
Data Mixing Optimization for Supervised Fine-Tuning
of Large Language Models

Yuan Li 1 Zhengzhong Liu 2 Eric Xing 1 2

Abstract
Optimizing data mixtures for supervised fine-
tuning (SFT) of large language models (LLMs)
is critical for developing general-purpose models,
yet this area remains underexplored. In this paper,
we frame data mixing as an optimization problem
and introduce a novel method designed to mini-
mize validation loss. Our approach parametrizes
the loss by modeling effective data transferred and
leveraging scaling laws for fine-tuning. By exper-
imenting with various small-scale data mixtures,
we fit these parameters and derive the optimal
weights. We provide both mathematical proofs
and empirical results demonstrating that our al-
gorithm achieves excellent overall and individual
performance across all domains. Through con-
trolled experiments, we show that models trained
with our optimized weights perform on par with
those using optimal weights determined via grid
search, with per-domain loss only 0.66% higher
than the best domain loss from grid search on
average. Additionally, we show that reweighting
popular SFT datasets using our method improves
both validation loss and downstream performance.
Finally, we discuss how our method can gener-
alize to guide data selection for domain-specific
models and provide insights into SFT.

1. Introduction
Large Language Models (LLMs) are general-purpose sys-
tems capable of performing a wide range of tasks, such as
following instructions and solving mathematical problems.
To train these models, a critical factor is to construct train-
ing datasets that contain diverse domains (e.g., math, code,

1Carnegie Mellon University 2Mohamed bin Zayed
University of Artificial Intelligence. Correspondence
to: Yuan Li <yuanli4@andrew.cmu.edu>, Eric Xing
<Eric.Xing@mbzuai.ac.ae>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

healthcare)—a procedure termed data mixing. Data mixing
has significant impacts on models’ performance (Albalak
et al., 2023; Xie et al., 2024). However, it is impractical to
identify the best data mixture by exhaustively trying every
possible combination of domain weight.

Prior research has concentrated on optimizing data mixtures
during the pre-training of LLMs. A prevalent strategy for
determining optimal weights of pre-training data involves
defining or parametrizing the loss as a function of domain
weights and subsequently minimizing this function. This
overarching strategy encompasses various approaches. One
such approach employs small proxy models to optimize do-
main weights, which are then applied to train larger models
(Xie et al., 2024; Fan et al., 2024). (Xie et al., 2024; Fan
et al., 2024). Alternatively, methods like Data Mixing Laws
and RegMix (Ye et al., 2024; Liu et al., 2024) parameterize
the relationship between model performance (e.g., loss) and
data mixtures. These methods involve employing a function
to estimate the performance and then using the function to
optimize the data mixture.

Despite significant efforts in pre-training, data mixing for
supervised fine-tuning (SFT) remains underexplored. This
oversight is unwarranted, as recent research indicates that
SFT not only aligns the model stylistically but also infuses
knowledge and enhances the model’s capabilities (Wu et al.,
2024; Raghavendra et al., 2024). Moreover, existing data
mixing methods designed for pre-training are not directly
applicable to SFT due to several challenges: 1) Optimizing
domain weights using small proxy models may not translate
effectively to larger models. Since SFT builds upon models
pre-trained with distinct datasets, it is questionable whether
the optimal weights derived from proxy models remain
valid for the specific large-scale models at SFT stage; 2)
Even when the same model is used, parameterizing the loss
without accounting for the interplay and scaling effects of
different domains can lead to poor extrapolation. At the
SFT stage, the goal is to train a general-purpose model with
robust performance across multiple domains. Existing loss
minimization does not ensure adequate representation for
each domain. In fact, these loss parametrizations lead to
unbalanced domain weight distributions when scaling up
data sizes.

1

Data Mixing Optimization

These challenges call for a systematic data mixing method
for SFT. In this paper, we introduce Data Mixing Optimiza-
tion, a method that frames data mixing as an optimization
problem to determine optimal domain weights for given data
budgets. Our approach involves a novel parameterization
of validation loss tailored for SFT. This parameterization
accounts for both the scaling effects of fine-tuning data and
the interactions between different domains. We analyze
our optimization method and demonstrate that our method
offers two key advantages. First, it shares similar intuition
and principles with existing methods (Xie et al., 2024; Fan
et al., 2024; Kang et al., 2024) in up-weighting domains that
effectively reduce the loss. Second, it is theoretically robust
because we rigorously proved that our algorithm ensures
balanced performance across all domains.

We conducted extensive experiments across various sce-
narios, including controlled studies using three distinct do-
mains: instruction following, math, and code; and experi-
ments of re-weighting popular SFT collections. Our results
show that our method effectively derives domain weights
that minimize validation loss. Furthermore, defining do-
mains as specific tasks (e.g., math, code) can make our
method useful for improving downstream performance on
specific tasks. We also show that our data mixing optimiza-
tion can be extended to guide the training of domain-specific
LLMs and provide insights into SFT.

To summarize, our contributions are three-fold:
• Data Mixing Optimization for SFT: We introduce a

method that optimizes domain weights for SFT data.
Central to this optimization is a novel parameterization
of validation loss that models the scaling effects of SFT
data and domain interactions. This method is theoreti-
cally solid and ensures no domain will underperform.

• Extensive Empirical Results on Data Mixing: We
present extensive SFT results about data mixing across
various LLM classes and model sizes. The findings
not only validate the effectiveness of our method but
also reveal interesting patterns, such as the similarity in
optimal weights among models within the same LLM
classes, that pave the way for future research.

• Implications and Insights for SFT: We demonstrate
that data mixing optimization can guide data selection
for specialized tasks and serve as a framework to un-
derstand key aspects of SFT, including data scaling and
domain interactions.

2. Related Work
Due to space limitations, we briefly discuss related work
here and leave detailed analysis in Appendix A.
Data Mixing. The composition of training data for LLMs
has drawn significant interest due to its impact on perfor-
mance. Data mixing, also known as domain reweighting, is

well-studied at the pre-training stage. Methods like DoReMi
(Xie et al., 2024) and DoGE (Fan et al., 2024) identify opti-
mal weights using smaller models and subsequently apply
these weights to train larger models. Other approaches, such
as Data Mixing Laws (Ye et al., 2024), RegMix (Liu et al.,
2024), and Aioli (Chen et al., 2024a), estimate loss as a
function of domain weights and interpolate performance
to determine optimal data compositions. However, these
methods often struggle to generalize across different model
scales or data distributions, limiting their applicability to
SFT. To the best of our knowledge, SMART (Renduchin-
tala et al., 2024) is the only method explicitly designed
to optimize domain weights for SFT; however, it relies on
prompt embeddings and remains model and scale-invariant.
In contrast, our proposed approach determines optimal do-
main weights that depend on both model size and scale, thus
avoiding the limitations of previous methods.

Supervised Fine-Tuning. SFT, or instruction fine-tuning,
involves training pre-trained LLMs with instruction-output
pairs (Wei et al., 2022; Chung et al., 2024; Peng et al., 2023).
Notable SFT collections include FLAN (Wei et al., 2022),
the Tulu series (Wang et al., 2023; Ivison et al., 2023; Lam-
bert et al., 2024), OpenHermes (Teknium, 2023), Infinity
Instruct (Zhao et al., 2024), and Orca (Mukherjee et al.,
2023), which aggregate data from diverse domains such
as math, code, and dialogue to enhance model capabilities.
According to Superficial Alignment Hypothesis (Zhou et al.,
2024), the primary role of SFT is to align the model’s for-
matting and style. However, recent studies (Raghavendra
et al., 2024) argue that improvements from SFT follow a
power law, suggesting that SFT enhances more than just
style alignment, including knowledge infusion. Addition-
ally, factors such as the number of tasks, model size, in-
struction settings, and output length significantly influence
LLMs’ performance (Puri et al., 2023; Chung et al., 2024;
Longpre et al., 2023; Zhao et al.). Unlike existing meth-
ods that focus on dataset quality, our work optimizes data
mixtures within specified budgets across to enhance SFT.

3. Data Mixing Optimization
In this section, we formulate data mixing as an optimization
problem. The objective is to determine the optimal data
composition that minimizes the validation loss given a fixed
computational budget (i.e., training dataset size in tokens).
We introduce a novel algorithm to solve this optimization
problem and derive the optimal weights for data domains.

3.1. Problem Formulation

Consider fine-tuning an LLM using a training dataset D =⋃K
i=1Di, whereDi corresponds to domain i, and K denotes

the total number of domains. We similarly denote validation
dataset as Dval =

⋃K
i=1Dval

i . Let N = |D| represent the
total number of tokens in D and Ni = |Di| be the number

2

Data Mixing Optimization

of tokens in domain i. We introduce domain weight vector
w = (w1, w2, . . . , wK), where each weight wi represents
the proportion of domain i. The weight vector w satisfies
the constraints of the K-dimensional probability simplex:

w ∈ ∆K =

{
w ∈ RK

∣∣∣∣ wi ≥ 0 ∀i,
K∑
i=1

wi = 1

}
.

Each domain weight is calculated as wi =
Ni

N .

