fl_maj_rf Boosting RF

Australian 0 133+19 13.5+19 13.8+20 131+19 131+£1.9*
10 13.6+19 13.7+19 13.7+2.0 18.2+2.2 13.5+19
20 141+1.8 14.0+2.0 13.8+21 23.8+3.1 153422
30 16.3+£29 161+2.8 15.8+2.6 33.6+3.6 21.7+3.0
40 26.0+6.3 24.5+5.2 26.1+5.1 419+3.2 343+35

Blood transfusion 0 219+1.6 21.8+19 221+1.8 257423 247421
10 222415 22.0+1.7 229420 28.0+28 264+21
20 233423 232424 249+26 312432 29.8+2.8
40 34.0+4.6 326+49° 385+45 432+43 421445

Boston 0 13.2+£22 13.5+£2.2 14.7 £2.7 124+24 12.8+21
10 13.7+2.6 13.8+26 146+22 163 +£2.8 13.7+2.6
20 155+28 15.5+24 152+28 23.6+39 178427
30 19.2+3.8 189+3.7 202+40 325+42 251444
40 26.8+6.1 26.1+6.5 28.8+65 411+41 36.2+5.1

Breast 0 31+11° 31+1.0° 33410 34+11 31+11°
10 36+12 36+11 35+12 87+18 41+13
20 43+15 44+1.8 43+14 149+25 6.7+19
30 6.6+3.4" 6.6+3.2" 76+3.5 241+3.8 12.7+£3.8
40 155+64 14.8+5.8 18.4+48 33.8+4.2 264+4.7

Chess 0 1.7+04 1.7+04 26+04 04+0.2° 1.6+04
10 22+04" 23404 3.0+£06 41+0.8 23405
20 34+0.7 3.6+0.8 37408 58+0.8 41+0.6
30 55+1.2 6.0+ 1.1 57+1.0 1.0+ 1.7 10.0+1.1
40 16.6 +3.0* 17.7+3.2 17.7+23 246+22 25.7+1.7

Crx 0 129+1.8 13.0+£2.1 13.2+21 13.8+1.8 126 +1.9
10 13.7+1.8 13.6+1.8 13.6+2.0 18.8+2.5 14.0+19
20 141422 14.2+23 140+22 253431 16.2+2.1
30 16.9+3.3 16.2+2.9 17.0£3.0 334+38 223433
40 245459 243459 258+50 415+34 33.8+3.7

Diabetes 0 241+2.0 243+1.8 243+19 275+21 240+19
10 246+23 245+23 243+22 3014+29 254422
20 254425 254424 253+24 344+30 278425
30 273+2.6 26.7+2.7° 273+27 396+33 31.7+3.0
40 325+4.9 325438 334447 444440 393145

* p-value < 0.05.

7. The generalization error of the resulting ensembles is estimated
on the unperturbed test set.

As a benchmark, a second cleansed dataset is obtained us-
ing majority filtering following the proposals of previous studies
[3,17,21], and, in particular, for homogeneous ensembles [16]. In
this benchmark, the data are filtered using K-fold cross-validation.
At each iteration, an ensemble is trained using data from K-1
folds. Then, the ensemble is used to predict the labels of the in-
stances in the remaining fold. The examples of the holdout fold
that are incorrectly classified are removed from the dataset. The
process is repeated to filter the other folds. We implemented this
method using random forest of size 501 and K = 3. Finally, a ran-
dom forest composed of 501 random trees is built on the train-
ing set cleaned with majority filtering. The label FI_maj_rf is used
to denote this benchmark. As an additional reference, we also
present the results of standard random forest (labelled as RF) and
AdaBoost (labeled as Boosting) trained on the original uncleaned
training set.

