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a b s t r a c t 

The properties of bootstrap ensembles, such as bagging or random forest, are utilized to detect and han- 

dle label noise in classification problems. The first observation is that subsampling is a regularization 

mechanism that can be used to render bootstrap ensembles more robust to this type of noise. Further- 

more, appropriate values of the sampling rate can be estimated using out-of-bag data. A second obser- 

vation is that the ensemble classifiers tend to make more errors in incorrectly labeled instances. Thus, 

instances for which a sufficiently large fraction of ensemble predictors err are marked as noisy. Suit- 

able values of this threshold, which are problem dependent, are determined by cross-validation using a 

wrapper method. Instances identified as noisy can then be either filtered (i.e. discarded for training), or 

cleaned by correcting their class labels. Finally, an ensemble is built afresh on these cleansed training 

data. Extensive experiments in classification problems from different areas of application show that this 

procedure is effective to build accurate ensembles, even in the presence of high levels of class-label noise. 

© 2017 Elsevier B.V. All rights reserved. 
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1. Introduction 

The presence of noise, which is often unavoidable in real-world

settings, is an important nuisance factor that needs to be taken

into account in the design of learning algorithms [5,20] . Two types

of noise can be found in the data used for automatic induction:

class-label and feature noise [20] . Except when the latter is very

strong, the presence of erroneous class labels is generally more

harmful for learning and generalization [20] . According to its sta-

tistical properties label noise falls into three categories [5] . In the

Noisy Completely at Random (NCAR) model the probability of a mis-

labeled instance is uniform in feature and class spaces. In the Noisy

at Random (NAR) model, the probability of mislabeled instances is

independent of the feature values, but depends on the class. Fi-

nally, in the Noisy Not at Random (NNAR) models there are depen-

dencies between the class-label noise, and both feature and class

values. In this work, we assume that the noise is completely at ran-

dom. Nevertheless, the method proposed can be readily adapted to

take into account other types of class-label noise. 

One way of alleviating the effects of noisy data is to incorpo-

rate some regularization mechanism into the design of the learning

algorithm [2,6,18] . Another approach is to carry out a preprocess-

ing step in which noisy instances are identified. These instances

are then either discarded (filtering), or their class label corrected

(cleaning) so that they do not interfere in the learning process [5] .
∗ Corresponding author. 
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n this work, we combine both strategies using randomized ensem-

les. Our goal is to take advantage of the robustness of bootstrap

nsembles, such as bagging and random forest, to handle noise.

pecifically, we will use subsampling as a regularization mech-

nism, which allows one to build ensembles that are robust to

lass-label noise [13,14] . Another observation is that the individual

lassifiers in the ensemble tend to make more prediction errors

n incorrectly labeled instances. Therefore, the fraction of incor-

ect ensemble predictions can be used as an indicator to detect

oisy instances. Standard ensemble-based approaches to this prob-

em remove instances for which more than half of the votes are

ncorrect (majority filtering) or where all votes are incorrect (con-

ensus filtering). However, these choices need not be optimal. In

his work, we propose to use a wrapper method to determine a

ear-optimal value for the percentage of incorrect votes necessary

o identify a noisy instance. 

The structure of the work is as follows: In Section 2 , we present

 review of previous work on learning from incorrectly labeled

ata. Particular emphasis is given to the use of subsampling to im-

rove the robustness to class-label noise of bootstrap ensembles.

he conclusions of this analysis are applied in Section 3 to the de-

ign of a method for noise detection. In Section 4 , we present the

esults of an empirical evaluation of the proposed procedure and

 comparison with other state-of-the-art noise detection methods.

inally, the conclusions of this work are summarized in Section 5 . 

https://doi.org/10.1016/j.neucom.2017.11.012
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
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. Previous work 

The problem of induction from noisy data has been extensively

ddressed in the area of ensemble learning [2,5,6,13,14,18] . Further-

ore, as illustrated by recent implementations [8] , these methods

an be scaled to deal with class-label noise in large problems. Early

n in the literature on ensembles, it was noted that the accuracy

mprovements of an ensemble with respect to a single learner are

enerally smaller when the training data are contaminated with

lass-label noise [1] . However, ensembles are generally more ro-

ust to this type of noise than single learners. In [3] , an ensemble

f three classifiers (a univariate decision tree, a k-nearest neigh-

or and a linear machine) is used to identify noisy instances. The

oise detection protocol in this method is as follows: The training

et is partitioned into 4-folds. Then, an ensemble is trained using

hree of these folds. The ensemble is then used to identify noisy

nstances in the fold not used for training. In this study, two filter-

ng strategies are considered: majority filtering and consensus fil-

ering. In majority filtering, a particular instance of the left-out fold

s identified as noisy when the predictions of more than half of the

earners are erroneous. The consensus filtering rule is more con-

ervative. An instance is categorized as noisy when all the mem-

ers of ensemble misclassify it. This process is repeated for each

old to identify noisy instances in all 4 folds. In this study, ma-

ority filtering exhibits better overall performance than consensus

ltering. In [9] a similar approach is used, albeit with an ensemble

f 25 classifiers of different types. The increased diversity of this

eterogeneous ensemble reduces the risk of false positives in the

oise detection process. In addition, different intermediate strate-

ies between majority and consensus filtering are explored. In the

roblems investigated, the optimal threshold of erroneous ensem-

le predictions used to identify an instance as noisy was close to

onsensus filtering. 