The model parameters θ are trained by minimizing the em-
pirical loss over the training dataset D, yielding the param-
eters θ∗ = argminθ L(θ,D). We use θ∗ and θ∗(N,w)
interchangeably to emphasize its dependence on data com-
position (N,w). After training, the model θ∗ is evaluated
on the validation set Dval by computing the aggregated loss
across all validation domains1:

L(θ∗,Dval) =

K∑
i=1

L(θ∗,Dval
i).

The objective is to seek the domain weight vector w such
that, after training on the weighted domains, the model’s
validation loss is minimized. We formalize this into an
optimization problem:

min
w

L
(
θ∗(N,w),Dval

)
subject to 0 ≤ wi ≤ 1 ∀i ∈ {1, 2, . . . ,K},

K∑
i=1

wi = 1,

where θ∗(N,w) = argmin
θ

L(θ,D).

(1)

There is no closed-form solution for the optimization prob-
lem 1. Specifically, finding the optimal w∗ involves an
iterative optimization process. In each iteration, the model
is trained using a specified weight vector, and the weights
are adjusted based on the validation loss to enhance perfor-
mance. However, this procedure is computationally expen-
sive, as each iteration necessitates retraining the entire LLM.
To address this issue, we propose an estimation of validation
loss through the ideas of effective data from transfer (Her-
nandez et al., 2021) and scaling law for fine-tuning (Zhang
et al., 2024).

3.2. Effective Data from Transfer

Effective data from transfer refers to the equivalent amount
of training data that a model would need to achieve the same

1We compute the total validation loss across all domains, as-
signing equal weights to each to develop a general-purpose LLM
that excels in multiple areas. Alternatively, weighting multipli-
ers can be applied to individual domains to prioritize model per-
formance in specific areas. We will discuss fine-tuning domain-
specific LLMs in Section 5.4.

loss when trained exclusively on data from different distri-
butions (Hernandez et al., 2021). For domain i, the total
effective data can be calculated as the sum of in-domain data,
denoted as |Di|, and effective data transferred to domain i,
denoted as |DT

i |: |DE
i | = |Di|+ |DT

i |.

Inspired by Hernandez et al. (2021), we represent |DT
i | as a

function of the dataset size from other domains |D\i|:

|DT
i | = ki · |D\i|αi (2)

where k is a constant associated with the model architecture
and data distribution differences, and αi is a scaling coef-
ficient. We apply Equation (2) to estimate the equivalent
dataset size transferred from other domains when calculat-
ing the domain validation loss.

3.3. Scaling Law for Fine-Tuning

We estimate the validation loss as a function of the effective
dataset size. According to Zhang et al. (2024), the scaling
law for fine-tuning data follows a power-law relationship:

L(D) ≈ C · |D|−β + E, (3)

where L is the loss, and C encompasses factors such as
model size. In our setting, since these factors are held
constant, C acts as a multiplicative term. β is the scaling
coefficient, and E represents the irreducible loss. This scal-
ing law for fine-tuning suggests that loss decreases rapidly
with an initial increase in data but gradually plateaus as the
dataset size grows. These implications align with previous
studies that fine-tuning with a small number of examples
can achieve decent results (Zhou et al., 2024), while larger
fine-tuning datasets continue to enhance downstream perfor-
mance (Raghavendra et al., 2024).

Leveraging effective data from transfer in Equation (2) and
scaling law for fine-tuning in Equation (3), we estimate the
validation loss for domain i as:

L̃(θ∗,Dval
i) ≈ Ci · (Ni +NT

i)−βi + Ei

≈ Ci ·
(
Ni + ki · |D\i|αi

)−βi
+ Ei

(4)

Here, D\i represents the aggregated datasets from all do-
mains except domain i, and |D\i| = N −Ni. βi is a scaling
coefficient, and Ci, ki , and Ei are domain-specific con-
stants.

With this formula, we fit five parameters for each domain
in Equation (4) using only small amount of data. Motivated
by Kang et al. (2024), we vary the data size for domain i
while keeping the data sizes of other domains |D\i| con-
stant. Specifically, the data size for domain i is varied five
times, denoted as N

(t)
i for t = 0, 1, 2, 3, 4, where t = 0

corresponds to the original allocation Ni. For each t, the
corresponding validation loss L

(t)
i is recorded. To fit the

3

Data Mixing Optimization

parameters, we follow the standardized procedure in Hoff-
mann et al. (2024) and Zhang et al. (2024) and minimize the
residuals using Huber loss (Huber, 1964) with δ = 0.001.
We further use Trust Region Method (Conn et al., 2000) with
a nonlinear constraint (Wächter & Biegler, 2006) to ensure
that the effective data from transfer ki · (N −Ni)

α
i remains

less than the original quantity N − Ni. The objective is
formalized as:

min
Ci,ki,αi,βi,Ei

4∑
t=0

Huberδ
(
L̃(N

(t)
i)− L

(t)
i

)
subject to ki · |N −Ni|αi ≤ |N −Ni| ,

(5)

where L̃(N
(t)
i) = Ci ·

(
N

(t)
i + ki · |N −N

(0)
i |αi

)−βi

+

Ei.

3.4. Optimization Algorithm

Using the fitted parameters for each domain, we formulate
the optimization problem for a given data budget N0 and
domain weight vector w as follows:

min
w

K∑
i=1

L
(
θ∗(N0,w),Dval

i

)
≈ min

w

K∑
i=1

[
Ci (wiN0 + ki (N0 − wiN0)

αi)
−βi + Ei

]
subject to 0 ≤ wi ≤ 1 ∀i ∈ {1, . . . ,K},

K∑
i=1

wi = 1

(6)
Note that the objective is a convex function (proof of
convexity in Appendix B) but has no closed-form solu-
tion. To this end, we solve this optimization to find op-
timal weight vector w using sequential least squares pro-
gramming (SLSQP) algorithm (Nocedal & Wright, 2006),
a gradient-based method that handles both equality and
inequality constraints. At each iteration, SLSQP con-
structs a quadratic approximation of the objective function∑K

i=1

[
Ci (wiN + ki(N − wiN)αi)

−βi + Ei

]
using gra-

dient information to refine the solution.

In summary, we integrate the aforementioned components
and present the algorithm for determining the optimal data
weights in Algorithm 1.

4. Interpretations and Analysis
In this section, we interpret our data mixing algorithm by
examining key estimated parameters from perturbation ex-
periments and analyzing mathematical implications.

Settings. We consider a scenario with three distinct
domains: general instruction following (IF) (sampled

Algorithm 1 Data Mixing Optimization
Input: Data budget N0; sample size N (N ≪ N0);
number of domains K; data sources S1, . . . , SK ; valida-
tion sets Dval = {Dval

1 , . . . ,Dval
K }; perturbation ratios

r1, . . . , r4.
Initialization
for i = 1 to K do
Di ← Sample(Si,

N
K)

end for
Train an initial model on D =

⋃K
i=1Di; let θ∗ be the

trained model.
L(0)
v ← L

(
θ∗,Dval

)
Perturbation Experiments
for t = 1 to 4 do

for j = 1 to K do
D(t)

j ← Sample
(
Sj , rt

N
K

)
D(t) ←

(
D \ Dj

)
∪ D(t)

j

Train a model on D(t) → θ(t)

L(t)
v ← L

(
θ(t),Dval

)
end for

end for
Parameter Estimation
for i = 1 to K do

Solve for {Ci, ki, αi, βi, Ei} via Trust Region:

min
Ci,...,Ei

4∑
t=0

Huberδ
(
L̃(N

(t)
i)− L

(t)
i

)
,

subject to ki |N −Ni|αi ≤ |N −Ni|.

end for
Domain Weight Optimization
Solve for w = (w1, . . . , wK) via SLSQP:

min
w

K∑
i=1

[
Ci

(
wi N0 + ki (N − wiN0)

αi
)−βi

+ Ei

]
,

subject to 0 ≤ wi ≤ 1,

K∑
i=1

wi = 1.

Output: w∗

from Infinite-Instruct (BAAI, 2024)), math (sampled from
OpenMathInstruct-2 (Toshniwal et al., 2024)), and code
(sampled from OpenCoder (Huang et al., 2024)). Each do-
main has a unit sample size of n = 660,000 tokens. We set
perturbation ratios to 1/2, 1/3, 2, and 3, and calculate the
parameters by solving Equation (5). We use Llama3.2-3B
as an example.

Loss and Parameters. To build intuition, we first ana-
lyze the validation loss for each domain. In Figure 1(a),
we present a matrix comparing the token-level perplexity
(PPL) of each domain as domain data decreases from 3n
to n tokens. The most notable finding is that increasing do-

4

Data Mixing Optimization

(a) (b)

Figure 1. (a) Difference in per-domain perplexity between domain
data sizes of 3n and n, while keeping each domain’s data size
fixed at n. (b) Overall perplexity in perturbation experiments with
domain data sizes set to 1/3n, 1/2n, n, 2n, and 3n, while keeping
each domain’s data size fixed at n.

main data significantly reduces its validation loss. Among
all domains, IF data exhibits the most substantial impact.
Furthermore, increasing IF data also decreases PPL in the
math and code domains. This observation aligns with our
intuition during SFT: math and code problems are formatted
as instructions, enhancing instruction following capabilities
enables LLMs to better address these tasks.

We then explore how the loss relates to the parameters in
Equation (4) using the following parametrization (repeated
here for clarity):

L̃ = Ci ·
(
Ni + ki ·

∣∣N −Ni

∣∣αi
)−βi

+ Ei.