4.1. Predictive accuracy

The results of the experiments carried out to compare the ac-
curacies of the different methods considered are summarized in
Tables 2-4. The test errors reported correspond to averages over 50
realizations of the training and test sets. These averages followed
by their standard deviations after the + sign. To assess the sig-
nificance of these observations, the results of an overall compari-
son of the different methods are summarized in Fig. 1 using the

methodology introduced in [4]. In these plots, the average ranks
of the different methods are compared. The differences between
the average ranks of two methods are statistically significant at a
level « = 0.05 if they are above a critical distance (CD). Methods
whose average ranks are not significantly different are linked by a
horizontal line. Average rank plots are presented for experiments
with different levels of class-label noise injected: 0, 10, 20, 30
and 40%.

From the results presented in Fig. 1, Tables 2-4, one concludes
that random forests with optimal filtering or cleaning (FI_rf and
Cl_rf) are among the most accurate ensembles at all noise levels.
When no noise is injected, boosting and random forest trained
on the original data are slightly better than FI_rf and CI_rf. How-
ever, the differences are not statistically significant. Because of its
progressive emphasis on incorrectly classified instances, boosting
is not robust to errors in the class labels. This is apparent from
the degradation of its performance in problems with higher lev-
els of noise. In fact, boosting has the worst average rank for 10—
40% noise levels. In these cases, the differences with most other
methods are statistically significant. The differences between filter-
ing and cleaning are not statistically significant. Filtering seems to
have a slightly better performance at lower noise levels. When ei-
ther 30% or 40% of the class labels of the training instances are
perturbed, cleaning is slightly better than filtering. This is prob-
ably a consequence of the loss of information that results form
discarding instances in filtering. Finally, we observe that selecting
adequate values of the threshold 6 for noise filtering or cleaning
is superior to using standard majority filtering at all noise levels.
These improvements are more pronounced at lower noise levels.

2380 M. Sabzevari et al./Neurocomputing 275 (2018) 2374-2383
Table 3
Test errors of the different methods for different noise levels (II).

Noise

Dataset (in%) FlLif Cl_rf Fl_maj_rf Boosting RF

German 0 245422 246+19 26.5+21 251421 242+2.0
10 25.0+19 25.6+24 26.7+24 281+22 248+19
20 26.5+2.7 26.7+23 271+£22 32.7+31 271+2.7
30 289+27 28.6+2.8 28.3+2.6 383+3.0 31.0+27
40 322442 31.7+39 32.8+4.0 433+29 379436

Ionosphere 0 6.9+2.0 6.9+2.0 73+19 64+18 6.8+19
10 77+2.0 78+2.2 8.0+24 11.3+33 78+21
20 94+31 9.5+3.7 9.3+3.0 19.0+42 113+3.7
30 148 +£45 141+4.0 13.8+4.6 280+53 184+38
40 322442 31.7+39 32.8+4.0 433+29 379436

Heart 0 175+34 18.1+3.8 179+3.8 209+34 181+3.6
10 19.6+43 19.7+43 18.9+4.38 26.3+4.1 203+3.8
20 21.7+4.0 214+4.5 21.5+4.2 321+58 23.5+43
30 2424+5.6 242455 24.0+5.3 371453 28.7+5.7
40 342+76 33.7+72 345+73 432+6.6 38462

Horse-colic 0 15.6+25 15.5+2.7 176 +£3.6 15.7+2.6 15.5+2.7
10 17.5+3.0 17.5+31 18.2+34 223+34 175+29
20 20.2+3.6 20.5+41 20.3+4.0 283+49 207+3.7
30 26.2+4.7 26.5+49 26.0+5.5 354+45 29.0+49
40 36.0+6.3 35.2+6.5 36.0+6.5 43.6+4.7 39.7+45

Liver 0 284442 29.7+38 31.2+44 296+34 274138
10 314+43 32.7+49 33.6+48 344+39 314+t44
20 34.5+4.6 355+4.2 36.0+4.7 37.7+46 34.6+4.5
30 38.0+5.9 38.5+53 38.8+£5.7 405+55 37.7+58
40 43.8+5.6 431+54 446+4.6 449+46 43.5+53