In [17] , an ensemble of Top-down Induction of Logical Decision

rees (Tilde) is used to filter the training data. In this study ei-

her cross-validation or bootstrap sampling are used to generate

he training sets on which the base learners are built. Majority and

onsensus filtering are then applied to identify noisy instances. The

est results are obtained with majority filtering. In addition, the

se of boosting in noise detection problems is explored. The idea

s to filter out instances whose weights are above a threshold after

 predefined number of iterations of the boosting algorithm. In the

roblems investigated, this strategy does not perform well. 

In [21] , a distributed method for large datasets is presented. In

his method, the original training set is partitioned into small sub-

ets. A classifier is induced from each of the these subsets. These

lassifiers are then used to classify the instances in the complete

raining set. The local error of an instance is defined as the frac-

ion of classifiers whose training data included that particular in-

tance and misclassified it. The global error for an instance is com-

uted using the classifiers that did not include that instance in

heir training sets. Majority and consensus filtering are used to

dentify noisy instances. A necessary condition for an instance to

e identified as noisy is that it be misclassified by the base learn-

rs whose training sets induced it. The justification is that a classi-

er has usually higher accuracy on instances that are in its training

et. In this work, majority filtering is found to yield better results

han consensus filtering. 

In [19] , a noise detection strategy that combines ideas from

agging and boosting is investigated. In this method, all train-

ng instances are initially assigned equal weights. Then, bootstrap

amples from the original training data are used to build differ-

nt classifiers. For each instance a noise count is computed as the

umber of base learners that have misclassified the instance. The

oise count is used in a boosting-like iterative process in which

he weight of the instances with higher noise counts is decreased.
his process is iterated for a predefined number of rounds. Finally,

nstances whose noise count values are higher than a threshold are

abelled as noisy. Ensemble methods based on ranking have been

xplored in [15] . In this work, instances are ranked according to

he number of base learners that make incorrect predictions. In

he medical dataset analyzed, a domain expert singles out the in-

tances with highest ranks for further analysis. Expert knowledge

s then used to determine the type of anomaly of the instances

ith the highest ranks (labeling error, outlier, complex medical

ase, etc.). 

In most of the noise detection methods based on ensembles,

ajority or consensus filtering are used. Majority filtering was

ound to be better than consensus filtering in most studies in

hich homogeneous ensembles were used [3,16,17,21] . By contrast,

n small heterogeneous ensembles, agreement rates close to con-

ensus filtering seem to be more effective [9,16] . A qualitative ex-

lanation of this observation can be given: In homogeneous en-

embles the base learners are of the same type. Diversity is com-

only obtained using randomization strategies, such as bootstrap

ampling (e.g. in bagging and random forest). Thus, the decision

oundaries of the individual classifiers are similar to each other.

n fact, the decision boundary is a refinement of the decision bor-

er of the individual base learners [12] . Therefore, noisy examples

lose to this decision boundary can be detected only if majority

oting is used. By contrast, in heterogeneous ensembles, the de-

ision borders are more varied because the individual classifiers

re of different types. For this reason the dispersion of class labels

ssignments may simply reflect this variability. In consequence,

igher agreement rates should be used to mark an instance as

oise. In summary, the optimal agreement rates for noise detection

epends on the classification problem and type of ensemble. How-

ver, as far as we are aware, the influence of the agreement rate

n the effectiveness of the noise detection method has not been

ystematically evaluated hitherto. 

. A wrapper method for class-label noise detection 

In this work, ensembles are used to detect and handle noise

n the class labels of the training instances. We focus on ran-

omized ensembles, such as bagging and random forest, in which

he individual classifiers are trained on bootstrap samples of the

riginal data. The design of the algorithm leverages two observa-

ions: The first one is that reducing the sampling rate in the boot-

trapping step can make the ensemble more robust to class-label

oise [13,14] . A second observation is that the fraction of erro-

eous predictions by the ensemble classifiers necessary to detect

oisy instances depends on the classification task at hand. There-

ore, the value of the threshold θ used to mark an instance as noisy

hould be estimated for each problem during the training phase.

he method proposed proceeds in two stages: First, the optimal

ampling rate for the bootstrapping step in the construction of the

nsemble is determined using out-of-bag data. Then, the optimal

hreshold for disagreement between the ensemble predictions and

he actual class of the instance is determined by means of a wrap-

er method. Finally, instances labeled as noise are either removed

 filtering ) or relabeled ( cleaning ) and an ensemble is built afresh

rom the cleansed training data. 

The pseudocode of the method is detailed in Algorithm 1 . In

he first stage of the algorithm (steps 1–8 in Algorithm 1 ), ensem-

les are built using different values of the sampling rate: 0.1, 0.2,

.4, 0.6, 0.8, 1.0, and 1.2. From these, H 

∗
T 
, the ensemble that is ex-

ected to generalize best is selected and kept for the next phase.

n our implementation, out-of-bag instances are used to estimate

he generalization error and carry out this selection. In this way,

n unbiased selection is achieved, independently of the amount

f noise present in the dataset. According to empirical evidence
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Algorithm 1: Noise detection using bootstrap ensembles. 