All estimated parameters for the three domains are presented
in Table 1, and the fitted loss curves are shown in Figure 1(b).
The parameters βi and Ci are crucial for governing the trend
of the loss curve, with βi serving as a decisive factor as the
number of training tokens increases. We observe that βi for
the instruction following domain data has the largest value
of 0.051. This indicates that scaling up IF data is the most
efficient method for reducing loss, consistent with findings
in Figure 1(a), whereas math data has the minimal effect.

Table 1. Estimated parameters Ci, ki, αi, βi, and Ei for instruc-
tion following (IF), math, and code domains.

Domain Ci ki αi βi Ei

IF 1.1562 0.1948 0.5288 0.0510 1.0967
Math 0.7512 0.0401 0.4467 0.0430 1.4934
Code 0.9820 0.1235 0.5235 0.0439 1.2679

Estimated Optimal Domain Weights. We then solve
Equation (6) and plot the weights under different data bud-
gets in Figure 2. We made two important observations:
(1) The optimal weights are scale dependent. This find-
ing resonates with the arguments in Kang et al. (2024) and
challenges the assumption of scale independence presented
in many papers. It further echoes Dong et al. (2023) by
showing that different domains scale differently, resulting
in relative weight adjustments based on scale; (2) As the

0 100 200 300 400 500
N0 (1e6 tokens)

0.24

0.28

0.32

0.36

0.40

0.44

W
ei

gh
t

IF
Math
Code

Figure 2. Estimated optimal weights across data budgets.

data budget increases, the changes in weights slow down.
Domain’s weight does not continue to increase or decrease
significantly as the data budget increases; instead, it reaches
a plateau. In other words, math data, which we discuss
as being relatively less effective in reducing the loss, still
maintains a decent proportion. We next analyze why this is
a desirable property of our optimization algorithm to ensure
that no domain will underperform.

No Domains Left Behind. As shown in Figure 2, esti-
mated domain weights do not experience significant changes
as the data budget increases. This is a desirable property for
developing a general-purpose model that achieves strong
overall performance while maintaining robust capabilities
across all domains. This behavior is driven by a power-law
relationship: initially, increasing data significantly reduces
validation loss, but as data volume continues to scale, the
marginal benefits diminish, necessitating the inclusion of
data from other domains. Specifically, for each domain
i, the partial derivative ∂L

∂wi
is large when wi is small and

decreases as wi increases. This diminishing returns effect
ensures that no single domain disproportionately dominates
the training process as the data budget grows, maintaining
balanced performance across all domains. We provide for-
mal proof in Appendix C and present empirical results in
Section 5 to support this argument.

5. Experiments
In this section, we present extensive experiments conducted
under two scenarios: (1) mixing three distinct domains—
IF, math, and code—given fixed data budgets; and (2) re-
weighting domains for two popular SFT collections: Tulu3
(Lambert et al., 2024) and Orca (Mukherjee et al., 2023).
We also evaluate models trained with re-weighted data on
downstream tasks to demonstrate the practical utility of our
method. Following Hernandez et al. (2021), we use token-
level PPL as the primary performance metric, measured on
held-out validation data for each domain. We provide exper-
imental details, including data processing, hyperparameters,
and evaluation benchmarks in Appendix D.

5

Data Mixing Optimization

*

Llama3.2-3B

*

Qwen2.5-1.5BQwen2.5-0.5B Llama3.1-8B

5M

20M

200M

*

*

*

*

*

*

*

*

*

*

*

*

Figure 3. 3D surface plots of PPL for data budgets of 5M, 20M, and 200M tokens. Each plot illustrates PPL results from models trained
with different domain mixture weights derived from grid search (black dots). The weights estimated by our method are highlighted with
yellow stars. Only the IF and math weights are shown on the x and y axes, respectively, as the code weight is dependent.

5.1. Mixing Domains at Fixed Data Budgets

Settings. To assess our approach, we consider three dis-
tinct domains: IF, math, and code, using the same data
sources as described in Section 4. For each data budget (5M,
20M, and 200M tokens), we compute the optimal weights,
mix the three domains accordingly, and train the models.
We use four LLMs from two classes: Qwen2.5 (0.5B and
1.5B) and Llama (3.2-3B and 3.1-8B parameters).

Baselines. We use data mixtures with weights determined
by grid search as baselines. Specifically, we perform a grid
search over the set {0.125, 0.25, . . . , 0.75}3, retaining only
combinations where the proportions sum to 1. This results
in a total of 21 valid mixtures for comparison.

Results. In Figure 3, we present surface plots of PPL
for all 21 mixtures identified through grid search. Across
different data budgets (5M, 20M, and 200M tokens) for
the same model, we observe that the optimal weights are
scale-dependent, i.e., the best weight configurations vary
according to the size of the data budget. In addition, the
weights estimated by our method (highlighted with a yel-
low star) effectively locate regions that achieve satisfactory,
though not always optimal, performance. Training models
with our weights further demonstrates that they are near-
optimal. Specifically, as shown in Figure 4 (complete results
in Appendix E), our model’s PPL is almost on par with the
best PPL by models in grid search. On average, across
models and data budgets, our method’s PPL is only 0.66%

higher than the best PPL. Further analysis of overall PPL
and model classes is discussed in Appendix E.

Qwen2.5-0.5B Qwen2.5-1.5B Llama3.2-3B Llama3.1-8B
2.0

2.2

2.4

2.6

2.8

3.0

3.2

P
P

L

2.895

2.343
2.399

2.163

2.929

2.363 2.399

2.176

Best (Grid Search)
Ours

Figure 4. Comparison of our model’s PPL with the best PPL in
grid search using a data budget of 20M tokens.

We conduct a detailed investigation into PPL for each do-
main (all statistics in Appendix E). We compare our domain
PPL with the best domain PPL across all 21 grid search
mixtures. Most often, the best domain PPL is achieved
when the domain’s data is dominant. For Llama 3.1-8B and
Llama 3.2-3B, the differences in domain PPL are not signif-
icantly greater than each other, supporting that our method
can prevent any domain from underperforming. However,
for the Qwen model, the IF domain shows a relatively larger
deficit compared to the best IF loss in grid search than the
math and code domains. This indicates that our weighting
scheme, which upweights math and code relative to the best
IF weights that prioritize IF, significantly affects IF domain
performance. This is likely because IF is more challenging
to learn for small models (as evidenced by higher domain

6

Data Mixing Optimization

PPL than other domains), therefore requiring more data.

Table 2. Comparison of our model’s domain PPL with the best
domain PPL in grid search.

Model Scale
Domain

IF Math Code

Qwen2.5-0.5B
5M 0.054 0.024 0.005
20M 0.122 0.036 0.009
200M 0.212 0.043 0.035

Qwen2.5-1.5B
5M 0.021 0.004 -0.003
20M 0.061 0.019 0.020
200M 0.061 0.045 0.014

Llama3.2-3B
5M 0.065 0.049 0.040
20M 0.053 0.051 0.035
200M 0.054 0.053 0.039

Llama3.1-8B
5M 0.045 0.036 0.035
20M 0.039 0.032 0.054
200M 0.049 0.042 0.066

5.2. Re-Weighting SFT Collections

Settings. We further examine our method by re-weighting
two popular SFT collections: Tulu3 and Orca. These collec-
tions reflect different conceptions of domains. Tulu3 iden-
tifies “skills” for LLMs and generates/collects data based
on these skills. We use six of their identified skills as do-
mains: general, knowledge recall, math, code, precise IF,
and safety. Orca samples from and combines prior SFT
collections, including T0, FLAN, NIV, and CoT. We fol-
low their categorization and treat the prevalence of these
datasets as domains. For domains requiring more data than
originally available, we use repeated sampling. Details of
data processing are shown in Appendix D.1.

Baselines. We compare our method with three baselines:
• Original: The selected instances maintain the same

token proportions as the original dataset.
• Equal T: All domains are weighted equally in tokens,

i.e., instances sampled to ensure an equal token count
from each domain.

• Equal I: All domains are weighted equally with regard
to the number of items.

Results. In Table 3, we present the domain PPL and aver-
age PPL of our method and baselines on held-out datasets.
We find that our method achieves the best performance in
reducing validation loss and maintains relatively low per-
domain PPL across all domains, often being the lowest
among all baselines. Through examining per-domain PPL,
we gain insight into our method: the original Tulu3 col-
lection assigns a dominant proportion of around 50% to
math data, resulting in the lowest PPL in the math domain.
However, this allocation is not the most efficient due to the
diminishing returns of increasing data in a single domain,

Table 3. Per-domain validation loss (PPL) for reweighting Tulu3
collection.