Parkinsons 0 11.9+35 114438 16.3+4.0 8.1+3.5¢ 11.0+35
10 13.5+3.8 13.5+3.8 16.4+4.0 128+39 13.0+3.7
20 17.8+4.7 181+5.2 181+4.5 220+50 17.8+4.7
30 21.0+5.2 21.5+4.7 20.7+5.4 29.8+71 239+55
40 31.8+8.2 31.8+8.0 29.3+75 39.0+6.2 346+71

Ringnorm 0 61+1.0 6.2+1.0 83+14 44+04 6.0+1.0
10 6.8+13 6.9+11 87+15 8.6+11 6.7+11
20 84+18 83+16 99+22 152 +17 83+17
30 11.8+2.7 11.5+31 122+32 244+27 128+24
40 211+£53 18.2+5.3 20.8+6.4 36.3+31 247+35

* p-value < 0.05.

4.2. Optimal values of the hyperparameters

In this section, we analyze the trends in the values selected for

the observation that majority filtering becomes more effective at

higher noise levels.

the sampling rate and the threshold, 6*. We consider first the val-
ues of the sampling rate. In plot (a) of Fig. 2 the average sampling
rates obtained by the proposed cleaning procedure for each dataset
and noise level are displayed. One can observe that in the orig-
inal unperturbed problems (white bars in the plot) the optimal
values for this hyperparameter are strongly problem dependent.
For instance, in Chess, Spambase, and Tic-tac-toe these values are
above the standard 100% resampling rate. It is likely that for these
problems the variability random forests is too large, and that over-
sampling is an effective mechanism to reduce it. In the remaining
problems subsampling, which increases the variability of the en-
semble, seems to be more effective. In some cases, such as Blood
Transfusion, Breast, lonosphere, and Twonorm, the optimal values of
the sampling ratios are fairly low (around or below 30%, on aver-
age). In general, as more class-label noise is injected in the data,
the optimal sampling ratios become smaller. This confirms the ob-
servation that subsampling becomes more effective as the amount
of class-label noise increases [13,14].

In the method proposed, an instance is marked as noisy when
it is incorrectly labeled by a fraction of classifiers that exceeds
a specified threshold 6*. The optimal value of this parameter
is also strongly problem-dependent. However, from the results
presented in plot (b) of Fig. 2, it is apparent that as more noise
is injected, the values of 6* become smaller and approach 0.5,
which corresponds to majority voting. This is consistent with

4.3. Noise detection

The value of the threshold used to mark an instance as noisy
is determined on the basis of the accuracy of the wrapper classi-
fier trained on cleansed data. The question remains whether this
procedure is actually effective for the detection of noisy instances.
To investigate this issue, we have recorded the fraction of instances
marked as noise for the different classification tasks and with dif-
ferent levels of injected noise. The results of these experiments
are presented in the plots of Fig. 3 for the following noise levels:
0% (first row), 10% (second row) and 30% (third row). Each plot
of this figure shows the average percentage of instances that are
marked as noise with a white bar. From those instances, the ones
corresponding to the artificially injected noise are marked in red.
The results for the proposed cleaning procedure using filtering are
summarized in the plots in the left column of this figure. For ref-
erence, the results of majority filtering benchmark are displayed in
the plots in the right column.

An analysis of the results for the unperturbed classification
tasks (first row of Fig. 3) reveals that the levels of detected noise
vary significantly. In the synthetic problems, which, by construc-
tion, are noiseless, the proposed cleaning procedure using filtering
discards only a small percentage instances. By contrast, in some
problems (such as Blood transfusion, Diabetes, German and Liver)
a significant fraction of instances are identified as noise. Filtering
these instances does not appear to be detrimental. As a matter

60

50

40

30

percentage

20

60

50

40

30

percentage

20

60

50

40

30

percentage

20

Fig. 3. Percentage of filtered examples (white bars) and filtered examples that correspond injected noise (red part

Aus [|

Blo

%)
3
<

Bos D

Bre ﬂ
Che

@
o
[s1]

Bre

o
<
o

x
o

M. Sabzevari et al./ Neurocomputing 275 (2018) 2374-2383

Fl_rf

o
a

S
]