Input : D train = { (x n , y n ) } N train 
n =1 

% Training set 

boot st rap _ ensemble % Bootstrap ensemble method 

T % Ensemble size 

wrapper _ learner % Wrapper learner method 

cleanse _ type % either filtering or cleaning 

Output : D cleansed % Cleansed set 

1 min _ error ← ∞ % determine optimal sampling rate 

2 foreach sampling _ rate in [0 . 1 , 0 . 2 , 0 . 4 , 0 . 6 , 0 . 8 , 1 . 0 , 1 . 2] do 

3 H T ← boot st rap _ ensembl e (D train , sampl ing _ rate, T ) 

4 er ror ← estimate _ er ror (H T , D train ) 

5 if er ror < min _ er ror then 

6 min _ er ror ← er ror 

7 sampling _ rate ∗ ← sampling _ rate 

8 H 

∗
T 

← H T 

9 min _ error ← ∞ % determine optimal disagreement rate 

10 foreach θ in [0 . 5 , 0 . 6 , 0 . 7 , 0 . 8 , 0 . 9 , 1 . 0] do 

11 D cleansed ← cleanse _ with _ oob(D train , cleanse _ type, H 

∗
T , θ ) 

12 er ror ← cv _ er ror (wrapper _ learner, D cleansed , K = 3) 

13 if er ror < min _ er ror then 

14 θ ∗ ← θ

15 D cleansed ← cleanse _ with _ oob(D train , cleanse _ type, H 

∗
T 
, θ ∗) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

Characteristics of the classification problems used in the empirical evaluation. 

Dataset Training Test Attrib. 

Australian 460 230 14 

Blood transfusion 499 499 5 

Boston 337 169 14 

Breast 466 233 9 

Chess 2130 1065 37 

Crx 460 230 15 

Diabetes 512 256 8 

German 667 333 20 

Heart 178 92 13 

Horse-colic 246 122 21 

Ionosphere 234 117 34 

Liver 230 115 6 

Parkinsons 130 65 22 

Ringnorm 300 20 0 0 20 

Sonar 491 208 60 

Spambase 3067 1534 58 

Threenorm 300 20 0 0 20 

Tic-Tac-Toe 639 319 9 

Twonorm 300 20 0 0 20 
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[13,14] , the higher the level of class-label noise, the lower the value

of the subsampling rate that is selected. Although the possibility

that the presence of noisy instances lead to an incorrect selection

of the best ensemble cannot be ruled out, we have not observed

this effect in the experiments carried out. This is probably due to

the fact that random forests are fairly robust to class-label noise,

even without cleansing. 

In the second stage (steps 9–14 in Algorithm 1 ), the predictions

of the base classifiers of the selected ensemble, H 

∗
T 
, are used to

identify noisy instances. Different values of the threshold θ for the

disagreement rate are considered; namely, 0.5, 0.6, 0.7, 0.8, 0.9, and

1.0. For a given value of θ , instances for which the fraction of in-

correct predictions given by the classifiers in the selected ensem-

ble is above this threshold are marked as noise (step 11). Since the

data being cleaned and the data used to train H 

∗
T are the same,

only the predictions of base classifiers in H 

∗
T 

whose training set

does not include that particular instance are used (i.e. out-of-bag

instances). Cleansing consists in either correcting the label of noisy

instances ( cleaning ), or eliminating them ( filtering ). Then, we use a

wrapper method and compute estimates of the generalization er-

ror of a learner built on the cleansed training data. In our imple-

mentation, this error is estimated using K -fold cross-validation. The

optimal value of the disagreement threshold, θ ∗, is the one that

minimizes this estimate of the generalization error. The details of

this selection are as follows: In each of the K iterations of the cross

validation procedure, one of the K folds is set apart for validation.

Then, a classifier is trained on remaining K − 1 folds cleansed us-

ing the corresponding value of θ . The classifier is then evaluated

on the left-out fold, which is not cleansed. Finally, the cross val-

idation error is calculated by averaging the errors of the valida-

tion folds in each of the K iterations. The value selected, θ ∗, is the

threshold that minimizes this cross-validation estimate of the gen-

eralization error. This optimal threshold value, θ ∗, and the ensem-

ble H 

∗
T are then used to clean or filter the training data. Note that

the type of classifier used in the wrapper step is a parameter of

the algorithm. In general, we think it is preferable to use the same

classifier as the one that is eventually trained with the cleansed

data. In the following section we carry out an extensive empirical
nalysis of the accuracy and resilience to noise of ensembles built

n this manner. 

. Empirical evaluation 

To assess the effectiveness of the proposed noise detection pro-

edure extensive experiments have been carried out in 19 binary

lassification problems from the UCI repository [11] . The charac-

eristics of the datasets are summarized in Table 1 . The imple-

entation makes use of the R randomForest package [10] and the

 adabag package for AdaBoost [7] . In both packages the default

ettings are used. Specifically, for random forests, the number of

ariables considered for splitting at the inner nodes of the random

rees is the square root of the total number of attributes in the

roblem. The minimum size of a terminal node is set to 1. Trees

n the forest are grown to their maximum possible size. For Ad-

Boost, weighted resampling is used. The coefficient that controls

he weight update is α = 1 / 2 ln ((1 − er r ) /er r ) . 

In all the classification tasks, with the exception of Ringnorm,

hreenorm and Twonorm , which are synthetic problems, the labeled

nstances are randomly assigned to the training and test sets. The

izes of these sets are 2/3 and 1/3 of the original set, respectively.

or synthetic problems, 300 examples are used for training and

0 0 0 for testing. In all cases, stratified sampling is used. The re-

ults reported are averages over 50 executions. In these executions,

ifferent random partitions of the data into training and test sets,

r, in synthetic problems, independent realizations of the data are

sed. The following protocol is followed for each classification task

nd execution: 

1. First, noise is injected in the data by randomly switching the

class label of a random subset of the training instances. Differ-

ent noise rates are considered: 0 (no noise is injected), 10, 20,

30 and 40%. This type of class-label noise is known as com-

pletely at random noise (NCAR) [5] . 