Weight General Knowledge Math Code Precise IF Safety Avg.
Llama3.1-8B

Original 3.589 1.762 1.298 1.691 2.280 2.355 2.162
Equal T 4.955 2.310 1.425 1.999 3.545 2.670 2.817
Equal I 4.638 2.183 1.492 1.949 3.207 3.171 2.773
Ours 3.422 1.629 1.421 1.615 2.581 2.235 2.150

Llama3.1-70B

Original 3.527 1.880 1.290 1.681 2.167 2.214 2.127
Equal T 3.744 2.040 1.371 1.721 2.274 2.312 2.244
Equal I 3.553 1.943 1.404 1.736 2.254 2.380 2.212
Ours 3.409 1.774 1.374 1.638 2.056 2.231 2.080

Qwen2.5-32B

Original 3.701 1.673 1.262 1.644 2.276 2.433 2.165
Equal T 3.844 1.734 1.294 1.645 2.413 2.546 2.246
Equal I 3.891 1.760 1.268 1.665 2.390 2.491 2.244
Ours 3.891 1.672 1.292 1.654 2.047 2.239 2.133

as discussed in Section 4. In contrast, our method assigns
a relatively smaller proportion to math and allocates more
weight to domains that experience a more significant de-
crease in loss when scaling the same amount of data. We
defer the discussion of validation loss results for the Orca
collection to Appendix E, as it conveys a similar message.

5.3. Performance on Downstream Tasks

We have seen that our method achieves remarkable perfor-
mance in decreasing validation loss. We examine whether
this translate to downstream tasks with specific metrics for
downstream tasks.

Settings. For Tulu3 collection, we also evaluation on
six general tasks, each correcponds to identified skills ,
AGIEval (Zhong et al., 2023), IFEval (Zhou et al., 2023),
MMLU (Hendrycks et al.), GSM8K (Cobbe et al., 2021),
HumanEval (Chen et al., 2021), and safety (averaged over
ToxiGen (Hartvigsen et al., 2022) and TruthfulQA (Lin
et al., 2022)). For Orca collection, we evaluate on AGIEval
(Zhong et al., 2023), HellaSwag (Zellers et al., 2019), safety
(averaged over ToxiGen (Hartvigsen et al., 2022) and Truth-
fulQA (Lin et al., 2022)), which does not necessarily corre-
spond to domains categorization of Orca, but it as significant
overlap with the original paper (Mukherjee et al., 2023).

Results. We present the performance of re-weighted
Tulu3 collection on downstream tasks in Table 4. We ob-
serve that our method exhibits impressive performance: for
Llama3.1-8B and Llama3.1-70B, training with our weights
leads to the best overall results, while for Qwen2.5-32B,
it only underperforms compared to the best-performing
Equal I weight by a small margin. Additionally, we ob-
serve that our method does not cause any domain to perform
significantly worse. One exception is the IFEval results for

7

Data Mixing Optimization

Table 4. Downstream performance for different data mixing methods for re-weighting Tulu3 collection.

Model Weight AGIEval IFEval MMLU GSM8K HumanEval Safety Average

Llama3.1-8B

Original 33.9 54.5 56.4 65.3 47.0 43.9 50.1
Equal T 32.1 51.9 55.8 65.2 48.2 41.4 49.1
Equal I 32.8 42.7 54.9 61.9 50.0 43.9 47.7
Ours 36.1 48.2 56.6 62.3 53.7 45.3 50.4

Llama3.1-70B

Original 47.7 65.3 75.4 86.1 44.5 47.4 61.1
Equal T 52.4 46.7 76.8 85.5 71.3 49.0 63.6
Equal I 51.4 45.8 76.9 83.9 51.2 51.8 60.2
Ours 53.8 51.2 76.5 80.4 68.3 52.7 63.8

Qwen2.5-32B

Original 49.8 57.7 80.2 89.5 55.5 53.5 64.4
Equal T 55.8 61.2 81.0 89.8 61.6 56.4 67.6
Equal I 57.4 64.3 80.9 91.4 62.8 54.3 68.5
Ours 58.3 61.3 81.0 90.8 60.5 56.1 68.0

Llama models, which are at least 6% lower than those with
the original weights. Comparing weights of our method and
original weights (full analysis in Appendix E.3), we find
that that we assign more weights to domains like precise IF
compared to the original. However, the total data for Tulu3
remains fixed; consequently, we have to repeatedly sample
precise IF data multiple times, which might lead models to
overfit to this domain. This might explains why our model
performs less well on tasks like IFEval. However, we spec-
ulate that with more diverse data for the domain through
synthetic data generation, our method could achieve better
performance.

We show results for re-weighting the Orca collection in
Appendix E.4. It provides a different story compared to
the Tulu3 collection: downstream performance does not
correlate with validation loss, and all methods perform sim-
ilarly in downstream averages. The best-performing data
weights on the held-out validation dataset do not neces-
sarily transform to superior downstream performance here.
This is not a surprise, since the evaluation can be consid-
ered out-of-distribution and is dissimilar to our held-out
dataset. Additionally, because the training domains are de-
fined by their data sources–for example, the FLAN domain
internally includes various tasks and data distributions–it
is difficult to determine which portion of the training data
will enhance downstream performance. This emphasizes
the importance of ensuring that the validation set closely
matches the actual test settings. A good way to achieve
this, as seen in the Tulu3 collection, is to clearly identify
domains as tasks/skills, making it easier to collect similar
data.

5.4. Extension: Training Domain-Specific LLMs.

Our formulation in Equation (6) assumes equal weight-
ing across all domains when calculating validation loss,
aligning with our objective to train general-purpose mod-
els. However, this formulation can be extended to guide
data mixing for training models with one or several spe-

cialties. This is achieved by introducing domain-specific
weighting factors, γi, transforming the objective into min-
imizing

∑K
i=1 γi · L

(
θ∗(N0,w),Dval

i

)
. To illustrate this,

we present a case study on training a medical chatbot, where
validation dataset only consists of medical domain.

Settings. We mix data from two distinct domains: general
instruction following (IF) and medical. General IF data are
sampled from Alpaca-GPT42, and medical data are sampled
from PubMedQA (Jin et al., 2019) 3. The validation and
testing datasets are derived from the validation and testing
sets of PubMedQA. We set the data budget to 10M tokens.
All other experimental settings, including unit sample size
for each domain and perturbation ratios, remain consistent
with previous experiments.

Results. Through perturbation experiments and optimiza-
tion of Equation (6), we find that the optimal weights are
67.7% for Alpaca-GPT4 and 32.3% for PubMedQA. This
result is somewhat unexpected, as it suggests that when
the validation dataset is purely medical, our method recom-
mends a training mixture with more general IF data than
medical data to achieve optimal performance on medical
tasks. This finding aligns with the cocktail effect (Brief
et al., 2024): fine-tuning exclusively on the target task is
not always the most effective strategy. Instead, inclusion of
different domains—where models are trained on a mixture
of related tasks—can enhance performance.

Table 5. Comparison of validation loss (PPL) and accuracy be-
tween our mixture and all medical data

Metric Our Mixture All Medical Data

PPL (↓) 5.42 5.48
Accuracy (↑) 76.8% 76.4%

In Table 5, we compare a mixture with weights determined

2https://huggingface.co/datasets/vicgalle/alpaca-gpt4
3https://huggingface.co/datasets/qiaojin/PubMedQA

8

Data Mixing Optimization

by our method (67.7% IF data and 32.3% medical QA data)
against a dataset of the same size composed exclusively of
medical QA data. Our mixture outperforms training solely
on medical data in both validation loss and downstream
performance. We explain this by arguing that general IF
data enhance LLMs’ language understanding and response
generation abilities, which are critical for answering med-
ical questions effectively. This case study provides strong
evidence that our method offers practical guidance for data
mixing during the SFT stage, particularly in selecting unin-
tuitive yet effective data combinations.

6. Discussion
What is a Domain? We follow Xie et al. (2024) and define
domains based on data provenance in our experiments. For
the SFT stage, this definition is nuanced: some dataset may
consist of a single task, while others contain multiple tasks
with diverse distributions. We do not attempt to differentiate
these variations because our method, from a loss perspective,
optimizes domain weights irrespective of what each domain
contains—i.e., it is agnostic to the domain’s composition.
However, as demonstrated in Section 5.3, clearly defining
domains by tasks (e.g., math, code) facilitates the selection
of appropriate validation datasets for downstream tasks and
streamlines follow-up data generation/collection to further
enhance model capabilities.

Future Work. Our experiments suggest a promising di-
rection for synergizing our method with synthetic data gen-
eration. We speculate that generating new data for domains,
similar to Toshniwal et al. (2024), rather than repeatedly
upsampling existing data as in our experiments, can fully
reveal the potential of our approach. Another intriguing
direction is to extend our parameterization of validation loss
to directly model downstream performance (Isik et al., 2024;
Chen et al., 2024b), thereby optimizing weights for targeted
tasks.

Conclusion. In this paper, we introduce a novel method
to optimize data mixtures for SFT of LLMs. Our method
parametrizes loss as a function of domain weights while
simultaneously modeling the scaling effects of fine-tuning
and the interplay between domains. This design enables
our method to derive optimal weights for any data scale
and ensure that no domain underperforms. Extensive ex-
perimental results validate the effectiveness of our method.
Furthermore, we demonstrate that this method offers valu-
able insights and practical guidance for SFT.

Impact Statement
This paper presents work whose goal is to advance the field
of training LLMs. There are many potential societal conse-
quences of our work, none which we feel must be specifi-
cally highlighted here.

References
Albalak, A., Pan, L., Raffel, C., and Wang, W. Y. Efficient

online data mixing for language model pre-training. In R0-
FoMo: Robustness of Few-shot and Zero-shot Learning
in Large Foundation Models, 2023.