0% noise

10% noise

30% noise

c
°

Hea
Hor

2
4

<1
o

£
o

c
<3
0

£
=

2
[

g
E

percentage

percentage

percentage

60

50

40

30

20

60

50

40

30

60

50

40

30

20

Bre I:‘

Aus
Blo
Bos

@ 2 X 3§55
o §00¢ 2

2381

Fl_maj_rf

0% noise

@ correct detected as noise
O detected as noise

® X ® 5 E W 5 =25 £ S © =09 Q0
X 8 g s 2 & £ e L
sS6adse? FfE S o = 2

10% noise

30% noise

© 5 2 5 £ < = o
525 £ E 2
$ExTdadx S

Two

of the bars) for different noise levels: without injected

noise (first row), 10% (second row), and 30% (third row) for the proposed cleansing procedure (left column) and majority filtering (right column). (For interpretation of the

references to color in this figure legend, the reader is referred to the web version of this article.)

2382

M. Sabzevari et al./Neurocomputing 275 (2018) 2374-2383

Table 4
Test errors of the different methods for different noise levels (III).

Noise

Dataset (in%) FLif Cl_if Fl_maj_rf Boosting RF

Sonar 0 18.8+3.9 194+48 245+38 144438 185+3.7
10 20.7+£52 21.5+49 252+46 201+44 19.9+4.7
20 242+48 243+54 261+52 269+55 23.7+5.5
30 31.7+71 319+72 331+77 35.1+6.6 31.2+76
40 38.6+6.2 39.7+75 396+76 426477 394+74

Spambase 0 51+0.6 51+06 6.3+0.5 49104 5.0+0.5
10 5.9+0.5 6.1+0.7 6.5+0.5 9.4+0.8 6.6+£0.6
20 6.7+0.6 6.7+0.6 6.9+0.7 13.7+11 9.3+09
30 7.8+0.8" 7.8+0.8" 8.6+0.9 203+14 14.6+1.1
40 11.8+2.2 11+15 143+15 320+1.6 256+13

Threenorm 0 170+ 1.0 17.2+13 192+14 16.8+0.9 16.5+0.9
10 18.8+15 191+1.6 205+18 20.7+14 184+1.2
20 209422 212426 21.7+25 255+1.6 20.8+1.8
30 25.6+2.6 257+25 26.7+25 323%21 26.5+2.1
40 334+45 33.0+4.7 343+51 40.6+2.9 35.7+31

Tictactoe 0 25+09 24+11 72+25 0.6 +0.5" 23+10
10 57+22 62+23 120+26 104+17 58+16
20 125+29 13.8+28 174+28 21.3+23 124+23
30 221+27 235426 241433 305426 21.7+2.2
40 344+37 344435 351435 405437 357+32

Twonorm 0 3.9+0.5 39+05 43+05 3.7+03 3.8+04
10 4.6+0.7 4.5+0.6 4.5+0.5 7.7+1.0 49407
20 56+12 5.5+09 52+0.9 13.7+1.6 6.5+1.0
30 8.2+29 77+28 73+23 23.7+24 10.8+1.8
40 17.5+6.3 16.7+6.9 15.2+55 357+32 232+33

* p-value < 0.05.

of fact, in these problems the proposed cleaning procedure yields
competitive or better accuracy rates with respect to random forest
trained on the uncleaned data (see Tables 2 and 3).

For the unperturbed classification tasks, majority filtering is
much more aggressive and marks many more instances as noise
than the proposed procedure. In problems without noise in the
class labels, such as Threenorn, Tic-tac-toe, Ringnorm, Twonorm,
around or above 5% of the training instances are discarded (see
upper right plot on Fig. 3). As a result, there is a significant
decrease of the accuracy for random forest trained on these
cleansed data (see Tables 3 and 4). In real-world problems, it is not
possible to know the level of intrinsic noise. Nonetheless, major-
ity filtering is likely to discard too many instances as well. Specif-
ically, this method marks more than 20% of the instances as noise
in five of the datasets analyzed (Blood transfusion, Diabetes, German,
Liver and Sonar). The accuracy of random forest trained on the data
cleansed by majority filtering in Blood transfusion and in Diabetes
is fairly good. However, in Liver and Sonar it is the least accurate
among the methods considered.