2. For each noise level, ensembles composed of 501 trees are

trained using the following bootstrap sampling ratios: 10, 20,

40, 60, 80, 100(standard) and 120%. Then, the out-of-bag error

is computed for each ensemble. The ensemble with the best

out-of-bag accuracy ( H 

∗
T ) is kept for the next step. Both ran-

dom forests and bagging ensembles of unpruned CART trees

have been considered. According to the results of our exper-

iments, they are both equally effective to identify noisy in-

stances. Therefore, since random forest are generally more ac-
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Fig. 1. Comparison of the average ranks of the different types of ensembles for different levels of class-label noise: (a) without injected noise; (b) 10%; (c) 20% ; (d) 30%; 

and (e) 40% noise. Horizontal lines connect methods whose average ranks are not significantly different according to a Wilcoxon signed-ranks test ( p -value < .05). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

curate than bagging ensembles, only results for the former are

reported. 

3. For each instance in the training set, we compute a tally of

votes (class label predictions). In this tally, only the predictions

of those classifiers in H 

∗
T 

whose training sets do not include that

particular instance are used. 

4. Instances are tentatively marked as noisy if the percentage

of incorrect predictions by the individual ensemble classifiers

is above a specified threshold θ . Noisy instances are either

cleaned (i.e. their class labels are corrected by assigning the

majority label in the out-of-bag predictions) or filtered (i.e.

removed from the training set). The following values of the

threshold θ are tested: 0.5 (majority filtering), 0.6, 0.7, 0.8,

0.9 and 1.0 (consensus filtering). As described in the previ-
ous section, the optimum value θ ∗ is selected by K -fold cross-

validation within the training set by means of a wrapper

method. From the results of exploratory experiments with dif-

ferent values of K , reliable estimates are obtained with K = 3 ,

which is the value used in the experiments. Random forest

composed of 501 trees is used in this wrapper stage. 

5. The training instances for which the fraction of incorrect out-

of-bag predictions is above θ ∗ are definitively marked as noise.

These noisy instances are then either corrected or removed

from the training set. 

6. Finally, a random forests of 501 random trees, is built on the

cleansed training set. The labels Fl_rf for random forest with

filtering and Cl_rf for random forest with cleaning will be used

throughout the experiments. 
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Table 2 

Test errors of the different methods for different noise levels (I). 