BAAI. Infinity-instruct, Aug 2024. URL
https://huggingface.co/datasets/BAAI/
Infinity-Instruct.

Bach, S., Sanh, V., Yong, Z. X., Webson, A., Raffel, C.,
Nayak, N. V., Sharma, A., Kim, T., Bari, M. S., Févry, T.,
et al. Promptsource: An integrated development environ-
ment and repository for natural language prompts. In Pro-
ceedings of the 60th Annual Meeting of the Association
for Computational Linguistics: System Demonstrations,
pp. 93–104, 2022.

Boyd, S. and Vandenberghe, L. Convex optimization. Cam-
bridge university press, 2004.

Brief, M., Ovadia, O., Shenderovitz, G., Yoash, N. B., Lem-
berg, R., and Sheetrit, E. Mixing it up: The cocktail effect
of multi-task fine-tuning on llm performance–a case study
in finance. arXiv preprint arXiv:2410.01109, 2024.

Chen, M., Tworek, J., Jun, H., Yuan, Q., de Oliveira Pinto,
H. P., Kaplan, J., Edwards, H., Burda, Y., Joseph, N.,
Brockman, G., Ray, A., Puri, R., Krueger, G., Petrov,
M., Khlaaf, H., Sastry, G., Mishkin, P., Chan, B., Gray,
S., Ryder, N., Pavlov, M., Power, A., Kaiser, L., Bavar-
ian, M., Winter, C., Tillet, P., Such, F. P., Cummings, D.,
Plappert, M., Chantzis, F., Barnes, E., Herbert-Voss, A.,
Guss, W. H., Nichol, A., Paino, A., Tezak, N., Tang,
J., Babuschkin, I., Balaji, S., Jain, S., Saunders, W.,
Hesse, C., Carr, A. N., Leike, J., Achiam, J., Misra,
V., Morikawa, E., Radford, A., Knight, M., Brundage,
M., Murati, M., Mayer, K., Welinder, P., McGrew, B.,
Amodei, D., McCandlish, S., Sutskever, I., and Zaremba,
W. Evaluating large language models trained on code.
2021.

Chen, M. F., Hu, M. Y., Lourie, N., Cho, K., and Ré, C.
Aioli: A unified optimization framework for language
model data mixing. arXiv preprint arXiv:2411.05735,
2024a.

Chen, Y., Huang, B., Gao, Y., Wang, Z., Yang, J., and Ji, H.
Scaling laws for predicting downstream performance in
llms. arXiv preprint arXiv:2410.08527, 2024b.

Chung, H. W., Hou, L., Longpre, S., Zoph, B., Tay, Y., Fe-
dus, W., Li, Y., Wang, X., Dehghani, M., Brahma, S., et al.
Scaling instruction-finetuned language models. Journal
of Machine Learning Research, 25(70):1–53, 2024.

9

https://huggingface.co/datasets/BAAI/Infinity-Instruct
https://huggingface.co/datasets/BAAI/Infinity-Instruct

Data Mixing Optimization

Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H.,
Kaiser, L., Plappert, M., Tworek, J., Hilton, J., Nakano,
R., et al. Training verifiers to solve math word problems.
arXiv preprint arXiv:2110.14168, 2021.

Conn, A. R., Gould, N. I., and Toint, P. L. Trust region
methods. SIAM, 2000.

Dong, G., Yuan, H., Lu, K., Li, C., Xue, M., Liu, D., Wang,
W., Yuan, Z., Zhou, C., and Zhou, J. How abilities in large
language models are affected by supervised fine-tuning
data composition. arXiv preprint arXiv:2310.05492,
2023.

Fan, S., Pagliardini, M., and Jaggi, M. DOGE: domain
reweighting with generalization estimation. In Forty-first
International Conference on Machine Learning, ICML
2024, Vienna, Austria, July 21-27, 2024. OpenReview.net,
2024. URL https://openreview.net/forum?
id=7rfZ6bMZq4.

Hartvigsen, T., Gabriel, S., Palangi, H., Sap, M., Ray, D.,
and Kamar, E. Toxigen: A large-scale machine-generated
dataset for adversarial and implicit hate speech detection.
In Proceedings of the 60th Annual Meeting of the Asso-
ciation for Computational Linguistics (Volume 1: Long
Papers), pp. 3309–3326, 2022.

Hendrycks, D., Burns, C., Basart, S., Zou, A., Mazeika, M.,
Song, D., and Steinhardt, J. Measuring massive multitask
language understanding. In International Conference on
Learning Representations.

Hernandez, D., Kaplan, J., Henighan, T., and McCan-
dlish, S. Scaling laws for transfer. arXiv preprint
arXiv:2102.01293, 2021.

Hoffmann, J., Borgeaud, S., Mensch, A., Buchatskaya, E.,
Cai, T., Rutherford, E., de Las Casas, D., Hendricks,
L. A., Welbl, J., Clark, A., Hennigan, T., Noland, E.,
Millican, K., van den Driessche, G., Damoc, B., Guy, A.,
Osindero, S., Simonyan, K., Elsen, E., Vinyals, O., Rae,
J. W., and Sifre, L. Training compute-optimal large lan-
guage models. In Proceedings of the 36th International
Conference on Neural Information Processing Systems,
NIPS ’22, Red Hook, NY, USA, 2024. Curran Associates
Inc. ISBN 9781713871088.

Huang, S., Cheng, T., Liu, J. K., Hao, J., Song, L., Xu, Y.,
Yang, J., Liu, J., Zhang, C., Chai, L., et al. Opencoder:
The open cookbook for top-tier code large language mod-
els. arXiv preprint arXiv:2411.04905, 2024.

Huber, P. J. Robust estimation of a location parameter. The
Annals of Mathematical Statistics, 35(1):73–101, 1964.

Isik, B., Ponomareva, N., Hazimeh, H., Paparas, D., Vas-
silvitskii, S., and Koyejo, S. Scaling laws for down-
stream task performance of large language models. arXiv
preprint arXiv:2402.04177, 2024.

Ivison, H., Wang, Y., Pyatkin, V., Lambert, N., Peters, M.,
Dasigi, P., Jang, J., Wadden, D., Smith, N. A., Beltagy,
I., et al. Camels in a changing climate: Enhancing lm
adaptation with tulu 2. arXiv preprint arXiv:2311.10702,
2023.

Jin, Q., Dhingra, B., Liu, Z., Cohen, W., and Lu, X. Pub-
MedQA: A dataset for biomedical research question an-
swering. In Inui, K., Jiang, J., Ng, V., and Wan, X.
(eds.), Proceedings of the 2019 Conference on Empir-
ical Methods in Natural Language Processing and the
9th International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pp. 2567–2577, Hong
Kong, China, November 2019. Association for Compu-
tational Linguistics. doi: 10.18653/v1/D19-1259. URL
https://aclanthology.org/D19-1259/.

Kang, F., Sun, Y., Wen, B., Chen, S., Song, D., Mah-
mood, R., and Jia, R. Autoscale: Automatic prediction
of compute-optimal data composition for training llms.
arXiv preprint arXiv:2407.20177, 2024.

Lambert, N., Morrison, J., Pyatkin, V., Huang, S., Ivison,
H., Brahman, F., Miranda, L. J. V., Liu, A., Dziri, N., Lyu,
S., et al. T\” ulu 3: Pushing frontiers in open language
model post-training. arXiv preprint arXiv:2411.15124,
2024.

Lin, S., Hilton, J., and Evans, O. Truthfulqa: Measuring
how models mimic human falsehoods. In Proceedings of
the 60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pp. 3214–
3252, 2022.

Liu, Q., Zheng, X., Muennighoff, N., Zeng, G., Dou, L.,
Pang, T., Jiang, J., and Lin, M. Regmix: Data mixture
as regression for language model pre-training. arXiv
preprint arXiv:2407.01492, 2024.

Longpre, S., Hou, L., Vu, T., Webson, A., Chung, H. W.,
Tay, Y., Zhou, D., Le, Q. V., Zoph, B., Wei, J., et al. The
flan collection: Designing data and methods for effec-
tive instruction tuning. In International Conference on
Machine Learning, pp. 22631–22648. PMLR, 2023.

Mukherjee, S., Mitra, A., Jawahar, G., Agarwal, S., Palangi,
H., and Awadallah, A. Orca: Progressive learning from
complex explanation traces of gpt-4. arXiv preprint
arXiv:2306.02707, 2023.

Nocedal, J. and Wright, S. J. Quadratic programming. Nu-
merical optimization, pp. 448–492, 2006.

10

https://openreview.net/forum?id=7rfZ6bMZq4
https://openreview.net/forum?id=7rfZ6bMZq4
https://aclanthology.org/D19-1259/

Data Mixing Optimization

Peng, B., Li, C., He, P., Galley, M., and Gao, J. Instruc-
tion tuning with gpt-4. arXiv preprint arXiv:2304.03277,
2023.

Puri, R. S., Mishra, S., Parmar, M., and Baral, C. How
many data samples is an additional instruction worth? In
Vlachos, A. and Augenstein, I. (eds.), Findings of the As-
sociation for Computational Linguistics: EACL 2023, pp.
1042–1057, Dubrovnik, Croatia, May 2023. Association
for Computational Linguistics. doi: 10.18653/v1/2023.
findings-eacl.77. URL https://aclanthology.
org/2023.findings-eacl.77.