The results of experiments on classification tasks perturbed
with 10% and 30% class-label noise, are displayed in the second
and the third rows of Fig. 3, respectively. The red part of the bars
is the percentage of instances whose class-label has been switched
in the noise injection process that are identified as noisy. In most
cases for the proposed cleansing procedure based on optimal fil-
tering, the height of the red bar is well below the level of noise
injected. This means that a significant fraction of perturbed in-
stances are not detected. An extreme example is Sonar. We con-
jecture that this lack of sensitivity is due to the strong overlap of
the distributions for the two classes. For this reason, it is difficult
to single out noisy instances located in regions where such over-
lap is high. Using majority filtering, which is more aggressive, it is
possible to detect most of the injected noisy instances. In fact, the
relative performance of majority filtering improves when the lev-
els of class-label noise are high. Still, even at high noise levels, the
precision of the method is rather low: the percentage of instances
that are marked as noise by majority voting is significantly larger

than the level of noise injected. By contrast, even though the pro-
posed optimal filtering procedure fails to identify some noisy in-
stances, those that are identified by this strategy are more likely
to be noise in actuality. In some datasets (Boston, Breast, Chess,
Parkinsons, Ringnorm, Spambase, Tictactoe and Twonorm) the pro-
posed procedure detects a fairly high percentages of the injected
noise without removing a significant number of noiseless in-
stances. For these datasets, random forests trained on data cleaned
with the proposed procedure are more accurate than those trained
based on data cleaned majority filtering, except in Breast and
Twonorm, where the differences are not statistically significant (see
Tables 2-4).

In summary, the proposed cleansing procedure achieves high
specificity at the expense of not being able to detect some noisy
instances. By contrast, majority filtering detects most noisy in-
stances, but also incorrectly discards a high percentage of valid
ones. As shown in Fig. 2 (b), 6*, the optimal threshold for filtering,
becomes closer to 0.5 (majority filtering) as the level of class-label
noise increases.

5. Conclusions

In this paper, we have proposed a two-stage method for the
detection of class-label noise based on the robustness to noise of
randomized ensembles that use resampling [13,14]. Near-optimal
values of the sampling rate can be determined using out-of-bag
data. Typically, the selected sampling ratios become smaller as the
level of class label noise increases. Another important observation
is that the classifiers in the ensemble tend to make more errors on
noisy instances. Therefore, the fraction of incorrect predictions can
be used as an indicator for noise detection: if this quantity is above
a threshold, 0, the instance considered is marked as noisy. Stan-
dard values for the threshold are 6 = 0.5 (majority) or 6 =1 (con-
sensus). In this work, we have shown that the best results are ob-
tained at a value 6* that is intermediate between these extremes.
A simple wrapper procedure is proposed to determine 6*. This op-
timal value depends on the problem under consideration and the

M. Sabzevari et al./ Neurocomputing 275 (2018) 2374-2383 2383

amount of class-label noise. Values of 6* closer to majority filter-
ing are generally obtained for noisy problems. However, majority
cleansing tends to discard instances that are correctly labeled. This
has been shown to be disadvantageous, specially in problems with
low levels of noise. In general, adjusting the threshold used to de-
tect noisy instances allows us to build more accurate ensembles at
all levels of class-label noise.

Once the noisy instances have been identified, they can be re-
moved from the training data (filtering) or corrected (cleaning). Fil-
tering is slightly superior at low and medium noise levels. Clean-
ing tends to be more accurate when the noise levels are high. The
reason for this behavior is that filtering discards training instances.
This involves some information loss, which could be detrimental if
too many instances are discarded.