Noise 

Dataset (in %) Fl_rf Cl_rf Fl_maj_rf Boosting RF 

Australian 0 13.3 ± 1.9 13.5 ± 1.9 13.8 ± 2.0 13.1 ± 1.9 13.1 ± 1.9 ∗

10 13.6 ± 1.9 13.7 ± 1.9 13.7 ± 2.0 18.2 ± 2.2 13.5 ± 1.9 

20 14.1 ± 1.8 14.0 ± 2.0 13.8 ± 2.1 23.8 ± 3.1 15.3 ± 2.2 

30 16.3 ± 2.9 16.1 ± 2.8 15.8 ± 2.6 33.6 ± 3.6 21.7 ± 3.0 

40 26.0 ± 6.3 24.5 ± 5.2 ∗ 26.1 ± 5.1 41.9 ± 3.2 34.3 ± 3.5 

Blood transfusion 0 21.9 ± 1.6 21.8 ± 1.9 22.1 ± 1.8 25.7 ± 2.3 24.7 ± 2.1 

10 22.2 ± 1.5 22.0 ± 1.7 22.9 ± 2.0 28.0 ± 2.8 26.4 ± 2.1 

20 23.3 ± 2.3 23.2 ± 2.4 24.9 ± 2.6 31.2 ± 3.2 29.8 ± 2.8 

40 34.0 ± 4.6 32.6 ± 4.9 ∗ 38.5 ± 4.5 43.2 ± 4.3 42.1 ± 4.5 

Boston 0 13.2 ± 2.2 13.5 ± 2.2 14.7 ± 2.7 12.4 ± 2.4 12.8 ± 2.1 

10 13.7 ± 2.6 13.8 ± 2.6 14.6 ± 2.2 16.3 ± 2.8 13.7 ± 2.6 

20 15.5 ± 2.8 15.5 ± 2.4 15.2 ± 2.8 23.6 ± 3.9 17.8 ± 2.7 

30 19.2 ± 3.8 18.9 ± 3.7 20.2 ± 4.0 32.5 ± 4.2 25.1 ± 4.4 

40 26.8 ± 6.1 26.1 ± 6.5 28.8 ± 6.5 41.1 ± 4.1 36.2 ± 5.1 

Breast 0 3.1 ± 1.1 ∗ 3.1 ± 1.0 ∗ 3.3 ± 1.0 3.4 ± 1.1 3.1 ± 1.1 ∗

10 3.6 ± 1.2 3.6 ± 1.1 3.5 ± 1.2 8.7 ± 1.8 4.1 ± 1.3 

20 4.3 ± 1.5 4.4 ± 1.8 4.3 ± 1.4 14.9 ± 2.5 6.7 ± 1.9 

30 6.6 ± 3.4 ∗ 6.6 ± 3.2 ∗ 7.6 ± 3.5 24.1 ± 3.8 12.7 ± 3.8 

40 15.5 ± 6.4 14.8 ± 5.8 18.4 ± 4.8 33.8 ± 4.2 26.4 ± 4.7 

Chess 0 1.7 ± 0.4 1.7 ± 0.4 2.6 ± 0.4 0.4 ± 0.2 ∗ 1.6 ± 0.4 

10 2.2 ± 0.4 ∗ 2.3 ± 0.4 3.0 ± 0.6 4.1 ± 0.8 2.3 ± 0.5 

20 3.4 ± 0.7 ∗ 3.6 ± 0.8 3.7 ± 0.8 5.8 ± 0.8 4.1 ± 0.6 

30 5.5 ± 1.2 6.0 ± 1.1 5.7 ± 1.0 11.0 ± 1.7 10.0 ± 1.1 

40 16.6 ± 3.0 ∗ 17.7 ± 3.2 17.7 ± 2.3 24.6 ± 2.2 25.7 ± 1.7 

Crx 0 12.9 ± 1.8 13.0 ± 2.1 13.2 ± 2.1 13.8 ± 1.8 12.6 ± 1.9 

10 13.7 ± 1.8 13.6 ± 1.8 13.6 ± 2.0 18.8 ± 2.5 14.0 ± 1.9 

20 14.1 ± 2.2 14.2 ± 2.3 14.0 ± 2.2 25.3 ± 3.1 16.2 ± 2.1 

30 16.9 ± 3.3 16.2 ± 2.9 17.0 ± 3.0 33.4 ± 3.8 22.3 ± 3.3 

40 24.5 ± 5.9 24.3 ± 5.9 25.8 ± 5.0 41.5 ± 3.4 33.8 ± 3.7 

Diabetes 0 24.1 ± 2.0 24.3 ± 1.8 24.3 ± 1.9 27.5 ± 2.1 24.0 ± 1.9 

10 24.6 ± 2.3 24.5 ± 2.3 24.3 ± 2.2 30.1 ± 2.9 25.4 ± 2.2 

20 25.4 ± 2.5 25.4 ± 2.4 25.3 ± 2.4 34.4 ± 3.0 27.8 ± 2.5 

30 27.3 ± 2.6 26.7 ± 2.7 ∗ 27.3 ± 2.7 39.6 ± 3.3 31.7 ± 3.0 

40 32.5 ± 4.9 32.5 ± 3.8 33.4 ± 4.7 44.4 ± 4.0 39.3 ± 4.5 

∗ p -value < 0.05. 
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7. The generalization error of the resulting ensembles is estimated

on the unperturbed test set. 

As a benchmark, a second cleansed dataset is obtained us-

ng majority filtering following the proposals of previous studies

3,17,21] , and, in particular, for homogeneous ensembles [16] . In

his benchmark, the data are filtered using K -fold cross-validation.

t each iteration, an ensemble is trained using data from K −1

olds. Then, the ensemble is used to predict the labels of the in-

tances in the remaining fold. The examples of the holdout fold

hat are incorrectly classified are removed from the dataset. The

rocess is repeated to filter the other folds. We implemented this

ethod using random forest of size 501 and K = 3 . Finally, a ran-

om forest composed of 501 random trees is built on the train-

ng set cleaned with majority filtering. The label Fl_maj_rf is used

o denote this benchmark. As an additional reference, we also

resent the results of standard random forest (labelled as RF) and

daBoost (labeled as Boosting) trained on the original uncleaned

raining set. 

.1. Predictive accuracy 

The results of the experiments carried out to compare the ac-

uracies of the different methods considered are summarized in

ables 2 –4 . The test errors reported correspond to averages over 50

ealizations of the training and test sets. These averages followed

y their standard deviations after the ± sign. To assess the sig-

ificance of these observations, the results of an overall compari-

on of the different methods are summarized in Fig. 1 using the
ethodology introduced in [4] . In these plots, the average ranks

f the different methods are compared. The differences between

he average ranks of two methods are statistically significant at a

evel α = 0 . 05 if they are above a critical distance (CD). Methods

hose average ranks are not significantly different are linked by a

orizontal line. Average rank plots are presented for experiments

ith different levels of class-label noise injected: 0, 10, 20, 30

nd 40%. 

From the results presented in Fig. 1, Tables 2 –4 , one concludes

hat random forests with optimal filtering or cleaning ( Fl_rf and

l_rf ) are among the most accurate ensembles at all noise levels.

hen no noise is injected, boosting and random forest trained

n the original data are slightly better than Fl_rf and Cl_rf . How-

ver, the differences are not statistically significant. Because of its

rogressive emphasis on incorrectly classified instances, boosting

s not robust to errors in the class labels. This is apparent from

he degradation of its performance in problems with higher lev-

ls of noise. In fact, boosting has the worst average rank for 10–

0% noise levels. In these cases, the differences with most other

ethods are statistically significant. The differences between filter-

ng and cleaning are not statistically significant. Filtering seems to

ave a slightly better performance at lower noise levels. When ei-

her 30% or 40% of the class labels of the training instances are

erturbed, cleaning is slightly better than filtering. This is prob-

bly a consequence of the loss of information that results form

iscarding instances in filtering. Finally, we observe that selecting

dequate values of the threshold θ for noise filtering or cleaning

s superior to using standard majority filtering at all noise levels.

hese improvements are more pronounced at lower noise levels. 
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Table 3 

Test errors of the different methods for different noise levels (II). 