Raghavendra, M., Nath, V., and Hendryx, S. Revisiting
the superficial alignment hypothesis. arXiv preprint
arXiv:2410.03717, 2024.

Renduchintala, H. S. V. N. S. K., Bhatia, S., and Ramakr-
ishnan, G. SMART: Submodular data mixture strat-
egy for instruction tuning. In Ku, L.-W., Martins, A.,
and Srikumar, V. (eds.), Findings of the Association
for Computational Linguistics: ACL 2024, pp. 12916–
12934, Bangkok, Thailand, August 2024. Association
for Computational Linguistics. doi: 10.18653/v1/2024.
findings-acl.766. URL https://aclanthology.
org/2024.findings-acl.766/.

Rudin, W. et al. Principles of mathematical analysis, vol-
ume 3. McGraw-hill New York, 1964.

Teknium. Openhermes 2.5: An open dataset of
synthetic data for generalist llm assistants, 2023.
URL https://huggingface.co/datasets/
teknium/OpenHermes-2.5.

Toshniwal, S., Du, W., Moshkov, I., Kisacanin, B.,
Ayrapetyan, A., and Gitman, I. Openmathinstruct-2:
Accelerating ai for math with massive open-source in-
struction data. arXiv preprint arXiv:2410.01560, 2024.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux,
M.-A., Lacroix, T., Rozière, B., Goyal, N., Hambro, E.,
Azhar, F., et al. Llama: Open and efficient foundation lan-
guage models. arXiv preprint arXiv:2302.13971, 2023.

Wächter, A. and Biegler, L. T. On the implementation of an
interior-point filter line-search algorithm for large-scale
nonlinear programming. Mathematical programming,
106:25–57, 2006.

Wang, Y., Mishra, S., Alipoormolabashi, P., Kordi, Y.,
Mirzaei, A., Naik, A., Ashok, A., Dhanasekaran, A. S.,
Arunkumar, A., Stap, D., et al. Super-naturalinstructions:
Generalization via declarative instructions on 1600+ nlp
tasks. In Proceedings of the 2022 Conference on Em-
pirical Methods in Natural Language Processing, pp.
5085–5109, 2022.

Wang, Y., Ivison, H., Dasigi, P., Hessel, J., Khot, T., Chandu,
K., Wadden, D., MacMillan, K., Smith, N. A., Beltagy,
I., et al. How far can camels go? exploring the state of
instruction tuning on open resources. Advances in Neural
Information Processing Systems, 36:74764–74786, 2023.

Wei, J., Bosma, M., Zhao, V., Guu, K., Yu, A. W., Lester,
B., Du, N., Dai, A. M., and Le, Q. V. Finetuned language
models are zero-shot learners. In International Confer-
ence on Learning Representations, 2022. URL https:
//openreview.net/forum?id=gEZrGCozdqR.

Wu, E., Wu, K., and Zou, J. Finetunebench: How well do
commercial fine-tuning apis infuse knowledge into llms?
arXiv preprint arXiv:2411.05059, 2024.

Xie, S. M., Pham, H., Dong, X., Du, N., Liu, H., Lu, Y.,
Liang, P. S., Le, Q. V., Ma, T., and Yu, A. W. Doremi:
Optimizing data mixtures speeds up language model pre-
training. Advances in Neural Information Processing
Systems, 36, 2024.

Ye, J., Liu, P., Sun, T., Zhou, Y., Zhan, J., and Qiu, X.
Data mixing laws: Optimizing data mixtures by pre-
dicting language modeling performance. arXiv preprint
arXiv:2403.16952, 2024.

Zellers, R., Holtzman, A., Bisk, Y., Farhadi, A., and Choi,
Y. Hellaswag: Can a machine really finish your sentence?
In Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pp. 4791–4800,
2019.

Zhang, B., Liu, Z., Cherry, C., and Firat, O. When scaling
meets LLM finetuning: The effect of data, model and
finetuning method. In The Twelfth International Confer-
ence on Learning Representations, 2024. URL https:
//openreview.net/forum?id=5HCnKDeTws.

Zhao, H., Andriushchenko, M., Croce, F., and Flammarion,
N. Long is more for alignment: A simple but tough-to-
beat baseline for instruction fine-tuning. In Forty-first
International Conference on Machine Learning.

Zhao, H., Du, L., Ju, Y., Wu, C., and Pan, T. Beyond
iid: Optimizing instruction learning from the perspective
of instruction interaction and dependency. 2024. URL
https://arxiv.org/abs/2409.07045.

Zhong, W., Cui, R., Guo, Y., Liang, Y., Lu, S., Wang,
Y., Saied, A., Chen, W., and Duan, N. Agieval: A
human-centric benchmark for evaluating foundation mod-
els. arXiv preprint arXiv:2304.06364, 2023.

Zhou, C., Liu, P., Xu, P., Iyer, S., Sun, J., Mao, Y., Ma, X.,
Efrat, A., Yu, P., Yu, L., et al. Lima: Less is more for
alignment. Advances in Neural Information Processing
Systems, 36, 2024.

11

https://aclanthology.org/2023.findings-eacl.77
https://aclanthology.org/2023.findings-eacl.77
https://aclanthology.org/2024.findings-acl.766/
https://aclanthology.org/2024.findings-acl.766/
https://huggingface.co/datasets/teknium/OpenHermes-2.5
https://huggingface.co/datasets/teknium/OpenHermes-2.5
https://openreview.net/forum?id=gEZrGCozdqR
https://openreview.net/forum?id=gEZrGCozdqR
https://openreview.net/forum?id=5HCnKDeTws
https://openreview.net/forum?id=5HCnKDeTws
https://arxiv.org/abs/2409.07045

Data Mixing Optimization

Zhou, J., Lu, T., Mishra, S., Brahma, S., Basu, S.,
Luan, Y., Zhou, D., and Hou, L. Instruction-following
evaluation for large language models. arXiv preprint
arXiv:2311.07911, 2023.

12

Data Mixing Optimization

A. Related Work
Data Mixing. The composition of training data in LLMs is an emerging research field because of its significant impact on
performance. Most studies on data mixing, or known as domain reweighting, focus on the pre-training stage. Data mixtures
were typically determined heuristically or through ablation studies, such as upweighting domains with higher-quality text
(Touvron et al., 2023) or those distilled from advanced LLMs (Lambert et al., 2024). However, these intuitively determined
weights often rely on practitioners’ expertise and may not be optimal (Albalak et al., 2023). DoReMi (Xie et al., 2024)
pioneered a systematic approach to data mixing by formulating it as group distributionally robust optimization, using a small
proxy model to minimize excess loss and applying the resulting weights to larger models. Similarly, DoGE (Fan et al., 2024)
enhances generalization by determining domain weights through optimizing gradient alignment between domains. Other
methods like Data mixing laws (Ye et al., 2024), RegMix (Liu et al., 2024), and Aioli (Chen et al., 2024a) estimate the loss
as a function of domain weights and interpolate performance to identify the optimal compositions.

These methods have underlying assumptions that the optimal weights are model or scale-invariant. However, weights
optimized for smaller models or scales often fail to generalize to larger ones or different data distributions (Albalak et al.,
2023). This issue is particularly pronounced in SFT, where models may have various pre-training data distributions. To
address this, AutoScale (Kang et al., 2024) extrapolates optimal weights from small to larger scales, ensuring scale-dependent
domain weighting. However, AutoScale can amplify minor weight differences, resulting in extreme or unbalanced domain
weights. This may lead to the underrepresentation of certain domains, reducing generalization and effectiveness in SFT.

To the best of our knowledge, SMART (Renduchintala et al., 2024) is the only method that shares the same objective with
our work to optimize domain weights for supervised fine-tuning. It uses submodular functions based on prompt embedding
to determine the domain importance. However, the use of prompt embedding in SMART indicates its assumption that the
optimal weights are model and scale-invariant. In contrast, our method suggests to determine optimal weights dependent on
the model and scale for SFT.

Supervised Fine-Tuning. SFT, also known as instruction fine-tuning, refers to training pretrained LLMs with instruction-
output pairs (Wei et al., 2022; Chung et al., 2024; Peng et al., 2023). SFT data is sourced from diverse domains, such as
math, code, and dialogue. Wei et al. (2022) first introduced a large-scale SFT collection called FLAN, which aggregates
62 tasks in natural language inference and commonsense reasoning. Chung et al. (2024) expanded FLAN collection to
over 1800+ tasks by incorporating datasets like Super-Natural Instructions (Wang et al., 2022) and PromptSource (Bach
et al., 2022). Other notable open fine-tuning collections include Tulu series (Wang et al., 2023; Ivison et al., 2023; Lambert
et al., 2024), OpenHermes (Teknium, 2023), Infinity Instruct (Zhao et al., 2024), and Orca Mukherjee et al. (2023), where
aggregate data from various domains to enhance model capabilities.