Acknowledgments

The authors acknowledge financial support from the Span-
ish Ministry of Economy, Industry and Competitiveness, projects
TIN2013-42351-P, TIN2016-76406-P, and TIN2015-70308-REDT, and
of the Comunidad de Madrid, project CASI-CAM-CM (S2013/ICE-
2845).

References

[1] K.M. Ali, M.J. Pazzani, Error reduction through learning multiple descriptions,
Mach. Learn. 24 (3) (1994) 173-202.

[2]]J. Bi, T. Zhang, Support vector classification with input data uncertainty, in:
L.K. Saul, Y. Weiss, L. Bottou (Eds.), Advances in Neural Information Processing
Systems 17, MIT Press, 2005, pp. 161-168.

[3] CE. Brodley, M.A. Friedl, Identifying mislabeled training data, J. Artif. Intell.
Res. 11 (1) (1999) 131-167.

[4]]. Demsar, Statistical comparisons of classifiers over multiple data sets, J. Mach.
Learn. Res. 7 (2006) 1-30.

[5] B. Frénay, M. Verleysen, Classification in the presence of label noise: a survey,
[EEE Trans. Neural Netw. Learn. Syst. 25 (5) (2014) 845-869.

[6] Y. Freund, An adaptive version of the boost by majority algorithm, Mach. Learn.
43 (3) (2001) 293-318.

[7] Y. Freund, R.E. Schapire, Experiments with a new boosting algorithm, in:
Proceedings of the Thirteenth International Conference on Machine Learning
(ICML), 1996, pp. 148-156.

[8] D. Garcia-Gil, J. Luengo, S. Garcia, F. Herrera, Enabling smart data: noise filter-
ing in big data classification, Comput. Res. Repos. (2017). http://arxiv.org/abs/
1704.01770.

[9] T.M. Khoshgoftaar, S. Zhong, V. Joshi, Enhancing software quality estimation
using ensemble-classifier based noise filtering, Intell. Data Anal. 9 (1) (2005)
3-27.

[10] A. Liaw, M. Wiener, Classification and regression by randomforest, R News 2
(3) (2002) 18-22. http://CRAN.R-project.org/doc/Rnews|/.

[11] M. Lichman, UCI machine learning repository, 2013. http://archive.ics.uci.edu/
ml.

[12] G. Martnez-Muoz, A. Surez, Switching class labels to generate classification en-
sembles, Pattern Recognit. 38 (10) (2005) 1483-1494.

[13] M. Sabzevari, G. Martinez-Mufioz, A. Sudrez, Improving the robustness of bag-
ging with reduced sampling size, in: Proceedings of the Twenty Second Euro-
pean Symposium on Artificial Neural Networks, ESANN, Bruges, Belgium, 2014.
April 23-25.

[14] M. Sabzevari, G. Martnez-Muoz, A. Su rez, Small margin ensembles can be ro-
bust to class-label noise, Neurocomputing 160 (Supplement C) (2015) 18-33.

[15] B. Sluban, D. Gamberger, N. Lavra¢, Ensemble-based noise detection: noise
ranking and visual performance evaluation, Data Mining Knowl. Discov. 28 (2)
(2014) 265-303.

[16] B. Sluban, N. Lavra, Relating ensemble diversity and performance: a study in
class noise detection, Neurocomputing 160 (Supplement C) (2015) 120-131.

[17] S. Verbaeten, A. Van Assche, Ensemble Methods for Noise Elimination in Clas-
sification Problems, Springer, Berlin, Heidelberg, 2003, pp. 317-325.

[18] D. Wang, M. Li, Robust stochastic configuration networks with kernel den-
sity estimation for uncertain data regression, Inf. Sci. 412-413 (Supplement C)
(2017) 210-222.

[19] S. Zhong, W. Tang, T.M. Khoshgoftaar, Boosted noise filters for identifying mis-
labeled data, Technical report, Department of Computer Science and engineer-
ing, Florida Atlantic University, 2005.