Noise 

Dataset (in %) Fl_rf Cl_rf Fl_maj_rf Boosting RF 

German 0 24.5 ± 2.2 24.6 ± 1.9 26.5 ± 2.1 25.1 ± 2.1 24.2 ± 2.0 

10 25.0 ± 1.9 25.6 ± 2.4 26.7 ± 2.4 28.1 ± 2.2 24.8 ± 1.9 

20 26.5 ± 2.7 26.7 ± 2.3 27.1 ± 2.2 32.7 ± 3.1 27.1 ± 2.7 

30 28.9 ± 2.7 28.6 ± 2.8 28.3 ± 2.6 38.3 ± 3.0 31.0 ± 2.7 

40 32.2 ± 4.2 31.7 ± 3.9 32.8 ± 4.0 43.3 ± 2.9 37.9 ± 3.6 

Ionosphere 0 6.9 ± 2.0 6.9 ± 2.0 7.3 ± 1.9 6.4 ± 1.8 6.8 ± 1.9 

10 7.7 ± 2.0 7.8 ± 2.2 8.0 ± 2.4 11.3 ± 3.3 7.8 ± 2.1 

20 9.4 ± 3.1 9.5 ± 3.7 9.3 ± 3.0 19.0 ± 4.2 11.3 ± 3.7 

30 14.8 ± 4.5 14.1 ± 4.0 13.8 ± 4.6 28.0 ± 5.3 18.4 ± 3.8 

40 32.2 ± 4.2 31.7 ± 3.9 32.8 ± 4.0 43.3 ± 2.9 37.9 ± 3.6 

Heart 0 17.5 ± 3.4 18.1 ± 3.8 17.9 ± 3.8 20.9 ± 3.4 18.1 ± 3.6 

10 19.6 ± 4.3 19.7 ± 4.3 18.9 ± 4.8 26.3 ± 4.1 20.3 ± 3.8 

20 21.7 ± 4.0 21.4 ± 4.5 21.5 ± 4.2 32.1 ± 5.8 23.5 ± 4.3 

30 24.2 ± 5.6 24.2 ± 5.5 24.0 ± 5.3 37.1 ± 5.3 28.7 ± 5.7 

40 34.2 ± 7.6 33.7 ± 7.2 34.5 ± 7.3 43.2 ± 6.6 38.4 ± 6.2 

Horse-colic 0 15.6 ± 2.5 15.5 ± 2.7 17.6 ± 3.6 15.7 ± 2.6 15.5 ± 2.7 

10 17.5 ± 3.0 17.5 ± 3.1 18.2 ± 3.4 22.3 ± 3.4 17.5 ± 2.9 

20 20.2 ± 3.6 20.5 ± 4.1 20.3 ± 4.0 28.3 ± 4.9 20.7 ± 3.7 

30 26.2 ± 4.7 26.5 ± 4.9 26.0 ± 5.5 35.4 ± 4.5 29.0 ± 4.9 

40 36.0 ± 6.3 35.2 ± 6.5 36.0 ± 6.5 43.6 ± 4.7 39.7 ± 4.5 

Liver 0 28.4 ± 4.2 29.7 ± 3.8 31.2 ± 4.4 29.6 ± 3.4 27.4 ± 3.8 ∗

10 31.4 ± 4.3 ∗ 32.7 ± 4.9 33.6 ± 4.8 34.4 ± 3.9 31.4 ± 4.4 ∗

20 34.5 ± 4.6 35.5 ± 4.2 36.0 ± 4.7 37.7 ± 4.6 34.6 ± 4.5 

30 38.0 ± 5.9 38.5 ± 5.3 38.8 ± 5.7 40.5 ± 5.5 37.7 ± 5.8 

40 43.8 ± 5.6 43.1 ± 5.4 44.6 ± 4.6 44.9 ± 4.6 43.5 ± 5.3 

Parkinsons 0 11.9 ± 3.5 11.4 ± 3.8 16.3 ± 4.0 8.1 ± 3.5 ∗ 11.0 ± 3.5 

10 13.5 ± 3.8 13.5 ± 3.8 16.4 ± 4.0 12.8 ± 3.9 13.0 ± 3.7 

20 17.8 ± 4.7 18.1 ± 5.2 18.1 ± 4.5 22.0 ± 5.0 17.8 ± 4.7 

30 21.0 ± 5.2 21.5 ± 4.7 20.7 ± 5.4 29.8 ± 7.1 23.9 ± 5.5 

40 31.8 ± 8.2 31.8 ± 8.0 29.3 ± 7.5 ∗ 39.0 ± 6.2 34.6 ± 7.1 

Ringnorm 0 6.1 ± 1.0 6.2 ± 1.0 8.3 ± 1.4 4.4 ± 0.4 ∗ 6.0 ± 1.0 

10 6.8 ± 1.3 6.9 ± 1.1 8.7 ± 1.5 8.6 ± 1.1 6.7 ± 1.1 

20 8.4 ± 1.8 8.3 ± 1.6 9.9 ± 2.2 15.2 ± 1.7 8.3 ± 1.7 

30 11.8 ± 2.7 11.5 ± 3.1 12.2 ± 3.2 24.4 ± 2.7 12.8 ± 2.4 

40 21.1 ± 5.3 18.2 ± 5.3 ∗ 20.8 ± 6.4 36.3 ± 3.1 24.7 ± 3.5 

∗ p -value < 0.05. 
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4.2. Optimal values of the hyperparameters 

In this section, we analyze the trends in the values selected for

the sampling rate and the threshold, θ ∗. We consider first the val-

ues of the sampling rate. In plot (a) of Fig. 2 the average sampling

rates obtained by the proposed cleaning procedure for each dataset

and noise level are displayed. One can observe that in the orig-

inal unperturbed problems (white bars in the plot) the optimal

values for this hyperparameter are strongly problem dependent.