In addition to SFT collections, current research investigates mechanisms and dataset considerations for training general-
purpose LLMs. For example, Zhou et al. (2024) proposed Superficial Alignment Hypothesis, arguing that an LLM’s
capabilities are almost entirely developed during pre-training stage, and SFT is for format/style alignment. They demonstrated
that carefully curated 1,000 instruction-response pairs can achieve effective instruction following abilities, with implications
that the diversity and quality of the data outweigh quantity. However, Raghavendra et al. (2024) challenged this hypothesis.
They contended that the improvement from SFT follows a power law; thus, SFT enhances more than formatting or style
alignment, such as knowledge infusion. The importance of data diversity is widely acknowledged, supported by Puri et al.
(2023) by showing an additional variant of instruction worthies many data samples. Moreover, Chung et al. (2024) and
Longpre et al. (2023) analyzed factors like the number of tasks, the size of the models, and instruction settings (e.g., few-shot,
chain-of-thought), and they found that these factors can have significant impact on the performance of LLMs. Zhao et al.
suggested that lengthy outputs, which contain more learnable information and are harder to overfit, contribute to the success
of SFT. Our work diverges by focusing not on dataset quality but on optimizing data mixtures within a given data budget
and across various datasets.

B. Proof: Convexity of Objective Function
In this section, we analyze the convexity of the objective function. Define

f(w) =
(
wN + k (N − wN)α

)−β
,

13

Data Mixing Optimization

where w ∈ [0, 1], α ∈ (0, 1), β > 0, k > 0, and N > 0. We further define

x(w) = wN + k (N − wN)α,

and let
h(x) = x−β .

Thus, our original function is f(w) = h
(
x(w)

)
=

[
x(w)

]−β
. We aim to show that f(w) is convex in w.

We first examine the concavity of x(w). Observe that x(w) can be rewritten as x(s) = s+ k (N − s)α by letting s = wN ,
which lies in [0, N]. We compute the first and second derivatives of x(s) with respect to s:

x′(s) = 1 − k α (N − s)α−1,

x′′(s) = k α(α− 1) (N − s)α−2.

Since α ∈ (0, 1), we have α− 1 < 0 and thus α(α− 1) < 0. Consequently,

x′′(s) < 0,

indicating that x(s) is concave in s. Because s is an affine transformation of w, the function x(w) is also concave in
w ∈ [0, 1].

Next, we check the convexity and monotonicity of h(x) = x−β for x > 0 and β > 0. The second derivative of h is

h′′(x) = β(β + 1)x−β−2 > 0 for x > 0, β > 0,

so x−β is convex. Furthermore,
h′(x) = −β x−β−1 < 0,

which shows h is decreasing on (0,∞).

We now apply a composition rule from convex analysis (Boyd & Vandenberghe, 2004):
Lemma B.1 (Composition Rule for Convexity). If g is concave and h is convex and non-increasing on the relevant domain,
then h ◦ g is convex.

In our case, x(w) is concave in w, and h(x) is convex and non-increasing in x. Therefore, the composition

f(w) = h
(
x(w)

)
is convex in w.

To generalize, consider summing over all domains i = 1, . . . ,K:

F (w) =

K∑
i=1

Li(w) =

K∑
i=1

[
Ci

(
wi N + ki (N − wi N)αi

)−βi
+ Ei

]
,

under the constraints wi ≥ 0 and
∑K

i=1 wi = 1. For each αi ∈ (0, 1) and βi > 0, then each summand Li(w) is convex in
wi. Since a sum of convex functions is also convex, the overall objective remains convex in w. Hence one can find a global
minimum of F (w) using standard convex optimization methods. We adopt sequential least squares programming (SLSQP).

C. Proof: No Domains Left Behind
We show that our objective function produces a balanced allocation of domain data without explicitly imposing domain-
specific constraints. For convenience, recall the following optimization problem:

min
w

K∑
i=1

[
Ci

(
wiN + ki(N − wiN)αi

)−βi
+ Ei

]
subject to 0 ≤ wi ≤ 1 ∀i = 1, . . . ,K,

K∑
i=1

wi = 1.

14

Data Mixing Optimization

We rewrite this problem in a standard constrained form as follows:

min
w∈RK

F (w) =

K∑
i=1

Li(w) =

K∑
i=1

[
Ci

(
wiN + ki(N − wiN)αi

)−βi
+ Ei

]
,

subject to g(w) =

K∑
i=1

wi − 1 = 0,

hi(w) = −wi ≤ 0, i = 1, . . . ,K.

Since F (w) is convex (proof in Appendix B) and the set ∆K = {w ∈ RK :
∑K

i=1 wi = 1} is compact, the Weierstrass
extreme value theorem (Rudin et al., 1964) guarantees a unique global minimizer w∗ ∈ ∆K .

The Lagrangian is

L(w, λ, {µi}) = F (w) + λ
(K∑
i=1

wi − 1
)
−

K∑
i=1

µi wi,

where λ ∈ R and µi ≥ 0. By the Karush–Kuhn–Tucker (KKT) conditions, any optimal w∗ must satisfy

∇F (w∗) + λ∗∇g(w∗) +

K∑
i=1

µ∗
i ∇hi(w

∗) = 0,

with complementary slackness µ∗
i

(
−w∗

i

)
= 0, and w∗

i ≥ 0, µ∗
i ≥ 0,

∑
i w

∗
i = 1.

Suppose that for all i, we have 0 < w∗
i < 1. Then −w∗

i is strictly negative, so µ∗
i = 0 by complementary slackness. Since

∇g(w∗) = (1, . . . , 1), the KKT condition becomes

∇F (w∗) + λ∗(1, . . . , 1) = 0,

which implies
∂F

∂w1
(w∗) =

∂F

∂w2
(w∗) = · · · = ∂F

∂wK
(w∗).

Because F (w) =
∑K

i=1 Li(w), each partial derivative satisfies

∂F

∂wi
(w∗) =

K∑
j=1

∂Lj

∂wi
(w∗).

In our objective function, Lj(w) could have partial dependence on wi indirectly if (N − wj N) changes. However, each

domain i is governed mostly by wi. That is,
∣∣∣∂Lj

∂wi

∣∣∣ ≪ ∣∣∣ ∂Li

∂wi

∣∣∣ whenever i ̸= j. Consequently, if some domain i has a
large negative gradient for small wi, the optimizer increases wi until partial derivatives balance across domains.

For boundary points where some w∗
i = 0 or w∗

i = 1, complementary slackness dictates how the multipliers µ∗
i adjust the

stationarity condition. If w∗
i = 0, then from stationarity,

∂F

∂wi
(w∗)− µ∗

i + λ∗ = 0,

and −w∗
i = 0 is active, so µ∗

i ≥ 0. Domains j with 0 < w∗
j < 1 have µ∗

j = 0, and thus

∂F

∂wj
(w∗) + λ∗ = 0,

implying
∂F

∂wi
(w∗) = −λ∗ + µ∗

i ≥
∂F

∂wj
(w∗) = −λ∗.

15

Data Mixing Optimization

Hence, if w∗
i = 0, domain i cannot possess a strictly more negative gradient than the domains with positive allocation;

otherwise, it would have been optimal to increase w∗
i . An analogous argument covers the case w∗

i = 1, showing that a
domain saturates only if it truly yields the best marginal gain up to that boundary. Because each Li typically has a large
negative derivative when wi is small (and a milder derivative when wi is large), the solution cannot assign zero weight to
a domain that still has significantly larger marginal return than others. Similarly, in the interior case, equality of partial
derivatives forces additional resources toward domains that can quickly reduce their loss, so domains with high marginal
benefit do not remain under-allocated. In summary, we present the following theorem.
Theorem C.1 (No Domains Left Behind). The optimization problem

min
w∈∆K

K∑
i=1

Li(w)

admits a unique global minimizer w∗ ∈ ∆K , and:

(i) If w∗ is in the interior of ∆K , no domain is under-allocated if it can still yield larger marginal improvement than those
domains currently receiving weight.

(ii) If w∗
i = 0 for some domain i, then the marginal gain of allocating data to i is no larger than that of any other domain

j with w∗
j > 0. Consequently, no domain with strictly higher marginal return is left at zero.

D. Experimental Details
D.1. Data Processing

We provide data processing details for all datasets used in the paper below:

• Alpaca-GPT44: We merged Instruction and Input as the input for the model.
• Infinity Instruct5: We used 0625 version. Given that the dataset encompasses both mathematical and code data, we

undertook a filtering process to eliminate items featuring math-related keywords such as “algebra” and “geometry,” as
well as code keywords like “Python” and “Bash.” This ensures the dataset remains exclusively tailored for general
instruction following.

• OpenMathInstruct-26: We used train 1M version.
• OpenCoder7: We used filtered infinity instruct version.
• Tulu38: We filtered items larger than 4096 tokens to fit our context window. We also filter non-English data and Tulu3

hardcoded data.
• Orca9: We merged System prompt and Question as the input for the model. We used 300M tokens of the original

dataset.