[20] X. Zhu, X. Wu, Class noise vs. attribute noise: a quantitative study, Artif. Intell.
Rev. 22 (3) (2004) 177-210.

[21] X. Zhu, X. Wu, Q. Chen, Eliminating class noise in large datasets, in: Proceed-
ings of the Twentieth International Conference on Machine Learning (ICML),
2003, pp. 920-927.

Maryam Sabzevari received her B.Sc (2008) degree in
Computer Science and M.Sc (2010) in Artificial Intelli-
gence from Azad University of Mashhad, Iran. Later, she
received another M.Sc (2015) in Neuroinformatics from
Universidad Auténoma de Madrid (UAM), Spain. Cur-
rently, she is conducting her Ph.D. in Computer Science
in Universidad Auténoma de Madrid (Spain), where she
is also a Teaching Assistant. Her current research inter-
ests include machine learning, pattern recognition, neural
networks, ensemble learning and learning methods in the
presence of noise.

Gonzalo Martinez-Muiioz received the university degree
in Physics (1995) and Ph.D. degree in Computer Science
(2006) from the Universidad Auténoma de Madrid (UAM).
From 1996 to 2002 he worked in industry. Until 2008
he was an interim assistant professor in the Computer
Science Department of the UAM. During 2008/2009, he
worked as a Fulbright postdoc researcher at Oregon State
University in the group of Professor Thomas G. Dietterich.
He is currently a professor at Computer Science Depart-
ment at UAM. His research interests include machine
learning, computer vision, pattern recognition, neural net-
works, decision trees, and ensemble learning.

Alberto Sudrez received the degree of Licenciado in
Chemistry from the Universidad Auténoma de Madrid,
Spain, in 1988, and the Ph.D. degree in Physical Chemistry
from the Massachusetts Institute of Technology (MIT),
Cambridge, MA, in 1993. After holding postdoctoral po-
sitions at Stanford University (USA), at the Université Li-
bre de Bruxelles (Belgium), as a research fellow financed
by the European Commission within the program “Train-
ing and Mobility of Researchers”, and at the Katholieke
Universiteit Leuven (Belgium), he is currently a professor
in the Computer Science Department of the Universidad
Auténoma de Madrid (Spain). He has also held appoint-
ments as “Senior Visiting Scientist” at the International
Computer Science Institute (Berkeley, CA) and at MIT (Cambridge, MA). He has
worked on relaxation theory in condensed media, stochastic and thermodynamic
theories of nonequilibrium systems, latticegas automata, and automatic induction
from data. His current research interests include machine learning, computational
statistics, quantitative finance,time series analysis and information processing in the
presence of noise. He is a member of IEEE.