For instance, in Chess, Spambase , and Tic-tac-toe these values are

above the standard 100% resampling rate. It is likely that for these

problems the variability random forests is too large, and that over-

sampling is an effective mechanism to reduce it. In the remaining

problems subsampling, which increases the variability of the en-

semble, seems to be more effective. In some cases, such as Blood

Transfusion, Breast, Ionosphere , and Twonorm , the optimal values of

the sampling ratios are fairly low (around or below 30%, on aver-

age). In general, as more class-label noise is injected in the data,

the optimal sampling ratios become smaller. This confirms the ob-

servation that subsampling becomes more effective as the amount

of class-label noise increases [13,14] . 

In the method proposed, an instance is marked as noisy when

it is incorrectly labeled by a fraction of classifiers that exceeds

a specified threshold θ ∗. The optimal value of this parameter

is also strongly problem-dependent. However, from the results

presented in plot (b) of Fig. 2 , it is apparent that as more noise

is injected, the values of θ ∗ become smaller and approach 0.5,

which corresponds to majority voting. This is consistent with
t  
he observation that majority filtering becomes more effective at

igher noise levels. 

.3. Noise detection 

The value of the threshold used to mark an instance as noisy

s determined on the basis of the accuracy of the wrapper classi-

er trained on cleansed data. The question remains whether this

rocedure is actually effective for the detection of noisy instances.

o investigate this issue, we have recorded the fraction of instances

arked as noise for the different classification tasks and with dif-

erent levels of injected noise. The results of these experiments

re presented in the plots of Fig. 3 for the following noise levels:

% (first row), 10% (second row) and 30% (third row). Each plot

f this figure shows the average percentage of instances that are

arked as noise with a white bar. From those instances, the ones

orresponding to the artificially injected noise are marked in red.

he results for the proposed cleaning procedure using filtering are

ummarized in the plots in the left column of this figure. For ref-

rence, the results of majority filtering benchmark are displayed in

he plots in the right column. 

An analysis of the results for the unperturbed classification

asks (first row of Fig. 3 ) reveals that the levels of detected noise

ary significantly. In the synthetic problems, which, by construc-

ion, are noiseless, the proposed cleaning procedure using filtering

iscards only a small percentage instances. By contrast, in some

roblems (such as Blood transfusion, Diabetes, German and Liver )

 significant fraction of instances are identified as noise. Filtering

hese instances does not appear to be detrimental. As a matter
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Fig. 3. Percentage of filtered examples (white bars) and filtered examples that correspond injected noise (red part of the bars) for different noise levels: without injected 

noise (first row), 10% (second row), and 30% (third row) for the proposed cleansing procedure (left column) and majority filtering (right column). (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version of this article.) 
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Table 4 

Test errors of the different methods for different noise levels (III). 