D.2. Hyperparamters

We use a cosine learning rate scheduler, set the batch size to 256 for training all models, and use a sequence length of 4096
tokens. For perturbation experiments, we train the model for 3 epochs and select the model with the lowest validation
loss. The maximum training steps are determined by the data budget as follows: 200 steps for a 5M budget, 400 steps for
20M, and 2,500 steps for 200M. For the Tulu3 and Orca experiments, we set the maximum training steps to 6,000. All
experiments are conducted on NVIDIA H100 GPUs. The learning rate for each model is show in Table 6:

D.3. Evaluation Benchmarks

We use LM-Evluation harness10 (with default settings if not specified) to assess models’ performance on downstream tasks.
Details of our downstream benchmarks are discussed below:

4https://huggingface.co/datasets/vicgalle/alpaca-gpt4
5https://huggingface.co/datasets/BAAI/Infinity-Instruct
6https://huggingface.co/datasets/nvidia/OpenMathInstruct-2
7https://huggingface.co/datasets/OpenCoder-LLM/opc-sft-stage1
8https://huggingface.co/datasets/allenai/tulu-3-sft-mixture
9https://huggingface.co/datasets/Open-Orca/OpenOrca

10https://github.com/EleutherAI/lm-evaluation-harness

16

Data Mixing Optimization

Table 6. Learning rates for models in the experiments

Model Class Qwen2.5 Qwen2.5 Qwen2.5 Llama3.2 Llama3.1 Llama3.1

Model Size 0.5B 1.5B 32B 3B 8B 70B

Learning Rate 2× 10−5 2× 10−5 2× 10−6 1× 10−5 1× 10−5 1× 10−6

• AGIEval (Zhong et al., 2023): AGIEval is a general benchmark. We use a specific subset of AGIEval tasks that are
multiple-choice and English-only.

• IFEVal (Zhou et al., 2023): IFEVal measures precise instruction-following ability. We report prompt-level loose
accuracy.

• MMLU (Hendrycks et al.): MMLU assesses knowledge across a wide range of academic subjects, including mathe-
matics, philosophy, and law. We use a zero-shot setting.

• GSM8K (Cobbe et al., 2021): GSM8K evaluates mathematical problem-solving. We use an 8-shot setting with
chain-of-thought prompts.

• HumanEval (Chen et al., 2021): HumanEval evaluates code generation capabilities. We use a zero-shot setting and
report the pass@1 score.

• ToxiGen (Hartvigsen et al., 2022): ToxiGen assesses safety by measuring toxicity levels. We use a zero-shot setting
with unnormalized accuracy.

• TruthfulQA (Lin et al., 2022): TruthfulQA evaluates hallucination, which we include as a measure of general safety.
We use the test version of truthfulqa mc1 in a zero-shot setting.

• HellaSwag (Zellers et al., 2019): HellaSwag tests language understanding and commonsense reasoning. We report
unnormalized accuracy using a zero-shot setting.

E. Additional Results
E.1. Further Analysis on Figure 3

In Figure 3, an intriguing observation is that models within the same class exhibit similar performance patterns concerning
domain weights. We hypothesize that these models share data distributions despite differences in size. Future work could
explore the relationship between pre-training and SFT data in this direction. If our hypothesis is validated, this could allow
us to streamline our method by estimating loss parameters using smaller models with similar data distributions and then
applying the optimized weights to larger models.

E.2. Comparing Models Trained with Our Weights versus Grid-Search Weights

Table 7 presents the performance of models trained using our weighting method against the best results obtained through
grid search. The overall PPL scores show that our method performs very close to the grid search results across all models
and data budgets. This suggests that our approach is highly effective in approximating the optimal weights without the
extensive computational cost of grid search. Notably, the gap between our method and grid search does not significantly
expand as the data budget increases, indicating that our weighting strategy scales well with larger datasets.

Per-domain PPL results shown in Table 8 further validate the robustness of our method. Across domains including IF, Math,
and Code, our weights consistently achieve performance comparable to the best grid search results. This demonstrates that
our method generalizes well across diverse tasks. The consistent performance across scales and domains highlights the
efficiency and reliability of our weighting approach, making it a practical guide for data mixing.

E.3. Analysis of Weights

We present weights for each domain determined by baseline methods and our method for Tulu3 experiments and Llama3.1-
70B as a study case. A key observation is the significant difference between our method and the original weights. The
original weights heavily prioritize the math domain (57.77%), while drastically underweighting other domains like precise
IF (2.05%) and safety (4.65%). In contrast, our method demonstrates a more balanced weighting. While it still emphasizes
certain domains like safety (25.25%) and general (19.26%), it significantly reduces the weight for math (12.81%) compared
to the original weights. This redistribution indicates that our method prioritizes a broader and more equitable distribution of

17

Data Mixing Optimization

Table 7. Overall PPL of models trained with our weights and with weights in grid search.

Model Data
Budget Ours Best

(Grid Search)

Qwen2.5-0.5B
5M 2.9847 2.9692
20M 2.9293 2.8952
200M 2.8210 2.7621

Qwen2.5-1.5B
5M 2.3954 2.3980
20M 2.3631 2.3428
200M 2.3154 2.2931

Llama3.2-3B
5M 2.5154 2.5085
20M 2.3986 2.3993
200M 2.2536 2.2505

Llama3.1-8B
5M 2.2343 2.2259
20M 2.1756 2.1633
200M 2.0762 2.0542

Table 8. Per-domain PPL of models trained with our weights and with weights in grid search.

Model Scale IF Math Code

Ours Best Ours Best Ours Best

Qwen2.5-0.5B
5M 5.228 5.174 1.532 1.508 2.195 2.190
20M 5.120 4.998 1.506 1.470 2.162 2.153
200M 4.850 4.638 1.467 1.424 2.148 2.113

Qwen2.5-1.5B
5M 3.865 3.844 1.409 1.405 1.912 1.915
20M 3.796 3.735 1.395 1.376 1.899 1.878
200M 3.661 3.600 1.393 1.348 1.892 1.878

Llama3.2-3B
5M 3.734 3.670 1.630 1.581 2.182 2.142
20M 3.543 3.490 1.567 1.516 2.086 2.051
200M 3.309 3.255 1.464 1.410 1.988 1.949

Llama3.1-8B
5M 3.186 3.141 1.505 1.469 2.011 1.977
20M 3.110 3.071 1.455 1.423 1.961 1.907
200M 2.919 2.870 1.402 1.360 1.907 1.841

weights across domains, in which we show in Table 4 lead to better generalization and performance across diverse tasks.

Table 9. Weights for each domain determined by baseline methods and our method for Tulu3 experiments using Llama3.1-70B (%)

Method General Knowledge Recall Math Code Precise IF Safety

Original 16.42 5.77 57.77 13.33 2.05 4.65
Equal T 16.67 16.67 16.67 16.67 16.67 16.67
Equal I 32.99 12.57 24.30 13.65 10.43 6.04
Ours 19.26 16.92 12.81 10.10 15.63 25.25

18

Data Mixing Optimization

E.4. Validation Loss and Downstream Performance of Re-Weighting Orca Collection

Table 10 and Table 11 highlight an important discrepancy between validation loss PPL and downstream task performance. In
Table 10, our method achieves competitive or even superior PPL scores compared to other weighting strategies, particularly
for larger models like Llama3.1-70B and Qwen2.5-32B. However, Table 11 reveals that lower PPL does not consistently
translate to better performance on downstream tasks such as AGIEval, HellaSwag, and Safety. For instance, while our
method achieves the lowest average PPL for Llama3.1-70B and Qwen2.5-32B, its downstream performance is not always
the best, as seen with Llama3.1-8B, where the Equal T weighting outperforms ours on average.

This inconsistency can be attributed to the distribution difference between the validation dataset and the testing dataset for
downstream tasks. The validation dataset may not fully capture the complexity or diversity of real-world tasks, leading to
selection of the model that does not generalize well to downstream applications. Therefore, it indicates that our method,
while effective in reducing validation loss, requires careful curation of validation dataset that aligns with downstream tasks
to translate its powerfulness to downstream applications.

Table 10. Validation loss for reweighting Orca collection.

Weight T0 CoT Flan Niv Avg.
Llama3.1-8B

Equal T 1.782 1.808 1.948 1.645 1.796

Equal I 1.728 1.813 1.930 1.580 1.763

Original 1.726 1.845 1.924 1.665 1.790
Ours 1.781 1.826 1.949 1.626 1.795

Llama3.1-70B

Equal T 1.629 1.679 1.785 1.571 1.666

Equal I 1.608 1.682 1.770 1.515 1.644

Original 1.600 1.720 1.772 1.581 1.668

Ours 1.620 1.651 1.767 1.534 1.643
Qwen2.5-32B

Equal T 1.643 1.670 1.798 1.553 1.666

Equal I 1.626 1.673 1.787 1.511 1.649

Original 1.617 1.699 1.789 1.560 1.666

Ours 1.613 1.662 1.787 1.533 1.649

Table 11. Downstream performance for reweighting Orca collec-
tion.

Weight AGIEval HellaSwag Safety Avg.
Llama3.1-8B

Equal T 38.3 59.5 39.7 45.9
Equal I 39.6 59.2 38.9 45.9
Original 39.7 59.5 40.3 46.5
Ours 38.2 59.9 39.7 45.9

Llama3.1-70B

Equal T 52.6 67.6 49.4 56.5
Equal I 53.7 67.8 41.9 54.5
Original 53.3 67.2 51.1 57.2
Ours 52.6 67.6 44.3 54.8

Qwen2.5-32B

Equal T 59.8 64.4 58.5 60.9
Equal I 61.2 64.3 59.9 61.8
Original 60.6 64.4 55.9 60.3
Ours 61.7 64.4 54.6 60.3

19