http://refhub.elsevier.com/S0925-2312(17)31726-5/sbref0001
http://refhub.elsevier.com/S0925-2312(17)31726-5/sbref0001
http://refhub.elsevier.com/S0925-2312(17)31726-5/sbref0001
http://refhub.elsevier.com/S0925-2312(17)31726-5/sbref0002
http://refhub.elsevier.com/S0925-2312(17)31726-5/sbref0002
http://refhub.elsevier.com/S0925-2312(17)31726-5/sbref0002
http://refhub.elsevier.com/S0925-2312(17)31726-5/sbref0003
http://refhub.elsevier.com/S0925-2312(17)31726-5/sbref0003
http://refhub.elsevier.com/S0925-2312(17)31726-5/sbref0003
http://refhub.elsevier.com/S0925-2312(17)31726-5/sbref0004
http://refhub.elsevier.com/S0925-2312(17)31726-5/sbref0004
http://refhub.elsevier.com/S0925-2312(17)31726-5/sbref0005
http://refhub.elsevier.com/S0925-2312(17)31726-5/sbref0005
http://refhub.elsevier.com/S0925-2312(17)31726-5/sbref0005
http://refhub.elsevier.com/S0925-2312(17)31726-5/sbref0006
http://refhub.elsevier.com/S0925-2312(17)31726-5/sbref0006
http://refhub.elsevier.com/S0925-2312(17)31726-5/sbref0007
http://refhub.elsevier.com/S0925-2312(17)31726-5/sbref0007
http://refhub.elsevier.com/S0925-2312(17)31726-5/sbref0007
http://arxiv.org/abs/1704.01770
http://refhub.elsevier.com/S0925-2312(17)31726-5/sbref0009
http://refhub.elsevier.com/S0925-2312(17)31726-5/sbref0009
http://refhub.elsevier.com/S0925-2312(17)31726-5/sbref0009
http://refhub.elsevier.com/S0925-2312(17)31726-5/sbref0009
http://CRAN.R-project.org/doc/Rnews/
http://archive.ics.uci.edu/ml
http://refhub.elsevier.com/S0925-2312(17)31726-5/sbref0011
http://refhub.elsevier.com/S0925-2312(17)31726-5/sbref0011
http://refhub.elsevier.com/S0925-2312(17)31726-5/sbref0011
http://refhub.elsevier.com/S0925-2312(17)31726-5/sbref0012
http://refhub.elsevier.com/S0925-2312(17)31726-5/sbref0012
http://refhub.elsevier.com/S0925-2312(17)31726-5/sbref0012
http://refhub.elsevier.com/S0925-2312(17)31726-5/sbref0012
http://refhub.elsevier.com/S0925-2312(17)31726-5/sbref0012
http://refhub.elsevier.com/S0925-2312(17)31726-5/sbref0013
http://refhub.elsevier.com/S0925-2312(17)31726-5/sbref0013
http://refhub.elsevier.com/S0925-2312(17)31726-5/sbref0013
http://refhub.elsevier.com/S0925-2312(17)31726-5/sbref0013
http://refhub.elsevier.com/S0925-2312(17)31726-5/sbref0014
http://refhub.elsevier.com/S0925-2312(17)31726-5/sbref0014
http://refhub.elsevier.com/S0925-2312(17)31726-5/sbref0014
http://refhub.elsevier.com/S0925-2312(17)31726-5/sbref0014
http://refhub.elsevier.com/S0925-2312(17)31726-5/sbref0015
http://refhub.elsevier.com/S0925-2312(17)31726-5/sbref0015
http://refhub.elsevier.com/S0925-2312(17)31726-5/sbref0015
http://refhub.elsevier.com/S0925-2312(17)31726-5/sbref0512
http://refhub.elsevier.com/S0925-2312(17)31726-5/sbref0512
http://refhub.elsevier.com/S0925-2312(17)31726-5/sbref0512
http://refhub.elsevier.com/S0925-2312(17)31726-5/sbref0016
http://refhub.elsevier.com/S0925-2312(17)31726-5/sbref0016
http://refhub.elsevier.com/S0925-2312(17)31726-5/sbref0016
http://refhub.elsevier.com/S0925-2312(17)31726-5/sbref0017
http://refhub.elsevier.com/S0925-2312(17)31726-5/sbref0017
http://refhub.elsevier.com/S0925-2312(17)31726-5/sbref0017
http://refhub.elsevier.com/S0925-2312(17)31726-5/sbref0017
http://refhub.elsevier.com/S0925-2312(17)31726-5/sbref0018
http://refhub.elsevier.com/S0925-2312(17)31726-5/sbref0018
http://refhub.elsevier.com/S0925-2312(17)31726-5/sbref0018
http://refhub.elsevier.com/S0925-2312(17)31726-5/sbref0019
http://refhub.elsevier.com/S0925-2312(17)31726-5/sbref0019
http://refhub.elsevier.com/S0925-2312(17)31726-5/sbref0019
http://refhub.elsevier.com/S0925-2312(17)31726-5/sbref0019

	A two-stage ensemble method for the detection of class-label noise
	1 Introduction
	2 Previous work
	3 A wrapper method for class-label noise detection
	4 Empirical evaluation
	4.1 Predictive accuracy
	4.2 Optimal values of the hyperparameters
	4.3 Noise detection

	5 Conclusions
	 Acknowledgments
	 References