Noise 

Dataset (in %) Fl_rf Cl_rf Fl_maj_rf Boosting RF 

Sonar 0 18.8 ± 3.9 19.4 ± 4.8 24.5 ± 3.8 14.4 ± 3.8 ∗ 18.5 ± 3.7 

10 20.7 ± 5.2 21.5 ± 4.9 25.2 ± 4.6 20.1 ± 4.4 19.9 ± 4.7 

20 24.2 ± 4.8 24.3 ± 5.4 26.1 ± 5.2 26.9 ± 5.5 23.7 ± 5.5 

30 31.7 ± 7.1 31.9 ± 7.2 33.1 ± 7.7 35.1 ± 6.6 31.2 ± 7.6 

40 38.6 ± 6.2 39.7 ± 7.5 39.6 ± 7.6 42.6 ± 7.7 39.4 ± 7.4 

Spambase 0 5.1 ± 0.6 5.1 ± 0.6 6.3 ± 0.5 4.9 ± 0.4 5.0 ± 0.5 

10 5.9 ± 0.5 ∗ 6.1 ± 0.7 6.5 ± 0.5 9.4 ± 0.8 6.6 ± 0.6 

20 6.7 ± 0.6 6.7 ± 0.6 6.9 ± 0.7 13.7 ± 1.1 9.3 ± 0.9 

30 7.8 ± 0.8 ∗ 7.8 ± 0.8 ∗ 8.6 ± 0.9 20.3 ± 1.4 14.6 ± 1.1 

40 11.8 ± 2.2 11.1 ± 1.5 ∗ 14.3 ± 1.5 32.0 ± 1.6 25.6 ± 1.3 

Threenorm 0 17.0 ± 1.0 17.2 ± 1.3 19.2 ± 1.4 16.8 ± 0.9 16.5 ± 0.9 

10 18.8 ± 1.5 19.1 ± 1.6 20.5 ± 1.8 20.7 ± 1.4 18.4 ± 1.2 ∗

20 20.9 ± 2.2 21.2 ± 2.6 21.7 ± 2.5 25.5 ± 1.6 20.8 ± 1.8 

30 25.6 ± 2.6 25.7 ± 2.5 26.7 ± 2.5 32.3 ± 2.1 26.5 ± 2.1 

40 33.4 ± 4.5 33.0 ± 4.7 34.3 ± 5.1 40.6 ± 2.9 35.7 ± 3.1 

Tictactoe 0 2.5 ± 0.9 2.4 ± 1.1 7.2 ± 2.5 0.6 ± 0.5 ∗ 2.3 ± 1.0 

10 5.7 ± 2.2 6.2 ± 2.3 12.0 ± 2.6 10.4 ± 1.7 5.8 ± 1.6 

20 12.5 ± 2.9 13.8 ± 2.8 17.4 ± 2.8 21.3 ± 2.3 12.4 ± 2.3 

30 22.1 ± 2.7 23.5 ± 2.6 24.1 ± 3.3 30.5 ± 2.6 21.7 ± 2.2 

40 34.4 ± 3.7 34.4 ± 3.5 35.1 ± 3.5 40.5 ± 3.7 35.7 ± 3.2 

Twonorm 0 3.9 ± 0.5 3.9 ± 0.5 4.3 ± 0.5 3.7 ± 0.3 3.8 ± 0.4 

10 4.6 ± 0.7 4.5 ± 0.6 4.5 ± 0.5 7.7 ± 1.0 4.9 ± 0.7 

20 5.6 ± 1.2 5.5 ± 0.9 5.2 ± 0.9 13.7 ± 1.6 6.5 ± 1.0 

30 8.2 ± 2.9 7.7 ± 2.8 7.3 ± 2.3 23.7 ± 2.4 10.8 ± 1.8 

40 17.5 ± 6.3 16.7 ± 6.9 15.2 ± 5.5 35.7 ± 3.2 23.2 ± 3.3 

∗ p -value < 0.05. 
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of fact, in these problems the proposed cleaning procedure yields

competitive or better accuracy rates with respect to random forest

trained on the uncleaned data (see Tables 2 and 3 ). 

For the unperturbed classification tasks, majority filtering is

much more aggressive and marks many more instances as noise

than the proposed procedure. In problems without noise in the

class labels, such as Threenorn, Tic-tac-toe, Ringnorm, Twonorm ,

around or above 5% of the training instances are discarded (see

upper right plot on Fig. 3 ). As a result, there is a significant

decrease of the accuracy for random forest trained on these

cleansed data (see Tables 3 and 4 ). In real-world problems, it is not

possible to know the level of intrinsic noise. Nonetheless, major-

ity filtering is likely to discard too many instances as well. Specif-

ically, this method marks more than 20% of the instances as noise

in five of the datasets analyzed ( Blood transfusion, Diabetes, German,

Liver and Sonar ). The accuracy of random forest trained on the data

cleansed by majority filtering in Blood transfusion and in Diabetes

is fairly good. However, in Liver and Sonar it is the least accurate

among the methods considered. 

The results of experiments on classification tasks perturbed

with 10% and 30% class-label noise, are displayed in the second

and the third rows of Fig. 3 , respectively. The red part of the bars

is the percentage of instances whose class-label has been switched

in the noise injection process that are identified as noisy. In most

cases for the proposed cleansing procedure based on optimal fil-

tering, the height of the red bar is well below the level of noise

injected. This means that a significant fraction of perturbed in-

stances are not detected. An extreme example is Sonar . We con-

jecture that this lack of sensitivity is due to the strong overlap of

the distributions for the two classes. For this reason, it is difficult

to single out noisy instances located in regions where such over-

lap is high. Using majority filtering, which is more aggressive, it is

possible to detect most of the injected noisy instances. In fact, the

relative performance of majority filtering improves when the lev-

els of class-label noise are high. Still, even at high noise levels, the

precision of the method is rather low: the percentage of instances

that are marked as noise by majority voting is significantly larger
 t  
han the level of noise injected. By contrast, even though the pro-

osed optimal filtering procedure fails to identify some noisy in-

tances, those that are identified by this strategy are more likely

o be noise in actuality. In some datasets ( Boston, Breast, Chess,

arkinsons, Ringnorm, Spambase, Tictactoe and Twonorm ) the pro-

osed procedure detects a fairly high percentages of the injected

oise without removing a significant number of noiseless in-

tances. For these datasets, random forests trained on data cleaned

ith the proposed procedure are more accurate than those trained

ased on data cleaned majority filtering, except in Breast and

wonorm , where the differences are not statistically significant (see

ables 2 –4 ). 

In summary, the proposed cleansing procedure achieves high

pecificity at the expense of not being able to detect some noisy

nstances. By contrast, majority filtering detects most noisy in-

tances, but also incorrectly discards a high percentage of valid

nes. As shown in Fig. 2 (b), θ ∗, the optimal threshold for filtering,

ecomes closer to 0.5 (majority filtering) as the level of class-label

oise increases. 

. Conclusions 

In this paper, we have proposed a two-stage method for the

etection of class-label noise based on the robustness to noise of

andomized ensembles that use resampling [13,14] . Near-optimal

alues of the sampling rate can be determined using out-of-bag

ata. Typically, the selected sampling ratios become smaller as the

evel of class label noise increases. Another important observation

s that the classifiers in the ensemble tend to make more errors on

oisy instances. Therefore, the fraction of incorrect predictions can

e used as an indicator for noise detection: if this quantity is above

 threshold, θ , the instance considered is marked as noisy. Stan-

ard values for the threshold are θ = 0 . 5 (majority) or θ = 1 (con-

ensus). In this work, we have shown that the best results are ob-

ained at a value θ ∗ that is intermediate between these extremes.

 simple wrapper procedure is proposed to determine θ ∗. This op-

imal value depends on the problem under consideration and the
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mount of class-label noise. Values of θ ∗ closer to majority filter-

ng are generally obtained for noisy problems. However, majority

leansing tends to discard instances that are correctly labeled. This

as been shown to be disadvantageous, specially in problems with

ow levels of noise. In general, adjusting the threshold used to de-

ect noisy instances allows us to build more accurate ensembles at

ll levels of class-label noise. 

Once the noisy instances have been identified, they can be re-

oved from the training data (filtering) or corrected (cleaning). Fil-

ering is slightly superior at low and medium noise levels. Clean-

ng tends to be more accurate when the noise levels are high. The

eason for this behavior is that filtering discards training instances.

his involves some information loss, which could be detrimental if

oo many instances are discarded. 
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